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Chapter 10
High Water Temperature Induces Jaw
Deformity and Bone Morphogenetic Protein
(BMP) Gene Expression in Golden
Pompano Trachinotus ovatus Larvae

Jing Sun, Zhengyi Fu, Zhenhua Ma, and Gang Yu

Abstract Deformity during the early development of golden pompano Trachinotus
ovatus has significantly influenced the production capacity of a fish hatchery.
However, factors leading to skeletal deformity in this species have never been
assessed. In this chapter, the impact of rearing temperature on jaw deformity and
BMP gene expression is discussed. Jaw deformity rate of fish larvae increased with
the increase of ambient temperature, and the highest malformation rate was recorded
at 33 �C. The expressions of the BMP4 and BMP5 genes were positively correlated
to the occurrence of jaw malformation. The cultivating water temperature of
T. ovatus larvae should be maintained at 26–29 �C. These findings will clarify the
role of water temperature in influencing bone deformity in fish larvae and provide a
reference point to optimize the environmental condition during the rearing process of
golden pompano in hatcheries.

10.1 Introduction

Temperature is one of the important factors affecting the early development of larval
fish through regulating the feeding behavior and metabolism during larval develop-
ment (Ma 2014; Kestemont and Baras 2001). Besides, studies have shown that
unsuitable temperature can cause high mortality and deformity of larval fish (Lein
et al. 1997; Ørnsrud et al. 2004; Ludwig and Lochmann 2009). The skeletal
malformation is often related to slow growth and high mortality of fish larvae and
has continually hindered the production of marine fish in the hatchery
(Koumoundouros 2010; Boglione et al. 2013a, b). Jaw abnormality is not only a
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factor leading to a high mortality rate of fish but also a factor reducing the market
value of fish (Cobcroft et al. 2004; Barahona-Fernandes 1982; Ma et al. 2014c).
Such malformations have been reported in commercial aquaculture of gilthead sea
bream Sparus aurata (Prestinicola et al. 2013; Andrades et al. 1996), striped
trumpeter Latris lineata (Cobcroft et al. 2012), and yellowtail kingfish Seriola
lalandi (Cobcroft et al. 2004). Lein et al. (1997) suggested that unsuitable rearing
temperature can cause jaw malformations in fish. Under inappropriate temperature,
significant deformities of skeleton and gill cover have been reported in gilthead
seabream Sparus aurata and cranial malformation in European sea bass
Dicentrarchus labrax (Georgakopoulou et al. 2007). In pompano Trachinotus
ovatus, more than 33% of fish in the same cohort display more than one type of
deformities during the larval stage (Zheng et al. 2014; Ma et al. 2014c), but it is not
clear whether the temperature can cause jaw malformations in this species. Conse-
quently, in the process of pompano’s larval ontogenesis, to study relationship
between temperature and the jaw malformation is very necessary.
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Skeletogenesis includes differentiation and proliferation of various cell types,
such as osteoblasts, chondrocytes, osteoclasts, and osteocytes which determine the
shape, size, and mineral composition of bone structure (Karsenty and Wagner 2002;
Nijweide et al. 1986; Phan et al. 2004). The expression of genes mainly underlies the
procedure of cell proliferation and differentiation but could also be changed by
individual genetic characteristics and biological and nonbiological elements
(Boglione et al. 2013a, b). Therefore, it is necessary to examine the structure of
gene networks, which will provide an insight into the understanding of the under-
lying mechanisms of bone deformity. The biological and nonbiological factors could
cause bone malformation, while the gene expression is the potential mechanism
behind this factor. In some vertebrates, bone formation is controlled by bone
morphogenetic proteins (BMPs) at different phases of cell development (e.g., matur-
ing osteoblast, stem cells, hypertrophic chondrocytes, proliferative chondrocytes)
(Hogan 1996a, b; Windhausen et al. 2015; Alaee et al. 2014). In the animal kingdom,
the function and structure of BMPs are conservative. The function and structure of
different BMPs in single species can be seen through their roles in various biological
processes (Razdorov and Vukicevic 2012). For example, BMPs 1, 2, and 3 play an
essential role in bone fracture repair because these proteins can stimulate the growth
of osteoblasts (Grgurevic et al. 2011). BMPs 2, 4, and 6 can regulate skeletogenesis,
in particular, chondrocyte differentiation into cartilage, and cell maturation in
osteoblast lineages can lead to bone formation (Minina et al. 2001; Rickard et al.
1994; Wan and Cao 2005; Canalis et al. 2003). Although several studies have been
conducted to test the expression of BMP genes in various fish species, most of these
studies are focused on the changes during embryonic development (Myers et al.
2002; Palomino et al. 2014; Marques et al. 2014, 2015; Tiago et al. 2014). In marine
fish, the studies on the expression of BMP genes after incubation and their biological
function are limited to the test of nutrient effect such as lipids and vitamins
(Villeneuve et al. 2005a, b, 2006). Recently, BMP genes have been used to evaluate
the impact of high temperature on the bone abnormality of fish larvae (Ytteborg et al.
2010). The study on BMP expressions in the ontogeny of golden pompano can



contribute to the baseline data on the factors relevant to jaw deformity in fish larvae
during osteogenesis.
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The T. ovatus is an important economic species of the Carangidae family and is a
potential species for aquaculture diversification (Guo et al. 2014). Although the
digestive function develops early (Ma et al. 2014a, b) and the nutrient requirements
of the first feeding T. ovatus larvae have been researched (Ma et al. 2014d), the
information on the cause of deformity during the early developmental period is
fragmental. Our previous studies have reported the type, position, and frequency of
jaw and skeletal deformities in hatchery-reared T. ovatus larvae (Zheng et al. 2014;
Ma et al. 2014c). However, factors leading to skeletal deformity in this fish have
never been assessed. In this chapter, the impact of rearing temperature on jaw
deformity and BMP gene expression is discussed. The results are derived from
fish cultured at three constant temperatures of 26, 29, and 33 �C from hatching to
18 days post-hatch (DPH) in a hatchery.

10.2 Growth, Survival, and Jaw Deformity at Different
Temperatures

The water temperature is a key to the success of fish hatchery production factors and
can significantly impact the quality of fish larvae (Boglione et al. 2013b). The
growth of T. ovatus larvae was significantly affected by temperature (P < 0.05,
Fig. 10.1). The specific growth rates (SGRs) of fish increase with temperature
elevation in the rearing facility. Temperature can affect metabolism, food intake,
and growth of fish (Ma 2014; Jobling 1994), and the effect of temperature on larval
growth of farmed fish species has been well documented including striped trumpeter
Latris lineata (Choa et al. 2010), Australian snapper Pagrus auratus (Fielder et al.
2005), nase Chondrostoma nasus L. (Keckeis et al. 2001), yellowtail kingfish
Seriola lalandi (Ma 2014), and haddock Melanogrammus aeglefinus L. (Martell
et al. 2005). In T. ovatus, the rapid growth at high temperature probably is related to
the high food intake and improved digestive mechanism as evidenced by the early
appearance of gastric glands and goblet cells in the gut after 15 DPH at 27–29 �C
(Ma et al. 2014b). The growth of fish larvae was expedited when fish were weaned
from rotifers to Artemia nauplii. Like Florida pompano Trachinotus carolinus (Riley
et al. 2009), the mouth gape of T. ovatus larvae reached 1.05 mm by 12 DPH, which
enables the fish to ingest larger food particles such as Artemia nauplii. For this
reason, the marked size difference in T. ovatus size between temperature treatments
at 18 DPH may also be attributed to the use of enriched rotifers for high-calorie food
from 9 DPH onward.

In both artificial and wild environments, fish will go through critical periods in
ontogeny and shift from endogenous nutrition to exogenous nutrition (Otterlei et al.
1999; Ma et al. 2012). During the phase of feed transformation, when food provision
and light condition are within the range of first feeding requirement for fish larvae,



the temperature may be the most decisive factor for fish survival (Kamler 1992;
McGurk 1984; Ma 2014; Gardeur et al. 2007). Previous research has indicated that
mortality is temperature-dependent in the larvae and juveniles of Pangasianodon
hypophthalmus (Baras et al. 2011), Seriola lalandi (Ma 2014), Glyptocephalus
cynoglossus (Bidwell and Howell 2001), and Inimicus japonicus (Wen et al.
2013). Ma (2014) argues that there is a temperature-sensitive stage when mortality
occurs in fish larvae during early development. In T. ovatus, the lowest survival rate
was found when fish were reared at 33 �C (Fig. 10.1), suggesting that the highest
level of temperature tolerance has reached for this species.
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Fig. 10.1 Survival, specific growth rate, and jaw deformity rate of T. ovatus larvae cultured at
26, 29, and 33 �C. Means with the same letter are not significantly different (P > 0.05) (the symbol
of “�C” is not shown in the x-axis of the figure) (Ma et al. 2016)

Jaw abnormality is a crucial point in fish culture because it impacts the quality of
fingerlings for further grow-out (Von Westernhagen 1988). In T. ovatus, the rate of
jaw deformities rose with the rise of temperature, and the maximum value occurred
at 33 �C (Fig. 10.1). The temperature-dependent deformity has also been reported in
other species such as Pacific herring Clupea pallasi (Alderdice and Velsen 1971) and
Atlantic halibut Hippoglossus hippoglossus (Lein et al. 1997). The fast growth at
temperature requires a high level of dissolved oxygen (Rombough 1997) and an
adequate amount of nutritional supply. However, unless the feed contains high levels
of energy, the fish may not grow very fast (Cahu et al. 2003a, b; Ma 2014). In
addition, temperature could interfere with fish development by accelerating or
postponing the development of the digestive system, which may be related to the
increased rate of skeletal malformation at high temperature. In the present study, the
fertilized eggs of T. ovatus hatched at 26 �C, and then yolk sac larvae were



acclimated to each of the experimental temperatures (26, 29, and 33 �C) for 5 h on
2 DPH. However, the rapid augment of ambient temperature from 26 to 29 �C or
33 �C may also induce jaw malformation.
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10.3 Expression of BMP Genes at Different Temperatures

The growth of bone depends on the dynamic balance between the rate of cartilage
generation and bone adherence (Breur et al. 1991). BMP2 and BMP4 genes are
closely associated with protein synthesis for physiological activities in the crucial
period of embryonic development, such as dorsal-ventral axis specification (Graff
1997), apoptosis (Glozak and Rogers 1996; Graham et al. 1994; Zou and Niswander
1996), and epithelio-mesenchymal interactions (Vainio et al. 1993). The BMP2 gene
in zebra fish is correlated to the induction and maintenance of ventrolateral cells
during the initial stage of development. However, a missense mutation of the
BMP2b gene lead to the dorsalized phenotype of the zebra fish swirl mutant,
which lacks the cardiogenic mesoderm (Kishimoto et al. 1997). Ytteborg et al.
(2010) found that the expression of BMP2 increased when fish are under a high
temperature condition. In T. ovatus, the expression of BMP2 was significantly
affected by water temperature (P < 0.05, Fig. 10.2). Compared with the fish at
26 �C, the expression of BMP2 in fish showed a trend of increase at 29 �C
(Fig. 10.2), which is consistent with the result reported by Ytteborg et al. (2010).
However, the reason for low expression of BMP2 in fish at 33 �C remains unclear.

BMP4 plays a different role in the growth of some vertebrate species (Whitman
1998; Hogan 1996b; Dale and Johns 1999; Mehler et al. 1997; Shi and Massague
2003) and has been used to assess whether the BMP pathway is involved in nutrient
deficiency of bone deformities (Villeneuve et al. 2005a, b, 2006) or environmental
stress (Ytteborg et al. 2010). According to Villeneuve et al. (2006), the increase of
BMP4 and RARγ expressions can diminish the number of osteoblasts for bone
generation, and the damage of bone cells is counteracted by the interaction between
retinoic acid and BMP4. In T. ovatus, the expression of BMP4 at 29 and 33 �C was
significantly higher than those at 26 �C. Jaw deformities of fish at 29 and 33 �C were
also significantly higher than those fish at 26 �C. This result is consistent with
Ytteborg et al. (2010), such as the results of the study, namely, under the condition
of high temperature raising, tend to increase the BMP4 gene expression. When the
expression of BMP4 gene was upregulated, the incidence of jaw deformity increased
(Villeneuve et al. 2006).

Previous studies have demonstrated that the 60A subgroup (BMP5, 6, 7) is
functionally supernumerary and that the collective expression of the 60A subgroup
determines the functional change in the early fish development (Kim et al. 2001;
Solloway and Robertson 1999). During endochondral ossification, BMP5 can stim-
ulate the mesenchymal cells to coagulate into chondrocytes (Bailon-Plaza et al.
1999; King et al. 1994). Moreover, the mutated BMP5 gene can cause skeletal
malformations, indicating the essentiality of BMP5 in skeletal development (Storm



5et al. 1994; Kingsley et al. 1992; Wolfman et al. 2003). In T. ovatus, BMP
expression patterns in fish is similar to the expression pattern of BMP4 (Fig. 10.2).
Under 29 and 33 �C, the expression level of BMP5 in fish was significantly higher
than that under 26 �C. Although the expression level of BMP5 and jaw abnormalities
in T. ovatus increased with the increase of rearing temperature, there is no direct
evidence to suggest that the expression of BMP5 can regulate the jaw abnormalities.
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Fig. 10.2 Relative expression levels of bone morphogenetic proteins of T. ovatus larvae at different
temperatures on 18 DPH. For BMP2, the reference was the 26 �C BMP2; for BMP4, the reference
was the 26 �C BMP4; for BMP5, the reference was the 26 �C BMP5; for BMP10, the reference was
the 26 �C BMP10. Means with the same letter are not significantly different (P > 0.05) (Ma et al.
2016)

The BMP10 gene is mainly expressed in the heart of an adult but with a lower
chance in the lung and liver (Neuhaus et al. 1999). During the period of heart
development, BMP10 is expressed in the ventricular chamber, atrium, and trabecu-
lae in Bulbus cordis (Neuhaus et al. 1999). In zebra fish, a comparatively high
BMP10 expression occurs in the liver and heart, but low expression level can be
observed in the kidney and brain (Bland 2001). In T. ovatus, feeding temperature had
no significant effect on the expression of BMP10, indicating that 18 DPH was
insensitive to the expression of BMP10 in ovate cells.
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10.4 Conclusion

In summary, temperature significantly regulated the jaw development in larval
T. ovatus. Jaw malformation rate in fish larvae increased with the increase of rearing
temperature, and the highest malformation rate occurred in fish at 33 �C. To reduce
massive malformation, we should control the rearing water temperature at 26–29 �C
for T. ovatus larvae. Gene expression analysis indicates that the expression levels of
BMP4 and BMP5 were positively correlated to the occurrence of jaw malformations,
but the underlying mechanism needs further study.
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