
Chapter 7
IT Infrastructure for Smart City: Issues
and Challenges in Migration
from Relational to NoSQL Databases

Amit Kanojia and S. Tanwani

Abstract Smart city applications collect massive amount of data from various types
of IoT sensors, engines, and people. Most of the data generated are heterogeneous
in nature. However, this data need to be integrated with legacy applications based
on SQL. Some of these applications also require migration to NoSQL for improved
performance and fault tolerance. This paper addresses challenges of working in
hybrid environments and migration issues from SQL to NoSQL databases. Rapid
rate of growth in heterogeneous data and characteristics of NoSQL database like
easy scalability, high availability, high performance, and low cost are the motivating
factors to migrate toward NoSQL from relational databases, especially for appli-
cations requiring dealing with unstructured data. NoSQL database gives dynamic
schema, adjustable data model, scale out architecture, and allows storage of big data
and access to it in an efficient manner. The relational databases store data in form
of tables with fixed schema. Relational databases are structured and not capable of
handling unstructured and big data. In relational databases, because of normaliza-
tion, data is spread across multiple tables and expensive join operation is required
to integrate data. Due to limitations of relational databases, most of the leading
organizations are migrating toward NoSQL. NoSQL databases are analyzed into
four categories- Key-value database, Column-oriented database, Document-based
database, and Graph database. Key research issues and challenges in migrating from
relational to NoSQL include model transformation (including mapping and schema
conversion), application integration, strategies related to perform join in different
scenarios, use of indexes, storage issues, etc. Massive growth is likely in the area of
NoSQL over cloud because of initiatives like Smart City, however, these applications
required integrationwith legacy applications built over SQL. Thus need formigration
as well as bridges for connection leading to requirements of our research area. This
chapter tends to explore the comparative study of Relational databases and NoSQL

A. Kanojia (B)
Department of Computer Science, Mata Jijabai Government Girls PG College, Indore, India
e-mail: kamit.ind@gmail.com

S. Tanwani
School of Computer Science & IT, DAVV, Indore, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Bali et al. (eds.),Decision Analytics for Sustainable Development in Smart Society 5.0,
Asset Analytics, https://doi.org/10.1007/978-981-19-1689-2_7

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1689-2_7&domain=pdf
mailto:kamit.ind@gmail.com
https://doi.org/10.1007/978-981-19-1689-2_7

94 A. Kanojia and S. Tanwani

databases, classification of NoSQL databases, case study, popular approaches for
migration, and some of the key issues and challenges in migrating from Relational
to NoSQL databases. This chapter will be fruitful for students and researchers too.

7.1 Introduction

A smart city comprises a major amount and variety of IoT sensors, engines, and
people. A smart city endeavor to upgrade everyday operation. The Smart City idea
is used to improve various metropolitan services with the use of ICT. In the Smart
City, ICTs are used for improving the consistency, performance, and interaction
of urban services. It reduces cost and resource utilization. Numerous smart city
projects have already been initiated with new ideas, like smart health care, smart
transportation, smartwastemanagement, smart parkingmanagement, etc [1].A smart
city relies on data and uses large amount of data based on big data collected by IoT
devices everywhere. Data generated in such type of applications are unstructured and
heterogeneous, which cannot be managed effectively by legacy SQL applications.
Thus, there is a need of migration from SQL to NoSQL and integration with legacy
applications developed using SQL for sustainable development in smart society.
Smart city projects use different ICT tools to make communications effective and
innovative [2].

In this section, basic ideas of relational databases, NoSQL databases and their
characteristics have been introduced. Carlo Strozzi in year 1998 coined the term
NoSQL. NoSQL means “Not Only SQL”. The huge amount of heterogeneous infor-
mation generated from the web applications and business applications is difficult to
deal with by RDBMS, which basically manages structured data. An alternative data
model handling both structured and unstructured data was felt by business commu-
nity. The demand led to development of NoSQL. NoSQL data sets are characterized
as disseminated, evenly versatile, and open source [3].

RDBMS possess static schema and data are inserted strictly according to schema
due to which data accessing rate becomes slower and difficult. RDBMS remains
the top data storage technology, however, several industries wish to decrease
operating cost to make scalable application that uses cloud computing technologies
[4]. NoSQL databases do not have predefined schema that helps in making major
application transformations in real time. It makes faster enhancement and more
feasible to access data easily. NoSQL systems are high performance, scalable
systems [5]. Various reasons for motivation to utilize NoSQL databases are high
availability, scalability, distributed architecture, varied data structure, adaptable
schema, and consistency and fault tolerance. NOSQL databases have many benefits
such as faster read and write access and support massive storage at low cost. The
scaling approach easily supports adding multiple servers. Data structure used by
NoSQL is in form of key-value pairs [6].

7 IT Infrastructure for Smart City … 95

NoSQL has conquered many restrictions of the relational databases [7]. Consid-
ering the above, many business applications presently on RDBMS technology intend
to migrate over NoSQL. Therefore, in order to get a consistent and effective alter-
native to change the schema and migrate data to NoSQL from the legacy rela-
tional database applications, effective strategies and guidelines are required. The
RDBMS is based on structured datamodel and uses structured query language (SQL).
NoSQL offers a adaptable structure and doesn’t adhere to standard SQL interface
[3]. NoSQL databases are grouped into four most important categories (i) Key-Value
Databases (ii) Document-oriented databases (iii) Column-oriented databases and (iv)
Graph-oriented databases. Relational Databases followACID propertywhereas CAP
theorem is used by NoSQL databases.

Researchers and industrialists exploring and implementing big data provide better
opportunity to transform data into an appropriate form. They store and process the
data and finally analyze it. With the rapid increase of data, issues occur about the
organization, querying, and storage. Relational database management systems have
limitations when data is accessible in different formats (such as semi-structured
and unstructured data). NoSQL database system provides a streamlined database,
supports multiple data models, and provides a schema-free architecture.

Data migration is the technique of relocating data between systems or storage
units. For making this efficient, the data extraction, transformation, and loading
methods should be implemented. The techniques will help in mapping data from
existing system to the latest systemwhich is being implemented. Database migration
is the way toward moving the business logic, schema, physical data, and database
dependencies from an existing system to a latest system. Database Migration is
utilized when there is a necessity to move one database vendor to other. There
are various reasons for this, such as cost, capabilities, functionalities, and require-
ments. Generally data migration occurs during an upgrade of existing hardware or
transferring to a totally new system [6].

The rest of the chapter is organized into eight sections. After introducing the main
concepts of relational databases and migration from relational to NoSQL database
we proceeded further to discuss the related work in Sect. 2. Section 3 describes smart
city requirements, Sect. 4 includes a comparative study of relational and NoSQL
databases. Section 5 describes the classification of NoSQL databases. Various migra-
tion approaches with some examples have been discussed in Sect. 6. The challenges
and some of the key issues are described in Sect. 7. Section 8 illustrates case study
on MongoDB database. Section 9 concludes the chapter and outlines future work.

7.2 Related Work

The most proficient strategy to migrate a database relies upon the application avail-
ability and the computational resources accessible for it [8]. The technique also
helps to choose a correct migration strategy to utilize and the metrics that can be
gathered to more readily assess the exhibition of a migration. The paper not only

96 A. Kanojia and S. Tanwani

recognizes the current migration methods but also recommends receiving the most
effective strategy for migrating relational databases to NoSQL databases. Results
show that migration can be successfully performed, if semi-automatic migration
approach including manual intervention is the most competent methodology.

Outline of method for mapping relational databases with NoSQL databases is
explained in [9]. Different methods for data conversion and middle layer solutions
are summarized. In their work, they introduced some research on new research on
data migration from relational databases to NoSQL databases.

Methods of Migration the relational model to the document-oriented model is
presented in [5]. A migration methodology to MongoDB is proposed, beginning
with a technique for extracting a data model from a relational database through
metadata. Next, it describes on how to carry on with schema and data migration
preserving the integrity constraints. The paper can be further extended to introduce
an object modeling in the NoSQL databases, which will affect the best approach for
data storage, selection, insertion, and modification time. A prototype is created to
show the feasibility and efficiency of the proposed approach.

Reference [8] Gives comparison of the performance of the three migration
methods, using metrics that provides with detailed perspective of resource utilization
as well as details about migration is being verified. This study shows how techniques
of migration from relational databases to NoSQL and their related metrics can be
utilized. It is concluded that it is consistently important to approve resources inac-
cessibility as prerequisite of the projects and not the migration itself [6]. Database
migration explains migration process in a phased manner. Migration, the intensive
facts of what is expected for the proper design of migration can predict the potential
problems that can occur during migration and may decrease the possibility of failure.

Reference [3] Proposed an approach of model transformation and migration of
data from RDBMS to MongoDB. The proposed work is separated into four parts
(i) considers the query characteristics and data characteristics (ii) designs a model
transformation algorithm based on description tags and action tags (iii) automatically
migrates the data into MongoDB based on the result of model transformation (iv)
develop an useful tool. Experiments demonstrate that utilizing this methodology can
accomplish a better performance. They give a tool which enable users to handily
perform transformation and migration. Utilizing this tool, users can pick appropriate
NoSQLdatabase to replace relational database. The choice of appropriatemid-model
is important for the effectiveness of the model transition and data migration between
Nosql databases and relational databases [7]. Data and query features are introduced
into mid-model. This model, if implemented as a tool can also serve as an interface
for DBA.

Reference [10] Girts suggest an approach for faster migration of data from rela-
tional database to NoSQL document-oriented databases. Two logical levels using
automated means allowing user intervention to further update the logical level are
developed over physical data. The data migration function is implemented in the
DigiBrowser relational database browser. The proposed method helps to get proof
of ideas for a new document-oriented database solution in two to three days.

7 IT Infrastructure for Smart City … 97

In [11], Hassan, Rondik J. et al. research show that the Internet of Things has
proven to be the biggest promoter and promoter of smart city plans. This is a
key step in the transformation of traditional public facilities into smart services
and the creation of new services. Big data and cloud computing play a central
role in advancing these new projects because they can expand existing work by
providing ever-expanding information and computing power. The data generated in
smart city projects is heterogeneous and unstructured in nature. NoSQL can easily
store unstructured data due to its flexible model. Reference [12] describes numerous
NoSQL benchmarks made by the scientific community andmentions HBase’s ability
to provide citizens with energy bills reinvented in smart city services. The effect
confirms that Cassandra and HBase are generally diagnosed as appropriate general
actors and can be followed without much concern. The structural design provided
has passed ETL verification and predicts big data in the smart city environment. The
architecture proposed in this chapter, NoSQL, now plays a vital role in the Internet
and mobile applications.

7.3 Smart City Requirements

Smart cities can be defined as developed urban areas that create sustainable economic
development and high-quality life through outstanding performance in many key
areas such as economy, mobility, environment, people, life, and government. Smart
cities use various technologies to improve the infrastructure, energy, learning, well-
being, and water supply efficiency of their residents. Generally speaking, a smart
city must have:

(i) Qualified supply consisting of public services such as water, electricity, solid
waste, sanitation and sewage treatment, and related government services.

(ii) Supply–demand matching system ground transportation services, providing
no Congested roads and shortest waiting time for public transportation.

(iii) Active surveillance in the city to provide the public safety that citizens urgently
need.

(iv) Provide reliable emergency services as needed, such as ambulances, fire safety,
etc.

7.3.1 Smart City Applications

1. Smart Traffic Management

SmartTrafficManagement includesmodern technologies and services to enhance and
innovate the urban traffic experience, solve traffic problems such as traffic congestion,
and reduce injuries. The evolution of the scale and trends of urban traffic has raised
problems that affect the well-being of cities. This type of transport has a great impact

98 A. Kanojia and S. Tanwani

on the atmosphere of the city: a large number of vehicles that use energy cause noise
and air pollution, which causes climate change and damage to the atmosphere.

2. Cost-Effective Energy Efficient System

The clean and green energy digital grid is one of the most attractive prospects for
smart cities. For example, smart solar or wind power plants can become an important
part of the smart city ecosystem.

3. Improving Accessibility of Healthcare Systems

Smart health care is a combination of technologies designed tomaximize the survival
rate and quality of life of the population. Smart healthcare networks use mobile,
Internet of Things, and computing technologies to ensure accurate diagnosis and
transform health care.

4. Efficient Parking System

The parking problem is some worldwide problems that famous urban residents often
face, but it is also difficult to solve. Smart city technology can help detecting number
of empty parking slots immediately, and reduce the time and confusion that usually
comes with parking.

5. Smart Irrigation Systems

In traditional irrigation systems, due to inefficiency, most of the water and other
resources are wasted. Smart Irrigation Systems uses IoT sensors to monitor the
schedule and run times according to needs. Smart Irrigation sensors monitor plant
water, weather, and soil conditions to automatically adjust the watering schedules.

6. Smart Homes

It includes Smart lighting, appliances, gas detectors, etc. Smart lighting systems
control lighting of homes remotely via mobile or web applications. Smart appliances
give status information of appliances to the users remotely. Smoke detectors use
optical detection, ionization, or air sampling techniques to detect the smoke. Gas
detectors can detect harmful gases and raise alerts to the users.

7. Weather Monitoring

Weather monitoring systems provide information about weathers. In such systems
data collected from several sensors (temperature, humidity, pressure, etc.) and this
data is sent to cloud-based applications and storage back-ends.

8. Air Pollution Monitoring

Air pollution monitoring systems are the systems that monitor emission of harmful
gases like carbon dioxide, carbon mono oxide, nitrous oxide, etc. Factories and auto-
mobiles use gaseous and meteorological sensors. These systems require Integration
with a single-chip microcontroller, several air pollution sensors, GPRS-modem, and
a GPS module.

7 IT Infrastructure for Smart City … 99

7.4 Comparative Study of Relational and NoSQL
Databases

NoSQLdatabase is distinctive in numerous perspectives from conventional databases
such as complexity, schema, transaction methodology, and dealing with accessing
big data. The IoT applications in smart city projects usually have storing big data.
With rapid growth in the clients and sensor data, it is not easy for legacy SQL system
to handle big users. SQL systems store data in form of static tables and data is spread
across multiple tables. To access the relevant information, expensive join operation
is needed. NoSQL databases have been introduced to conquer this problem.

7.4.1 Characteristics of NoSQL Systems

Following are the characteristics of NoSQL Systems (Table 7.1).

7.4.2 Advantages and Disadvantages of NoSQL Databases

Advantages of NoSQL Database [13]

• In relational database data is structured and spread across different tables, due to
this, there may be a possibility of complex joins and affect the performance of the

Table 7.1 Characteristics of relational and NoSQL databases Source: [32]

Characteristics Relational databases NoSQL

Data model Concept of set and relations in
mathematics

Key-value stores, graph, and
document data model

Scalability Vertical scalability Horizontal Scalability

Transactional reliability Fully support ACID Range from BASE to ACID

Handling big data Complex Designed to handle big data

Crash recovery Guarantee crash recovery via
recovery manager

Depend on replication as
backups to recover from crash

Datawarehouse Performance degrade due to big
data

High performance, scalability,
availability in storing big data

Complexity Rises because structure of DB
could be quiet complex, difficult
and slow working

Have capabilities to store
unstructured, structured, or
semi-structured data

Security Adopted very secure mechanism Has shortage in security
because focus is on other
purposes than security

100 A. Kanojia and S. Tanwani

system. NoSQL databases can store structured, semi-structured, and unstructured
data format and provides high flexibility and better performance.

• NoSQL databases are well suited for cloud-based application.
• NoSQL has faster speed, easy scalability, high efficiency, and flexibility.
• Regarding performance and retrieving Big Data, NoSQL plays a major role by

giving techniques to deal with Big Data.

Disadvantages of NoSQL Database

• Security is one of the important concerns of NoSQL databases. Due to lack of
standardization across various vendors and models, it is difficult to provide a
unified security solution.

• As compared to relational databases, maintaining NoSQL databases is complex.
• Relational database has SQL as its own standard query language, but NoSQL does

not.
• SomeNoSQL database vendors andmodels do not comply with ACID properties.

7.4.3 Advantages and Disadvantages of Relational Databases

Advantages of Relational Databases

• Security methods are well established. However, security methods are in evolving
stage in NoSQL database systems.

• When contrasted with NoSQL, RDBMS is very simple to utilize and easy
to manipulate data and maintain data integrity with reduced redundancy and
replication.

• As compared to NoSQL, the data independence across logical and physical level
is better in Relational databases.

• Backup and Recovery mechanisms are sound in relational database system.

7.5 NoSQL Databases Classification

NoSQL databases are classified as

(i) Document-oriented database.
(ii) Key-value database.
(iii) Column-oriented database.
(iv) Graph-oriented database.

7 IT Infrastructure for Smart City … 101

NoSQL Database

Document

Oriented

Database

Key-value

Database
Column

Oriented

Database

Graph

Oriented

Database

Fig. 7.1 Classification of NoSQL Databases Source: [27]

7.5.1 Document-Oriented Databases

Document-Oriented databases resemble Key-Value databases with the refinement
that values are perceptible and can be queried. Document-oriented datasets utilized
JSON or XML data format for storing data. Unlike key-value storage, it provides
indexing and value-based queries. These databases store your data in the form of
documents. The documents here are perceived by a unique set of keys and values,
which are relatively the same as those in the key-value database. Document-based
databases are schemaless and changeable in nature [10, 14]. The different charac-
teristics of document-oriented storage are horizontal scalability and fragmentation
between cluster nodes. Examples of document-oriented storage include MongoDB,
Amazon DynamoDB, CouchDB, CouchBase, and so on [10].

7.5.2 Key-Value Databases

The simplicity of Key-value stores gives an incredible and effective methodology
contrasted with different types of NoSQL database systems. Key-value database
is a grouping of two components: Key and Values. Key is a unique identifier to
particular information. The Value is a type of information indicated by the key [14].
Key-value store efficiently performs fundamental CRUD (Create, Read, Update,
and Delete) operations. Compared to relational databases, the Key-value data model
provides many features, such as highly scalable distributed data, big data support,
high concurrency, and data retrieval speed. They also provide sharding across cluster
nodes. Fragmentation is a horizontal division procedure used to divide a large amount
of information into convenient, small, and effective pieces. However, the key-value
database is not very flexible when querying and indexing complex and connected
data. Queries in this category are usually based on keys rather than values. Exam-
ples of key-value storage are Redis, Memcached, Riak KV, Hazelcast, Ehcached,
OrientDB, Aerospike, Amazon basic DB, etc. [10].

102 A. Kanojia and S. Tanwani

7.5.3 Column-Oriented Databases

Column-oriented databases are important when there is a need to deal with massive
amount of data. Column stores in NoSQL are basicallymixed row-column stores, not
at all like pure relational column databases. In column-oriented database, each key is
associated with one or more attributes. Column-oriented database stores information
in such away that columns that are needed and accessed at the same time are stored in
one location in storage so that they can be accessed quickly with less I/O. It focuses
on high scalability in data storage. One of the significant qualities is horizontal scal-
ability. Examples of Column-oriented databases are Hbase, Accumulo, Hypertable,
Google Cloud Bigtable, Sqrrl, ScyllaDB, and MapR-DB [10, 14].

7.5.4 Graph-Oriented Databases

Graph databases are based on the Graph theory. It deals with entities and their rela-
tionships in form of nodes and edges respectively. The graph is composed of vertex
and edges, where nodes are objects and edges are the relationship among the objects.
In graph databases, the relational table is replaced with structured relational graphs
of interconnected key-value pairs. The graph consists of attributes related to nodes.
It uses an index-free adjacency technique.

In this method every node comprises an immediate pointer which points to the
adjacent node results in traversing millions of records. Graph databases focus on
the relation established between data using pointers and offer schema less and well-
organized storage of semi-structured data. Graph databases are faster than relational
databases especially when identifying missing links and connections because in
Graph databases queries are expressed as traversals. Graph databases support ACID
property and support rollback [14].

Every real-world scenario can be corresponding to graphs and can also bemodeled
on graph database, because graphs have expressive and powerful modeling charac-
teristics. Querying the graph database is more cost-effective because the graph query
language does not require dense connections [10].

7.6 Methods of Data Migration

F. Matthews and C. Schulz describe the term data migration as follows: “Tool-
supported one-time process which aims at migrating formatted data from a source
structure to a target data structure whereas both structures differ on a conceptual
and/or physical level”. There are two important steps in data migration: first, restruc-
turing the source data to meet the requirements of the target system, and second,
moving the data from the source to the target database. The document provides

7 IT Infrastructure for Smart City … 103

several methodologies to manage the following steps: schema transformation, meta
model approach, ETL (Extract, Transform, and Load), program transformation,
model migration, automaticmigration data transfer [10]. Following are some popular
methods of data migration.

7.6.1 Mid-Model Approach [7]

The model proposed depends on two basic ideas: Data feature and query feature.
The most fundamental element of the model is its generic nature, which can be
modeled for any NoSQL database on demand. This model not only migrate data
from relational to NoSQL but also maintains the integrity of data which was present
in relational databases. This model not only migrates relational data to NoSQL, but
also maintains the integrity of data already present in the relational database. Two
strong points of Mid-model: (1) The data feature contains some characteristics of
the relational database while (2) the query feature specifies the queries The principle
challenge to mid-model design was to discover the distinctions that are present in
the models of Relational and NoSQL databases. The middle model has an object
because the base model is like an entity in a relational database that has a number
of properties that describe the characteristics of the entity and its relationships with
other objects.

7.6.2 NoSQLayer Approach [15]

NoSQLayer ensures that data ismigrated from relational databases toNoSQLwithout
modifying application code. The framework acts as an interface between the database
and the application. The proposed solution is based on the use of two phases: migra-
tion and mapping. The framework contains two modules; The migration module
ensures a consistent migration of data from relational databases to NoSQL databases
using the metadata information contained in the data dictionary and the mapping
module, providing the basis for running MySQL queries so that the legacy appli-
cation can continue without modifications. It preserves the semantics of the source
database and allows programmers to easily query the database by allowing them to
code with a query on a relational database. The queries coming from the application
are captured by NoSQLayer and converted to a specific NoSQL database format, the
results generated by the NoSQL database are again captured by the framework and
converted to tools specific to the application format. Mediator is an open source tool
used to communicate between the application and the database. The results of the
evaluation show that the framework is viable. However, the cost brought by the layer
is very large when low volume data is involved in the operations, but it decreases

104 A. Kanojia and S. Tanwani

as the amount of data increases and thus NoSQLayer gives efficient results. The
proposed framework works best with huge volumes of data correlating with MySQL
databases. Compare the execution time of different queries with the evolution of data
volumes and the proposed system is considered to be an efficient solution for data
migration from relational databases to relational.

7.6.3 Data Adapter Approach [9]

Data Adapter system is mainly used for utilizing hybrid database. Data Adapter
framework integrate RDBMS and NoSQL databases using Map Reduce process.
Result demonstrates that the data adapter takes very less time to parse each query
to get required data and information. Test data of Amazon Elastic Map Reduce is
utilized as their relational database information source.

7.6.4 Automatic Mapping Framework [9]

It is a framework that provides automatic mapping of relational databases to
MongoDB. MongoDB has a key and value pair. To map a relational database to
a MongoDB collection, rows from the relational database are mapped as documents.
Mapping a relational database to NoSQL involves thinking about the relationships
that exist between different database tables. The easiest way to map in a 1:1 rela-
tionship includes embedding. Embedding and linking are commonly used in a 1:M
relationship, while one-way or two-way embedding is used in an N:M relationship.
The framework uses source information metadata from the database whether the
relation contains table names, data types to be stored and access privileges, etc. The
mapping steps include: creating a MongoDB database, creating a new table in the
database using relational databasemetadata, and relating one table to another through
primary keys and foreign keys.

7.7 Issues and Challenges in Migration

The use of Internet of Things (IoT) sensors is dramatically increased in smart city
projects because they are cheaper, consume less power, are smaller, and are easier
to use. IoT sensors typically collect large amounts of data and send it to a remote
server. Data collected by sensors is heterogeneous i.e., contains images, videos,
sound, fingerprints, Iris scan, text, etc. This data must be analyzed and accessible
for various purposes. Legacy SQL systems are not capable of handling unstructured,
heterogeneous, and big data generated in smart city projects. Thus migration as well
as bridges for connection with legacy SQL systems is needed. At the moment, it

7 IT Infrastructure for Smart City … 105

is difficult to find an appropriate process and strategy for migration from relational
databases to non-relational databases effectively, due to following major issues and
challenges [3].

7.7.1 Model Transformation

Since no special tools exist, most model transformation techniques depend on the
experience of the DBA. Therefore, the physical model of NoSQL is often designed
by individuals based on existing relational databases. Very inconvenient when the
tables are involved and complex with a large number of attributes. Likewise, it is
difficult to choose which tables should be integrated with each other and which
tables should use references correctly. From a certain point of view, if we integrate
all related tables, it can improve performance while causing data redundancy. Again,
NoSQL does not support join operations. If we use a per-table reference, NoSQLwill
issue multiple queries when reading related documents. Reading related documents
through different queries can lead to poor performance. A performance compromise
and data redundancy technique works best. In addition, different applications may
require different methodologies when converting models. Sometimes manual inter-
vention is required to ensure that the new model is exactly what it is intended to be
and that it will meet the requirements.

7.7.2 Data Migration

Currently, data migration tools use basic methodologies, such as moving each
database table into a collection. Currently, no existing job can automatically migrate
data based onmodel information. Semi-automatic tools with partial manual interven-
tion are available. These tools provide a straight forward technique to migrate rela-
tional databases to NoSQL databases. The Extract-Transform-Load engine imple-
ments an interface with several mainstream NoSQL database systems to perform
data migrations, such as MongoDB, Hbase, and Cassandra. The only downside is
that these ETL systems are therefore unable to map the original database to the target
database. ETL tools can only complement the informationmigration process, forcing
users to define their own mapping strategies between different databases.

7.7.3 Schema Conversion

Wu-ChunChung andChongxinLi suggest two thoughts on independentmodification
of the database schema in HBase. The first idea uses the map-reduce framework.
This framework converts each table in the database into an HBase table. After the

106 A. Kanojia and S. Tanwani

conversion, each table turns into a column family of HBase. The second reflection
uses three rules to handle schemaconversions.Related tables are nested and converted
to anHBase table.However, it did not take into accountmulti-level nesting.To convert
relational databases to NoSQL databases, some focus on transformation and NoSQL
models, while others focus on data migration. Very few studies are based on the
combined approach [3].

7.7.4 Strategies to Perform Join

In a relational database, data is stored as static table. Due to normalization, data is
spread across multiple tables and while the user wants to access the relevant data as
per the requirement, expensive join operation needs to be performed. Join is bulky
operation that incurs cost and affects the performance adversely, if not implemented
in proper manner.We need to think about how tominimize the cost andmaximize the
performancewhen performing join operations. It is evident that different applications
and scenarios may require different strategies to execute join operation duringmigra-
tion process. In NoSQL databases, no join operation is required. When migrating
from relational to NoSQL, we must define strategies to handle join. There may be a
variety of scenario, for each of these, strategy needs to be defined.

7.7.5 Use of Indexes

In any database, the index is an important modifiable performance factor and then
an important factor in schema design. NoSQL supports various types of indexes
like binary, hash, unique, compound, array, sparse, etc. which are used to increase
the data retrieval efficiency. Therefore, while migrating toward NoSQL, a strategy
regarding which type of index can be used is a vital consideration. Index selection
is based on the type and frequency of the queries used in applications. As with all
databases, indexing is not free it incurs overhead cost and forces overhead and causes
an overload of writing and resource usage (disk and memory).

MongoDB creates an index on the document’s primary key _id field. All indexes
are characterized by users as secondary indexes. Any field can be used for the
secondary index, including fields inside sub-documents and Arrays. For optimizing
performance, query optimizer chooses the index imperially by periodically executing
substitute query plans and choosing the arrangementwith the best response time [16].

7 IT Infrastructure for Smart City … 107

7.8 Case Study on MongoDB

7.8.1 Comparison—SQL and MongoDB

MongoDB is a NoSQL database management system introduced in 2009. It stores
data as JSON type documents with dynamic schemas. Its main purpose is to support
big data handling. MongoDB is focused on four factors: flexibility, power, speed,
and simple use. MongoDB has schemaless document-oriented data model whereas
SQL supports relational data model. Relational databases have a standard language
SQL though MongoDB supports API calls.

MongoDB has aggregate functions, a built-in map-reduce function that can be
used to aggregate large amounts of data. The integrity model used by relational
databases is ACID, while MongoDB uses BASE. MongoDB provides consistency,
durability, and conditional atomicity. Relational databases provide integrity options
that MongoDB does not, such as transactional, isolation, revision management, and
referential integrity. On the distribution side, MongoDB and relational information
are horizontally scalable and support data replication. While MongoDB supports
sharing, relational databases do not. MongoDB and SQL are both cross-platform
DBMSs. MongoDB is a free database system, while a license is required to use
relational databases [17].

7.8.2 Features of MongoDB

• MongoDB provides high performance.
• Support basic CRUD operations and provide Aggregation.
• MongoDB gives High accessibility and auto-Replication feature. Data is restored

through backup (replica) just in case of server failure.
• Provides automatic failover mechanism.
• A database in MongoDB is set of collections, which in turn holds collection of

documents. A document is equivalent to record in database.
• Sharding is an important feature supported by MongoDB which provides

horizontal scalability.

7.8.3 Advantages of MongoDB

• Installing and Setting up MongoDB is easy.
• MongoDB possesses schemaless structure and provides easy scalability.
• MongoDB supports dynamic queries.
• In MongoDB, no complex joins are required.
• MongoDB provides faster data access.

108 A. Kanojia and S. Tanwani

• As compared to relational databases performance improvement is done easily in
MongoDB.

• MongoDB supports horizontal scaling whereas Relational databases support
vertical scaling.

7.8.4 CRUD Operations in MongoDB

This section describes the basic CRUD operations in MongoDB. Two databases, one
using SQL and one in MongoDB, were created to compare how data will be created,
selected, inserted, and deleted in the two databases [18]. MongoDB provides all
major CRUD operations and provides aggregation functionality.

Table 7.2 describes the main CRUD operations in MongoDB.
Smart city application stores records in the form of normalized tables. If it is

required to retrieve relevant data, expensive join operation needs to be performed.

Table 7.2 CRUD operations in MongoDB Source: [40]

Operations SQL MongoDB

Create table CREATE TABLE Accounts
(first_name‘ VARCHAR(50)
NULL, ‘last_name‘
VARCHAR(50) NULL,
PRIMARY KEY (‘id‘));

db.accounts.insert({ name:”abc”,
age:26, address:”indore”})

Delete a table Drop table accounts; db.accounts.drop()

Insert Insert into accounts(name,
age, address) VALUES (
“abc”, 26, “indore”)

db.accounts.insert({ name:”abc”,
age:26, address:”indore”})

Select Select * from accounts db.accounts.find()

Select fields Select first_name, last_name
from accounts

db.accounts.find({}, { first_name:
1, last_name: 1})

Conditional select Select * from Accounts
where dep_wid = ”D” and
balance > 5000

db.accounts.find({dep_wid:”d”,
balance:{$gt:5000}})

Ordered select ascending Select * from accounts order
by user_id asc

db.accounts.find({}).sort({user_id:
1})

Ordered select descending Select * from accounts order
by user_id desc

db.accounts.find({}).sort({user_id:
-1})

Select with count Select count(*) from users db.users.count()

Update Uupdate table student set
section = “F” where marks
<30

db.Student.update({marks:{lt:30}},
{$set:{Section:”F”}})

Delete delete from Student db.Student.remove()

Delete with condition delete from Student where
section = ”a”

db.student.delete({section:”a”})

7 IT Infrastructure for Smart City … 109

Instead if this application is being migrated to NoSQLMongoDB, one record can be
centralized. Other records may be kept on server. As data grows, more servers can be
added which provide better scalability and availability. MongoDB supports database
sharding feature which allow data packets are stored across different machines to
ensure the system does not fail as volume rise. Data stored in smart city application
is heterogeneous such as text, image, and biometric data (fingerprints, Iris, face
recognition). MongoDB can efficiently store huge volumes of biometric data and
images, whereas many other management systems, such as SQL, are less suited for
image storage. In MongoDB multiple data can be stored in single collection in the
form of embedded documents. It provides better flexibility in accessing data as no
join is required. It reduces cost by avoiding multiple joins and also data access speed
is increased. In smart city applications, biometric data need to be stored to enhance
verification and security mechanism. MongoDB stores fingerprints and takes less
time to access it as compared to relational databases.

7.9 Conclusion and Future Work

Relational databases are structured and have limitations when required to handle
unstructured and big data. In relational databases, because of normalization, data is
spread across multiple tables and expensive join operation is required to integrate
data. Due to limitations of relational databases, most of the leading organizations are
migrating toward NoSQL. NoSQL databases are well suited for the large volume,
reliable and high availability web applications. Scale out approach and performance
favors NoSQL.

This chapter tends to explore comparative study of Relational and NoSQL
databases, classification of NoSQL databases, case study, popular approaches for
migration and some of the key issues and challenges in migrating from Rela-
tional to NoSQL databases. The chapter is useful for students and researchers to
investigate migration strategies for migrating from Relational to NoSQL databases.
Smart city applications collect massive amount of data from various types of IoT
sensors, engines, and people. Most of the data generated are heterogeneous in nature.
However, this data need to be integratedwith legacy applications based onSQL.Some
of these applications also requiremigration toNoSQL for improved performance and
fault tolerance. This paper addresses challenges of working in hybrid environments
and migration issues from SQL to NoSQL databases.

Key research issues and challenges inmigrating from relational toNoSQL include
model transformation, data migration, schema conversion, application integration,
strategies related to perform join in different scenario, use of indexes, storage
issues. In model transformation, we need to consider how to make compromise
among performance and data redundancy while transforming the schema. More-
over, various applications may require different strategies at model transformation.
Semi-automatic strategies requiring manual intervention are required to tweak the
model after it is transformed so as to exactly suit the application requirements. We

110 A. Kanojia and S. Tanwani

need to think about how to minimize the cost and maximize the performance when
performing join operations. It is evident that different applications and scenarios
may require different strategies in performing join during migration process. There
may be a variety of scenario, for each of these, strategy needs to be defined. Indexes
are the important performance factor in any database and are therefore crucial for
schema design. So while migrating toward NoSQL, strategies regarding which type
of index can be used are a vital consideration. On the basis of key issues and chal-
lenges addressed in this chapter, strategies for migration from relational to NoSQL
for the potential applications ofNoSQLdatabases can be proposed. A fully automatic
methodology is proposed and under development usingmachine learning techniques,
whichwill be basedonkeepinghistory data of pastmanual interventions and selecting
one of the best interventions on the basis of application and database parameters.
Massive growth is likely in the area of NoSQL over cloud because of initiatives
like smart City, smart society however, these applications required integration with
legacy applications built over SQL. Thus need for migration as well as bridges for
connection leading to requirements of our research area.

References

1. Li F et al (2019) Toward semi-automated role mapping for IoT systems in smart cities. 2019
IEEE international smart cities conference (ISC2). IEEE

2. Sallow AB, Sadeeq M, Zebari RR, Abdulrazzaq MB, Mahmood MR, Shukur HM et al,
An investigation for mobile malware behavioral and detection techniques based on android
platform. IOSR J Comput Eng (IOSR-JCE) 22:14–20

3. Jia T, Zhao X,Wang Z, Gong D, Ding G (2016) Model transformation and data migration from
relational database to MongoDB. In: 2016 IEEE international congress on big data (BigData
Congress), pp 60–67. IEEE

4. Kuderu N, Kumari V (2016) Relational database to NoSQL conversion by schema migration
and mapping. Int J Comput Eng Res Trends 3(9):506

5. El Alami A, Bahaj M (2017) Migration of relational databases to NoSQL: the way forward. In:
2016 5th international conference on multimedia computing and systems (ICMCS), pp 18–23.
IEEE

6. Soni P, Koushal DS, Survey paper on data migration techniques of RDBMS to NoSQL
7. Liang D, Lin Y, Ding G (2015) Mid-model design used in model transition and data migration

between relational databases and nosql databases. In: 2015 IEEE international conference on
smart city/SocialCom/SustainCom (SmartCity), pp 866–869. IEEE

8. Oliveira F,OliveiraA,AlturasB (2017)Migration of relational databases toNoSQL-methods of
analysis. In: 7th international conference on human and social sciences, pp 121–128.Richtmann
Publishing

9. Ghotiya S, Mandal J, Kandasamy S (2017) Migration from relational to NoSQL database.
In: IOP conference series: materials science and engineering, Vol 263, No 4, p 042055. IOP
Publishing

10. Karnitis G, Arnicans G (2015)Migration of relational database to document-oriented database:
Structure denormalization and data transformation. In: 2015 7th international conference on
computational intelligence, communication systems and networks, pp 113–118. IEEE

11. Hassan RJ et al (2021) State of art survey for iot effects on smart city technology: challenges,
opportunities, and solutions. Asian J Res Comput Sci, 32–48

7 IT Infrastructure for Smart City … 111

12. Costa C, Santos MY (2016) Reinventing the energy bill in smart cities with NoSQL
technologies. Transactions on engineering technologies. Springer, Singapore, pp 383–396

13. Sharma Y, Sharma Y (2019) Case study of traditional RDBMS and NoSQL database system.
Int J Res GRANTHAALAYAH 7(7):351–359

14. Abraham SM (2016) Comparative analysis of Mongodb deployments in diverse application
areas. Int J Eng Manag Res (IJEMR) 6(1):21–24

15. Rocha L, Vale F, Cirilo E, Barbosa D, Mourão F (2015) A framework for migrating relational
datasets to NoSQL. Procedia Comput Sci 51:2593–2602

16. A MongoDB White Paper, RDBMS to MongoDB Migration Guide, considerations and best
practices, June 2018

17. Boicea A, Radulescu F, Agapin LI (2012)MongoDB vs Oracle--database comparison. In: 2012
third international conference on emerging intelligent data and web technologies, pp 330–335.
IEEE

18. Hecht R, Jablonski S (2011) NoSQL evaluation: a use case oriented survey. In: 2011
international conference on cloud and service computing, pp. 336–341. IEEE

19. Ghule S,Vadali R (2017) Transformation of SQL system toNoSQL system and performing data
analytics using SVM. In: 2017 international conference on trends in electronics and informatics
(ICEI), pp 883–887. IEEE

20. Hsu JC, Hsu CH, Chen SC, Chung YC (2014) Correlation aware technique for SQL to NoSQL
transformation. In: 2014 7th international conference onUbi-media computing andworkshops,
pp 43–46. IEEE

21. Potey M, Digrase M, Deshmukh G, Nerkar M (2015) Database migration from structured
database to non-structured database. Int J Comput Appl 975:8887

22. https://www.couchbase.com/comparing-couchbase-vs-oracle Moving from relational to
NoSQL: How to Get Started

23. Gayathiri NR, Jaspher DD, Natarajan AM (2019) Big Data retrieval techniques based on hash
indexing and Mapreduce approach with NoSQL Database. In: 2019 international conference
on advances in computing and communication engineering (ICACCE), pp. 1–8. IEEE

24. Das TK, Kumar PM (2013) Big data analytics: a framework for unstructured data analysis. Int
J Eng Sci Technol 5(1):153

25. Eckerstorfer F (2011) Performance of NoSQL databases
26. Faraj A, Rashid B, Shareef T (2014) Comparative study of relational and non-relations database

performances using Oracle and MongoDB systems. Int J Comput Eng Technol (IJCET)
5(11):11–22

27. Farooq H, Mahmood A, Ferzund J (2017) Do NoSQL databases cope with current data
challenges. Int J Comput Sci Inform Secur (IJCSIS) 15(4)

28. Franco M, Nogueira M (2011) Using NoSQL database to persist complex data objects. In:
Conference, Instituto de Informá tica Universidade Federal de Goias (UFG)

29. Heripracoyo S, Kurniawan R (2016) Big Data Analysis with MongoDB for decision support
system. TELKOMNIKA (Telecommun Comput Electron Control) 14(3):1083–1089

30. Li Y, Manoharan S (2013) A performance comparison of SQL and NoSQL databases. In: 2013
IEEEPacificRim conference on communications, computers and signal processing (PACRIM),
pp. 15–19. IEEE

31. Mapanga I, Kadebu P (2013) Database management systems: a nosql analysis. Int J Modern
Commun Technol Res 1(7):265849

32. Mohamed MA, Altrafi OG, Ismail MO (2014) Relational vs. nosql databases: a survey. Int J
Comput Inform Technol 3(03):598–601

33. Nayak A, Poriya A, Poojary D (2013) Type of NOSQL databases and its comparison with
relational databases. Int J Appl Inform Syst 5(4):16–19

34. Swaroop P, Gupta V, Singh KR, Rajan SN (2016) NoSQL paradigm and performance
evaluation.Scient Soc Adv Res Soc Change 3

35. Zaki AK (2014) NoSQL databases: new millennium database for big data, big users, cloud
computing and its security challenges. Int J Res Eng Technol (IJRET) 3(15):403–409

https://www.couchbase.com/comparing-couchbase-vs-oracle

112 A. Kanojia and S. Tanwani

36. Zvarevashe K, Gotora TT (2014) A random walk through the dark side of NoSQL databases
in big data analytics. Int J Sci Res 3(6):506–509

37. Priyanka A (2016) A review of nosql databases, types and comparison with relational database.
Int J Eng Sci Comput 6(5):4963–4966

38. GyőrödiC,GyőrödiR, PecherleG,OlahA (2015)Acomparative study:MongoDBvs.MySQL.
In: 2015 13th international conference on engineering of modern electric systems (EMES),
pp. 1–6. IEEE

39. Simanjuntak HT, Simanjuntak L, Situmorang G, Saragih A (2015) Query response TIME
comparison Nosqldb Mongodb with Sqldb Oracle. JUTI: Jurnal Ilmiah Teknologi Informasi
13(1): 95–105

40. Truica CO, Boicea A, Trifan I (2013) CRUD operations in MongoDB. In: 2013 international
conference on advanced computer science and electronics information (ICACSEI 2013), pp
347–350. Atlantis Press

41. Cattell R (2011) Scalable SQL and NoSQL data stores. ACM SIGMOD Rec 39(4):12–27
42. Barmpis K, Kolovos DS (2014) Evaluation of contemporary graph databases for efficient

persistence of large-scale models. J Object Technol 13(3):3–1
43. Gu Y, Shen S, Zheng G (2011) Application of nosql database in web crawling. Int J Digital

Content Technol Appl 5(6):261–266
44. Leavitt N (2010) Will NoSQL databases live up to their promise? Computer 43(2):12–14
45. Padhy S, Kumaran GMM (2019) A quantitative performance analysis between Mongodb and

oracle NoSQL. In: 2019 6th international conference on computing for sustainable global
development (INDIACom), pp 387–391. IEEE

46. Singh A (2019) Data migration from relational database to MongoDB. Global J Comput Sci
Technol

	7 IT Infrastructure for Smart City: Issues and Challenges in Migration from Relational to NoSQL Databases
	7.1 Introduction
	7.2 Related Work
	7.3 Smart City Requirements
	7.3.1 Smart City Applications

	7.4 Comparative Study of Relational and NoSQL Databases
	7.4.1 Characteristics of NoSQL Systems
	7.4.2 Advantages and Disadvantages of NoSQL Databases
	7.4.3 Advantages and Disadvantages of Relational Databases

	7.5 NoSQL Databases Classification
	7.5.1 Document-Oriented Databases
	7.5.2 Key-Value Databases
	7.5.3 Column-Oriented Databases
	7.5.4 Graph-Oriented Databases

	7.6 Methods of Data Migration
	7.6.1 Mid-Model Approach [7]
	7.6.2 NoSQLayer Approach [15]
	7.6.3 Data Adapter Approach [9]
	7.6.4 Automatic Mapping Framework [9]

	7.7 Issues and Challenges in Migration
	7.7.1 Model Transformation
	7.7.2 Data Migration
	7.7.3 Schema Conversion
	7.7.4 Strategies to Perform Join
	7.7.5 Use of Indexes

	7.8 Case Study on MongoDB
	7.8.1 Comparison—SQL and MongoDB
	7.8.2 Features of MongoDB
	7.8.3 Advantages of MongoDB
	7.8.4 CRUD Operations in MongoDB

	7.9 Conclusion and Future Work
	References

