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Preface

In recent years, modern spectroscopic analysis techniques (such as near-infrared,
mid-infrared, ultraviolet-visible, molecular fluorescence, Raman, terahertz, laser-
introduced breakdown spectroscopy, etc.) have been tremendously developed at high
speed. The main feature of these technologies is the involvement of chemometric
methods to process spectral data, so as to obtain as much quantitative and qualitative
information as possible, and significantly improve the robustness and accuracy of the
spectral analysis. Specifically, modern spectroscopies can directly perform qualita-
tive and quantitative analyses of various complex such as gases, liquids, and solids,
exhibiting the advantages of high speed, high efficiency, non-destruction, and online
feasibility. It has been widely applied in fields of agriculture, food, pharmaceuticals,
petroleum, chemical industry, tobacco, environmental protection and medicine, etc.,
playing an increasingly important role in scientific research and industries.

In recent decades, with the rapid development of artificial intelligence, data
mining, and cloud computing, newchemometricmethods have sprungup andbecome
one of the fastest-growing branches in spectroscopic analysis technology, which
is also a research hotspot for scholars all around the world. This book mainly
discusses the chemometric methods used for spectral analysis, including spectral
preprocessing, variable selection, data dimensionality reduction, linear or nonlinear
multivariate calibrations, pattern recognition, calibration sample selection, outlier
recognition, model update and maintenance, multi-spectral data fusion, calibration
transfer, and deep learning algorithms, etc.

Considering the comprehensiveness and systematic reviewing, this book summa-
rizes and reviews the latest research progresses of chemometrics in the spectral anal-
ysis, particularly, which are closely combined with scientific researches and practical
applications, as well as, many algorithm improvements and strategy extensions. The
authors believe this book will provide new aspects and ideas for researchers and
users in this field. From the perspective of practicability, this book provides as much
as possible the complete framework of several kinds of algorithm so that readers
can initially understand the mainstream knowledge and context of chemometrics.
If readers are interested in the details of certain algorithms, they can find out more
knowledge according to the reference documents of this book.
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This book was planned by Prof. Xiaoli Chu. He wrote the Chinese version of
this book, which is widely praised by readers in the field of chemometrics and
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Chapter 1
Chemometric Methods in Analytical
Spectroscopy Technology

Summary

In recent decades, with the rapid development of artificial intelligence, data mining,
and cloud computing, new chemometric methods have sprung up and become one
of the fastest-growing branches in spectroscopic analysis technology, which is also
a research hotspot for scholars all around the world. This book mainly discusses
the chemometric methods used for spectral analysis, including spectral prepro-
cessing, variable selection, data dimensionality reduction, linear or nonlinear multi-
variate calibrations, pattern recognition, calibration sample selection, outlier recog-
nition, model update and maintenance, multi-spectral fusion, model transfer, and
deep learning algorithms, etc. Considering the comprehensiveness and systematic
reviewing, this book summarizes and reviews the latest research progress in the
world, particularly, which are closely combined with scientific researches and prac-
tical applications, as well as, many algorithm improvements and strategy extensions.
The authors believe this book will provide new aspects and ideas for researchers and
users in this field.

1.1 Introduction

Chemometricswas born in the early 1970s. It is usually defined as “Chemometrics is a
branch of chemistry, which uses mathematical and statistical methods with computer
technology, designs and selects the best measurement procedures and experimental
methods, in order to obtain themaximum information by interpreting chemical data”.
Change with development, the definition of chemometrics has many expressions, but
its goal is very clear, that is, to extract the most useful information from the measured
data. Kant once said “Among the branches of natural sciences, only those that can
be expressed in mathematics are true sciences”. The feature of chemometrics is to
construct the chemical measurement as a mathematical model that can be expressed

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
X. Chu et al., Chemometric Methods in Analytical Spectroscopy Technology,
https://doi.org/10.1007/978-981-19-1625-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1625-0_1&domain=pdf
https://doi.org/10.1007/978-981-19-1625-0_1


2 1 Chemometric Methods in Analytical Spectroscopy …

through mathematical formula. Different from other branches of theoretical math-
ematic, chemometrics is a discipline of all the theories and methods based on the
chemical experimental data [1–3].

Spectral analysis technology, including molecular spectroscopy and atomic spec-
troscopy, such as mid-infrared, ultraviolet-visible, molecular fluorescence, Raman,
terahertz, laser-induced breakdown, nuclear magnetic resonance, etc., has the advan-
tages of simple sample processing, non-destructive, fast and real-time monitoring,
and on-site online analysis [4].With regard to the quantitative and qualitative analyses
of complex samples (such as petroleum, grain, traditional Chinesemedicine, tobacco,
food, soil, etc.), traditional experimental methods cannot extract very useful infor-
mation from spectra with serious matrix effects and obtain quantitative or qualitative
results. The popularity of computers and the rise of chemometrics have brought lots
of new ideas and methods to the development of spectroscopic analysis, because the
significant contribution is to awaken the sleeping “analytical giant” of near-infrared
spectroscopy (NIR) technology [5, 6]. Subsequently, chemometrics was gradually
combined with other spectroscopies like LIBS, which greatly improves the accu-
racy and robustness of spectral analysis. Nowadays, chemometrics has become a
common method for spectrum discrimination and simultaneous determination of
multiple components in the complex systems, and also become an important part of
the interdisciplinary process analytical technology (PAT) [7].

This bookmainly introduces the chemometricmethods commonly used inmodern
spectroscopic analysis, calibration strategies, and their latest developments.

1.1.1 Overview of Chemometrics

1.1.1.1 Origin, Definition, and Development History

Chemometrics was born in the early 1970s. In 1971, when the Swedish chemist
S. Wold was naming a fund project from three concepts as chemical data anal-
ysis, computer in chemistry, and chemometrics, and finally he chose the last one,
the moment from then on it was officially announced the birth of the emerging
discipline of chemometrics. Three years later, he and Professor Kowalski of the
University of Washington established the International Chemometrics Society (ICS)
in Seattle, USA. In fact, the early chemometrics weremostly from the classical statis-
tical methods. For example, the concept of principal component analysis (PCA) was
proposed by British statistician K. Pearson early as in 1901, and was later devel-
oped and popularized by American statistician H. Hotelling in 1933. Till 1972, PCA
was then used for deconvolution of chromatographic overlapping peaks. The famous
partial least squares (PLS) was proposed by H. Wold, an econometric statistician in
Sweden, for processing economic data in the 1960s. Later, his son S.Wold developed
it in 1983 to solve the difficult chemical data regression problem, and obtained very
satisfactory results. Currently, PLS algorithm has become a standard multivariate
modeling method. Another example, early as in 1953, Hammond et al., proposed
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derivative spectrophotometry, which is nowwidely used inmolecular spectroscopies,
to improve spectral resolution and reduce interference.

The flourishing period of chemometrics was in the 1980s. The popularity of
computers, drive of industrial interests (pharmaceutical development and process
analysis), upgrade of analytical instruments, together made the research of chemo-
metrics reach an unprecedented depth and breadth. In fact, some of the foremost
methods now widely used are mostly created or perfected at that time. In general,
development of chemometrics can be roughly divided into four stages [8].

(1) Pre-establishment

The characteristic of this stage is the application of mathematical statistics in chem-
istry, especially analytical chemistry. Analysts discussed the standard deviation,
confidence interval, least square regression, and other issues of the analysis results.
Organic chemists studied the structure-activity relationship of linear free energy,
which can be considered the predecessor of chemical quantitative structure-activity
relationship (QSAR). In general, the mathematical methods used by analysts during
this period are basically descriptive. However, in other disciplines such as engi-
neering science, psychology and other behavioral sciences, factor analysis, pattern
recognition, and other methods have been used for higher-level data processing. In
1920, some economists had tried to introduce methods such as principal compo-
nent analysis, factor analysis and canonical correlation analysis in mathematics to
process massive amounts of information such as economic trends and stock prices.
They achieved great success and proposed the Econometrics.

(2) Birth of chemometrics

According to the specific requirements of chemistry, analysts developed and created
a series of data processing, classification, prediction, and analysis methods. Chemo-
metrics had become a major branch of analytical chemistry. This development
includes two factors. One is the gradual popularization of computers, including the
instrumentation of analytical chemistry that can accurately provide chemists with
a large amount of reliable data. How to efficiently convert the data of these instru-
ments into useful information naturally became the original drive for developing
chemometrics. The second one is that various powerful mathematical methods can
be applied in analytical chemistry with the help of faster computing. The rise of
chemometrics can be regarded as the main manifestation of modern technological
changes in chemistry marked by computer applications.

(3) 1980s

The unique multivariate calibration, multivariate discrimination, and chemical
pattern recognition methods, such as partial least squares, soft independent modeling
of class analogy (SIMCA), rank annihilation factor analysis, evolving factor anal-
ysis, etc., had been greatly developed in theory and algorithm research. During
this period, the professional journals as “Journal of Chemometrics” (1987, Wiley)
and “Chemometrics and Intelligence Laboratory Systems” (1988, Elsevier) were
established, along with many classic chemometrics monographs published. These
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publications played an important role in disseminating knowledge of chemomet-
rics, introducing development trends, and guiding scientific research topics. In 1984,
American Mathwork Company officially launched MATLAB software, by which
many complex mathematical calculations used in chemometrics can be realized with
only one coding expression, making it almost a standard programming language for
chemometrics research. When a new algorithm was published, usually MATLAB
codes were attached, that greatly promoted the development of the discipline.

(4) 1990s

Chemometrics had truly entered the stage of practical applications, such as near-
infrared spectroscopy, sensors, medicine and pharmacy, etc. Almost all modern
analytical instruments had a computer or microprocessor containing the chemomet-
rics software. Chemometrics was becoming an indispensable tool in the daily work
of chemistry or analytical chemistry. Furthermore, series of new methods such as
artificial neural networks, wavelet transforms, genetic algorithms, and support vector
machines, were employed by analysts, as new tools for solving chemical problems.

1.1.1.2 Content of Chemometrics

Development of chemometrics has provided many new ideas, new approaches, and
new concepts for solving problems in all chemical branches such as analytical chem-
istry, food chemistry, environmental chemistry, medicinal chemistry, organic chem-
istry, and chemical engineering. Its research content almost covers the entire process
of chemical measurement (Fig. 1.1), mainly including the following parts [9, 10].

(1) Sampling theory and method

Sampling is the first step of analysis. The reliability of analytical results is directly
related to whether the sampling is correct or rational. The purpose of analysis or

Fig. 1.1 Correspondence between the chemometrics and chemical measurement
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testing is to obtain the unbiased information about the entire object based on the data
measured from a sectional sample. Sampling refers to the mathematical theory of
how to collect samples. Commonly used sampling methods involve heterogeneous
solid materials, dynamic processes, and quality inspections.

(2) Experimental design and optimization

Experimental design and optimization need to design and arrange experiments and
optimize measurement conditions so as to improve work efficiency. Orthogonal
design and simplex optimization method are still the main strategy for experimental
optimization. Its purpose is to obtain as much information as possible about the rela-
tionship between the target and the factors with the fewest number of trials. Besides,
someglobal optimizations, such as simulated annealing algorithm, genetic algorithm,
and particle swarm algorithm, are also being practiced.

(3) Signal processing

Interference signal and noise are often mixed in the analysis signal. By use of signal
smoothing, filtering, transformation, peak splitting, curve fitting, derivation, and inte-
gration techniques, analysis signals can be reliably distinguished and detected from
interference signals, and the signal-to-noise ratio can be improved.

(4) Resolution and calibration

Multivariate resolution and calibration are the core content and also the most distinc-
tive part of chemometrics. Calibration is a mathematical process that extracts useful
information from the instrument signal. Its purpose is to establish the relationship
between the analysis signal and the concentration for the quantification of the analyte.
Multivariate calibration is a method used to improve the selectivity and reliability of
analysis that is suitable for a variety of instrument signals, such as spectrum, mass
spectrum, and chromatographic data. It correlates the independent variable (measure-
ment information) of the training set with the dependent variable (the property of
interest, such as the concentration of an analyte in a complex system or other phys-
ical and chemical properties) so as to establish multivariate calibration models. For
unknown samples, when the measurement information is obtained, the concentration
or property parameters, that used to be measured by laborious, time-consuming, and
costly standard methods, can be predicted according to the established model.

Multivariate resolution can extract various response curves of pure substances
(spectral curve, pH curve, time curve, elution curve and concentration curve, etc.)
from the analysis data of various evolution processes of unknown mixtures without
need to know the type and composition of unknown samples in advance. Common
multivariate resolution includes self-mode curve resolution (SMCR), evolving factor
analysis (EFA), window factor analysis (WFA), heuristic evolving latent projec-
tions (HELP), projection rotation factor analysis (PRFA), generalized rank annihi-
lation method (GRAM), Tucker3, parallel factor analysis (PARAFAC), alternating
trilinear decomposition (ALTD), and so on. It can solve problems that trouble tradi-
tional analytical chemistry, such as the analysis of complex multi-component equi-
librium and kinetic systems, the detection of peak purity of complex systems in
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chromatography and its hyphenated methods, and the resolution of overlapping
peaks.

(5) Pattern recognition

Chemical pattern recognition is to select the characteristics of samples, find the
rules of classification, and then classify and identify unknown sample sets according
to the rules of classification. If sample is known, then classified; if unknown, the
classification depends entirely on the natural characteristics of the sample. Chemical
pattern recognition can be used to interpret spectral data, study structure-activity
relationships, classify drugs, determine pollution sources, diagnose early stage of
cancer, and identify authentic products, etc. It provides very useful information for
decision-making and process optimization.

(6) Computer simulation

Simulation is an important means of using computer to study chemical reactions,
measuring methods, and analyzing data. Monte Carlo simulation is one of the most
commonly used simulation methods.

(7) Quantitative structure-activity relationships

Quantitative structure-activity relationship (QSAR) uses multivariate calibration and
pattern recognition methods to find out the quantitative relationship between struc-
ture, properties, and biological activity from a series of compounds with the already
known activities, then predict the activity of new compounds, and guide the design
of new compounds.

(8) Chemical database and library searching

With the daily increase of spectrum data, various databases appeared, such as
compound structure databases, various spectrum databases, physical property
databases, etc. The rapid retrieval and effective use of data have become an important
research content of computer processing information.

(9) Artificial intelligence and chemical expert system

The chemical expert system is an intelligent computer program system that applies
chemical knowledge and logical reasoning to solve chemical problems. It covers
molecular structure analysis, selection of the best measurement, and separation
conditions for various instruments (chromatography, spectroscopy, etc.), etc.

Almost all of the above chemometrics contents are involved in the spectroscopic
analysis, but actually, they have their own key points and particularities. In addi-
tion, there are also new focus on calibration transfer, outlier sample identifica-
tion, and model evaluation methods. The chemometric methods applied to modern
spectroscopic analysis mainly include the following five aspects [11–13].

(a) Spectral preprocessing and variable selection methods, such as derivative,
Fourier transform, wavelet transform, genetic algorithm, etc., weaken or elimi-
nate the influence of various non-target factors on the spectrum, remove irrele-
vant information variables as possible, improve resolution and sensitivity, and
enhance the predictive ability and robustness of the calibration model.
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(b) Multivariate calibration methods for establishing quantitative models, such
as multiple linear regression (MLR), principal component regression (PCR),
partial least squares (PLS), artificial neural network (ANN), and support vector
machine regression (SVR), etc. The purpose is to build analytical model
for predicting the physical properties or chemical compositions of unknown
samples.

(c) Pattern recognition methods and outlier detection methods, such as minimum
distance discrimination method, SIMCA and KNN method for recognition,
as well as spectral residual root mean square method and nearest neighbor
distance method for outlier detection, etc. The purpose is to cluster or identify
different types of samples, and to determine whether the sample to be tested
is within the coverage of the quantitative model, and to ensure the accuracy of
the prediction results.

(d) For signals obtained by hyphenated analysis methods (excitation-emission
three-dimensional fluorescence spectroscopy) or spectral imaging (near-
infrared, infrared and Raman imaging, etc.), multidimensional resolution, and
calibration methods, such as Tucker3, PARAFAC, ATLD, and multi-way PLS
methods, can distinguish the response signals of multiple analytes with similar
properties at the same time, and directly quantitatively determine the analyte
components of interest in the presence of unknown interferences.

(e) calibration transfer methods, such as direct standardization (DS), piecewise
direct standardization (PDS), and Shenk’s algorithm, etc., reliably transfer
the qualitative or quantitative calibration model established on one instrument
to other identical or similar instruments, or use the model established under a
certain condition for the spectra collected by the same instrument under another
conditions, thereby reducing the time and cost required for calibration.

1.1.1.3 Necessity of Chemometrics

Application of chemometrics to the quantitative and qualitative analyses of spec-
troscopy in many cases makes the analysis result a significant level-up. Its functions
can be summarized into the following aspects.

(1) Multivariate calibration, as shown in Fig. 1.2, can improve the accuracy and
precision of analysis. Factor analysis methods such as principal component
regression and partial least squares can not only make use of the full spec-
trum but also significantly reduce the interference of coexisting components
and background. The concentration of multiple components can be directly
determined without chemical separation.

The basis of spectral quantification is the Lambert-Beer law. The linear relationship
is based on the assumption of monochromatic light and dilute solution, without
considering the interaction between light-absorbing molecules and the neighboring
molecules. In practice, the relationship between absorbance and concentration of
actual samples, especially natural complex (agro-products, petroleum, etc.) is usually
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Fig. 1.2 Scheme to improve the accuracy and repeatability of analytical testing

not a simple linear relationship. The traditional single-wavelength calibration curve
method can no longer generate satisfactory result. Take determination of fat content
inmeat using near-infrared spectroscopy, for example, only the absorbance at 940 nm
(the characteristic absorption band of methylene third overtone) cannot establish an
accurate calibration curve (as shown in Fig. 1.3), with the correlation coefficient R of
only 0.23. Instead, the short-wave near-infrared spectrum (850–1050 nm) combined
with PLS is used to establish a multivariate calibration model, a far more accurate
prediction results can be obtained (as shown in Fig. 1.4), with R of 0.97 at the same
concentration range [14].

(2) Signal processing technology can improve the S/N ratio of the instrument,
increase sensitivity, eliminate interference, extract useful information hidden
in the spectrum, separate overlapping peaks, and improve resolution of the
spectrum. For example, methods as Fourier and wavelet transform can smooth,
de-noise, and compress the spectrum, reliably distinguish and detect useful
signals from the interferences, providing high-quality characteristic variables
for multivariate calibration.

Figure 1.5 shows the Raman spectra of the same mineral from different origins in
the international RRUFF mineral database. Due to the interference of fluorescence,
the spectra vary in great difference. However, after the baseline correction by the
asymmetric least squares, theRaman spectra of the samemineral have good similarity
(Fig. 1.6) [15].
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Fig. 1.3 Unary linear regression results of absorbance at 940 nm

Fig. 1.4 The calibration result of the shortwave NIR full spectrum-PLS method
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Fig. 1.5 Ten original Raman spectra of the same mineral from different origins in the RRUFF
mineral database

Fig. 1.6 Spectra of Fig. 1.5 after baseline correction

Figure 1.7 is the original spectrum of NIR diffuse reflectance spectra of flour.
Affected by particle size and sample heterogeneity, the baseline drift is serious,
making the spectral change not related to its composition concentration linearly.
After the second derivative preprocessing, it can be seen that not only the baseline
drift has been corrected, but also many characteristic peaks have been extracted in
Fig. 1.8.

Figure 1.9a is the original spectra of the detection point in the landing area acquired
by the China Yutu 2 patrol rover reaching the surface of the moon’s back. Figure 1.9b
is the spectra after processing by the continuous removal method (envelope removal
method). It can be seen that this method effectively enhances the reflection charac-
teristics of the spectral curve and provides the possibility for further analysis of the
chemical composition of the lunar mantle [16].



1.1 Introduction 11

Fig. 1.7 Diffuse reflectance NIRS of different flour samples

Fig. 1.8 Spectra of Fig. 1.7 after the second derivative processing
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Fig. 1.9 a Diffuse reflectance near-infrared spectra of minerals on the lunar surface; Fig. 1.9 b
Spectra processed by continuum removal method

(3) Pattern recognition can make spectral analysis no longer a mere provider of
analytical data, but a provider of chemical information aswell as a direct partic-
ipant and solver of chemical issues. For example, spectra with pattern recog-
nition methods can accurately identify authentic products such as drugs, food,
and cosmetics, as well, can diagnose early stage of cancer, identify sources of
oil spills.

Figure 1.10 is the MIR spectra of the root-end substances of bird feathers from
different genders, in which spectra of males and females cannot be identified by
the traditional characteristic peak method, because they all reflect the functional
groups in proteins, nucleic acids, phospholipids, carbohydrates, and ribose. But,
after extracting the scores of the first and third principal components (Fig. 1.11), the
gender of the bird can be clearly distinguished by PCA.

Fig. 1.10 Mid-infrared spectra of the root-tip material of different gender bird feathers
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Fig. 1.11 The first and third principal component diagrams after principal component analysis

In the industrial process, some control variables are often related to each other.
Separate statistics on these variables often lead to situations where abnormal condi-
tions are not easily confirmed. As shown in Fig. 1.12, the individual temperature and
pH variables in each production process are both within the controllable range, but
it is easy to identify abnormal points by multivariate statistical methods.

1.1.1.4 Attention in Application

Chemometrics is the application of statistics, mathematics, and computer technology
in chemistry. Namely, chemistry is the basis of all the applications, and any those
out of chemistry is unreliable. When using chemometrics, a deep understanding
and mastery of the field involved in the problem or relevant chemical background
should be possessed first. For instance, to use NIRS in the analysis of petrochemical
products, it is somuch necessary tomaster certain conventional analytical techniques
of petrochemical products and the basic principles of NIRS, then it is possible to
establish a reasonable model by chemometrics. Otherwise, a very dangerous result
would inevitably arise.

Therefore, modern process analytical technology with chemometrics and spec-
troscopy is considered to be a highly intersecting comprehensive discipline and also
a complete system integrating cutting-edge science and novel technology. It includes
engineering technology disciplineswith analytical instruments, optics, and electronic
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Fig. 1.12 Single and multi-variable control chart for judging abnormal points in the production
process

engineering, and also applied basic disciplines with petrochemistry, food chemistry,
medicinal chemistry, and soil chemistry, etc.

When dealing with practical problems, it is necessary to choose the appropriate
chemometric method according to the specific case, instead of using the latest or the
most complicated method. In fact, some basic chemometric concepts can address
many application problems [17]. Using the simplest method to obtain satisfactory
results is an important principle need to followwhen choosing chemometricmethods.
Of course, this requires proficiency in some basic concepts and algorithm principles
of chemometrics.
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1.1.2 Analysis of Spectroscopy Combined with Chemometrics

1.1.2.1 Establishment of Calibration Model

In recent years, with the continuous improvement of instrument performance and
measurement accessories, the analytical technology of molecular spectroscopy
combined with chemometrics is being applied in many fields at an astonishing speed.

As shown in Fig. 1.13, spectroscopy combined with chemometrics methods for
analysis mostly use the same mode, that is, a calibration model is established based
on a set of known samples, which is called calibration samples or training samples.
Based on the spectra of these samples and their corresponding reference data, a
calibration or recognition model is established. For the sample to be tested, only its
spectrum needs to be measured, and the quantitative or qualitative results based on
the established model will be obtained.

The basic steps for building a quantitative calibration model are as follows:

(1) Collection of calibration samples

There are two requirements for calibration samples. One is that the sample should be
representative. Its composition should include all the chemical components contained
in the sample to be predicted in the future, and its variation range should be greater
than that of the corresponding property of the sample to be predicted. Specifically,
the variation range is usually greater than five times the reproducibility of the refer-
ence method, and it is evenly distributed throughout the range. For example, if the
reproducibility of the gasoline octane number determined by the standard method
is 0.7 units, then variation range of the calibration sample is at least 3.5 units. The
second requirement is that the number should be adequate enough to effectively
extract the mathematical relationship between the spectra and the components to be
predicted. For a simple test system, at least 60 representative samples are required. For
a complex system, at least over one hundred of representative samples are required.

Fig. 1.13 Process of establishment of calibration model and prediction of unknown sample
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For collection of natural samples, a variety of influencing factors should be consid-
ered. For example, when collecting crop samples, it should include samples of
different climates, growing conditions, varieties, textures, and harvest seasons, etc.
Online chemical testing should include samples under various process conditions,
such as raw materials, temperature, pressure, and catalysts, etc.

(2) Acquisition of spectra

For near-infrared spectroscopy (NIRS), modes of transmission, diffuse reflection,
and diffuse transmission can be selected according to the different objects. Even the
same diffuse reflectionmethod, there are differentmeasurement accessories like inte-
grating spheres, diffuse reflection probes, etc. Thus, the optimal selection of acquisi-
tion conditions and standardized measurement are the core content of spectra collec-
tion. The spectra acquisition to be optimized mainly include temperature, optical
path, resolution, number of spectral accumulations, andwavelength range, as well as,
sample pretreatments such as milling of solid samples, extraction of liquid samples,
or fruit slices, etc. In most cases, the samples used for NIRS measurement do not
require any pretreatment.

To obtain uniformly measured spectra, standardized collection of spectra is very
important, that is, spectral measurement conditions of all samples in the same cali-
bration set should be as consistent as possible. Plus, sampling (such as sample inho-
mogeneity issues) and loading (such as the density of solid particles, the direction
of liquid cuvettes, the orientation of single grains or fruits, etc.) should also be
standardized.

(3) Selection of calibration sample

Samples that are analyzed in the laboratory usually have thousands of inspections in
a few months, but it is possible that more than 80% of these samples are duplicate
samples. So, it is necessary to select the representative samples to establish a cali-
bration model. It can not only increase the speed of modeling but also reduce the
storage space of the library. Furthermore, when encountering samples outside the
model boundaries, fewer samples can increase the range of application of the model
and facilitate model update and maintenance. Plus, the cost will be huge.

PCA is usually performed on the spectra of all calibration samples, and then a
certain number of representative samples are selected according to their distribution
in the principal component space (PCs), such as the commonly used K-S method.
When selecting calibration samples, attention should be paid to the outlier samples.
In the spatial distribution of PCs, these outliers are significantly different from others,
which may contain other components or the extreme concentrations.

(4) Measurement of reference method

The accuracy of the reference data has a greater impact on the prediction of the quan-
titative model. Therefore, most of the reference data used in modeling are measured
by standard methods or conventional analytical methods. If necessary, the accuracy
and repeatability of these conventional methods should to be evaluated. To obtain
the high-accuracy reference data, sometimes it is necessary to take the average value
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frommultiplemeasurements, use the same instrument and skilled operators to ensure
the calibration as much as possible. Finally, the sample used for reference measure-
ment must be the same as that used for spectral collection, and reference data and
spectrum of sample should be tested as soon as possible after sampling, so as not to
affect the accuracy of the calibration model due to changes in sample composition.

(5) Establishment of calibration

The sequence of calibration is roughly as follows: ➀ Formation a calibration matrix
by using spectra and corresponding reference values;➁Mathematical transformation
of the spectral data (i.e., preprocessing), such as derivative, wavelet transform, multi-
plicative scatter correction, mean-centering, etc.; ➂ Selection of spectral variables
(intervals), such as correlation coefficients, genetic algorithms, etc.; ➃ Obtaining a
quantitative calibration model by performing regression to preprocessing spectral
and property values by PCR, PLS, or ANN. In the process, parameters such as the
number of derivative points and the number of optimal PCs need to be determined;
➄ Removal of outliers. An outlier refers to a sample whose predicted value obtained
by the interactive validation is significantly different from its actual value; ➅ Re-
establish the model. After removing the outliers from the calibration set, the same
calibration parameters are used to perform the regression again, and then repeat until
a satisfactory quantitative model is obtained.

(6) Validation of model

After the model being built, a set of known samples (validation set) need to be
used to validate the accuracy, stability, robustness, and transferability of the model.
Validation set samples should contain all the components contained in the sample
to be predicted, concentration range of which should cover at least 95% of that in
the calibration set, with the uniform distribution. Plus, samples in the validation set
should be enough for statistical testing, usually no less than 28 samples are required.

The robustness of a model refers to its performance against external interference
factors. These influencing factors mainly include the replacement of the same type of
test devices (such as cuvettes, optical fiber probes, integrating spheres, etc.), changes
in the degree of fiber bending, replacement of light sources, replacement of reference
materials (such as ceramic chips or barium sulfate powder, etc.), changes in sample
loading conditions, changes in temperature (ambient and sample temperature), and
changes in the physical state of particles (such as grain moisture content, changes in
polymer particle size, residual solvents), etc.

The transferability of model mainly depends on the hardware differences between
the instrument systems, and its essence is the replaceability of the spectrometer and its
key components (optical systems such as interferometers). Transferability of model
directly affects the generalization performance of the analytical method for the user.
If the spectrometer of the same manufacturer does not have the transferability of
the model, it is very difficult to share abundant model resources. Usually, different
instruments have significant system deviations, and the spectra need to be corrected,
that is, the calibration transfer, in order to get consistent results. However, there
are also manufacturers that can achieve consistency between instruments, and their
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calibrationmodels can be directly used for the same type of spectrometer without any
modification. That is, the model data is directly copied and transmitted (Calibration
transport).

(7) Applicability criterion

Since it is impossible to establish a calibration model that covers all unknown
samples, it is particularly important and necessary to establish the applicability crite-
rion for the model. Before performing prediction on unknown samples, the validity
and accuracy of results can be guaranteed only if the sample to be tested is within
the range covered by the model.

Generally, there are three criteria can be used to ensure the applicability of the
model. One is theMahalanobis distance. If theMahalanobis distance of tested sample
is farer than the maximum distance of the calibration set, it indicates that the concen-
tration of certain components in the tested exceeds the range of that of the calibration
set. The second is the spectral residual. If the spectral residual of the tested is over the
specified threshold, it means the tested contains components that are not in the cali-
bration set sample. The third is the nearest neighbor distance. If the minimum value
of the distance between the tested and all calibration samples (the nearest neighbor
distance) is over the specified threshold, it is implied that the tested falls into a place
where the distribution of the calibration set is relatively sparse, and the accuracy of
the prediction result will be suspected.

Establishment of a robust, reliable, and highly accurate calibration model is the
key to the success of the analyticalmethod. The various links involved in themodeling
process will affect the accuracy of the analysis. Themain influencing factors include:

(1) Influence of the calibration sample. It includes the representativeness, quantity,
range, and distribution; storage; uniformity (such as the particle size, sprout
rate,water content, color, and impurities of agro-products); preprocessing (such
as crushing, slicing and extraction, etc.); accuracy of the reference data, etc.

(2) Influence of acquisition condition. It includes spectral range, resolution, acqui-
sition method (such as diffuse reflectance accessory is integrating sphere or
fiber optic probe, choice of backgroundmaterial, choice of optical path in trans-
mission method, etc.), temperature, uniformity, and consistency of sampling
and loading, etc. Each type of sample (clear liquid, turbid suspension, milled
powder, or coarse particles) has its most suitable measuring accessories.

(3) Influence of chemometrics. It includes spectral pretreatments and their param-
eters, selection of wavelength variables, calibration methods, and parame-
ters (linear/nonlinear methods, under/over-fitting judgments, and removal of
outliers, etc.).

(4) Influence of instrument (repeatability and long-term stability). It includes effec-
tive wavelength range, resolution, S/N ratio, baseline stability, wavelength
accuracy and repeatability, absorbance accuracy and repeatability, temperature
application range, and resistance to voltage fluctuations, etc.
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1.1.2.2 Routine Analysis

After validation, the tested samples can be routinely analyzed. Spectra of the
predicted samples should be collected in accordance with the measurement of cali-
bration sample, such as resolution, background, sample and ambient temperature,
loading method, and pretreatment method (milling), etc. Applicability of model
should be judged before performing routine analysis on the tested sample. If the appli-
cability criterion exceeds the threshold, the model is not suitable for the quantitative
analysis of sample.

Models and instruments need to be tested regularly during routine analysis. It
is also called the assurance or quality control of analysis. Routine analysis can be
conducted in the following ways. ➀ Actual samples are used for regular verification,
such as 2–3 times a week, and compared with the reference method. The absolute
deviation should not exceed the range of reproducibility. ➁ If tested sample can be
sealed, about 3–5 representative samples are selected and stored in a sealed enclosure.
Routine analysis is done as once every 2 days, and evaluate by the quality control
chart. ➂ If the composition of tested sample is simple, the accuracy can be verified
regularly by preparing standard samples.

If there were inconsistent results in the test, the spectra should be re-collected
multiple times, and predictive analysis should be performed to ensure that the spectra
are collected correctly, and then the accuracy of the reference data should be checked.
If there are still significant differences, the hardware of the spectrometer needs to be
fully tested and checked until the cause of the error is located.

1.1.2.3 Features of the Method

Compared with traditional methods, analytical method combining spectroscopy with
chemometrics has the following significant advantages.

(1) It can perform non-destructive analysis of complex mixtures of various forms,
usually without sample processing. It directly acquires the spectra without
chemical reagents, being as an environmentally friendly analysis technology.

(2) Analytical speed is pretty fast and the efficiency is satisfactory. A spectrum
can be used to determine the multiple composition and property data of the
sample within a few seconds.

(3) The repeatability and reproducibility of analysis are generally better than
conventional analytical methods.

(4) Easy to realize on-site rapid analysis.
(5) The instrument has few wearing parts and consumables, and low maintenance.
(6) Most online analyzers can use optical fiber transmission technology, which is

suitable for harsh environments.

In fact, any analytical method has its advantages and also limitations, which is
very helpful for users to decide whether to adopt or how to know this technology.
The limitations are mainly as follows:
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(1) Quantitative and qualitative analyses almost completely depend on the calibra-
tion model that often needs to be established separately for different sample
types with a lot of resources. Therefore, this method is not suitable for the small
amount samples, and not suitable for analysis that can be completed easily by
conventional methods.

(2) Establishment of the calibration model is not done once and for all. In practice,
calibrationmodel needs to be continuously expanded andmaintained according
to the composition change of the tested sample.

(3) Calibration model requires long-term stability of the spectrometer without the
significant change of optical components in the instrument.

The above characteristics make this technology suitable for the following
occasions:

(1) Non-destructive analysis of natural complex system, such as simultaneous
analysis of multiple components of petroleum products, and agro-products.

(2) Fast analysis with highly frequent repeated measurements. Composition of
the analyte has relatively strong stability, consistency, and repeatability, such
as the laboratory of an oil refinery, food factory, or pharmaceutical factory.
Calibration model sharing of branch companies can be realized by networked
management.

(3) Online real-time process analysis of large industrial plants such as petrochem-
icals and pharmaceuticals, in which the combination of process control and
optimization systems can bring considerable economic benefits. Figure 1.14
shows the comparison of traditional offline analysis andmodern online process
analysis. It can be seen that the online analysis can more accurately reflect the
change of the material concentration due to the real-time analysis.

Compared with other analysis, this type of method has the characteristics of the
integration of hardware, software and modeling. Its accuracy is closely related to
the quality of model established. Thus, the user should have sufficient knowledge
in the analytical objects and fields, conventional analytical methods, spectroscopy,
chemometricmethods, andmodeling strategies, tomaximize the potential advantages
of this technique.

1.1.3 Beginning of Modern Spectroscopy Technology—The
Contribution of Karl Norris

Themodern spectroscopy technologybeganwith the research and applicationof near-
infrared spectroscopy.Most of its original innovative workwas done by a team led by
Dr. Karl Norris, an engineer from the United States Department of Agriculture [18].

Near-infrared spectrum is the first non-visible region discovered by the British
physicist F. W. Herschel (1739–1822). Until the 1960s, NIRS had not been well
applied, mainly because the absorption is very weak, and the spectral bands are
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Fig. 1.14 Scheme of comparison between online process analysis and traditional offline analysis
results

seriously overlapped. It is difficult to apply it with traditional spectroscopic quan-
titative (Lambert-Beer law) and qualitative analysis (characteristic absorption of
functional groups). It was once called the “Garbage bin of spectroscopy” in spec-
troscopy. Instead, the epitaxial regions at both ends of the NIRS (ultraviolet-visible
and mid-infrared) have been developed rapidly during this period.

In the 1940–1950s, there were also reports on the use of NIRS for quantitative
analysis of epoxy compound functionality, polymer and phenolic plastic unsatura-
tion, compound hydroxyl groups, and drug moisture [19–21]. Willis of the British
Chemical Industry Company (ICI) used NIRS to characterize the structure of poly-
mers, and to measure the thickness of polymer films [22]. But these researches
and applications had been following the traditional mid-infrared spectroscopy and
Lambert-Beer law of qualitative and quantitative analysis.

Modern near-infrared spectroscopy technology started from the work of Dr. Karl
Norris [23–25], who was an engineer at the USDA Research Center (Batesville,
Maryland). In 1949, he used his modified Beckman DU ultraviolet spectrometer to
study the freshness of eggs through transmission measurement. He found that the
absorption peak at 750 nmwas the overtone absorption of theO-Hgroup inwater [26–
28]. Unfortunately, due to the limitations of technology at that time, the relationship
between spectrum and the quality of eggs was not established. An automatic egg
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screening equipment was developed only based on the color of the egg shell. This
work attracted the attention of the then U.S. President D. D. Eisenhower (Fig. 1.15).
Karl Norris also discovered fruits and vegetables have obvious absorption bands at
700–800 nm, which laid the groundwork for Karl Norris’ subsequent development
of NIR non-destructive fruit quality analyzers (water core disease of apples, etc.)
(Fig. 1.16) [29, 30].

Norris really started the study of NIRS in 1960 from the determination of mois-
ture in seeds with his early ideas also based on the Lambert-Beer law. He found the
one-variable quadratic polynomial quantitative relationship between the absorbance
difference between the twowavelengths (1.94 and 2.08µm) in the transmission spec-
trum and the water content, and obtained satisfactory results [31, 32]. The impression
of this differentiated spectrum has a deep impact on Norris, and the effects of filter
instrument wavelength screening and derivative spectroscopy to eliminate particles
are all originated from this concept. Due to the toxicity of the carbon tetrachloride
solvent, Norris began to experiment with the reflection method by bringing in the
best spectrometer of Cary 14 at that time. But the performance of this instrument did

Fig. 1.15 President
Eisenhower visited the
automatic egg screening
equipment invented by Karl
Norris in 1953

Fig. 1.16 Near-infrared
internal quality analyzer
developed by Karl Norris
and Neotec
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Fig. 1.17 Karl Norris and his modified Cary 14 spectrometer (In 1957 and 1988)

not meet their needs because the scanning speed was slow and there was no suitable
reflection accessory. In the following years, with the development of electronic tech-
nology, Norris and his colleagues continued to transform it (Fig. 1.17), by updating
sample chambers, optical path systems (changing dual optical paths to single optical
paths), electronic devices, A/D conversion board, detector and computer, etc. It is
right on this spectrometer called “TheNorrisMachine” that Norris opened the golden
door to modern near-infrared spectroscopy technology [33–35].

First of all, Norris creatively replaced the absorbance (A = log1/T) in tradi-
tional spectral analysis with A= log1/R. This idea obviously did not conform to the
Lambert-Beer law, basing on no theoretical basis, and was unanimously opposed by
most spectroscopist at the time. But Norris himself is an agricultural engineer other
than a spectroscopist, whose research orientation is to solve practical problems. In
fact, his resultswere very positive cause therewas indeed a strong correlation between
log1/R and moisture [36]. With the further research, his team found that the two-
wavelengthmeasurement of grainmoisture would be interfered by other components
in the sample, such as protein in wheat, oil in soybeans, etc. Later, Norris realized
that NIRS can also measure the content of these interferences. By Norris’s work, six
important wavelengths (1680, 1940, 2100, 2180, 2230, 2310 nm) have been screened
out, laying a solid foundation for the later development of commercial filter instru-
ments (Fig. 1.18). Meanwhile, in order to reduce the influence of particle size on
the diffuse reflectance spectrum, Norris used the derivative method to process the
spectra and proposed the “Karl Norris Derivative” method [37].

The work done by Karl Norris has the remarkable characteristics of modern spec-
troscopy technology: non-destructive analysis of whole grains, fast analysis speed,
simultaneous analysis of multiple parameters based on spectral preprocessing and
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Fig. 1.18 In 1968, Karl Norris operated the first four-filter soy near-infrared analyzer prototype
(originally based on the transmission measurement method of mixing crushed soybeans and carbon
tetrachloride into a slurry, and later changed to the diffuse reflection measurement method)

multivariate calibration [38–41], etc. It is worth noting that comparedwith traditional
analytical techniques, NIRS has two distinctive features from its inception. (1) It is
recommended not to preprocess the samples, and solve themeasurement problems of
different forms of samples in the form of accessories. (2) It is recommended to bring
the instrument to the place of sample instead of bring sample to the instrument (that
is, on-site analysis and online analysis). These two characteristics have a profound
influence on the development of modern spectroscopic technology.

Inspired by Norris, two companies, Dickey-John and Neotec, in the early 1970s,
developed the first commercialized NIRS grain analyzer based on filter technology,
which was a great milestone in the development process of NIRS technology [42–
45]. Afterward, these instruments selected filters of different wavelengths, increased
the number of filters, controlled temperature, and sealed optical system to adapt to
harsh environments, according to different applications (such as grass and tobacco)
etc.

These instruments had played a very important role in practical applications and
greatly promoted the development of NIRS technology. For example, in Canada,
Phil Williams used this near-infrared grain analyzer to quickly meet the demand for
protein in the wheat export area [46, 47]. Because traders were always willing to
pay more for wheat with high protein content, hundreds of such instruments entered
large grain elevators and export areas. At the same time, some flour mills, soybean
plants and food factories also began to use near-infrared analyzers.

In the late 1970s, grating scan near-infrared spectrometers began to appear with
the key technologies all developed by “Norris Machine” as the prototype, such as
Neotec Model 6100 and Tchnicon InfraAlyzer 500, etc. Figure 1.19 shows the NIR
instrument companies that have evolved from two original manufacturers, DICKEY-
john and Neotec.
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Fig. 1.19 Instrument companies evolved from DICKEY-john and Neotec

In 1975, the Canadian Grain Commission (CGC) designated the near-infrared
method as the official method for protein detection. In 1980, the United States
Department of Agriculture Federal Grain Inspection Service adopted NIRS method
as the official standard method for determining wheat protein. In 1982, the American
Association of Cereal Chemists (AACC) officially approved the method (AACCNo.
39–00). Till now, Phil Williams estimates that over 90% of wheat world-wide is sold
on the basis of protein testing by whole-grain NIRS instruments. After Australia
adopted NIRS technology, the yield of rice increased by about 0.6 tons per hectare,
the yield of wheat increased by about 1.1 tons, and the protein content of wheat
increased by about 1% [48–51].

The work of Karl Norris, especially the “Norris Machine”, has gained wide atten-
tion in the agricultural field. Norris unreservedly imparted his research results to
each visiting scholar with a selfless, generous, and open spirit of scientists, and
conducted cooperation with them [52–58]. Undoubtedly, the laboratory of Karl
Norris has become the cradle for cultivating masters of modern near-infrared spec-
troscopy. During that period, scholars who visited the laboratory of Karl Norris
included John Shenk from Pennsylvania, USA, Fred McClure from North Carolina,
USA, Phil Williams from Canada, Mutsuo Iwamoto from Japan, Karoly Kaffka
from Hungary, and so on. These scholars later became outstanding practitioners
and powerful promoters of NIRS technology. John Shenk established the first NIRS
forage analysis network in theUnited States and developed the famous chemometrics
software DOSISI and WinISI. After Mutsuo Iwamoto returned to Japan, under his
leadership and influence, NIRS technology began to be widely used in Japan. Japan
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Fig. 1.20 Fruit near-infrared online sorting device developed by Mitsui Company

developed an automatic sorting device for fruits based on NIRS in the late 1980s. In
the 1990s, Karl Norris visited the fruit NIR online sorting device developed byMitsui
in Shizuoka, Japan (Fig. 1.20). He said that “My dreamhas come true in Japan”. It can
be concluded that Karl Norris’s contribution in cultivating international near-infrared
masters is undoubtedly huge.

Karl Norris did a lot of work to promote the development of NIRS technology,
and to obtain the support of some scientists at the time [59]. During this period, spec-
troscopists who began to support NIRS included Tomas Hirschfeld, Peter Griffiths
and Bill Fateley, etc. The participance of these spectroscopists was very important in
the formation of the theoretical system of NIRS technology. In 1984, under the advo-
cacy of Tomas Hirschfeld, the American Society for Testing and Materials (ASTM)
established aNIRSworking group (E13.03.03) to study the standardmethod ofNIRS
technology.

In 1974, the Swedish chemist Wold and Professor Kowalski from the University
of Washington created the discipline of chemometrics. Chemometrics is a branch of
chemistry formedbycombiningmathematics, statistics, computer science, and chem-
istry. Its foundation is the rapid development of computer technology and themodern-
ization of analytical instruments [60]. Unfortunately, the early stage of chemometrics
was not combined with the application of near-infrared spectroscopy in agriculture.
It was Karl Norris’ unremitting efforts that made chemometrics scientists gradu-
ally pay attention to this technology, which contributed to the rise of near-infrared
spectroscopy technology [61, 62]. Some chemometric methods based on principal
component analysis were beginning to be adopted by researchers, such as principal
component regression and partial least squares, etc., which significantly improved
the accuracy and reliability of the results of NIRS. In the mid-1990s, artificial neural
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networkmethods had appeared in chemometrics commercial software forNIRS anal-
ysis. Since then, near-infrared spectroscopy and chemometrics have been developing
and improving in interdependence, interaction, and mutual promotion [63, 64].
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Chapter 2
Modern Spectral Analysis Techniques

2.1 Introduction

Light is an electromagnetic wave that moves in two orthogonal planes of electric and
magnetism. The distance between two crests or troughs is seen as the wavelength,
denoted by λ. Electromagnetic radiation is a stream of photons propagating through
space at high speed, which has the property of both wave and particle. According
to quantum theory, the emission or absorption of radiant energy is not continuous,
but quantized. The smallest unit of this energy is “photon”, and the relationship
between the energy E of each photon and its frequency ν and wavelength λ is shown
in Eq. (2.1):

E = hv = hc/λ = hcv (2.1)

where E is the energy of photon and the unit is electron volt (eV) or joule (J), 1 eV
= 1.602 × 10−19 J; h is Planck’s constant, h = 6.626 × 10−34 J second (J · s);
ν is the frequency, and the unit is Hertz (Hz) or second−1 (s−1), representing the
frequency of electromagnetic wave vibration per second; c is the speed of light, c
= 2.998 × 1010 cm · s−1; λ is the wavelength, and the unit is meter (m), centimeter
(cm), micron (μm) or nanometer (nm). 1 m = 102cm = 106 μm = 109 nm; v is
the wavenumber, and the unit is centimeter−1 (cm−1), representing the number of
vibration in the unit distance (cm) of the electromagnetic wave, and wavenumber
and wavelength is reciprocal.

All kinds of electromagnetic radiation sortedbasedon thewavelengthor frequency
of the size of the order is called the electromagnetic spectrum. Table 2.1 listed
the parameters related to electromagnetic waves used for spectral analysis. γ-rays
have the shortest wavelength and the highest energy. The radio wave region has
the longest wavelength and the lowest energy. If the wavelength or frequency is
known, the energy required to produce different types of transitions in respective
electromagnetic region can be calculated and vice versa. For example, the energy
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Table 2.1 Relative parameters of electromagnetic wave

E/eV V/Hz λ Electromagnetic wave Transition type

>2.5×105 >6.0×1019 <0.005 nm γ ray region Nuclear level

2.5×105 ~ 1.2×102 6.0×1019 ~ 3.0×1016 0.005 ~ 10 nm X ray region K, L electronic

energy levels1.2×102 ~ 6.2 3.0×1016 ~ 1.5×1015 10 ~ 200 nm vacuum ultraviolet region

6.2 ~ 3.1 1.5×1015 ~ 7.5×1014 200 ~ 400 nm near ultraviolet region Outer electron

energy level3.1 ~ 1.6 7.5×1014 ~ 3.8×1014 400 ~ 800 nm visible light region

1.6 ~ 0.50 3.8×1014 ~ 1.2×1014 0.8 ~ 2.5 μm near infrared region Molecular vibrational 

energy level0.50 ~ 2.5×10-2 1.2×1014 ~ 6.0×1012 2.5 ~ 50 μm mid infrared region

2.5×10-2 ~ 1.2×10-3 6.0×1012 ~ 3.0×1011 50 ~ 1000 μm far infrared region Molecular rotational 

energy level1.2×10-3 ~ 4.1×10-6 3.0×1011 ~ 1.0×109 1 ~ 300 mm microwave region

<4.1×10-6 <1.0×109 >300 mm radio wave region
Spins of

electrons and nuclei

required to motivate the valence electrons of a molecule or atom is 1~20 eV, and the
corresponding wavelength of the electromagnetic wave within this energy range can
be calculated as 1240~62 nm in Eqs. (2.2) and (2.3).

λ = hc

E
= 6.626 × 10−34 × 3.0 × 1010

1 × 1.602 × 10−19
× 107nm = 1240 nm (2.2)

λ = hc

E
= 6.626 × 10−34 × 3.0 × 1010

20 × 1.602 × 10−19
× 107nm = 62 nm (2.3)

For the electromagnetic spectrum with shorter wavelength (less than 10 nm) and
greater energy (more than 102 eV), it is called the energy spectrum which has more
obvious particle properties, and thus the analysis method was called the energy
spectral analysis. The electromagnetic spectrum whose wavelength is greater than
1 mm and energy is less than 10−3 eV (such as microwave and radio waves) has
obvious fluctuation, called the wave spectrum. The analysis method based on this
spectrum is called the spectral analysismethod. The electromagnetic spectrumwhose
wavelength and energy is between energy spectrum and wave spectrum is usually
obtained by optical instruments, called optical spectrum. The analysis method built
is thus called optical spectral analysis method, which is also called spectral analysis.

Spectral analysis is an analytical method measuring the wavelength and inten-
sity of the emission, absorption, or scattering radiation generated by the transition
between energy levels of the material internal quantum when the matter interacted
with radiation energy. Spectroscopy can be divided into atomic spectroscopy and
molecular spectroscopy.

Atomic spectroscopy is produced by the change of the outer or inner electron
energy level of atoms, which has no superposition ofmolecular vibration and rotation
energy level transition, and emits or absorbs some discontinuous radiation frequency
(or wavelength). It is shown by line-spectrum methods, such as atomic emission
spectrometry, atomic absorption spectrometry, atomic fluorescence spectrometry,
and X-ray fluorescence spectrometry, etc. Molecular spectroscopy is produced by
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Fig. 2.1 Schematic diagram
of the interaction of
electromagnetic radiation
with matter

the change of electron energy level, vibrational energy level, and rotational energy
level in a molecule, which is represented as band spectrum. These analytical methods
include UV-Vis spectrophotometry, near-infrared (NIR) spectroscopy, infrared (IR)
spectroscopy, molecular fluorescence spectroscopy, and molecular phosphorescence
spectroscopy, etc.

Usually, the light emitted by matter contains a variety of frequency compo-
nents, which is known as compound light. In spectral analysis, the light containing
only one frequency component (i.e., monochromatic light) is often obtained by a
certain method as an analytical method. In fact, the monochromatic light obtained
by common analytical methods often contains more than one frequency component.
The monochromaticity of monochromatic light is usually expressed by the width
(or half width) of the spectral line. The narrower the width of the spectral line, the
narrower the range of frequencies (or wavelengths) that the spectral line contains,
and the better the monochromaticity of the light.

The optical analysismethod commonly used in analytical chemistry is the spectro-
scopicmethod,which is an instrumental analysismethod to extract useful information
from the spectra of substances and to further determine the composition, content and
structure of substances. As shown in Fig. 2.1, electromagnetic radiation interacts
with matter to produce three types of spectra, including emission, absorption, and
scattering.

(1) Emission spectroscopy

Materials obtain energy through excitation processes such as electroinduced excita-
tion, thermally induced excitation or photoinduced excitation, and turn into excited
atoms or molecules. When they make transition from excited state to low energy
state or ground state, emission spectrum is generated and excess energy is emitted
in the form of light as Eq. (2.4) shows

M∗ → M + hv (2.4)

The method of qualitative and quantitative analysis by measuring the wave-
length and intensity of the emission spectrum of a substance is called emission
spectroscopy. According to the spectral region where the emission spectrum is
located and the different excitation methods, emission spectrometry is divided into
γ-ray spectrometry, X-ray fluorescence analysis, atomic emission spectrometry,
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atomic fluorescence spectrometry, molecular fluorescence spectrometry, molecular
phosphorescence spectrometry, chemiluminescence, etc.

(2) Absorption spectroscopy

When the electromagnetic radiation energy absorbed by the material and the energy
of atom or molecule of the material meets the relationship of �E = hν required for
the transition between the two or more energy levels of the nucleus, the absorption
spectrum will be generated as Eq. (2.5) shows

M + hv → M∗ (2.5)

Absorption spectroscopy includes Mossbauer spectroscopy, atomic absorp-
tion spectroscopy, UV-Vis spectroscopy, near-infrared spectroscopy, infrared spec-
troscopy, etc.

(3) Raman scattering spectroscopy

Monochromatic light with frequency of ν0 shines on the transparent material, and
the material molecules will scatter. If the scattering is the energy exchange between
the photon and the material molecule, that is, not only the motion direction of the
photon changes, but also its energy changes, then it is called Raman scattering. The
frequency of this scattered light is different from that of the incident light, which is
called the Raman shift. The magnitude of Raman shift is related to the vibrational
and rotational energy levels of molecules, and the method of studying the structure
and composition of substances using Raman shift is called Raman spectroscopy [1].

Theoptical analysismethodbasedon the above spectrum is called spectral analysis
method. Spectral analysis technology combining spectrum with chemometrics is
calledmodern spectral analysis technology.Handheld or portable field rapid analysis,
online analysis of industrial processes, spectral imaging analysis, and other practical
applications are the most attractive parts of modern spectral analysis technology [2–
5], and have also become the core content of modern process analysis technology
(Fig. 2.2) [6–9]. These aspects are closely related to chemometrics method [10].

2.2 Near-Infrared Spectroscopy

NIR light is an electromagnetic wave between UV-Vis (UV-Vis) and mid-infrared
light (MIR). Its wavelength range is 700–2500 nm (14,286–4000 cm−1), and it could
be further divided into two regions: short-wave (700–1100nm) and long-wave (1100–
2500 nm) NIR spectra. The short-wave region is also called the Herschel region in
honor of Herschel’s discovery of the infrared region (actually the NIR region) in
1800. Instruments extending from the UV-Vis spectrum often take the wavelength
(nm or μm) as the horizontal coordinate unit, while instruments extending from the
infrared spectrum, especially Fourier-type instruments, take the wavenumber (cm−1)
as the horizontal coordinate unit.
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Fig. 2.2 Schematic diagram of variousmethods of implementing process analysis technology tools
into bioprocess monitoring [9]

NIR spectra are mainly generated when molecular vibration transitions from
ground state to higher energy level due to the non-resonance of molecular vibra-
tion, which mainly reflects the frequency doubling and frequency absorption of
hydrogen containing groups X-H (such as C-H, N-H, O-H, etc.) vibration. NIR
absorption wavelength and intensity of different groups (such as methyl, methylene,
benzene ring, etc.) or the same group in different chemical environments are obvi-
ously different. NIR spectra have rich structure and composition information, which
is very suitable for the measurement of physicochemical parameters of hydrogen-
containing organic substances such as agricultural products, petrochemical products,
and drugs.

Another feature of NIR spectra is the weak absorption strength. Compared with
infrared spectrum (fundamental frequency), the probability of producing NIR spec-
trum is 1–3 orders ofmagnitude lower.On the one hand,NIR instruments are required
to have high signal-to-noise ratio; on the other hand, it is very convenient formeasure-
ment. For example, it canmeasure theNIR spectrumof the liquidwith themillimeter-
scale colorimetric dish. Because the absorption coefficient of the material in the NIR
region is small, its detection limit is usually 100 ppm, which is not suitable for trace
analysis. In order to overcome its limitations, sample pretreatment (such as solid
phase microextraction enrichment methods) can be used to improve the sensitivity.
However in this case, NIR spectroscopy as a detection technology may not be the
best choice.
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NIR spectroscopy analysis technology also has certain limitations. NIR spec-
troscopy analysis is almost an indirect method of building models based on chemo-
metrics. To establish a robust and reliable model, it requires a certain amount of
labor, financial resources, and time investment. It is economical and fast for regular
quality control, but not suitable for occasional analysis.

2.2.1 Micro Near-Infrared Spectral Analysis Technology

Because the NIR spectral region is between UV-Vis spectrum and MIR spectrum,
the spectrometer has many ways of splitting, which brings great convenience to the
miniaturization and microminiaturization of NIR spectral instruments. It takes less
than 10 years for NIR spectrometers to evolve from benchtop, portable, handheld,
to pocket-sized and miniature [11]. In recent years, some companies have been
working on the development of miniature NIR spectrometer chips. For example,
some companies have developed miniature NIR spectrometer chips with external
size of 18mm× 18mm, thickness of 4 mm, weight of less than 10 g, and wavelength
range of 1100–2500 nm, which is small enough to be integrated into smart phones
and wearable devices. And future spectrometers will get smaller and smaller. Yang
et al. used a special nanowire with a gradient band gap to replace the spectroscopic
and detecting elements in the traditional spectrometer, and fabricated a light detector
array on the nanowire for reducing the size of the traditional optical device to the
nanoscale [12].

In recent years, research on the application of portable andminiature spectroscopic
instruments in people’s daily life has begun [13–15], andmany concept products have
appeared on the market, such as intelligent washing machine, intelligent red wine
identification scanner, intelligent dehydration monitoring bracelet, clothing material
identification instrument, and so on. Samsung Electronics filed a patent and exhibits a
smartphone on its website that features a NIR spectrometer. The device’s rear camera
system provides a series of light sources at the top of the camera. When it shines
light on an object, the camera receives reflected signals to generate spectral data. The
smartphone is expected to measure the freshness and taste of fresh products as well
as their nutritional value, such as fat, protein and carbohydrate content. It could also
be used to measure the water-oil balance of skin, the quantity of sugar in a drink and,
hopefully, even direct diagnostics in the medical area.

Miniature NIR spectrometer chips are increasingly integrated with robots and
unmanned aerial vehicles. For example, there are already commercially available
plastic sorting devices that combine robotic arms with spectrometers to quickly
identify the types of waste plastic. The combination of NIR micro instruments and
robots can even achieve a completely unmanned intelligent analysis laboratory: the
process from sampling to data reporting is completely operated by the robot, and can
work all day long, significantly improving the efficiency of analysis.
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2.2.2 Online Near-Infrared Spectral Analysis Technology

The NIR light is longer than the UV light and shorter than the MIR light. The optical
material used is quartz or glass, and the price of the instrument and measuring acces-
sories is lower. NIR light can also be transmitted via a relatively inexpensive low-
hydroxyl quartz fiber,which is suitable for remote online analysis of toxicmaterials or
harsh environments. It also makes the design of spectrometers and measuring acces-
sories more flexible and smaller. For example, there are a wide variety of commer-
cially available optical fiber probes that can determine a wide variety of forms of
samples. Using multi-channel optical switching technology could achieve that a NIR
spectrometer can be used to measure multi-channel materials (3–15 channels) with
the advantages of fast analysis speed and high measurement efficiency [16].

NIR spectral analysis technology has been applied in many fields, such as agri-
culture, petrochemical, pharmaceutical, food, etc., in the way of industrial chain. It
can quickly and efficiently determine the chemical composition and physicochemical
properties of samples. In the past decade, with the rise of process analysis technology
in pharmaceutical and other fields, the application of NIR spectroscopy technology,
especially online analysis, has been significantly improved.

At present, the process industry is in the transition period from the traditional
productionmode to the precise digital and intelligentmodern productionmode. “Self-
perception” of information depth, “self-decision” of intelligent optimization, and
“self-execution” of precise control are the three key characteristics of an intelligent
factory, among which “self-perception” of information depth is the foundation of
an intelligent refinery. The analysis data of molecular composition and physical
properties of raw materials, intermediate materials and products is an important
part of information perception. The modern process analysis technology with NIR
spectroscopy as one of the core parts provides a very effective means for chemical
information perception.

In petrochemical enterprises, taking gasoline pipeline automatic blending tech-
nology as an example, online NIR spectroscopy analyzer has become the standard
equipment for this technology at present [17]. After more than 10 years of accumula-
tion, China has established a relatively perfect gasoline NIR spectral database, which
can predict a number of key physical properties (research octane number, knock resis-
tance index, olefin, aromatic hydrocarbon, benzene, MTBE content, vapor pressure,
etc.) of nearly ten components of gasoline and finished gasoline within 10 min.
The blending optimization control system makes use of the blending effect between
various gasoline components to calculate the relative proportion of blending compo-
nents, namely, blending formula, in real time, to ensure that the blended gasoline
products meet the quality specifications, and reduce the blending cost and excess
quality to a minimum. This technology can bring economic benefits with tens of
millions RMB to oil refining enterprises every year.

In feed production enterprises, with the increasingly fierce market competition,
low cost of raw materials input, stable product quality, low processing consumption
have become the key to stable survival in the market. Using NIR spectral analysis
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technology can be real-time online detection of the quality parameters of raw mate-
rials, process products and finished products (such as moisture, protein, crude fiber,
oil content, ash content, color, etc.). By optimizing control system, fine closed-loop
adjustment during the product production process could be adjusted based on real-
time quality of the product and objective product, which is able to ensure the quality
of finished feed stability and realize the product yield and quality optimization. In
addition, by virtue of the characteristics of scale production, it could bring more
economic benefits for enterprises.

In the field of food industry, during the process of wheat milling, online NIR
spectroscopy analyzer can be real-time determination of ash content of flour. By
timely adjustment of the milling process, in the premise of ensuring the quality of
flour, a higher powder yield could be got as far as possible. When mixing powder,
user’s requirements could be met by blending conform to the requirements of the
quality of high value-added special powder according to the result of rapid analysis
of NIR spectra. It can ensure no unqualified products or quality (protein) surplus
phenomenon andmakeflour product quality long-term stability.Moreover, combined
with the feedback control system, the fluctuation of protein content in flour (standard
deviation) can be reduced to 0.1% by adjusting the amount of gluten. In some large
meat production plants, online NIR spectroscopy is used to accurately determine the
content of the main components in raw meat, which made operators can adjust the
production process in time, optimize the ratio of raw material (such as the ratio of fat
and lean meat), reduce the production cost, and increase the profit of enterprises. In
dairy production enterprises, online NIR has been used to monitor the humidity and
granularity of milk powder in the atomization dryer, and then optimize the drying
process, such as temperature, feed speed, and airflow speed.

As shown in Fig. 2.3, in the process of traditional Chinesemedicine extraction and
production, online NIR spectroscopy can detect the changes of target components
in the extraction in real time, and then ensure the extraction time and extraction end
point (Fig. 2.4) [18]. In the purification process, the online NIR spectroscopy can
detect the concentration change of the target component in the effluent in real time,
to control the switch between the mobile phase and the eluent and determine the
termination point of the elution process. This can collect the target component in the
largest amount and reduce the number of impurities in the product. It can not only
ensure product quality but also can avoid energy waste and reduce production costs.
The concentration process can be controlled by detecting the concentration of water
(solvent) or target component, and the end point of the concentration can also be
determined instantly.

The application of online NIR spectroscopy technology in the fields of food,
pharmaceutical, and chemical industry has just begun in China, which is in line
with the general trend of fine management and intelligent processing, and will bring
changes to the process industry [19, 20]. For a long time to come, the stable and
hopeful basis on the application of online NIR spectroscopy in the process industry
will not change. In addition, in the field of online screening of waste plastics, textiles
and fruit products, the application of online NIR spectroscopy will be more andmore
extensive.
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Fig. 2.3 Schematic diagram of online near-infrared spectroscopy for monitoring the extraction
process of traditional Chinese medicine [18]

The implementation of online NIR spectroscopy technology is amultidisciplinary
system engineering [21, 22], which requires the cooperation of multiple depart-
ments and a professional team implementing the subsequent operation and mainte-
nance. In terms of the popularization of this technology, local customized design,
manufacturing, implementation, operation, andmaintenance have strong advantages.

2.2.3 Standard Methods for Near-Infrared Spectroscopy

NIR spectroscopy has achieved fruitful results in practical application, which is
recognized and accepted by more and more applied enterprises. It plays an important
role in industrial and agricultural production process aswell as commerce. Up to now,
above 100 standardmethods of NIR spectroscopy have been promulgated all over the
world,whichwill accelerate the popularization ofNIR spectral analysis technology to
a certain extent. The relevant NIR standard methods from international organizations
and some countries are as follows:
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Fig. 2.4 The end point of extraction process was determined based on relative concentration
changing rate (RCCR) [18]

1. ASTM E1655 Standard Practices for Infrared Multivariate Quantitative
Analysis

2. ASTM E1790 Standard Practice for Near-Infrared Qualitative Analysis
3. ASTM D6122 Standard Practice for Validation of the Performance of Multi-

variate Online, At-Line, and Laboratory Infrared Spectrophotometer-Based
Analyzer Systems

4. ASTM D3764 Practice for Validation of the Performance of Process Stream
Analyzer Systems

5. ASTMD6342 Standard Practice for Polyurethane RawMaterials Determining
Hydroxyl Number of Polyols by NIR Spectroscopy

6. ASTM D5845 Standard Test Method for Determination of MTBE, ETBE,
TAME, DIPE, Methanol, Ethanol, and tert-Butanol in Gasoline by Infrared
Spectroscopy

7. ASTM D6277 Standard Test Method for Determination of Benzene in Spark-
Ignition Engine Fuels Using Mid-Infrared Spectroscopy

8. ASTM D6299 Practice for Applying Statistical Quality Assurance and
Control Charting Techniques to Evaluate Analytical Measurement System
Performance

9. ASTMD7371Determination of Biodiesel (Fatty AcidMethyl Esters) Content
inDiesel FuelOilUsingMid-Infrared Spectroscopy (FTIR-ATR-PLSMethod)

10. ASTM E2617 Standard Practice for Validation of Empirically Derived
Multivariate Calibrations
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11. ASTM E2891 Standard Guide for Multivariate Data Analysis in Pharmaceu-
tical Development and Manufacturing Applications

12. ASTM D8321 Standard Practice for Development and Validation of Multi-
variateAnalyses forUse inPredictingProperties of PetroleumProducts, Liquid
Fuels, and Lubricants based on Spectroscopic Measurements

13. ASTM E2898 Standard Guide for Risk-Based Validation of Analytical
Methods for PAT Applications

14. ASTM E2056 Standard Practice for Qualifying Spectrometers and Spec-
trophotometers for Use in Multivariate Analyses, Calibrated Using Surrogate
Mixtures

15. ISO 15063 Plastics-Polyols for use in the production of polyurethanes
determination of hydroxyl number by NIR spectroscopy

16. ISO 21543 Milk products. Guidelines for the application of near-infrared
spectrometry

17. ISO 12099 Animal feeding stuffs, cereals, and milled cereal products.
Guidelines for the application of near-infrared spectrometry

18. ISO 17184-2014 Soil quality—Determination of carbon and nitrogen by near-
infrared spectrometry (NIRS)

19. AACC 39-00 Near-Infrared Methods: Guidelines for Model Development and
Maintenance

20. AACC 39-10 Near-infrared reflectance method for protein determination
21. AACC 39-11 Near-infrared reflectance method for protein—wheat flour
22. AACC 39-20 Near-infrared reflectance method for protein and oil determina-

tion—soybeans
23. AACC 39-21 Near-infrared method for whole-grain analysis
24. AACC 39-25 Near-infrared method for protein content in whole-grain wheat
25. AACC 39-70 Wheat hardness as determined by near-infrared reflectance
26. AACC 08-21 Prediction of Ash Content in Wheat Flour—Near-Infrared

Method
27. AOAC 2007.04 Fat, Moisture, and Protein in Meat and Meat Products
28. AOAC 989.03 Fiber (acid detergent) and protein (crude) in forages: Near-

infrared reflectance spectroscopic method
29. AOAC 991.01 Moisture in forage, near-infrared reflectance spectroscopy
30. AOAC 997.06. Protein (crude) in wheat. Whole grain analysis, Near-infrared

spectroscopic method.
31. ICC 159 Determination of Protein by Near-Infrared Reflectance (NIR)

Spectroscopy
32. ICC 202 Procedure for Near-Infrared (NIR) Reflectance Analysis of Ground

Wheat and Milled Wheat Products
33. RACI 11.01 Determination of protein and moisture in whole wheat and barley

by NIR
34. USP 856 Near-Infrared Spectroscopy
35. USP 1856 Near-Infrared Spectroscopy—Theory and Practice
36. USP 1039 Chemimetrics
37. EP 2.2.40 Near-Infrared Spectroscopy
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38. PSAG Guidelines for the development and validation of near-infrared (NIR)
spectroscopy methods

39. CPMP&CVMPNote for guidance on the use of near-infrared spectroscopy by
the pharmaceutical industry and the data requirements for new submissions
and variations

40. RIVM Verification of the identity of pharmaceutical substances with near-
infrared spectroscopy

41. EMAGuideline on the use of near-infrared spectroscopy by the pharmaceutical
industry and the data requirements for new submissions and variations

42. FDA Development and submission of near-infrared analytical procedures,
Guidance for industry, Draft guidance

43. AOCS Cd 1e Determination of Iodine Value by Pre-calibrated FT-NIR with
Disposable Vials

44. AOCS Am 1a-09 Near-Infrared Spectroscopy Instrument Management and
Prediction Model Development

45. JIS K0134
46. GOST 33,441 Vegetable oils. Determination of quality and safety by near-

infrared spectrometry
47. GOST 32,041 Compound feeds, feed rawmaterials. Method for determination

of crude ash, calcium and phosphorus content by means of NIR spectroscopy
48. GOST 31,795 Fish, marine products and products of them. Method of deter-

mining the fraction of total mass of protein, fat, water, phosphorus, calcium,
and ash by the near-infrared spectrometry

49. GOST 32,040 Fodder, mixed, and animal feed raw stuff. Spectroscopy in near-
infrared region method for determination of crude protein, crude fibre, crude
fat and moisture

50. GOST R 51,038 Fodder and mixed fodder. Spectroscopia in near-infrared
region method for determination of metabolizable energy

51. GOST 30,131 Oil-cake and ground oil-cake. Determination of moisture, oil
and protein by infrared reflectance.

*Note

ASTM American Society for Testing and Materials
ISO International Organization for Standardization
AACC American Association of Cereal Chemists
AOAC Association of Official Analytical Chemists
ICC International Association for Cereal Science and Technology
AOCS American Oil Chemists Society
RACI Royal Australian Chemical Society
USP U.S. Pharmacopeia,
EP European Pharmacopoeia
PASG Pharmaceutical Analytical Sciences Group
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CPMP&CVMP Committee for Proprietary Medicinal Products & Committee for
Medicinal Products for Veterinary Use

RIVM lang-nl|Rijksinstituut voor Volksgezondheid en Milieu
EMA European Medicines Agency
FDA Food and Drug Administration
JIS Japanese Industrial Standards
GOST Gosudarstvennyy standard (Russian Standard).

In recent two decades, China has promulgated 80 national, industrial, and local
standards, involving chemical, food, agriculture, textile, and other fields. The relevant
NIR standard methods from different levels in China are as follows:

1. GB/T 18,868-2002Method for determination ofmoisture, crude protein, crude
fat, crude fiber, lysine, and methinione in feeds—Near-infrared reflectance
spectroscopy method

2. GB/T 12,008.3-2009 Plastics-Polyether polyols—Part 3: Determination of
hydroxyl number

3. GB/T24,895-2010 Inspectionof grain andoils—General regulations formodel
authentication of near-infrared analysis and administration and maintenance
of network

4. GB/T 25,219-2010 Inspection of grain and oils—Determination of starch
content in maize—Near-infrared spectroscopy method

5. GB/T 24,900-2010 Inspection of grain and oils—Determination of moisture
content in maize—Near-infrared spectroscopy method

6. GB/T 24,902-2010 Inspection of grain and oils—Determination of crude fat
content in maize—Near-infrared spectroscopy method

7. GB/T 24,896-2010 Inspection of grain and oils—Determination of moisture
content in paddy—Near-infrared spectroscopy method

8. GB/T 24,897-2010 Inspection of grain and oils—Crude protein determination
in rice—Near-infrared spectroscopy method

9. GB/T 24,898-2010 Inspection of grain and oils—Determination of moisture
content in wheat—Near-infrared spectroscopy method

10. GB/T 24,899-2010 Inspection of grain and oils—Determination of crude
protein in wheat—Near-infrared spectroscopy method

11. GB/T 24,871-2010 Inspection of grain and oils—Crude protein determination
in wheat flour—Near-infrared spectroscopy method

12. GB/T 24,872-2010 Inspection of grain and oils—Determination of ash content
in wheat flour—Near-infrared spectroscopy method

13. GB/T 24,870-2010 Inspection of grain and oils—Crude protein and crude fat
determination in soybean—Near-infrared spectroscopy method

14. GB/T 29,858-2013 Standard guidelines for molecular spectroscopy multi-
variate calibration quantitative analysis

15. GB/T 34,406-2017 Identification of pearl powder—Near-infrared spec-
troscopy method

16. GB/T 36,691-2018 Methyl vinyl silicone rubber—Determination of vinyl
content—Near-infrared spectroscopy
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17. GB/T 37,969-2019 Standard guidelines for near-infrared qualitative analysis
18. GB/T 7383-2020Non-ionic surface active agents—Determination of hydroxyl

value
19. GB/T 13,892-2020 Surface active agents—Determination of iodine value
20. ChP 2015 The Pharmacopoeia of the People’s Republic of China (2015) 9104

Guidelines for Near-Infrared Spectrophotometry
21. NY/T 1423-2007Method for Quick Discrimination of Meat and BoneMeal in

Fishmeal and Ruminant Concentrate Supplement—Near-infrared reflectance
spectroscopy method

22. NY/T 1841-2010 Non-destructive determination of soluble solid and titratable
acidity in apple fruit by near-infrared spectroscopy method

23. NY/T 2797-2015Non-destructive determination of fat inmeat by near-infrared
spectroscopy method

24. NY/T 2794-2015 Determination of amino acids content in peanut—Near-
infrared spectroscopy method

25. NY/T 3105-2017 Determination of oil content in vegetable oilseeds—Near-
infrared spectroscopy method

26. NY/T 3299-2018 Determination of oleic acid and linoleic acid in vegetable
oilseeds—Near-infrared spectroscopy method

27. NY/T 3298-2018 Determination of crude protein content in vegetable
oilseeds—Near-infrared spectroscopy method

28. NY/T 3297-2018 Determination of total phenolic compounds and tocopherols
in rapeseed seeds—Near-infrared spectroscopy method

29. NY/T 3295-2018Determination of erucic acid and glucosinolate in rapeseed—
Near-infrared spectroscopy method

30. NY/T 3512-2019 Non-destructive determination of protein in meat—Near-
infrared spectroscopy method

31. NY/T 3679–2020 Technical code of practice for screening high oleic acid
peanut—Near-infrared spectroscopy method

32. SN/T 3896.1-2014 Quantitative analysis of fiber in textiles for import and
export—Near-infrared spectroscopy method—Part 1: Mixture of polyester
fiber and cotton fiber

33. SN/T 3896.2-2015 Quantitative analysis of fiber in textiles for import and
export—Near-infrared spectroscopy method—Part 2: Mixture of polyester
fiber and polyurethane fiber

34. SN/T 3896.3-2015 Textiles for import and export—Quantitative analysis of
fiber—Near-Infrared spectroscopy method—Part 3: Mixture of polyamide
fiber and polyurethane fiber

35. SN/T 3896.4-2015 Textiles for import and export—Quantitative analysis of
fiber—Near-Infrared spectroscopy method—Part 4: Mixture of cotton fiber
and polyurethane fiber

36. SN/T 3896.5-2015 Textiles for import and export—Quantitative analysis of
fiber—Near-infrared spectroscopy method—Part 5: Mixture of polyester fiber
and rayon fiber
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37. SN/T 3896.6-2017 Textiles for import and export—Quantitative analysis of
fiber—Near-infrared spectroscopy method—Part 6: Mixture of polyester fiber
and wool fiber

38. SN/T 3896.7-2020 Quantitative analysis of fiber in textiles for import and
export—Near-infrared spectroscopy method—Part 7: Mixture of polyester
fiber and polyamide fiber

39. SN/T3896.8-2020Fiber quantitative analysis of textile for import and export—
Near-infrared spectroscopy —Part 8: Mixture of cotton and polyamide fiber

40. SN/T 5233-2020 Import and export textile material test of moisture regain of
raw cotton—Near-infrared spectroscopy method

41. SB/T 11,149-2015 Technical specifications of waste plastics collection and
sorting

42. FZ/T 01,144-2018 Textiles—Quantitative analysis of fiber—Near-infrared
spectroscopy method

43. FZ/T 01,150-2019 Textile -Test method for identification of bamboo fibre and
viscose from bamboo—Near-infrared spectroscopy method

44. LY/T 2151-2013Method for determination of holocellulose and acid-insoluble
lignin in wood—Near-infrared spectroscopy method

45. LY/T 2053-2012 Standard method for near-infrared qualitative analysis of
wood

46. GH/T 1260-2019 Method for Moisture, Total Polyphenols, and Caffeine in
Instant Tea in Solid Form—Near-infrared reflectance spectroscopy method

47. GH/T 1259-2019 Method for moisture, total polyphenols, and caffeine in tea
polyphenol products—Near-infrared reflectance spectroscopy method

48. QB/T 2812-2006 Paper-online determination of weight and moisture (The
near-infrared spectroscopy method)

49. HG/T 3505-2020 Surface active agents—Determination of saponification
value

50. DB12/T 347-2007 Rapid method for determination of crude protein in wheat
and corn by near-infrared spectroscopy

51. DB22/T 1605-2012 Rapid and nondestructive detection of ash content, mois-
ture, water-insoluble solids, water-saturated butanol extract in the Ginseng—
Near-infrared spectroscopy method

52. DB32/T2269-2012Determination ofCottonseedOilContent byNear-Infrared
Spectroscopy

53. DB21/T 2048-2012 Determination of crude protein, crude fat, crude fibre,
moisture, calcium, Sphosphorus, crude ash, water-soluble chlorides, amino in
feeds Near-infrared reflectance spectroscopy

54. DB22/T 1812-2013 Rapid and nondestructive detection of polysaccharides in
the Ginseng-Near-infrared spectroscopy method

55. DB53/T 497-2013 Guidelines for the establishment and validation of near-
infrared calibration models for the main chemical constituents of tobacco and
tobacco products

56. DB53/T498-2013Determination ofmain chemical components in tobacco and
tobacco products—Near-infrared diffuse reflectance spectroscopy method
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57. DB53/T 512-2013 Determination of the uniformity of blending of double-cut
microwave expanded stalks by near-infrared spectroscopy method

58. DB34/T 2561-2015 Rapid analysis of conventional indicators in solid-state
fermented grains—Near-infrared spectroscopy method

59. DB43/T 1065-2015 Determination of amino acids in feeds—Near-infrared
reflectance spectroscopy method

60. DB34/T 3054-2017 The method of rapid determination of the main flavor
components in strong flavor. Chinese spirits near-infrared spectroscopy

61. DB15/T 1229-2017 Test method for pure cashmere content of cashmere—
Near-infrared reflectance spectroscopy method

62. DB34/T 2890-2017 Method for determination of the major components in
tea—Near-infrared reflectance spectroscopy method

63. DB64/T 1554-2018 Method for fiber determination of cotton and polyester
fiber-blended products—Near-infrared spectroscopy method

64. DB37/T 3635-2019 Technical specification for rapid screening of motor
vehicle gasoline

65. DB37/T 3636-2019 Rapid detection method of motor vehicle gasoline near-
infrared spectroscopy method

66. DB37/T 3637-2019 Technical Specification for Rapid Screening of Automo-
bile Diesel Fuels

67. DB37/T 3638-2019 Rapid Detection Method of Automobile Diesel Fuels—
Near-Infrared spectroscopy method

68. DB37/T 3639-2019 Technical specification for rapid screening of motor
vehicle ethanol gasoline (E10)

69. DB37/T 3640-2019 Rapid detection method of motor vehicle ethanol gasoline
(E10)—Near-infrared spectroscopy method

70. DB37/T 4118-2020 Rapid detection method of diesel engines NOx reduction
agent—Aqueous urea solution (AUS32)—Near-infrared spectroscopymethod

71. DB36/T 1127-2019 Method for determination of crude ash, calcium, phos-
phorus, and chloridesin feeds—Near-infrared reflectance spectroscopymethod

72. DB34/T 3561-2019 The method for determining conventional indicators of
brewing raw materials—Near-infrared spectroscopy method

73. DB12/T 955-2020 Determination of nitrogen and phosphorus in the slurry of
dairy farm—Near-infrared diffused reflection spectroscopy

74. DB32/T 3881-2020 Intelligent factory of Chinese medicine—Quality control
of the extraction processes by water-extraction and alcohol-precipitation

75. T/AHFIA 008-2018 Rapid determination method of physical and chemical
indicators for brewing Daqu—Near-infrared spectroscopy method

76. T/GZTPA 0001-2020 Determination of the main chemical constituents in
Guizhou green tea by near-infrared diffuse reflectance spectroscopy

77. GH/T 1337-2021 Rapid determination of impurity content of seed cotton—
Near-infrared spectroscopy method

78. T/CIS 11001-2020 On-line detection of powder blending uniformity in
the production of traditional Chinese medicine—Near-infrared spectroscopy
method
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79. T/CBJ 004-2018 The general analysis method of solid-state fermented grains
80. GB/T 40,467-2021 Livestock and poultry meat quality testing—Guideline for

near-infrared spectroscopy method.

*Note

GB/T China National Standards (recommendation)
NY/T Agricultural Industry Standard of the People’s Republic of China

(recommendation)
SN/T Industrial Standard of Import and Export Commodity Inspection of the

People’s Republic of China (recommendation)
SB/T Commercial industry standard of the People’s Republic of China

(recommendation)
FZ/T Textile Industry Standard of the People’s Republic of China (recom-

mendation)
LY/T Forestry Industry Standards of the People’s Republic of China (recom-

mendation)
GH/T Industry Standards for Supply and Marketing Cooperation of the

People’s Republic of China (recommendation)
QB/T Standard for light industry of the People’s Republic of China (recom-

mendation)
DB/T Local standards of the People’s Republic of China (recommendation)
HG/T People’s Republic of China Chemical Industry Standard (recom-

mended)
ChP The Pharmacopoeia of the People’s Republic of China
T/AHFIA Food IndustryAssociationGroup Standards ofAnhui province ofChina
T/GZTPA Green Tea Brand Development Promotion Association Group Stan-

dards of Guizhou province of China
T/CIS Group Standards of China Instrument and Control Society
T/CBJ Group Standards of China Liquor Industry Association.

2.3 Mid-Infrared Spectroscopy

The MIR spectroscopy is commonly called IR spectroscopy with a spectral range
of 400–4000 cm−1, reflecting the spectral information of the vibration and rotation
of material molecules, and the fundamental frequency absorption bands of the vast
majority of organic compounds and inorganic ions appear in this region. Compared
with the NIR spectral region, the MIR spectral region has strong absorption, rela-
tively rich information, and strong group resolution ability, which can distinguish
substances with very similar structure. This is also the reason whyMIR spectroscopy
has been mainly used for the analysis of molecular structure of substances for a long
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time. In recent years, with the development of instrument manufacturing technology,
chemometrics methods, and computers, MIR spectroscopy has been increasingly
used in the field of emergency analysis and online process analysis.

2.3.1 Portable Mid-Infrared Spectral Analysis Technology

With the improvement of instrument manufacturing level and the new demand
brought by social development, portable MIR spectrometer has been applied in more
and more fields, such as product quality detection, environmental monitoring, and
hazardous material leakage emergency monitoring. From the point of view of instru-
ment type, most portable instruments still use Fourier transform type, but there are
also other types, such as array detector type. From the point of view of measurement
objects, there are special portable instruments suitable for a variety of amorphous
samples (such as gas, viscous liquid, and solid powder). These portable instruments
have been structurally modified to adapt to very stringent filed environments. For
example, some instruments can operate at temperatures ranging from 0 to 100%
humidity and −10 to 50 °C.

In the determination of light oil products (gasoline and diesel), there are a number
of special portable infrared analyzers, which mostly used transmission measurement
way, automatic injection and cleaning, built-in a variety of chemometrics calibration
models. They can quickly determine gasoline, diesel and jet fuel, and other conven-
tional physical and chemical properties and chemical composition data. It is used
in the field of intermediate control analysis and quality inspection in the circulation
process.

There are also a number of portable MIR instruments dedicated to the determi-
nation of lubricating oil or biodiesel, which mainly used ATR measurement method
and slightly transmissionmode. Theywere employed to conduct quality decaymoni-
toring of lubricating oil in the process of use, control analysis of biodiesel in the
process of production, determination of mixing proportion of biofuel in the process
of flow. In the aspect of quality monitoring of lubricating oil, mid-NIR spectroscopy
combined with chemometrics can determine many physical and chemical indexes
such as acid value, alkali value, and water content of lubricating oil. In terms of
biodiesel analysis, MIR spectroscopy can be used to determine the composition of
biodiesel and its feedstock, such as methyl ester and glycerol, as well as the mixing
ratio of petrochemical diesel and biodiesel. With a few modifications, these instru-
ments can be used for other analysis, such as ethanol in gasoline, ethanol in beverages,
and heavy water (D2O) in water.

Portable MIR spectrometer can be used for on-site identification and analysis
of liquid, viscous, and gel materials. Such instruments are usually equipped with
standard spectral libraries of thousands of substances including common laboratory
chemicals, toxic industrial chemicals, chemical warfare agents, explosives, criminal
investigation drugs, controlled drugs and precursors, common white powder spectra.
By spectral retrieval, thematerial composition of the sample can be quickly identified.
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It can be applied to military, fire, customs import and export, environmental protec-
tion, and health law enforcement departments, such as identification of unknown
powder found in business district, identification of unknown liquid leaked in traffic
accidents, on-site inspection of chemicals in the process of transportation [23].

Portable MIR spectrometer can be used for on-site gas analysis, and the inner
wall of the gas pool is coated with precious metals such as gold or rhodium, which
is highly corrosive. The optical path ranges from a few centimeters to a few meters,
depending on the concentration of the gas to be measured. In order to detect trace
concentrations of gas, some instruments are equipped with gas enrichment devices.
These instruments are equipped with thousands of standard MIR spectra of gases,
which can be used for emergencymonitoring and analysis of environmental pollution
accidents, identification, andmonitoring of chemical weapons agents in anti-terrorist
activities, on-site monitoring of labor health.

2.3.2 Online Mid-Infrared Spectral Analysis Technology

From the spectral theory and analysis principle, the project analyzed by NIR spec-
troscopy can also be analyzed by MIR spectroscopy if equipped with appropriate
measurement accessories. Moreover, the sensitivity of MIR spectroscopy is an order
of magnitude higher than that of NIR, and it generally can measure the content
of more than 0.01% of the components. However, due to the high price of online
MIR spectrometer and the limitation of measurement accessories, its application in
the field of process industry (such as petrochemical and pharmaceutical) is far less
extensive than that of online NIR spectrometer. Most applications of online MIR
spectroscopy are also focused on experimental reaction processes, such as organic
synthesis, polymerization, and biochemical reactions.

For liquid such as wine and milk with good fluidity, MIR spectral measurement
(optical path is 20–200 μm) can be carried out by transmission mode, because
transmission spectroscopy provides stronger structural information than ATR spec-
troscopy, and has advantages in the determination of low content substances [24]. In
the detection of raw milk, MIR spectroscopy has been widely recognized as a rapid
detection method in the international dairy industry. Through the establishment of
the chemometrics calibration model, the items that can be analyzed include milk
fat, milk protein, lactose, non-fat solids, total dry matter, density, and water mixing
rate. In dairy production enterprises, MIR spectroscopy is used for the control and
supervision of rawmilk quality, as well as the standardizedmonitoring of the produc-
tion process, so as to keep the balance of the physical and chemical components of
each batch of products and ensure the continuity of the final product quality and the
consistency of flavor (taste). The contents of low concentration urea (0.01–0.08%),
acetone (0.00–0.02%), and microorganisms in milk can also be measured by MIR
spectroscopy.
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In recent years, online gasmeasurement technology combiningMIR full-spectrum
measurement and chemometrics is emerging quietly [25]. For example, Fourier trans-
formMIR gas analyzers have been installed at the outlet of the desulfurization tower
(sprayer) on the waste incinerator line. The waste incineration gas mainly contains
gaseous pollutants (such as SO2, NO, NO2, CO, CO2, HCl, HF, NH3, etc.) and H2O,
among which the concentration of some gas components is sometimes very high,
such as the concentration of H2O up to 40 v%, the concentration of CO2 up to 20 v%,
etc. However, the concentration of HCl and HF is generally only 10~30 mg/m3, with
a range ratio of more than 104. Other analytical methods do not have such a wide
dynamic measurement range as the quantitative analysis of MIR spectroscopy, so it
is difficult to meet such requirements. The data monitored by the Fourier transform
MIR gas analyzer can be used to adjust and control the operation of the desulfuriza-
tion tower (for example, to control the amount of lime slurry in the spray tower), and
can also be used as the basis for environmental assessment.

2.4 Raman Spectroscopy

Raman spectroscopy and MIR spectroscopy are both molecular vibration spec-
troscopy, but their generating principles are very different. MIR spectroscopy is the
absorption spectrum, while Raman spectroscopy is the scattering spectroscopy. In
1928, when studying the light scattering of benzene, Indian physicist Raman found
that in the scattered light, in addition to the scattered light with the same frequency
as the incident light (namely, Rayleigh scattering), there are scattered light with
different frequency with the incident light, namely, Raman scattering. The intensity
of Raman scattering is extremely weak, with only 10−3~10−6 of Rayleigh scattering
intensity.

Raman scattering is the result of inelastic collision between light and material
molecules. The difference between the frequency of scattered light and incident light
reflects the frequency of the photon corresponding to the difference of energy level
of molecular vibration, which is called Raman shift. It has nothing to do with the
frequency of incident light, and the wavenumber range is about 0~4000 cm−1. For
functional groups with weak MIR absorption, such as non-polar groups C=C, C–
C, and S–S, strong absorption bands can be obtained in Raman spectroscopy. The
chemical functional groups of various substances have the Raman vibration band
with sharp and strong characteristics, which makes it easy to distinguish different
substances.Moreover, the vibration band is also sensitive to the physical and chemical
environment, so the position and strength of the band can also sensitively reflect
the information of the structure and conformational change process of the relevant
substances. The Raman spectral signal of water molecules is very weak, so it is easy
to obtain the Raman spectra of water samples. In addition, Raman spectroscopy does
not require the sample to own good light transmittance, so it is easy to obtain Raman
spectra of turbid samples.
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2.4.1 Fourier Transform Raman Spectroscopy

Raman spectrometers can be divided into dispersion Raman and Fourier trans-
form Raman (FT-Raman) spectrometers according to different principles. Disper-
sive Raman is the principle of grating dispersion to obtain the spectrum. The lasers
from UV, visible to NIR wavelength range can be used as the excitation source. FT-
Raman usesMichelson interferometer to obtain Raman spectra by the way of Fourier
transform. Most of the 1064 nm semiconductor lasers are used as the excitation
source. Comparedwith the dispersiveRaman spectrometer, FT-Raman has the advan-
tages of fast scanning speed, good spectral reproducibility, high-frequency accu-
racy, wide measurement frequency range, high signal-to-noise ratio, small thermal
effect, possibly overcoming fluorescence interference and directly passing through
the biological tissue with NIR light to obtain useful information of the molecules in
the tissue.

FT-Raman has many applications in drug analysis and food. Okumura et al. used
FT-Raman spectroscopy combined with partial least squares (PLS) to establish a
method for the rapid determination of indomethacin microcrystalline content, which
could accurately predict the drug content in indomethacin tablets [26]. Szostak et al.
established a PLS model based on FT-Raman spectroscopy to predict the content of
active ingredients acetaminophen and diclofenac sodium in commercial supposito-
ries [27]. This method can be promoted for rapid quantitative analysis of supposi-
tories. FT-Raman can be used for the quality identification of unsaturated vegetable
oils, such as unsaturation, iodine value, free fatty acids, oxidation stability, and
adulteration identification [28].

2.4.2 Surface Enhanced Raman Scattering Spectroscopy

When some molecules are adsorbed to the surface of some rough metals, such as
gold, silver, or copper, the intensity of their Raman signal is increased by 104–106

times, and the band position is not very different from the normal Raman spectrum.
This unusual Raman scattering enhancement phenomenon is called surface enhanced
Raman scattering (SERS) effect. In recent years, benefiting from the rapid develop-
ment of laser technology and nanotechnology, SERS has been widely applied in the
fields of interface and surface science, material analysis, biology, medicine, envi-
ronment, and security [29]. For molecules with surface enhanced resonance Raman
scattering (SERRS) effect, the intensity can be increased by 2–3 orders of magnitude
if the excitation wavelength is adjusted to the absorption wavelength of the adsorbed
molecules, and the detection limit can be as low as 10–9 mol/L.

SERS spectroscopy overcomes the disadvantage of low sensitivity of conven-
tional Raman spectroscopy, and can obtain more material structure information.
It has a broad application prospect in the field of on-site rapid screening, detec-
tion, and identification of pesticide residues, veterinary drug residues, and detection
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of restricted or banned additives. Mamian-Lopez et al. took Klarite as the Raman
enhanced substrate, and established a SERS analysis method for moxfloxacin, a
fluoroquinolone antibiotic, with the detection limit of 0.085 mg/L and the limit of
quantitationwas 0.6mg/L [30] by eliminatingmatrix effect through standard addition
method and multiple curve resolution alternating least square method (MCR-ALS).
Zhang et al. adopted commercial Klarite and Q-SERS substrate combined with prin-
cipal component analysis (PCA) and partial least squares (PLS) method to establish
SERS analysis method for enrofloxacin, furazolidone, and malachite green in fish,
which could detect 1.0 μg/g furazolidone and 200 ng/g malachite green in tilapia
fillet [31]. Huang et al. used surface enhanced Raman spectroscopy combined with
PLS to establish a quantitative model for malathion residue in Chinese cabbage, and
the detection concentration of malathion in Chinese cabbage reached 1.08 mg/L
[32]. Liu et al. realized the nondestructive detection of thiophosamine pesticide
residues in navel orange with the enhanced base of floccule silver gel combined
with chemometrics, and the detection limit reached 4.13 mg/L [33]. Based on silver
nanorod array, Nie et al. built a quantitative model for predicting trace biformidine in
honey through SERS and PLS. Compared with the traditional single variable quan-
titative model based on SERS single peak intensity, this multi-predicative model
integrated all characteristic peaks of biformidine, improving the detection accuracy
and anti-interference ability [34].

SERS spectroscopy has unique advantages such as non-invasive, high sensitivity,
good selectivity, and small water interference, which makes it have good application
prospects in life science, clinical laboratory, and it has become a very potential
biological detection technology [35]. In combination with PCA and independent
data t-test and other statistical methods to analyze Raman spectra, Liu et al. used
SERS spectroscopy of human serum based on silver nanofilm solid device to carry
out non-labeled and non-invasive detection of liver cancer at the molecular level. The
diagnostic sensitivitywas about 95.0%and the specificitywas about 97.6% [36]. This
non-labeling and non-invasive test have great potential for detecting cancer clinically.

Using SERS to classify and identify bacteria has become one of the hot spots in the
field of microbial detection [37]. The application of SERS in bacterial classification
was mainly to distinguish different species of bacteria and different types of the same
species of bacteria. Raman spectroscopy has a relatively high information content,
which is derived from the vibrational and rotational frequencies of the molecules in
the sample. The molecular vibration frequencies of nucleic acids, proteins, lipids,
and carbohydrates in bacteria are different, which are shown as their unique spectral
peaks onRaman spectrum and can generate “whole biological fingerprint” that can be
distinguished by pattern recognition methods. For example, urinary tract infections
are a common condition, and the current gold standard for detecting infections is the
traditional culturemethod, which costs a long time. Jarvis et al. used SERS combined
with PCA and discriminant function analysis to study pathogenic bacteria of urinary
tract infection, which successfully identified the main pathogenic bacteria groups of
five different species [38].

In response to and disposal of public security emergencies involving chemical
terrorism substances (such as chemical warfare agents, biological toxins, and other
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highly toxic chemical substances), it is very important to carry out real-time, rapid,
accurate, reliable, and highly sensitive on-site inspection. Due to its sensitivity,
rapidity and portability, SERS spectroscopy has gradually attracted attention in the
field of detection and security of chemical terrorist substances and is expected to
be widely used in the fields of national defense security, public security, and on-
site detection of chemical emergencies [39]. Surface enhanced Raman spectroscopy
can be used for on-site detection and real-time and rapid analysis of trace and even
ultra-trace drugs by portable Raman spectrometers, which has broad application
prospects [40]. Dong et al. adopted dynamic SERS substrate and used PCA to
reduce the dimension of the spectrum. Then, a discriminant model was established
by support vector machine (SVM) and the accuracy rate of identifying the real urine
of methamphetamine users reached 90% [41].

In addition to SERS, resonance Raman spectroscopy (RRS), coherent anti-Stokes
Raman spectroscopy (CARS), and stimulated Raman spectroscopy (SRS) and the
combination of these technologies with SERS (such as CARS-SERS) were used to
enhance Raman signals [42–44].

2.4.3 Confocal Raman Spectroscopy

Confocal micro-Raman spectroscopy, also called micro-Raman, is a technique that
combines Raman spectroscopy with micro analysis. In the essence of the spectrum,
there is no difference between the micro-Raman and the ordinary laser Raman. The
confocal microscope is introduced into only the optical path of the laser Raman
so that the stray light from the defocused region of the sample can be eliminated,
and the spatial filtering can be formed to ensure that the detector can capture the
sample to be measured. By adjusting the position of the focal point, the laser can be
focused to different depth of the sample, so as to realize the situ and nondestructive
analysis of trace samples. Confocalmicro-Raman spectroscopy hasmany advantages
in microanalysis and determination, such as good separation effect, high sensitivity,
simple equipment, and easy operation. Therefore, micro-Raman spectroscopy has
been widely used in tumor detection, cultural relic archaeology, public security law,
and other fields.

MicroscopicRaman spectroscopy is a technology that can provide the spatial reso-
lution of 0.5–1.0 μm for the study of the chemical structure of individual microor-
ganism cells. In recent years, microscopic Raman spectroscopy has been used more
andmore in the study of single microorganism cells, which can distinguish the chem-
ical composition of single microorganism cells in space. Due to the differences in the
basic components such as protein, DNA, RNA, lipid, and carbohydrate in microbial
cells, the Raman spectra of different species will be different to some extent. There-
fore, these small spectral changes can be extracted and studied, which combined with
chemometrics techniques to distinguish the species of microorganisms.

Laser optical tweezers Raman spectroscopy is a technology that combines laser
optical tweezers with confocal Raman spectroscopy. This technology could capture,
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manipulate, and measure single active cells in suspension under physiological condi-
tions, which is used for the study of biological analysis. Laser Tweezers technology is
a physical tool based on the mechanical effects of the laser, which utilizes the optical
potential well formed by the interaction between strong converging light field and
particles to capture particles. Optical tweezers have become a useful tool for trapping
andmanipulating biological particles, including cells, bacteria, viruses, and dielectric
particles. The combination of optical tweezers and Raman spectroscopy can char-
acterize molecules contained in individual organic droplets or microcapsules. The
significant advantage of optical tweezers is the ability to confine Brownian particles
in an aqueous solution to a small area, allowing for long periods of time to observe
the properties of individual particles. Raman single-celled precise separation tech-
nology is a non-invasive and unmarked without damage of single cell technology and
also a kind of quick and effective analysis tool for the identification of intracellular
molecular composition, which can sort out the single-celled creatures without tags
and intact, effectively identify the biological chemical composition and reflect the
most real reaction cell in situ state of activity and function [45].

Kusic et al. employed single-cell Raman combinedwith SVM to classify and iden-
tify Legionella species associated with human diseases and other common aquatic
pathogens, and established a Raman spectral database of 22 species of the genus as
well as Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The
study indicated that, Raman micro-spectroscopy can be used as a fast and reliable
method to identify human pathogen Legionella species [46]. Klob et al., for urinary
tract infections, detected the patient samples by the confocal Raman microscopy
combined with SVM. The experimental results show that Raman technology can
accurately detect urine samples of patient’s body in the case of no medium in
2 h, and can determine the main bacterial infection. The accuracy can reach more
than 92% [47]. Yogesha et al. also used micro-Raman spectroscopy combined with
SVM to identify five common pathogenic bacteria of urinary tract infection, and the
recognition accuracy was close to 90% [48]. Stockel et al. applied confocal Raman
spectroscopy to detect 26 species of mycobacteria, including Mycobacterium tuber-
culosis, Mycobacterium abscess, and Mycobacterium avium, with a total of 8845
strains, and established a Raman spectral database of mycobacteria. Through SVM,
unknown mycobacteria could be identified to the species level with an accuracy of
94.3% [49].

Li et al. used confocal Raman to detect in vitro tissues of nasopharyngeal carci-
noma and established a pattern recognition model using PLS-DA, with diagnostic
sensitivity and specificity of 85% and 88%, respectively [50]. Lee et al. employed the
Raman spectra of extracellular vesicles collected by confocal microscopic Raman
spectrometer and combine convolutional neural network (CNN) to diagnose prostate
cancer with an accuracy rate of more than 93% [51]. Pablo et al. obtained the chem-
ical fingerprints of colorectal cancer by Raman spectroscopy of living single cells,
and classified cells by PCA and linear discriminant analysis (LDA) with an accuracy
of 98.7%. Raman spectra can reveal the tumor cell sugar, phosphate, nucleic acid
content, and protein α helix, folded β or α + β secondary structure, so as to distin-
guish between different cell types and different kinds of colorectal cancer cell lines,



2.4 Raman Spectroscopy 55

and can further distinguish the different stages of the disease. This can be used as
cell phenotype analysis in the important tool of clinical diagnosis [52]. Pilat et al.
developed a microfluidic chip, which combined with optical tweezers technology
to isolate single E. coli. By comparing the change of resonance Raman spectra of
single-celled E. coli under the antibiotics pressure or not, more obvious changes
of the peak were found. The results of PCA also show that statistically significant
differences exist between them and research on drug resistance of individual bacteria
can better understand the problem of heterogeneous drug resistance [53].

2.4.4 Spatial Offset Raman Spectroscopy

Confocal method can only determine the Raman spectra of solid samples within a
depth of several hundredmicrons, while spatially offset Raman spectroscopy (SORS)
can determine the Raman spectra of samples at a deeper depth. As shown in Fig. 2.5,
the principle is that the incident focus of the laser source and the focus of the collecting
lens in the spectral system are offset by a certain distance on the surface space of the
sample measured. SORS can clearly distinguish the Raman spectra of the material
and the container and realize the simultaneous identification of the material and
the container, so as to analyze the chemical information inside the opaque sample.
Container types include transparent plastic bags, opaque or colored high-density
polyethylene plastic containers, colored or transparent glass containers, jute bags,
and multi-layer paper bags. The SORS can effectively eliminate the fluorescence
from the surface layer and truly realize the non-invasive and non-destructive fast
detection [54].

SORSmeasurementmethod can be used to detect the authenticity of drugs through
bottles or plastic blister packaging, as well as powder or liquid explosives in non-
metallic containers [56]. As shown in Fig. 2.6, the SORS method can obtain the
Raman characteristic spectral information of 30% hydrogen peroxide across the

Fig. 2.5 SORS optical schematic [55]
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Spectrum of 30% hydrogen 

Spectrum obtained by SORS

Spectrum obtained by traditional method
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Fig. 2.6 Raman spectra of 30% hydrogen peroxide in a 1.5 mmwhite plastic bottle were measured
using SORS method [56]

1.5 mm white plastic bottle, while the traditional measurement method can only
obtain the spectral characteristics of the plastic bottle. Cobalt light systems company
has developed the commercialized portable Raman spectrometer based on SORS,
which is capable of acquiring the characteristic Raman spectra of raw materials
through opaque packaging or containers and completing direct non-destructive iden-
tification of raw materials within 10 s. The product is in line with current GMP
(CGMP) manufacturing practices. The company has also developed the commer-
cially available insight portable Raman spectrometer, which has been approved by
the European Civil Aviation Safety Supervisory Commission and is already used
in some European airports to detect powder or liquid explosives through colored,
opaque, or transparent plastic, glass, and paper packaging.

SORS is also applied in the medical field, such as the non-invasive diagnosis of
subcutaneous skeletal disease and cancer [57]. Ding et al. used the method of SORS
to analyze the healing of the thigh fracture in rats at 2 weeks and 4 weeks after
fracture, and found that collagen mineralization and mineral carbonation increased
significantly at 4 weeks after fracture than at 2 weeks after fracture. The test results of
SORS were consistent with the radiological and material tests, indicating that SORS
have the potential to evaluate the healing of fractures in vivo [58].

In addition to SORS, as shown in Fig. 2.7, there are also reverse SORS and slanted
SORS [55].
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Fig. 2.7 Schematic diagram of SORS. a reverse SORS; b sloping SORS [55]

2.4.5 Transmitted Raman Spectroscopy

Traditional Raman spectra are measured by backscattering, but the transmission
measurement method can obtain the information of the overall sample and effec-
tively eliminate the fluorescence interference generated on the sample surface [59].
Figure 2.8 shows the positive and negative Raman spectra of 3.9 mm paracetamol
tablets measured by the traditional backscattering method (a) and transmission
method (b). One side of the tablet is covered by 2 mm trans-1, 2-stilbene. It can
be seen that the reverse and inverse Raman spectra of tablets measured by the tradi-
tional backscattering method are significantly different. However, Raman spectra
with the same reverse and inverse sides can be obtained by adopting transmission
mode [60]. In terms of drug composition determination, many application examples
show that the transmission Raman measurement method combined with the multi-
variate calibration method can give better quantitative results than the traditional
backscattering measurement method [61, 62].
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Fig. 2.8 Conventional backscatter (a) and transmission (b) measurements of the positive and nega-
tive Raman spectra of a paracetamol tablet contaminated with trans-1, 2-stilbene (L: incident laser;
R: Raman scattered light; P: Paracetamol; T: trans-1, 2-stilbene) [60]

Cobalt light systems have developed a commercially available TRS100 transmis-
sion Raman analysis system that measures the content of multiple active ingredi-
ents in a complete tablet or capsule. The QTRam Raman spectrometric instrument
developed by B&WTEK Company also uses the transmission method to collect
Raman information through solid drug formulations, which can be used for rapid and
nondestructive testing of drug composition uniformity in pharmaceutical companies.
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2.4.6 Portable Raman Spectral Analysis Technology

In the actual application process,manyoccasions donot need the ultra-high resolution
and sensitivity of confocal, portable Raman can complete most of the related applica-
tions. At present, portable/handheld Raman spectroscopy combined with chemomet-
rics has been widely used in many fields, such as food safety, drugs, drug screening,
and packaging material testing [63–65].

Sensory properties are an important indicator of food quality and portable Raman
spectroscopy has been successfully applied to predict food sensory properties and
quality grading based on sensory properties [66]. For example, Wang et al. success-
fully established the portable Raman spectroscopy quantitative model through PLS
to predict the three sensory properties of pork loin juiciness, tenderness, and chewa-
bility, with an accuracy of over 80%. SVMwas used to divide the sensory evaluation
and corresponding Raman spectral data of pork loin into three levels according to
tenderness and chewability. The accuracy of predicting porkwith good grade reached
100% [67].

In recent years, portable Raman spectrometers have been used in archeological
field research in the fields of precious artworks, manuscripts, pigments, ancient
ceramics, and frescoes, providing a lot of convenience for in situ nondestructive
testing of many large archaeological samples. There have been many reports on
Raman spectroscopic studies of ancient cultural relics such as paleontology, ancient
ceramics, glass, gems, ancient manuscripts, murals, textiles, and mummies. These
results provide scientific basis for the identification of age and attributions of cultural
relics, as well as the preservation and restoration of cultural relics [68].

The portable Raman spectrometer usually adopts a single wavelength laser of
785 nm, which has a signal-to-noise ratio 10~70 times higher than that of the laser of
1064 nm when detecting the sample with small fluorescence background. However,
it will be seriously interfered when detecting the sample with strong fluorescence
background. For this reason, Christesen et al. developed a 785 nm/1064 nm dual-
wavelength handheld Raman spectrometer. The former is mainly used to detect
samples with no fluorescence background and those with fluorescence background
but whose spectrum is less affected by it, while the latter is mainly used to detect
samples with strong fluorescence background [69].

Common Raman spectrometers have a spot diameter range of 50~500 μm on
the sample, and it is difficult to guarantee the uniformity of the spectral sampling
area for mixed non-uniform solid samples (such as tablets). Nowadays, commer-
cially available portable Raman spectrometers use variable dynamic point sampling
(VDPS) technique to obtain representative spectra. This measurement method keeps
the sample stationary while the laser beam scans the sample at a high frequency
of tens of Hertz in accordance with a preset grid trajectory. The spatially averaged
Raman spectrum can be obtained in a very short time, thus obtaining a represen-
tative spectrum from the inhomogeneous sample. Fluotion interference is a key
problem for both the user and the machine manufacturer. There is a commercial
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and portable Raman spectrometer using shifted excitation Raman difference spec-
troscopy (SERDS) technology to eliminate the fluorescence interference [70, 71].
It uses two excitation sources with similar wavelength to excite the sample, respec-
tively, to obtain two Raman spectra, and makes difference between the two spectra
so that the effect of fluorescence can be effectively eliminated.

2.4.7 Fiber Raman Spectral Analysis Technology

Because the excitation light source and Raman scattering of the Raman spectrometer
are both in the visible orNIR region, quartz fiber can be used to transmit the excitation
light and collect and transmit the scattered light, while the spectrometer is placed
far away from the harsh environment of the analysis site. The Raman fiber probe
used for online analysis generally uses a backscattered 180° optical structure. In
order to efficiently collect Raman scattered light and eliminate other interference-
scattered light, there are a variety of commercial fiber probe forms. Because Raman
spectrometers collect the scattering spectra of the measured material, no special
sampling device is usually required. The objects can be various states of substances
such as liquid, solid, and gas, which is especially suitable for online monitoring of
multiphase polymer polymerization reactions.

Online Raman spectroscopy can track the polymerization process, measure the
content of reactants, intermediates, and final products in real time, and be used for
the study of reaction kinetics and the control analysis of the production process.
For example, it was utilized to judge the appropriate reaction end point [72]. In
addition to the insertion optical fiber probe, the non-contact optical fiber probe can
also be used to monitor the whole reaction process through the optical window
on the reactor wall. Many application examples show that Raman spectroscopy is
very suitable for online analysis of emulsion polymerization processes containing
high concentration of solid suspension, such as emulsion copolymerization of butyl,
acrylate/methyl, andmethacrylate. Raman spectroscopywas also used tomonitor the
emulsion polymerization process of droplets in a microfluidic device in real time.

In the field of petrochemical, Raman spectroscopy is very suitable for determina-
tion of the content of aromatic family of compounds, such as aromatics extraction
of BTEX (benzene, toluene, ethylbenzene, and xylene) content, and C8 aromatics
isomers, namely, paraxylene, xylene between, o-xylene, and ethyl benzene content
of each isomer in the process of the separation [73]. In the simulated moving bed
adsorption separation process and crystallization separation process of p-xylene,
Raman spectroscopy has been used to measure the content of each component in
real time, so as to adjust the process parameters in time, realize optimal control
operation, and improve the stability of the production process and the purity of the
product [74].

The effective combination of Raman spectroscopy and optical fiber probe makes
it a useful tool for the diagnosis of living diseases [75, 76]. Yan et al. used the optical
fiber Raman spectrometer combined with CNN to identify tongue squamous cancer
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cells, and the sensitivity and specificity of the recognition result were 99.07% and
95.37%, respectively [77]. Raman spectroscopy has been used for the early diagnosis
of osteoarthritis, osteoporosis, and other diseases as well as the assessment of frac-
ture risk due to its ability to identify subtle molecular changes in bone tissue [78].
Raman spectroscopy can be used to evaluate bone composition parameters related to
bone quality, such as mineral to matrix ratio, carbonate to phosphate ratio, mineral
crystallinity, and collagen maturity. Buckley et al. used three different multivariate
resolution methods of target band entropy minimization (BTEM), multiple curve
resolution (MCR), and parallel factor analysis (PARAFAC) to process fiber optic
Raman spectral data of bones. The results showed that all three methods could accu-
rately reconstruct the ratio of phosphate to carbonate, and the error of each analysis
was less than 2%. The results of PARAFAC are closest to the measured mineral to
collagen ratio and are accurate enough to detect differences in components associated
with osteoarthritis, osteoporosis, and osteogenesis insufficiency [79].

2.5 Ultraviolet-Visible Spectroscopy

UV-Vis absorption spectroscopy, also known as molecular electron transition spec-
troscopy, is produced by the electron transition in the outer layer ofmolecules after the
absorption of UV or visible light. Its spectral range is 190–800 nm. Because the elec-
tron energy level in the molecule is greater than the vibrational and rotational energy
levels, when the molecule absorbs light to realize the electron transition, the vibra-
tional and rotational spectra of the molecule must be accompanied, and they overlap
each other. Therefore, compared with the MIR spectrum, the absorption band of the
UV spectrum is relatively wide. UV spectrum is only related to chromophore and
auxochrome in molecules, mainly involving the part of electronic structure related to
π electrons. In structural analysis, the role of UV spectrum is mainly to provide the
size of the conjugated system of organic matter and the skeleton information related
to the conjugated system. The number of absorption bands in UV-Vis spectrum is
not large, and many compounds have very different structures. But as long as they
have the same chromophore and auxochrome, their UV-Vis absorption spectra will
be very similar.

There are three main types of UV-Vis spectrometers according to the different
methods: filter, scanning grating, dispersion and fixed optical path array detector
(CCD and PDA). Because the traditional scanning grating dispersive spectrometer
has a rotating grating and many optical components, it is seldom used in online
analysis. The filter type instrument is durable, cheap, and low resolution, and thus
it is often used to form a relatively simple measurement system. The application of
modern UV-Vis spectroscopy online analysis technology benefits from the devel-
opment of optical fiber, array detector, and chemometrics. Under the irradiation of
deuterium lamp or xenon lamp, the quartz fiber used in ordinary spectroscopy will be
damaged due to the formation of “color center” when absorbing the deep UV light in
the band of 214 nm, and its optical transmission performance will decay rapidly in
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a short time. Therefore, special fiber resistant to UV exposure must be selected for
the transmission of deep UV light. Optical fiber enables the spectrometer to conduct
in situ measurement far away from dangerous measurement points. The emergence
of PDA and CCD array detector makes the manufacturing of fast and continuous
full-band online UV spectrometer become a reality. Since this type of instrument has
no removable optical components, it is ideal for online analysis. The application of
chemometrics can be used to analyze the overlapping spectra of complex mixtures
and directly determine the concentration of multiple components.

UV-Vis spectroscopy is a classical analysis method in the petrochemical field.
Most inorganic substances such as sulfur compounds and organic compounds with
conjugated double bonds such as aromatic compounds, have characteristic absorption
in the UV-Vis region. However, the lack of absorption of saturated hydrocarbons and
simple straight-chain alcohols in this spectral range limits its application.On the other
hand, the high molar absorbance coefficient of UV-Vis spectroscopy means that the
sample with high aromatics content must be diluted before measurement, which
limits its application in the online analysis of oil products to a certain extent. The
advantage of UV-Vis method is that it has high sensitivity and the general substance
can bemeasured 10−3~10−6 mol/L, so it is more suitable for the online determination
of trace components.

In petrochemical enterprises, there are mainly two methods for online detection
of H2S and SO2 ratio in the tail gas of sulfur recovery unit: gas chromatography
and UV spectroscopy. UV spectroscopy is widely used due to its advantages of
simplicity, high efficiency, short response time (a few seconds), and low mainte-
nance cost [80]. Traditional online UV spectrometers (such as AMETEK’s 880-NSL
online gas analyzer) mostly employ non-dispersive filter mode. Four UV filters are
232 nm, 280 nm, 254 nm, and 400 nm, which are, respectively, used to measure the
concentration and reference of H2S, SO2, and S vapor. The reference datum is mainly
used to compensate and correct the influence of unclean quartz window, change of
light intensity, and other interference on the measurement accuracy. The measure-
ment of H2S and SO2 will be disturbed by the presence of gases such as COS and
CS2 in the tail gas. Most of the modern online UV gas analyzers use the dispersive
spectrometers (such as the 942-TG analyzer by Galvanic Company of Canada) to
measure the UV spectrum of the whole band with a higher resolution (less than
1 nm). Combined with chemometrics methods (such as PLS), the influence of these
interfering gases can be eliminated to a large extent. The accuracy of sulfur ratio
measurement was significantly improved. At present, the online sulfur ratio analyzer
has been widely used in the Klaus method sulfur recovery device, which plays a
positive role in improving the conversion and recovery rate of sulfur as well as in
environmental protection, energy saving, and emission reduction.

With minor modifications, these online instruments can also be used to analyze
H2S concentrations in natural gas, HCl purity and residual chlorine concentrations
in the chlor-alkali industry, and SO2 and NOx concentrations in flue gas continuous
emissionmonitoring systems (CEMS). It can also be used tomonitor trace amounts of
explosive aromatic organic compounds, such as toluene gas content in the production
workshop. In addition, in the field of oil refining, online UV spectroscopy is also
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used for the onlinemeasurement of aromatics content in oil products, such as residual
BTX in the process of aromatics extraction, and the online measurement of the color
of oil products, such as lubricants and solvents.

In the field of online analysis of environmental water quality, for a specific river
system, the composition of the substances contained in it generally does not change
much. The relationship between water quality parameters such as COD and UV
absorbance of water samples is used to establish a regression model, and the water
quality parameters are calculated indirectly. This kind of instrument has the charac-
teristics of simple structure, fast real-time response, no secondary pollution, small
maintenance, and so on, and is gradually recognized and selected by people. The
development of UV spectrometers for the determination of COD in water quality
can be divided into three stages: single wavelength, multi-wavelength, and contin-
uous full spectrum. The single-wavelength method uses the absorbance value and
COD value of the water sample at 254 nm to establish a regression curve. Due to the
diversity and complexity of water components, especially the different components
of organic matter in different water systems, their all-band UV absorption spectra
are significantly different, and not all the maximum absorption wavelengths appear
at 254 nm. Therefore, the applicability of the single-wavelength method is poor, and
satisfactory results can not be obtained. Multi-wavelength analysis usually adopts
dual wavelength. In addition to 254 nm, another wavelength such as 550 nm or
546 nm is selected for turbidity compensation. At present, some commercial online
water quality analyzers adopt dual wavelength measurement. The use of full spec-
trum (200–750 nm) combined with chemometrics (such as PLS or artificial neural
network, ANN) can more comprehensively reflect the internal information of water
COD, and establish a multivariate correction model for specific measured water
system, which can more accurately estimate the COD value of water [81, 82].

In papermaking enterprises,UV spectroscopy has been applied to the online detec-
tion of major components in the causticizing process of katerite pulping using ATR
probe [83]. The purpose of black liquor recovery is to causticize the green liquor with
high concentration of Na2CO3 to turn it into white liquor with high concentration of
NaOH and Na2S. The concentration of Na2S, Na2CO3, and NaOH in caustic process
can be quantitatively analyzed by means of chemometrics methods. In addition, UV
combined with ATR method can also be used to determine the composition of lye,
the total content of dissolved solids in the black liquor, and the content of dissolved
solids in the process of evaporation and concentration of black liquor.

In pharmaceutical enterprises, the concentration of active components in the disso-
lution process of drugs can be measured in real time by means of CCD array detector
UV spectrometer combined with inserted optical fiber probe and multivariate cali-
bration methods such as principal component regression (PCR) or PLS, so as to
conduct detailed and accurate monitoring of the dynamic dissolution process of
drugs [84–86]. A single spectrometer can simultaneously monitor the dissolution
process of multiple drugs, or the dissolution of the same drug under different condi-
tions, by means of a fiberoptic multi-channel switching device or a planar CCD
detector. Another important application of online UV spectroscopy is to monitor
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the concentration of cleaning solvents during the cleaning of batch reaction vessels
(pharmaceutical, food, and beverage) to judgewhether the vessel has been completely
cleaned.

In the process of drug synthesis, the reaction system is measured online by UV
spectroscopy, and the whole chemical reaction process (such as reaction kinetics and
reaction mechanism), physical dissolution, and adsorption process, etc., are studied
by chemometrics (three-dimensional data discrimination methods are often used) to
provide useful information that is difficult to obtain by other methods [87–89].

2.6 Molecular Fluorescence Spectroscopy

Fluorescence is the emission light, and it is a photoluminescence phenomenon.
Molecules are excited after absorbing light and then emit the light at the same or
longer wavelengths than the absorbance light, which is called the phenomenon of
photoluminescence. When the substance is in the ground state, electrons can jump to
the excited state after absorbing light, and then return to the ground state. The emitted
light is called fluorescence. But when the excited electrons move into the metastable
triplet state, stay there for a while, and return to the ground state, the light emitted is
called phosphorescence. Fluorescence analysis is a qualitative or quantitative anal-
ysis method based on the emitted fluorescence which can reflect the properties of the
compound after the compound itself is irradiated by excitation light.

Fluorescence usually occurs in molecules with rigid and planar π-electron conju-
gated systems. With the increase of π-electron conjugation degree and molecular
flatness, the fluorescence intensity increases, resulting in the corresponding red shift
of the spectrum. The shape and intensity of the fluorescence spectrum also change
with the increase of the number of benzene rings of aromatic hydrocarbon. There-
fore, fluorescence spectroscopy is one of the special measuring methods to provide
the distribution and concentration of aromatic components.

Molecular fluorescence analysis is characterized by its high sensitivity, with the
minimum detection limit between 1 and 100 ppb, and even up to 0.01 ppb for
substances with high fluorescence efficiency. Fluorescence analysis is about two
orders of magnitude more sensitive than photometric methods. For example, for the
determination of 3, 4-benzopyrene, the detection limit fluorescence analysis is on
the order of ppb, whereas UV-Vis spectrophotometry is only on the order of ppm.

Since the 1980s, with the introduction of electronics, microprocessor, laser, and
optical fiber, the progress in theory and application of fluorescence analysis has been
promoted, and new technologies and methods such as synchronous fluorescence,
three-dimensional fluorescence, time-resolved fluorescence, laser-induced fluores-
cence, dynamic fluorescence, and fluorescence imaging have emerged. Fluorescence
analysis continues to develop toward the direction of real-time, trace, high efficiency,
micro, in situ, and automation, and its application scope covers many fields such as
agriculture, industry, environment, material science, life science, public security,
and food engineering [90]. It is particularly worth mentioning that the fluorescence
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analysis method of high sensitivity and high selectivity is bound up with the life
sciences. New demand of life science constantly pushes the continuous development
and improvement of newfluorescence analysismethod in the instrument,method, and
data processing. And its application in life science is also more and more extensive
and in-depth [91].

2.6.1 Three-Dimensional Fluorescence Spectroscopy

Traditional fluorescence analysis methods pay more attention to the quantitative and
qualitative analyses of substances by two-dimensional fluorescence spectroscopy,
but fluorescence intensity is a function of excitation wavelength and emission wave-
length. Such scanning results only at a certain excitation or emission wavelength
cannot completely describe the fluorescence characteristics of substances, and it is
difficult to provide complete information. Therefore, more and more attention has
been paid to the study of three-dimensional fluorescence spectroscopy in recent years.
Three-dimensional fluorescence spectroscopy can obtain the fluorescence inten-
sity information when the excitation wavelength and emission wavelength change
simultaneously, and can obtain more complete spectral information than conven-
tional fluorescence spectra. Using the spectral information combined with chemo-
metrics can accomplish more complex quantitative and qualitative analysis tasks in
multi-component mixture systems.

Petroleum is mainly composed of hydrocarbons (95 ~ 99%) generated by hydro-
carbon synthesis and some non-hydrocarbon components. Among them, aromatic
hydrocarbons, especially polycyclic aromatic hydrocarbons, have high fluorescence
efficiency. Fluorescence, therefore, have long been used in the oil and gas explo-
ration process. The earliest way of the traditional fluorescence logging was not used
to the formation of fluorescence spectra and just stay on the stage of macroscopic
observation the fluorescence intensity. Emitting light colors was used to determine
oil and gas composition, and the oil and gas content was judged through the luminous
intensity. Subsequently, through one-dimensional (both excitation and reception are
single wavelength), two-dimensional (single-wavelength excitation and receiving
wavelength change), and three-dimensional (both excitation and receiving wave-
length can change) changes, three-dimensional fluorescence has been applied in
logging field so far. Three-dimensional fluorescence spectroscopy can not only give
the oil concentration, fluorescence contrast level, oil index, and other parameters of
the sample but also can be used for accurate identification and analysis of drilling
fluid additives and crude oil by means of chemometrics.

Molecular fluorescence spectroscopy also plays an important role in the on-site
monitoring of oil spill at sea and on land. Combined with the pattern recognition
method in chemometrics, the types of oil spill (including crude oil, diesel oil, fuel
oil, lubricating oil, gasoline, and edible oil) can be quickly identified [92, 93].

In recent years, the analysis strategy of three-dimensional fluorescence spec-
troscopy combined with multidimensional correction method has been more and
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more widely applied in the fields of medicine, medicine, food, and environment. It
can conduct direct, rapid, and simultaneous quantitative analysis ofmulti-component
targets in complex test objects [94–96].

In terms of medical application research, Gu et al. used excitation emissionmatrix
fluorescence combined with PARAFAC and other algorithms to carry out quantita-
tive analysis of metoprolol and its metabolite-hydroxymetoprolol in plasma. In the
case of plasma background interference and overlapping spectra of the two target
analytes, this method achieves simultaneous quantitative analysis of the two compo-
nents. Moreover, it is a simple and rapid method that requires simple dilution rather
than complex pretreatment of plasma [97].Ouyang et al. used three-dimensional fluo-
rescence spectroscopy combined with self-weighted alternating trilinear decompo-
sition (SWATLD) algorithm to simultaneously determine sulpiride and amisulpride,
two antipsychotics in human serum samples. The results show that this method can
still obtain satisfactory quantitative prediction results even if there is serious spec-
tral overlap between target analytes, between analytes and background, and between
analytes and other unknown disturbances [98].

In terms of the application research of environmental analysis, Qing et al.
used SWATLD algorithm and three-dimensional fluorescence spectroscopy to
simultaneously determine plant growth regulators 2-naphthaloxyacetic acid and 1-
naphthaloxyacetic acidmethyl ester in soil and sewage [99].Manuel et al. used three-
dimensional fluorescence spectroscopy and multivariate curve resolution alternating
least squares (MCR-ALS) second-order calibration method to realize trace detection
of the toxic substance tributyltin in water [100].

In terms of drug application research, Wang et al. quantitatively analyzed the
contents of umbellolactone and scopolamine in Chinese traditional medicine, radix
angelicae pubescentis, and Tibetan medicine, Saussurea mongolicus based on ATLD
and three-dimensional fluorescence spectroscopy, indicating that such analysis strate-
gies can accurately quantitatively analyze the contents of active components in the
complex system of Chinese traditional medicine [101].

In terms of food application research, Zhong et al. used three-dimensional fluo-
rescence spectroscopy and ATLD to quantitatively analyze the residual contents of
thiabendazole and fuberidazole in red wine [102]. As highly efficient and broad-
spectrum fungicides, thiabendazole and fuberidazole are widely used in the produc-
tion, storage, and preservation of vegetables, fruits, and other crops. If improperly
used, theywill remain in grapes and grape products and enter the human body through
the food chain, causing certain harm to human health. The traditional methods
for determination of pesticide residues in grapes and wine are high-performance
liquid chromatography (HPLC) or HPLC-mass spectrometry (HPLC-MS), which is
complicated in pretreatment and time-consuming in analysis process. Because of
the convenience and quickness of three-dimensional fluorescence spectroscopy, it
can be used for simultaneous screening of thiamendazim and maisuillin in a large
number of red wine samples. Zhu et al. combined three-dimensional fluorescence
spectroscopy with PARAFAC and BP neural network (BP-NN) to establish years’
identification model for clear flavor liquor, and the average identification accuracy
reached 95% [103].
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2.6.2 Laser-Induced Fluorescence Spectroscopy

Different from ordinary fluorescence analysis methods, laser-induced fluorescence
(LIF) uses laser as the excitation source. However, the LIF process is a wavelength
absorption and conversion process but not a scattering process. Because of high
laser brightness, good monochromatism, and no stray light, LIF technology has
the advantages of low detection limit and high sensitivity. Laser light source and
weak signal detection technology make LIF spectroscopy reach the sensitivity limit
of spectral analysis, which makes it have important applications in life science,
environmental science, and other fields.

Compared with ordinary fluorescence spectroscopy, LIF is currently the best
choice for in situ online analysis based on fluorescence technology [104]. At present,
laser fluorescence radar is one of the most promising methods for detecting oil spill
in the sea. The SLEAF system developed by Environmental Technology Centre of
Canada and the AOL system jointly developed by NASA and NOAA are mature
systems for the detection of Marine oil spill, both of which are developed based on
LIF spectroscopy technology. The identification and quantitative analysis of oil pollu-
tants, polycyclic aromatic hydrocarbon pollutants and organic pesticide pollutants
in water or soil can be realized through the determination of aromatic hydrocarbons
and their derivatives and organophosphorus groups in pesticides by LIF, without
sampling and sample separation [105, 106]. The LIF spectroscopy technology can
be used to dynamically remote measure the pollution status of a large area of water in
real time, such as the parameters of dissolved organic matter (DOM), turbidity, and
chlorophyll a concentration in water. After fusion with the GPS positioning system
information, the pollution status distribution map of water can be drawn directly. In
the field of agriculture, the telemetry of field crops by LIF spectroscopy can judge the
growth state and nutrient condition of crops, and then guide agricultural production.

Hu et al. combined LIF spectroscopy with CNN to quickly identify the source of
mine water inrush. The rapid identification and classification of mine water inrush
are of great significance for underground flood prevention and control work [107].
In addition, the combination of LIF spectroscopy and chemometrics has also been
used in the classification of plastics, identification of edible oil types, identification
of counterfeit wine, and diagnosis of diseases [108–112].

In recent years, the combined technology of LIF and laser-induced breakdown
spectroscopy (LIBS) has attracted more and more attention. For example, the
combined technology realizes the highly sensitive detection of trace content of lead
elements in water environment [113, 114].

2.7 Low-Field NMR Spectroscopy

The object of nuclear magnetic resonance (NMR) research is the nucleus of magnetic
moment not equal to zero. When this kind of nuclei in external magnetic field, it can
produce energy level splitting. If we use a particular frequency of radio source for
irradiation samples, which makes its energy equal to the energy level difference, the
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nucleus can be the transition between energy levels, and this phenomenon is called
NMR. According to quantum mechanics, when the mass number or charge number
of the nucleus is odd, and its magnetic moment is not equal to zero, which indicates
the existence of nuclear magnetic resonance phenomenon. Proton hydrogen 1H is
a common element in organic molecules. Its mass number and charge number are
odd, and its abundance is very large in nature. Therefore, proton nuclear magnetic
resonance (1H-NMR) is the most studied, the most sensitive and the most widely
used NMR spectroscopy. In addition, there are 13C, 19F, and 31P NMR spectroscopy.

NMR instrument is mainly composed of magnet, radio source, probe, receiver,
and other parts. The function ofmagnets is to provide a stable high-intensitymagnetic
field. Radio frequency sources are used to supply fixed frequency electromagnetic
radiation. The sample probe allows the sample tube to be fixed at a defined position
in the magnetic field, and the receiving coil and transfer coil are also mounted in the
sample probe to ensure that the position of the sample with respect to these compo-
nents remains unchanged. The new spectrometer produced since the 1970s basi-
cally used radio frequency pulse to measure nuclear magnetic resonance. The radio
frequency pulse is equivalent to a multi-channel transmitter, which simultaneously
transmits a variety of frequencies to make the nuclei on different groups resonate
at the same time, and the free induction attenuation signal (FID) of the multiple
spectral lines of the nucleus mixed is obtained. FID is a time domain function which
is transformed by using Fourier transform into a frequency domain function, and its
measurement speed, sensitivity, and signal-to-noise ratio are improved remarkably.

The industrial online NMR analyzer was a time domain (TD) NMR analyzer used
in petrochemical polypropylene andpolyethylene installations in themid-1990s. This
kind of time domain or low-resolution NMR instrument is relatively simple in struc-
ture. Operating frequency is only 20 MHz. It can only give the total proton strength,
relaxation time, and their distribution, and can online analyze polymer powder (such
as polypropylene) melt flow rate, ethylene content, isotactic, crystallinity, density,
and other physical and chemical indicators. The initial amplitude of NMR signal is
proportional to the number of measured nuclei (hydrogen nuclei) in the sample to
be measured, and the attenuation rate of the signal is related to the relaxation time
of the sample. That is, it is related to the group and environment of the measured
nucleus in the sample. For example, in isotactic and interisotactic polypropylene, the
signal decays rapidly (T2 time is short), whereas in atactic polypropylene, the signal
decays much more slowly (T2 time is long). More than 100 of these analyzers are
currently in operation in industrial installations around the world.

Oil field logging is another important application of this kind of instrument. At
present, NMR technology is increasingly used in oil production logging, and multi-
dimensional NMR and imaging NMR have also begun to enter the logging field
[115]. Online NMR instrument can provide geological parameters related to reser-
voir physical properties and reservoir fluid properties, such as effective porosity,
movable fluid content, and oil saturation, so as to create conditions for timely and
effective evaluation of the reservoir during the drilling process, and realize on-site
interpretation and evaluation in time.

Desktop low-field NMR instruments are also widely used in quality control and
laboratory research and development [116]. The NMR instrument time domain
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obtains NMR signals which decay over time, and its intensity is proportional to the
content of hydrogen, due to different morphology of hydrogen atoms with different
relaxation time. Therefore, you can adopt different pulse sequence according to the
requirement to distinguish the different morphology of hydrogen in the signals and
get different morphology of hydrogen content. Combined with themethod of chemo-
metrics, the data of physical and chemical properties can be obtained. For example,
the oil and water content of oil seeds, the fat and water content of milk powder, the
water content of water-injected pork, the soluble and isometric xylene in polypropy-
lene, the quality of fruit, and the lean meat, fat, and fluid content of living mice were
determined [117–119].

Combining chemometrics with online NMR for large process industries emerged
in the mid-1990s. At that time, an Israeli company developed a permanent magnet
technology capable of producing a uniform magnetic field of 1.4 T, and devel-
oped an NMR instrument suitable for industrial online analysis. The instrument
can obtain 60 MHz 1H NMR spectra. It can give information about the chemical
shift of hydrogen in the sample. At present, this technology has been applied to some
extent in the petrochemical field, most of which are for the purpose of feasibility
testing.

Theoretically, NMR can also measure the physical and chemical properties of
oil products that can be measured by NIR and other molecular spectrometers [120–
122]. However, because the sample must enter within the probe in the magnetic field,
NMR not like molecular spectroscopy can be used in a fiber optic instruments and
measuring sample separation device. Therefore, for industrial large-scale device or
laboratory reaction kettle, the sample was introduced into the probe only through the
bypass, and thus it cannot be achieved in the true sense of in situ online analysis.With
automatic sample switching and cleaning systems, online NMR can also be used
to measure multiple logistics, but this can affect the measurement speed to some
extent. Large temperature differences between logistics can cause magnetic field
fluctuations, which can significantly reduce the reproducibility of the analyzed data.
Solid molecules such as wax and bitumen in heavy oils and paramagnetic substances
such as iron also significantly affect the measurement of NMR spectra. Although
the resolution of NMR spectroscopy is higher than that of NIR spectroscopy, for the
quantitative and qualitative analyses of complex mixtures, multivariate calibration
methods and pattern recognition methods are still needed, and the modeling task is
still heavy.

In addition, compared with NIR spectrometers, NMR spectrometers has consid-
erable cost in price, operation, and maintenance, and requires higher technical level
of users and maintenance personnel, which brings some difficulties to the prac-
tical application of NMR technology in industry. Therefore, the analytical object of
online NMR technology is limited to light oils such as naphtha, gasoline, and diesel.
Its meas conventional physicochemical properties such as octane number, cetane
number, distillation range, and group composition.
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2.8 Terahertz Spectroscopy

Terahertz (1 THz = 1012 Hz) refers to the electromagnetic wave frequency in the
range of 0.1~10 THz (3.3~333 cm−1), located between infrared and microwave, in
the transition stage from macroscopic electronics to microscopic photonics. Early
terahertz had different names in different fields. In optics, it was called far infrared,
while in electronics, it was called submillimeterwave, ultra-microwave. In photonics,
lasers can be classified as continuous, semicontinuous, or pulsed depending on how
they emit energy. In electronics, according to the shape of the signal, it can be
divided into continuous wave and pulse wave. In addition to sine wave and a number
of sinusoidal components of the continuous wave, others collectively are known as
pulse wave.

Terahertz wave is between microwave and infrared. The source of terahertz wave
can be obtained from optical methods and electronic methods. It can also be divided
into continuous terahertz wave and pulse terahertz wave by using photonics and
electronicsmethods for reference. The current research on terahertz wave technology
is mainly in the form of pulse, and the research on continuous terahertz source is
relatively few. Until the mid-1980s, infrared and microwave technologies on both
sides of the terahertz band were relatively mature, but the understanding of the
terahertz bandwas still very limited, resulting in the so-called “TterahertzGap” [123].

Terahertz time domain spectroscopy (THz-TDS) and terahertz imaging are impor-
tant methods and means in practical application of this technology. THz-TDS tech-
nology uses femtosecond laser pulses to generate and detect time-resolved tera-
hertz electric field, and obtains spectral information of the samples through Fourier
transform. Since the power of terahertz radiation is on the pW scale, which is
smaller than the power of thermal background radiation. The thermal strain in the
sample can be ignored. Terahertz spectroscopy techniques mainly include trans-
mission, specular reflectance, diffuse reflectance, attenuated-total reflectance, and
photopump-terahertz.

The terahertz spectrum of matter contains rich physical and chemical informa-
tion, such as gas rotation, phonon vibration of condensed matter, and low-frequency
vibration and rotation of biological macromolecules, which all respond in the tera-
hertz band. Each molecule has a specific vibrational and rotational energy level, and
usually the intramolecular vibration of material is mainly in theMIR band. However,
the weak interactions between molecules (such as hydrogen bonds), skeleton vibra-
tions (configuration bending) of macromolecules, rotation and vibrational transitions
of dipoles, and low-frequency vibration absorption frequencies of crystal lattice are
located in terahertz band. Themolecular structure and related environmental informa-
tion reflected by these vibrations have different absorption peaks in terahertz band.
These spectral characteristics of organic molecules make it possible to use THz-
TDS to identify the effects of structure, configuration and environment on the state
of organic molecules. The study of the spectral properties of substances in this band
is of great scientific significance and practical application value for the exploration
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and comprehensive understanding of the structure and properties of substances and
the interaction between molecules.

In recent years, with the continuous implementation of process analysis tech-
nology in foreign pharmaceutical enterprises, the application of terahertz combined
with chemometrics in biomedical field has received more and more attention [124,
125]. THZ-TDS and terahertz imaging technology have made a lot of achievements
and progress in the detection of drug components, the differentiation of isomers,
the identification of drug polymorphs and pseudo-polymorphs, as well as the qual-
itative and quantitative analysis of mixtures. Some achievements have also been
made in drug interaction, reaction mechanism, and reaction kinetics. For example,
THz-TDS has a high sensitivity to the crystal shape of the compound, which can
reflect the phonon vibration mode in the crystal and effectively reflect the long-range
ordered structure information of the crystal. Compared with X-ray powder diffrac-
tion, THZ-TDS has no preferred orientation problem. Different from IR and Raman
spectroscopy, THZ-TDS mainly reflects the low frequency vibration of the whole
molecule, the phonon vibration of the crystal, and the weak interaction between
molecules such as hydrogen bonds. Although the molecular structure of different
crystal forms is the same, the interaction between molecules leads to the different
local environment inside the crystal. This changes the strength and location of the
terahertz absorption peak, which will play a role in the drug synthesis, production,
and storage process.

The unique advantages of terahertz wave (strong water absorption, non-
destructive, and fast)make it alsowidely used in food quality and agricultural product
quality inspection [126, 127]. For example, terahertzmeasurement ofwater content in
food is to use the strongwater absorption characteristics of terahertzwave.Thequality
of meat products can be analyzed by using the different wave absorption characteris-
tics of lean meat and fat to terahertz. In addition, the low interference, non-ionizing
properties tf Terahertz can be used for rapid analysis of agricultural products based
on imaging technology, such as real-time detection of moisture content in plants
and foods. The terahertz spectroscopy also has a place in the study of gas spec-
troscopy because all or part of the rotational spectrum of gas molecules is located
in the far-infrared region. Therefore, the chemical composition and concentration
of mixed gases can be determined by THZ-TDS pulse with wide band. In the field
of petrochemicals, some people have combined terahertz wave with chemometrics
for quantitative and qualitative analyses of oil products, and obtained certain results.
However, compared with NIR, MIR, and Raman spectroscopies, the advantages are
not obvious at present, and there is a lack of application examples.

Terahertz spectroscopy, from the initial exploratory research, has gradually
become a means of process analysis and detection, and gradually began to industrial
applications. However, as a new analytical technique, there are still some prob-
lems and limitations. The existing terahertz radiation sources, detectors, and related
components are complicated in structure, large in volume, and expensive, so it is
difficult to be popularized and applied. Therefore, the miniaturization, low cost, and
practicability of the instrument are the urgent problems to be solved in the application
of this technology in practice. Due to the strong absorption of terahertz radiation by
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water, the application of this technique in drug analysis in aqueous solution systems is
limited. The spectral analysis and theoretical interpretation of terahertz spectroscopy
are still in the initial stage of exploration, which needs to be further developed in the
establishment of relevant theoretical models and simulation calculation.

2.9 Laser-Induced Breakdown Spectroscopy

Laser-induced breakdown spectroscopy (LIBS) is an elemental analysis technique
based on atomic emission spectroscopy, also known as laser-induced plasma spec-
troscopy (LIPS). LIBS technology has many advantages, such as fast, multi-element
simultaneous analysis, remote analysis, online analysis, and its applicability to
extreme environments. It is called “chemical analysis star”. So far, LIBS technology
has been successfully applied in many fields such as industry, medicine, military,
archaeology, materials, space exploration, and so on [128, 129].

LIBS technology uses ultrashort-pulse laser to focus the sample surface (or inside
the sample) to form a plasma, and then analyzes the plasma emission spectrum to
determine thematerial composition and content of the sample. Its basic principle is as
follows: (1) Pulse laser produced by the laser is focused on the surface of sample; (2)
High-energy laser makes the surfacemelt and produce a large number of plasmas; (3)
In the cooling process of the plasma, its coverage will decrease with the temperature
continuously expand. Then, in the excited state of particles including atoms and ions
will transition to the stability of the low level or the ground state; and (4) emission
lines of a specific frequency are then generated during a transition. Different elements
have different characteristic emission lines, so the types of elements can be analyzed
according to different frequencies of emission lines, and the content of elements can
be analyzed according to the intensity of the spectral lines.

The traditional univariate calibration curve method only uses a single character-
istic spectral line corresponding to the element for quantitative analysis. However,
due to the changes of self-absorption effect, element mutual interference, plasma
physical parameters, and complex sample matrix effect and other factors, the posi-
tion and strength of the characteristic spectral line often deviate from the theoretical
value. Therefore, the accuracy of the relationship between the concentration and
the intensity of the characteristic line established by the univariate curve is signif-
icantly reduced. The combination of LIBS and chemometrics can effectively solve
the problems of spectral matrix effect deduction, overlapping peak resolution, and
self-absorption effect correction, so as to improve the repeatability and accuracy of
qualitative and quantitative analysis of LIBS technology to a large extent [130, 131].

As an important part of the active ingredients of traditional Chinese medicine,
element is an indispensable characteristic parameter for the quality control of tradi-
tional Chinese medicine. In recent years, LIBS technology has been increasingly
applied to the field of traditional Chinese medicine. In addition to the determination
of element content in traditional Chinese medicine, it has also been used to identify
the origin, authenticity and variety of traditional Chinese medicine.Wang et al. [132]
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used LIBS technology combined with PCA and ANN technology to identify three
kinds of medicinal materials, angelica pubescens, Codonopsis pilosula, and Ligus-
ticum wallichii from different geographic origins, and proved that LIBS technology
was an effective tool for the identification of traditional Chinese medicine. Zhao
et al. [133] used LIBS technology combined with characteristic band extraction and
chemometrics to identify different degrees of sulfur-fumigated fritillaria thunbergii,
providing a basis for the identification of sulfur-fumigated Chinese herbal medicine,
and contributing to the establishment of quality detection and grading and evaluation
system of Chinese herbal medicine.

In the field of agricultural products and food analysis, LIBS technology is widely
used in the detection of trace elements in food, quality control of products in the
production and processing links, and safety assessment of food [134, 135]. Based on
the content differences of Zn,Mg, Ca, Na, and K elements in beef, pork, and chicken,
Bilge et al. used LIBS technology combined with PCA to identify meat types, and
employed PLS method to qualitatively identify adulterated pork and chicken in beef
samples [136]. Wang et al. used LIBS combined with discriminant analysis to iden-
tify 6 kinds of tea, including Longjing green tea, Mengding yellow bud, white tea,
Tieguanyin, Wuyi black tea, and Pu ‘er tea. Mg, Mn, Ca, Al, Fe, and K were selected
as analysis indexes, and the classification accuracy of the validation set was 95.3%
[137].

LIBS technology is very suitable for online analysis of element content in
substances and their related physicochemical parameters [138]. For the composi-
tion of molten metal, LIBS has achieved various online analysis in the industrial
field, including continuous online analysis of C, S, P, Si, and Mn in the molten iron
of blast furnace iron drain, online analysis of C, Si, Mn, Cr, and Ni in molten steel
of converter or AOD furnace, online analysis of P, Mg, Fe, Al, and Si in raw ore,
concentrate, and tailings in the flotation process of phosphate ore, online analysis of
Al, Cu, Fe, Mg, Mn, Si, and Cr in the filtrate liquid aluminum and online sorting
and recycling of scrap metal [71–73]. LIBS technology can conduct online analysis
of organic elements C, H, S, O, and inorganic elements Si, Ca, Mg, Fe, Al, as well
as parameters such as ash content, calorimetric value, and volatile content of coal.
Online analysis of coal quality is crucial to the safe, efficient, and economic opera-
tion of large boilers such as thermal power plants [139]. LIBS technology can also
be used for online analysis of industrial production processes such as cement and
potash fertilizer, and the elements analyzed include Ca, K, P, Al, Si, Fe, Mg, etc.
[140].

Fast and accurate diagnosis of cancer is an important task to clinical medicine.
Because of its advantages of simple equipment without pretreatment, microdamage,
and real-time online detection, as well as the concentration difference of trace
elements in normal cells and cancerous cells, LIBS technology combined with
chemometricsmethods is expected to becomeapowerful tool in vivo cancer diagnosis
and classification [141–144].
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2.10 Spectral Imaging

The imaging information is mostly shown as the form of wave. Wave is divided
into shear and longitudinal wave, which can be expressed uniformly by wavelength.
As shown in Fig. 2.9, longitudinal wave includes ultrasonic wave, etc., which is
commonly used in B-mode ultrasound, color ultrasound, and photoacoustic imaging.
The shear wave has electromagnetic wave,material wave, and so on. The electromag-
netic wave includes radio frequency, microwave, infrared ray, visible light (including
fluorescence, phosphorescence, etc.), UV ray, X-ray, and so on. Matter waves, which
includeα rays,β rays, or electrons, are short and can be distinguished up to angstroms.

Spectroscopic techniques (such as NIR, IR, Raman, terahertz, fluorescence, and
LIBS) measure the average spectrum of a certain point (or a small region) of the
sample, so that the average result of sample composition or properties is obtained,
which is very suitable for the analysis of homogeneous substances. In order to obtain
the spatial and concentration distributions of different components in non-uniform
mixed samples, spectral imaging techniques, such as infrared, NIR, Raman, fluo-
rescence, terahertz, and LIBS spectral imaging, are required [145–147]. Spectral
imaging technology combines traditional optical imaging and spectral methods to
obtain the spectrum of each point in the sample space at the same time, so as to
further obtain the composition and structure information of each point in the space
(Fig. 2.10) [148].

Previously, spectral imaging technology was mostly applied in the field of remote
sensing, which combined imaging with spectroscopy. For each space image unit,
dozens to hundreds of dispersion wavelength bandwidth of pixel about 10 nm contin-
uous spectrum was formed when the detection of object space characteristics. The
spectral range is in UV-Vis~NIR area (0.4~2.5 μm), so as to achieve the purpose of
identifying the earth surface material directly from space. According to the different

Fig. 2.9 Wave wavelength corresponding to the imaging
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Fig. 2.10 Schematic diagram of spectral imaging techniques with different spectral ranges and
different measurement methods [148]

spectral resolution, it can be divided into multi-spectral imaging and hyperspectral
imaging [149].

Remote sensing spectral imaging is realized by the translational motion of the
flight platform (such as aircraft and satellite) combined with the imaging spectrom-
eter placed on the flight platform in a certain operating mode. The commonly used
operating mode is whiskbroom and pushbroom. The whiskbroom imaging spec-
trometer uses the rotating scanning mirror of the motor and the flying platform in
a forward motion to complete the two-dimensional space imaging, and the spec-
trum of each instantaneous field of view pixel is obtained by the line array detector.
The pushbroom imaging spectrometer uses a planar array detector perpendicular to
the direction of motion to complete two-dimensional space scanning in the forward
motion of the flying platform, whose spatial scanning direction is the movement
direction of the remote sensing platform. Spectral resolution and spatial resolution
are two key technical indicators of remote sensing spectral imager. In order to obtain
high-precision remote sensing monitoring results, vehicle-mounted spectral imaging
system can be selected.

Remote sensing spectral imaging technology has been widely used in the fields
of geology, agriculture, ocean, atmosphere, and military. It plays an increasingly
important role in geological prospecting and mapping, atmospheric and environ-
mental monitoring, agricultural and forest investigation, marine biological research,
and other fields. In recent years, spectral imaging technology has gradually entered
the laboratory and production site, and become a platform technology in analysis
and detection. Spectral imaging has also been more and more replaced by the
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Fig. 2.11 Implementation of spectral imaging [148]

term of chemical imaging (CI). Spectral chemical imaging technology is currently
becoming a complementary technology to traditional spectroscopy, and is gaining
wide attention and practical application in the fields of pharmaceutical, agricultural,
and food [150].

As shown in Fig. 2.11, there were three ways to implement spectral imaging: first,
the sample is placed on the movable slide on the stage, and is moved along transverse
and longitudinal directions to capture spectra point by point. The three-dimensional
spectral image is composed. This type of imaging is called whisk broom imaging
mode, mainly applied at spectral microscopic imaging. This way used a single point
detector with a high spatial resolution, but the measurement time is long. Sometimes
it takes several hours to test a sample. For the samples moving on the conveyor belt,
the line array detector is often used, which is called push broom imaging mode.
In recent years, with the emergence and application of liquid crystal tunable filter
(LCTF) and acousto-optic tunable filter (AOTF) technology, and gradual transition
of infrared focal plane array (FPA) detector from military to civilian, staring spectral
imaging (STARING) is increasingly used in process analysis technology.

The data array obtained by spectral imaging is gained by scanning each space point
of the sample at multiple discrete or continuous wavelengths. In fact, it is a three-
dimensional data array composed of two-dimensional space and one-dimensional
wavelength, which is called hypercube. As shown in Fig. 2.12, this hypercube matrix
can be regarded as a composition of a series of spatially resolved spectra (called
pixels) or a series of spectral resolved images (called image planes). Selecting an
independent pixel will obtain the continuous spectrum of a specific spatial point of
the sample. Similarly, selecting an image plane will obtain the intensity response
(absorbance) of all spatial points of the sample at a specific wavelength, namely,
the spectral image. Through spectral library retrieval or modern pattern recognition
technology, the composition and distribution information of sample space can be
identified, which can be expressed intuitively and clearly by color view, that is,
chemical image.
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Fig. 2.12 Schematic diagram of the square array obtained by hyperspectral imaging (HSI). a HSI
images as a function of wavelength, and b HSI images data structure [151]

Spectral imaging has a large amount of data. For example, the data array obtained
by a 256 × 256 pixels array with 150 wavelength points contains 65,536 spectra,
and each spectrum contains 150 wavelengths, and the spectral image of a sample
has nearly one million data points in total. To mine useful information from such
an information-intensive data array, that is, to transform spectral imaging into real
chemical imaging, some modern chemometrics methods, such as data preprocessing
and pattern recognition methods, are needed.

Spectral image data processing usually consists of the following three parts: (1)
data preprocessing; (2) pattern recognition; and (3) chemical visualization and statis-
tical analysis of data. Spectral image data preprocessing is similar to that ofNIR spec-
troscopy, which aims to eliminate the influence of non-chemical information (such
as scattering, noise, drift, etc.). The methods involved include smoothing, differen-
tial, standard normal variation (SNV), and multiple scattering correction (MSC). In
general, spectra also need to be corrected by deducting the dark response, which is
the detector response value after the light source is turned off and the lens is shielded.

The purpose of pattern recognition is to identify image regions with similar spec-
tral characteristics. Common methods include unsupervised and supervised pattern
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recognition methods [150]. Unsupervised methods, such as (PCA, K-means clus-
tering, and fuzzy clustering, do not require training sets. Some monitoring methods
require a set of training sets in advance, such as LDA, PLS-DA, ANN, and SVM. The
training set data can be obtained from an image data array based on prior knowledge
of the sample composition, from the imaging region of a component identified by
an unsupervised method or using spectral imaging data from pure material samples.
Before pattern recognition, the three-dimensional array needs to be first expanded
into a two-dimensional spectral matrix according to the spectral direction, namely,
each pixel corresponds to a spectrum. After the completion of pattern recognition, it
can be restored to the original three-dimensional data array (Fig. 2.13). In addition,
multidimensional analysis methods such as PARAFAC and multidimensional partial
least squares (N-PLS) are also used to process spectral image data.

Chemical visualization and statistical analysis are to convert the above classifi-
cation and recognition results into visual chemical composition distribution maps,
which usually use gray or colormapswith intensity scales to describe the comparison
of chemical composition among image pixels. Histogram can be used to calculate the
distribution number of pixels of chemical components in order to obtain quantitative
information. Most of the commercialized spectral imaging instruments are equipped
with image data processing software, which contains all the functions mentioned
above and can be easily operated by the user.

Fig. 2.13 Concatenation of IR images and principles of the unfold principal component analysis:
a IR image concatenation; b principal component analysis; c creation of the scores image [152]
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Spectral chemical imaging technology has been studied and applied in the fields
of agriculture, food, medicine, and clinical medicine [153–155]. In the pharmaceu-
tical field, NIR chemical imaging can be used to achieve high-throughput analysis of
drugs. For example, NIR spectroscopy combined with chemometrics can be conve-
niently and intuitively used for the identification of counterfeit and substandard drugs,
and can also be used for the identification and analysis of mixing uniformity, trace
pollutants on drugs, and a small amount of degradable substances of active ingre-
dients. In recent years, element imaging technology based on laser-induced break-
down spectroscopy (LIBS) has attracted much attention, which can realize spatial
distribution imaging of elements in samples. It has a broad application prospect in
biomedical, industrial production, and environmental detection, especially in drug
metabolism and pathological analysis of biological tissue [156].

In the field of agriculture and food, spectral imaging combined with chemomet-
rics can accurately measure the composition (such as water, protein, and starch) in
single-grain grains, which can overcome the measurement error caused by the non-
uniformity of samples by traditional spectral methods, and can also be used for the
detection of insect pests inside grains [157]. In the application of fruit, it can detect
the defects of fruit such as damage, bruise, and wormhole, and trace surface contami-
nants such as feces and organic residues. It can also be used for quality analysis, such
as the hardness of peach and the total soluble solid content of strawberry. In addition,
it can also be used for the analysis of various components in tobacco, compound feed,
bacteria, and parasites in food, as well as the marbling grade of pork.

NMR imaging and terahertz imaging technology can not only obtain the surface
characteristics of the sample but also can detect the internal structure, material
composition, and its spatial distribution of the sample to achieve functional imaging.
For example, NMR imaging can be used to detect the water distribution and proton
mobility of fruits and vegetables in the storage process, observe the changes between
the various organizational structures of fruits and vegetables, and judge the maturity
of fruits and vegetables, as well as the degree of damage and deterioration, so as to
provide a theoretical basis for the preservation of fruits and vegetables.

Terahertz imaging technology includes terahertz scanning imaging, terahertz real-
time imaging, terahertz tomography, and terahertz near-field imaging, which can be
used in biomedical, material quality inspection, and safety inspection. Tablets of
coating membrane is one of the important factors affecting drug bioavailability. The
features of coating membrane including thickness, structure, integrity, and consis-
tency are very important to the quality of the drug. Using terahertz imaging of
film-coated tablet of membrane, sugar pill, multi-layers, and gelatin soft capsule
for three-dimensional imaging can obtain the thickness statistical distribution of the
outer and inner membranes. In the field of biomedical science, due to the vigorous
cell metabolism in the cancerous area, the water content in the biological tissue
increases. Due to the strong absorption of terahertz by water, the cancerous area
from the normal area can be distinguished by terahertz imaging.

In addition, terahertz has strong penetrability. Most non-polar materials do not
absorb terahertz waves significantly. Terahertz waves can penetrate materials such as
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ceramics, fats, fabrics and plastics with very little attenuation. Therefore, terahertz
has a very good application prospect for safety inspection in public places [158].

In addition to the fields of medicine, agriculture, and food, spectral imaging
technology has also been used in the identification of physical evidence, cultural
relics, materials, geology, chemical synthesis, and biomedical fields. Some applica-
tion examples include online identification of discarded plastic and paper, identifi-
cation of soil composition of drilling cores, kinetic studies of chemical processes
such as epoxy resin curing, clinical medical research (such as providing hemody-
namic information related to functional brain activity), and disease diagnosis (such
as cardiovascular disease and breast tumors) [159–163].

References

1. Pneg Y. Nondestructive and rapid Raman spectral detection technology for edible agro-food
quality. Beijing: Science Press; 2019.

2. Chen Z, Lovett D, Morris J. Process analytical technologies and real time process control a
review of some spectroscopic issues and challenges. J Process Control. 2011;21:1467–82.

3. Rolinger L, Rüdt M, Hubbuch J. A critical review of recent trends, and a future perspective
of optical spectroscopy as PAT in biopharmaceutical downstream processing. Anal Bioanal
Chem. 2020;412:2047–64.

4. Gendrin C, Roggo Y, Collet C. Pharmaceutical applications of vibrational chemical imaging
and chemometrics: a review. J Pharm Biomed Anal. 2008;(48):533–53.

5. Rateni G, Dario P, Cavall F. Smartphone-based food diagnostic technologies: a review.
Sensors. 2017;17:1453–553.

6. Ozaki Y, Huck C, Tsuchikawa S, et al. Near-infrared spectroscopy: theory, spectral analysis,
instrumentation, and applications. Springer;2021.

7. Chu X, Zhang L, Yan Z. Modern progress analytical technology: current development and
future prospects. Beijing: China Machine Press; 2016.

8. Chu X, Li S, Zhang T. New development of modern process analytical technology. Beijing:
Chemical Industry Press; 2016.

9. Gerzon G, Sheng Y, Kirkitadze M. Process analytical technologies—advances in bioprocess
integration and future perspectives. J Pharm Biomed Anal. 2022;(207):114379.

10. Wang Q, Shan P. Molecular spectrum detection and data processing technology. Beijing:
Science Press; 2019.

11. PasquiniC.Near infrared spectroscopy: amature analytical techniquewith newperspectives—
a review. Anal Chim Acta. 2018;1026:8–36.

12. Yang Z, Albrow-Owen T, Cui H, et al. Single-nanowire spectrometers. Science.
2019;365:1017–20.

13. Tang Y, Jones E, Minasny B. Evaluating low-cost portable near infrared sensors for rapid
analysis of soils from South Eastern Australia. Geoderma Reg. 2020;(20):e00240.

14. Kartakoullis A, Comaposada J, Cruz-Carrión A, et al. Feasibility study of smartphone-
based Near Infrared Spectroscopy (NIRS) for salted minced meat composition diagnostics at
different temperatures. Food Chem. 2019;278:314–21.

15. Jian X, Zhang LF, Yang H, et al. Spectral detection for quality and freshness index of main
leaf vegetables based on smart cellphone. Spectrosc Spectr Anal. 2019;39:1524–9.

16. Lu W, Yuan H, Chu X. Near infrared spectrometer. Beijing: Chemical Industry Press; 2010.
17. da Silva NC, de Góes MARC, Domingos D, et al. NIR-based octane rating simulator for use

in gasoline compounding processes. Fuel. 2019;243:381–9.



References 81

18. Wu Y, Jin Y, Li Y, et al. NIR spectroscopy as a process analytical technology (PAT) tool for
on-line and real-time monitoring of an extraction process. Vib Spectrosc. 2012;58:109–18.

19. Pu Y-Y, O’Donnell C, Tobin JT, et al. Review of near-infrared spectroscopy as a process
analytical technology for real-time product monitoring in dairy processing. Int Dairy J.
2020;(103):104623.

20. Grassi S, Alamprese C. Advances in NIR spectroscopy applied to process analytical
technology in food industries. Curr Opin Food Sci. 2018;22:17–21.

21. Märk J, Karner M, Andre M, et al. Online process control of a pharmaceutical interme-
diate in a fluidized-bed drier environment using near-infrared spectroscopy. Anal Chem.
2010;(82):4209–15.

22. Ruangratanakorn J, Suwonsichon T, Kasemsumran S, et al. Installation design of on-
line near infrared spectroscopy for the production of compound fertilizer. Vib Spectrosc.
2020;(106):103008.

23. Ryan JA, Compton SV, Brooks MA, et al. Rapid verification of identity and content of drug
formulations using mid-infrared spectroscopy. J Pharm Biomed Anal. 1991;9:303–10.

24. Su W-H, Sun D-W. Mid-infrared (MIR) spectroscopy for quality analysis of liquid foods.
Food Eng Rev. 2019;11:142–58.

25. Lu SL, Zhao HJ, Ren LB, et al. The online monitoring system of VOCs emitted by stationary
pollution source based on FTIR. Spectrosc Spectr Anal. 2018;38:3106–11.

26. OkumuraT,OtsukaM.Evaluation of themicrocrystallinity of a drug substance, indomethacin,
in a pharmaceutical model tablet by chemometric FT-Raman spectroscopy. Pharm Res.
2005;22:1350–7.

27. Szostak R, Mazurek S. Quantification of active ingredients in suppositories by FT-Raman
spectroscopy. Drug Test Anal. 2013;5:126–9.
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64. Jehlička J, Culka A, Bersani D, et al. Comparison of seven portable Raman spectrometers:

beryl as a case study. 2017;(48):1289–99.



References 83

65. Chandler L, Huang B,Mu TT. A smart handheld Raman spectrometer with cloud and AI deep
learning algorithm for mixture analysis. In: Next-generation spectroscopic technologies XII:
international society for optics and photonics;2019. p. 1098308.

66. Fowler SM, Schmidt H, van de Ven R, et al. Preliminary investigation of the use of Raman
spectroscopy to predict meat and eating quality traits of beef loins. Meat Sci. 2018;138:53–8.

67. Wang Q, Lonergan SM, Yu C. Rapid determination of pork sensory quality using Raman
spectroscopy. Meat Sci. 2012;91:232–9.

68. He Q-j, Wang L-Q. Research progress of raman spectroscopy on dyestuff identification of
ancient relics and artifacts. In: Guang pu xue yu Guang pu fen xi. 2016;(36):401–07.

69. Christesen S, Guicheteau J, Curtiss J, et al. Handheld dual-wavelength Raman instrument for
the detection of chemical agents and explosives. 2016(Opt Eng); 074103.

70. Wang H, Wang YZ, Zhao Y, et al. Latest methods of fluorescence suppression in Raman
spectroscopy. Spectrosc Spectr Anal. 2017;37:2050–6.

71. Zou W, Cai Z, Wu J. Fluorescence rejection by shifted excitation Raman difference
spectroscopy. SPIE. 2010.

72. Jin G, Huang X, Chen RH. Applications of real-time measurement technology with Raman
spectroscopy for polymer synthesis and processing. Spectrosc Spectr Anal. 2016;36:2124–7.

73. Marteau P, Zanier-Szydlowski N, Aoufi A, et al. Remote Raman spectroscopy for process
control. Vib Spectrosc. 1995;9:101–9.

74. Cansell F, Hotier G, Marteau P, et al. Method for regulating a process for the separation of
isomers of aromatic hydrocarbons having from 8 to 10 carbon atoms. Google Patents. 1996.

75. Kong K, Kendall C, Stone N, et al. Raman spectroscopy for medical diagnostics—from
in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev. 2015;89:121–34.

76. Cordero E, Latka I, Matthäus C, et al. Raman spectroscopy: from basics to applications. J
Biomed Opt. 2018;(23):071210.

77. Yan H, Yu M, Xia J, et al. Tongue squamous cell carcinoma discrimination with Raman
spectroscopy and convolutional neural networks. Vib Spectrosc. 2019;(103):102938.

78. Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic
method: Raman spectroscopy and machine learning. Chem Soc Rev. 2020;49:7428–53.

79. Buckley K, Kerns JG, Parker AW, et al. Decomposition of in vivo spatially offset Raman
spectroscopy data using multivariate analysis techniques. 2014;(45):188–92.

80. Tong X. On-line analysis and applicable control of H_2S/SO_2 ratio analyzer in sulfur
recovery unit. Process Autom Instrum. 2009;30:23–30.

81. Langergraber G, Fleischmann N, Hofstaedter F, et al. Monitoring of a paper mill wastewater
treatment plant using UV/VIS spectroscopy. Water Sci Technol. 2004;49:9–14.

82. van den Broeke J, Langergraber G, Weingartner A. On-line and in situ UV/vis spectroscopy
for multi-parameter measurements: a brief review. Spectrosc Eur. 2006;18:S3–4.

83. Zhu H, Chai X, Wang S, et al. Attenuated total reflection UV/vis spectroscopic applications.
Prog Chem. 2007;19(2–3):414–19.

84. Johansson J, Cauchi M, Sundgren M. Multiple fiber-optic dual-beam UV/Vis system with
application to dissolution testing. J Pharm Biomed Anal. 2002;29:469–76.

85. Inman GW, Wethington E, Baughman K, et al. System optimization for in situ fiber-optic
dissolution testing. Pharm Technol. 2001;25:92–100.

86. Florence AJ, Johnston A. Applications of ATR UV/vis spectroscopy in physical form
characterisation of pharmaceuticals. Spectrosc Eur. 2004;4:24–7.

87. Levi MAB, Scarminio IS, Poppi RJ, et al. Three-way chemometric method study and UV-
Vis absorbance for the study of simultaneous degradation of anthocyanins in flowers of the
Hibiscus rosa-sinensys species. Talanta. 2004;62:299–305.

88. Atole DM, Rajput HH. Ultraviolet spectroscopy and its pharmaceutical applications-a brief
review. Asian J Pharm Clin Res. 2018;11:59–66.

89. Dai X, Song H, LiuW, et al. On-line UV-NIR spectroscopy as a process analytical technology
(PAT) tool for on-line and real-time monitoring of the extraction process of Coptis Rhizome.
RSC Adv. 2016;6:10078–85.



84 2 Modern Spectral Analysis Techniques

90. Warner IM, Callis JB, Davidson ER, et al. Fluorescence analysis: a new approach. Anal Lett.
1975;8:665–81.

91. Han R, Li Z, Fan Y, et al. Recent advances in super-resolution fluorescence imaging and its
applications in biology. J Genet Genomics. 2013;40:583–95.

92. Pu C, Chu X, Tian S. The application of molecular fluorescence spectroscopy in analysis of
crude oil. Mod Sci Instrum. 2012;1:129–33.

93. He X-f, Xiong A-b. Application and research progress of three-dimensional printing in the
field of orthopaedics. Chin J Tissue Eng Res. 2017;21:428–32.

94. Liu W, Zhang L, Liu P, et al. FDOM conversion in karst watersheds expressed by three-
dimensional fluorescence spectroscopy. Water. 2018;10:1427.

95. Peleato NM, Andrews RC. Comparison of three-dimensional fluorescence analysis methods
for predicting formation of trihalomethanes and haloacetic acids. J Environ Sci. 2015;27:159–
67.

96. Wang Z, Wu Z, Tang S. Characterization of dissolved organic matter in a submerged
membrane bioreactor by using three-dimensional excitation and emissionmatrix fluorescence
spectroscopy. Water Res. 2009;43:1533–40.

97. Gu H-W, Wu H-L, Liu Y-J, et al. Simultaneous determination of metoprolol and α-
hydroxymetoprolol in human plasma using excitation–emission matrix fluorescence coupled
with second-order calibration methods. 2012;(4):2781–93.

98. Nie JF, Wu HL, Xia AL, et al. Determination of sulpiride in human urine using excitation-
emission matrix fluorescence coupled with second-order calibration. Anal Sci Int J Jpn Soc
Anal Chem. 2007;23:1377.

99. Qing X-D, Wu H-L, Nie C-C, et al. Simultaneous determination of plant growth regula-
tors in environmental samples using chemometrics-assisted excitation–emission matrix fluo-
rescence: experimental study on the prediction quality of second-order calibration method.
Talanta. 2013;103:86–94.

100. Bravo MM, Aguilar LF, Quiroz VW, et al. Determination of tributyltin at parts-per-
trillion levels in natural waters by second-order multivariate calibration and fluorescence
spectroscopy. Microchem J. 2013;106:95–101.

101. Wang L, Wu H-L, Yin X-L, et al. Simultaneous determination of umbelliferone and scopo-
letin in Tibetan medicine Saussurea laniceps and traditional Chinese medicine Radix angel-
icae pubescentis using excitation-emission matrix fluorescence coupled with second-order
calibration method. Spectrochim Acta Part A Mol Biomol Spectrosc. 2017;170:104–10.

102. Zhong X, Liu Y, Yong L, et al. Three-dimensional fluorescence technique coupled with
chemometric second-order calibration method for simultaneous detection of thiabendazole
and fuberidazole in red wine. Life Sci Instrum. 2015;39:38–41.

103. Zhu ZW, Que LZ, Chen GQ, et al. Year discrimination of mild aroma chinese liquors
using three-dimensional fluorescence spectroscopy combined with parallel factor and neural
network. Spectrosc Spectr Anal. 2015;35:2573–7.

104. Han XS, Liu DP, Luan XN, et al. Discrimination of crude oil samples using laser-induced
time-resolved fluorescence spectroscopy. Spectrosc Spectr Anal. 2016;36:445–8.

105. Wang X, Zhao NJ, Yu ZM, et al. Detection method progress and development trend of
organic pollutants in soil using laser-induced fluorescence spectroscopy. Spectrosc Spectr
Anal. 2018;38:857–63.

106. Huang Y, Zhao NJ, Meng DS, et al. Advance in the detection techniques of persistent organic
pollutants by using fluorescence spectrometry. Spectrosc Spectr Anal. 2019;39:2107–13.

107. Hu F, Zhou M, Yan P, et al. Identification of mine water inrush using laser-induced fluores-
cence spectroscopy combined with one-dimensional convolutional neural network. RSCAdv.
2019;9:7673–9.

108. Wang X, Zhao NJ, Yin GF, et al. Classification and identification of plastic with laser-induced
fluorescence spectroscopy based on back propagation neural networkmodel. Spectrosc Spectr
Anal. 2019;39:3136–41.

109. Fan Y, Wu RM, Ai SR, et al. Identification study of edible oil species with laser
induced fluorescence technology based on liquid core optical fiber. Spectrosc Spectr Anal.
2016;36:3202–6.



References 85

110. Kapadia CR, Cutruzzola FW, O’Brien KM, et al. Laser-induced fluorescence spectroscopy
of human colonic mucosa: detection of adenomatous transformation. Gastroenterology.
1990;99:150–7.

111. Mandrioli R, Morganti E, Mercolini L, et al. Fast analysis of amino acids in wine by capillary
electrophoresiswith laser-induced fluorescence detection. Electrophoresis. 2011;32:2809–15.

112. Stefan A-E, Jonas J, Katarina Svanberg MD, et al. Laser-induced fluorescence in medical
diagnostics. Proc SPIE. 1990.

113. Li J, Xu M, Ma Q, et al. Sensitive determination of silicon contents in low-alloy steels
using micro laser-induced breakdown spectroscopy assisted with laser-induced fluorescence.
Talanta. 2019;194:697–702.

114. Lui SL, Godwal Y, Taschuk MT, et al. Detection of lead in water using laser-induced
breakdown spectroscopy and laser-induced fluorescence. Anal Chem. 2008;80:1995–2000.

115. Freedman R. Advances in NMR logging. J Petrol Technol. 2006;58:60–6.
116. Mitchell J, Gladden LF, Chandrasekera TC, et al. Low-field permanent magnets for industrial

process and quality control. Prog Nucl Magn Reson Spectrosc. 2014;76:1–60.
117. Zang X, Lin Z, Zhang T, et al. Non-destructive measurement of water and fat contents, water

dynamics during drying and adulteration detection of intact small yellow croaker by low field
NMR. J Food Meas Charact. 2017;11:1550–8.

118. Gai S, Zhang Z, Zou Y, et al. Rapid and non-destructive detection of water-injected pork using
low-field nuclear magnetic resonance (LF-NMR) andmagnetic resonance imaging (MRI). Int
J Food Eng. 2019;15:1–9.

119. Feng L, ZhangM, Bhandari B, et al. Determination of postharvest quality of cucumbers using
nuclear magnetic resonance and electronic nose combined with chemometric methods. Food
Bioprocess Technol. 2018;11:2142–52.

120. Nordon A,McGill CA, Littlejohn D. Process NMR spectrometry. Analyst. 2001;126:260–72.
121. Bakeev KA. Process analytical technology: spectroscopic tools and implementation strategies

for the chemical and pharmaceutical industries. Wiley & Sons;2010.
122. Edwards JC. A review of applications of NMR spectroscopy in the petroleum industry.

Spectrosc Anal Pet Prod Lubr. 2011;16:423.
123. Song H-J, Nagatsuma T. Handbook of terahertz technologies: devices and applications. CRC

Press;2015.
124. Li B, Zhao XT, Zhang YZ, et al. Progress on terahertz spectroscopic detection and analysis

on antibiotics. Spectrosc Spectr Anal. 2019;39:3659–66.
125. YangX,ZhaoX,YangK, et al. Biomedical applications of terahertz spectroscopy and imaging.

Trends Biotechnol. 2016;34:810–24.
126. Afsah-Hejri L, Akbari E, Toudeshki A, et al. Terahertz spectroscopy and imaging: a review

on agricultural applications. Comput Electron Agric. 2020;(177):105628.
127. Afsah-Hejri L, Hajeb P, Ara P, et al. A comprehensive review on food applications of terahertz

spectroscopy and imaging. Compr Rev Food Sci Food Saf. 2019;18:1563–621.
128. Winefordner JD, Gornushkin IB, Correll T, et al. Comparing several atomic spectrometric

methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS,
a future super star. J Anal At Spectrom. 2004;19:1061–83.

129. Aragón C, Aguilera JA. Characterization of laser induced plasmas by optical emission spec-
troscopy: a review of experiments and methods. Spectrochim Acta, Part B. 2008;63:893–916.

130. Zhang T, Tang H, Li H. Chemometrics in laser-induced breakdown spectroscopy.
2018;(32):e2983.

131. Unnikrishnan V, Nayak R, Aithal K, et al. Analysis of trace elements in complex matrices
(soil) by laser induced breakdown spectroscopy (LIBS). Anal Methods. 2013;5:1294–300.

132. Wang J, Liao X, Zheng P, et al. Classification of Chinese herbal medicine by laser-induced
breakdown spectroscopy with principal component analysis and artificial neural network.
Anal Lett. 2018;51:575–86.

133. ZhaoYY, Zhu SS,He J, et al. Identification of fritillaria thunbergii treated by sulfur fumigation
using laser-induced breakdown spectroscopy. Spectrosc Spectr Anal. 2018;38:3558–62.



86 2 Modern Spectral Analysis Techniques

134. Markiewicz-Keszycka M, Cama-Moncunill X, Casado-Gavalda MP, et al. Laser-induced
breakdown spectroscopy (LIBS) for food analysis: a review. Trends Food Sci Technol.
2017;65:80–93.

135. Yu K, Ren J, Zhao Y. Principles, developments and applications of laser-induced breakdown
spectroscopy in agriculture: a review. Artif Intell Agric. 2020;4:127–39.

136. Bilge G, Velioglu HM, Sezer B, et al. Identification of meat species by using laser-induced
breakdown spectroscopy. Meat Sci. 2016;119:118–22.

137. Wang J, Zheng P, Liu H, et al. Classification of Chinese tea leaves using laser-induced
breakdown spectroscopy combined with the discriminant analysis method. Anal Methods.
2016;8:3204–9.

138. Sun L, Yu H, Cong Z, et al. Applications of laser-induced breakdown spectroscopy in the
aluminum electrolysis industry. Spectrochim Acta, Part B. 2018;142:29–36.

139. Lu Z, Mo J, Yao S, et al. Rapid determination of gross calorific value of coal using
LIBS coupled with artificial neural networks (ANN) and genetic algorithm. Energy Fuels.
2017;31:3849–55.

140. Guo ZW, Sun LX, Zhang P, et al. On-line component analysis of cement powder using LIBS
technology. Spectrosc Spectr Anal. 2019;39:278–85.

141. Wang Q, Xiangli W, Teng G, et al. A brief review of laser-induced breakdown spectroscopy
for human and animal soft tissues: pathological diagnosis and physiological detection. Appl
Spectrosc Rev. 2021;56:221–41.

142. Gaudiuso R, Melikechi N, Abdel-Salam ZA, et al. Laser-induced breakdown spectroscopy
for human and animal health: a review. Spectrochim Acta, Part B. 2019;152:123–48.

143. Chen X, Li X, Yu X, et al. Diagnosis of human malignancies using laser-induced break-
down spectroscopy in combination with chemometric methods. Spectrochim Acta, Part B.
2018;139:63–9.

144. Wang J, Li L, Yang P, et al. Identification of cervical cancer using laser-induced breakdown
spectroscopy coupled with principal component analysis and support vector machine. Lasers
Med Sci. 2018;33:1381–6.

145. Gimenez Y, Busser B, Trichard F, et al. 3D imaging of nanoparticle distribution in biological
tissue by laser-induced breakdown spectroscopy. Sci Rep. 2016;6:29936.

146. Qin J, Kim MS, Chao K, et al. Detection and quantification of adulterants in milk powder
using a high-throughput Raman chemical imaging technique. Food Addit Contam: Part A.
2017;34:152–61.

147. Jolivet L, Leprince M, Moncayo S, et al. Review of the recent advances and applications of
LIBS-based imaging. Spectrochim Acta, Part B. 2019;151:41–53.

148. Kessler RW. Perspectives in process analysis. J Chemom. 2013;27:369–78.
149. Maldonado AIL, Rodriguez-Fuentes H, Contreras JAV. Hyperspectral imaging in agriculture,

food and environment. BoD–Books on Demand;2018.
150. Bai XB, Yu JS, Fu ZT, et al. Application of spectral imaging technology for detecting crop

disease information: a review. Spectrosc Spectr Anal. 2020;40:350–5.
151. Munir MT, Wilson DI, YuW, et al. An evaluation of hyperspectral imaging for characterising

milk powders. J Food Eng. 2018;221:1–10.
152. Roggo Y, Edmond A, Chalus P, et al. Infrared hyperspectral imaging for qualitative analysis

of pharmaceutical solid forms. Anal Chim Acta. 2005;535:79–87.
153. Boiret M, Rutledge DN, Gorretta N, et al. Application of independent component analysis

on Raman images of a pharmaceutical drug product: pure spectra determination and spatial
distribution of constituents. J Pharm Biomed Anal. 2014;90:78–84.

154. Yu H-D, Qing L-W, Yan D-T, et al. Hyperspectral imaging in combination with data fusion
for rapid evaluation of tilapia fillet freshness. Food Chem. 2021;(348):129129.

155. Chandrasekaran I, Panigrahi SS, Ravikanth L, et al. Potential of near-infrared (NIR) spec-
troscopy and hyperspectral imaging for quality and safety assessment of fruits: an overview.
Food Anal Methods. 2019;12:2438–58.

156. Alexandrino GL, Khorasani MR, Amigo JM, et al. Monitoring of multiple solid-state trans-
formations at tablet surfaces using multi-series near-infrared hyperspectral imaging and
multivariate curve resolution. Eur J Pharm Biopharm. 2015;93:224–30.



References 87

157. Johnson JB. An overview of near-infrared spectroscopy (NIRS) for the detection of insect
pests in stored grains. J Stored Prod Res. 2020;(86):101558.

158. Feng C-H, Otani C. Terahertz spectroscopy technology as an innovative technique for food:
current state-of-the-art research advances. Crit Rev Food Sci Nutr. 2021;61:2523–43.

159. Manley M. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis
of biological materials. Chem Soc Rev. 2014;43:8200–14.

160. Silvia S. Plastic waste monitoring and recycling by hyperspectral imaging technology. Proc
SPIE. 2019.

161. Fei B. Chapter 3.6—Hyperspectral imaging in medical applications. In: Amigo JM, editor.
Data handling in science and technology. Elsevier;2020. p. 523–65.

162. HalicekM, FabeloH,Ortega S, et al. In-vivo and ex-vivo tissue analysis through hyperspectral
imaging techniques: revealing the invisible features of cancer. Cancers. 2019;11:756.

163. Raeissi B, Bashir MA, Garrett JL, et al. Detection of different chemical binders in coatings
using hyperspectral imaging. J Coat Technol Res. 2021; 1–16.



Chapter 3
Basis of Matrices and Mathematical
Statistics

3.1 Basis of Matrix

The data used in analytical chemistry can be divided into scalars, vectors, matrices,
and tensors. A scalar is a simple quantity, such as the volume of end point in titration
analysis, by which the concentration of the sample under test can be calculated. The
measurement data of instrument analysis is often not just a scalar, such as a spectrum
(ultraviolet (UV) spectrum, infrared (IR) spectrum, etc.) measured by a spectrometer.
Although it usually appears as a curve, in fact, this curve corresponds to a set of
discrete values. In mathematics, a set of numbers can be represented by a vector.
Thus, a vector can represent a spectrum (such as an UV, IR, chromatographic, or
nuclearmagnetic resonance (NMR) spectrum). Ifmore than one spectrum is obtained
from a measurement, a matrix of vectors can be used to represent the measurement
result. A combination of instruments can often produce the data represented in this
matrix. For example, the retention time of a sample is from 0 to 30 min, and the
measurement wavelength is from 200 to 400 nm. If the sampling interval is 1 s,
1801 points will be measured. If the wavelength interval of the UV measurement is
2 nm, each spectrum will contain 101 points, resulting in a matrix of 1801 × 101
dimensions. This needs to be represented using a three-dimensional graph (as shown
in Fig. 3.1). One row of this matrix corresponds to the spectrum of a chromatographic
measurement point, while one column corresponds to the chromatogrammeasured at
a wavelength. Usingmatrix to describe this kind ofmeasurement data can completely
express the measurement results, and it is very convenient for data processing. This
kind of matrix data is widely used in chemometrics. Measurement of a sample with
a combined instrument yield a matrix of data, and measurement of more than one
sample yield several matrices that can form a tensor, which often contains more
information [1, 2].

The same is true of spectral data processing. The independent variable (generally
called the matrix X, as shown in Fig. 3.2) with the dimension of n × m (n is the
number of sample and m is the wavelength variable) a set of sample spectrum. Like-
wise, the dependent variable (generally called the matrix X, as shown in Fig. 3.2)
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Fig. 3.1 Three-dimensional graphical representation of matrix data

Fig. 3.2 Independent variable X matrix and dependent variable Y matrix

with the dimension of n× p (n is the number of sample and p is the number of concen-
trations) is composed of the corresponding concentrations of a set of properties (or
components) data (e.g., wheat protein, starch and water, etc.). In fact, the establish-
ment of correction model is to establish the relationship between the X matrix and
the Y matrix. In addition to concentration, the Y matrix can also be an information
matrix (e.g., category).

In chemometrics, scalars are often referred to as zero-dimensional data (or tensors
of zero order) and are often represented with lowercase letters, such as a = [0.05];
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A vector is called a one-dimensional data (or a tensor of the first order) and is
often represented by a boldface letter in lower case, such as a = [0.1 0.5 0.8 0.7];
Matrices are called two-dimensional data (or second-order tensors) and are usually

represented in bold letters in capital letters, such as A =

⎡
⎢⎢⎣

1 8 5 6
9 2 3 4
5 1 8 7
8 7 6 4

⎤
⎥⎥⎦; tensors are

called three dimensional data (or tensors of third order). In addition, there are some
relatively fixed expressions and operations on vectors and matrices, which are briefly
introduced as follows [3, 4].

ai j represents an element of the ith row and jth column of matrix A, called the (i,
j) element of matrix A.

AB represents the product ofmatrixA andmatrixB, where the number of columns
in matrix A must equal to the number of rows in matrix B. If A is a matrix of m × s
and B is a matrix of s × n, then the product of the matrices A and B is AB = C =
(cij), and the product C is an m × n matrix as follows:

ci j = ai1b1 j + ai2b2 j + · · · + aisbs j =
s∑

k=1

aikbk j · · · i = 1, 2, . . . ,m; j = 1, 2, . . . , n

(3.1)

Matrix multiplication generally does not satisfy the commutative law, that is, AB
�= BA. But it satisfies the associative property, that is (AB) C = A (BC).

AT represents the transpose of matrix A, namely, the m × n matrix obtained by
interchanging the rows and columns of the n × m matrix A in the original order.

I is the identity matrix, which is an n × n square matrix where every entry on the
main diagonal is 1, and every other entry is 0.

|A| represents the determinant of a squarematrixA, and if |A| �= 0,A is nonsingular
matrix.

For a square matrix A of order n × n, if there is a number and a non-zero
vector, satisfying Ax = λx, λ is the eigenvalue of the square matrix A, and x is
the eigenvector corresponding to the eigenvalue. QR (Orthogonal Trigonometry)
decomposition method and Jacobian method are used to solve the eigenvalues of
matrices.

tr (A) represents the trace of square matrix A, whose value is equal to the sum of
the diagonal elements of square matrix A. According to Veda’s theorem, the sum of
all eigenvalues of the matrix is the trace of the matrix. The sum of all eigenvalues of
a matrix is the determinant of the matrix.

Rank (A) represents the rank of matrix A, which is the maximum linearly
independent number of rows or columns in A.

A−1 represents the inverse of the matrix A, which means AA−1 = A−1A = I.
If A−1 exists, A is called a non-singular matrix, or A is called a full rank matrix;
otherwise, A is called a singular matrix.
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A is said to be an orthogonal matrix if the square matrix A of order n × n satisfies
A−1 = AT. The row and column vectors of an orthogonal matrix are orthogonal to
each other, namely, the inner product of different rows or columns is zero.

A+ represents the generalized inverse of the matrix A, which means AA+A = I.
||a|| represents the mode or norm of vector a = [a1 a2 a3, …, an] as follows:

‖a‖ = ‖a‖ =
√
a21 + a21+, . . . ,+a2n (3.2)

‖a‖ =
√

(aaT) =
√
tr(aTa) (3.3)

3.2 Matrix Representation of Lambert-Beer’s Law

Lambert-Beer’s law of multi-component systems can be expressed by matrix opera-
tions [5, 6]. If a mixture is composed of three components, the three components of
the pure spectra with vector expressed as s1, s2, and s3. If three kinds of components
in a mixture of relative concentration of c1, c2, and c3, respectively, depending on the
Lambert-Beer’s law, the mixture of spectrum x should be equal to the pure spectra
of three components and corresponding to the sum of product of concentration. That
is, x = c1s1 + c2s2 + c3s3 + e, where e is the measurement error of the instrument.
Namely,

x1 = c1s11 + c2s12 + c3s13 + e1 (3.4)

x2 = c1s21 + c2s22 + c3s23 + e2 (3.5)

· · ·

xm = c1sm1 + c2sm2 + c3sm3 + em (3.6)

where m is the number of wavelength points, xm represents the absorbance of
the mixture at wavelength m, and sm3 represents the absorbance of the third pure
component at wavelength m.

Let x = [x1 x2 … xm]T, S = [s1T s2T s3T], c = [c1 c2 c3]T, e = [e1 e2 e3]T, then the
above equation can be expressed as a matrix product: x = cS + e.

If there are n samples of such mixtures, according to matrix multiplication rules,
they can be expressed as follows:
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⎡
⎢⎢⎣

x11 x12 ... x1m
x21 x22 ... x2m
... ... ... ...

xn1 xn2 ... xnm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c11 c12 c13
c21 c22 c23
... ... ...

cn1 cn2 cn3

⎤
⎥⎥⎦

⎡
⎣
s11 s12 ... s1m
s21 s22 ... s2m
s31 s32 ... s3m

⎤
⎦

+

⎡
⎢⎢⎣

e11 e12 ... e1m
e21 e22 ... e2m
... ... ... ...

en1 en2 ... enm

⎤
⎥⎥⎦ (3.7)

For the data of n samples with p components at m wavelengths, the matrix can be
expressed as follows:

Xn×m = Cn×pSp×m + En×m (3.8)

3.3 Variance and Normal Distribution

In analytical chemistry, multiple measurements are often required to eliminate the
impact of accidental errors. A set of n measurements (x1, x2, …, xn) is usually
described by two statistics, including mean and standard deviation [7, 8]:

mean x : x = 1

n

n∑
i=1

xi (3.9)

standard deviation s : s =

√√√√√
n∑

i=1
(xi − x)

n − 1
(3.10)

The standard deviation s and the square of the standard deviation s2 (variance) are
important statistics that describe how discrete a set of data is. For example, in NIR
spectral analysis, for multiple spectral measurements of a sample, it is expected that
the changes of repeated spectral measurements should be as small as possible. That
is, the variance of the absorbance at each wavelength should be as small as possible.
However, for the NIR spectra of a set of correction set samples, it is hoped to find
the wavelength with a large corresponding absorbance variance, because the more
information there is, the larger the variation of absorbance should be. Therefore,
standard deviation or variance is often used to evaluate spectral repeatability in NIR
spectral analysis, and it can also be used to select the wavelength range involved in
the establishment of calibration model.

The standard deviation can be used to describe the degree to which the measured
results are discrete from themean, but it cannot be used to describe the distribution of
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Fig. 3.3 Histogram of 200 measurements of the octane number of a gasoline sample

these data. Thedistributionof expressiondata needs to use a histogram (or frequency).
For example, using NIR spectroscopy method determines the octane number of
gasoline for a 200 times, where the mean value is 93.0, and among them 93.10
occurs for 37 times and 93.05 occurs for 35 times. Mapping the frequency of the
occurrence of each measured value vs measured value is the histogram (or frequency
chart), as shown in Fig. 3.3.

As can be seen from Fig. 3.3, the distribution is symmetric about the center,
and the measurement results tend to gather toward the center value. The population
mean can be written as μ, and the mean x is actually an estimate of the population
meanμ. Similarly, the population has a standard deviation, often expressed as σ , and
the standard deviation of the sample s gives an estimate of the population standard
deviation σ . In theory, the normal distribution curve, also known as the Gaussian
distribution, is commonly used to study this kind of problem, and is described by the
following formula:

f (x) =
(

1

σ
√
2π

)
e

−(x−μ)2

2σ2 (3.11)

The normal distribution curve is shown in Fig. 3.4, which is μ-symmetric. The
larger the value of σ , the greater the degree of dispersion of the data, and the wider the
curve. But the total area under the curve remains unchanged. As shown in Fig. 3.5,
approximately 68% of the total measurements are in the ± lσ range, and approx-
imately 95% of the total measurements are in the ±2σ range while approximately
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Fig. 3.4 Normal distribution with the same mean and different standard deviations

Fig. 3.5 Relationship between normal distribution area and standard deviation

99.7% of the total measurements are in the ±3σ range. In analytical chemistry, the
measurements obtained conform to a normal distribution in most cases.

The abscissa of the normal distribution curve is replaced by u = (x–μ)/σ , which
is called the standard normal distribution curve. It is expressed by N(0,1), that is, the
mean value is 0 and the variance is 1, which is used to represent the distribution of
random errors as follows:

f (u) = 1√
2π

e− u2

2 (3.12)



96 3 Basis of Matrices and Mathematical Statistics

Table 3.1 Interval probability table of random error

Interval of random error u Interval of the measured value
(width of confidence interval)

Probability P (confidence) (%)

−1σ ~ + 1σ μ–1σ ~ μ + 1σ 68.3

−1.96σ ~ + 1.96σ μ–1.96σ ~ μ + 1.96σ 95.0

−2σ ~ + 2σ μ–2σ ~ μ + 2σ 95.5

−2.58σ ~ + 2.58σ μ–2.58σ ~ μ + 2.58σ 99.0

−3σ ~ + 3σ μ–3σ ~ μ + 3σ 99.7

The probability of the occurrence of measured values within the range (called
confidence) can be expressed by the integral area of a certain interval as formula
(3.13). Obviously, from −∞ ~ + ∞, the total probability P of the occurrence of all
measured values is 1, that is, the area contained under the normal distribution curve
is the sum of the occurrence probability of all measured data.

P =
+∞∫

−∞
f (u)du =

+∞∫

−∞

1√
2π

e
−u2/

2du = 1 (3.13)

The interval probability of random error calculated by integration is shown in
Table 3.1.

For a finite number of measurements (n measurements), the statistic t is used to
deal with and is defined as follows:

t = x − μ

s

√
n. (3.14)

t value is not only related to the confidence P but also to the degree of freedom
f , expressed by tα,f, α = 1–P (α is called significance level), and f = n–1. For
example, t0.05,10 is the value of t when P = 95% and f = 10. As f → ∞, the
t-distribution becomes a normal distribution. T-distribution, also known as student
distribution, can be obtained as Table 3.2 shows.

For a small amount of experimental data, the confidence interval of the mean
value can be expressed as

μ = −
x ± ts√

n
(3.15)
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Table 3.2 t-values of different measurement times and different confidence degrees

Measurement times Confidence

n 90% 95% 99% 99.5%

2 6.314 12.706 63.657 127.32

3 2.920 4.303 9.925 14.089

4 2.353 3.182 5.841 7.453

5 2.132 2.776 4.604 5.598

6 2.015 2.571 4.032 4.773

7 1.943 2.447 3.707 4.317

8 1.895 2.365 3.500 4.029

9 1.860 2.306 3.355 3.832

10 1.833 2.262 3.250 3.690

11 1.812 2.228 3.169 3.581

21 1.725 2.086 2.845 3.153

∞ 1.645 1.960 2.576 2.807

3.4 Significance Test

In the actual measurement, the mean value of the sample may not be equal to the true
value. Such differencemay be completely accidental error, ormay contain systematic
error. In order to distinguish the two cases, significance test should be introduced.
Through significance test, if the analysis results are found to have significant differ-
ences, it can be judged that the analysis results have systematic errors. If there is no
significant difference, it indicates that the difference of the analysis result is due to
accidental error. In spectral analysis, the most commonly used test methods are t-test
and F-test.

The t-test is used to judgewhether there is significant difference between themean

value
−
x and the true value μ. The t-value is calculated as follows:

t = (
−
x −μ)

√
n

s
(3.16)

In the spectral analysis, the most common test is the comparison test between
the measured values of a group of samples with different component contents by
using the spectral method and the reference method, which is called the paired t-test.
Its essence is to judge whether the mean deviation (which should be close to zero)
between the two methods is significantly different from the expected value (zero),
that is, to judge whether there is a systematic error between the spectral method and
the reference method. Paired t-test values are calculated as follows:

t = −
d

√
n

s
(3.17)
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where
−
d is themean value of the corresponding difference between samplesmeasured

by the two methods, s is the standard deviation of the corresponding difference
between samples measured by the two methods, and n is the number of samples.

Table 3.3 presents a set of comparative results of measuring olefin content in
gasoline by fluorescence indicator method and near infrared (NIR) spectroscopy.
Pairwise t-test is used to determine whether there is significant difference between

the two methods. The results obtained were:
−
d = −0.49, s = 1.56, t = 1.26. Given

the significance level α = 0.05, the critical value t(15, 0.05) = 2.13 was obtained. It
can be seen that |t| less than the critical value of 2.13 illustrates the two methods
have no significant difference. In addition, t-test is also used to identify outliers of
the calibration set in the spectral analysis.

F-test is mainly used to compare the variances of two sets of data. There are two
situations: one is to use single-tail test to test whether method A is more precise
than method B. The second is to determine whether there is a significant difference
between the precision of test method A and B by double-tailed test. The expression
of F-test is as follows:

Table 3.3 Comparison results of olefin content determination in gasoline by fluorescence indicator
method and NIR spectroscopy

Sample Olefin content / %

Fluorescence indicator method NIR spectroscopy Deviation between the two
methods

Test01 33.08 30.90 −2.18

Test02 32.64 30.71 −1.93

Test03 28.99 31.49 2.50

Test04 28.06 29.75 1.69

Test05 26.95 27.87 0.92

Test06 26.59 23.66 −2.93

Test07 25.63 25.67 0.04

Test08 24.00 23.51 −0.49

Test09 23.70 22.60 −1.10

Test10 22.63 22.27 −0.36

Test11 27.24 26.52 −0.72

Test12 25.32 22.71 −2.61

Test13 23.71 22.97 −0.74

Test14 25.69 25.15 −0.54

Test15 21.23 23.06 1.83

Test16 25.00 23.81 −1.19
−
d = −0.49

s = 1.56
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F = s21
s22

(3.18)

In the above formula, the larger the numerator and the smaller the denominator,
that is, to ensure that F ≥ 1.

It should be noted that the significance level α should be the half of the double-
tailed α if the single-tailed F distribution table is used for the double-tailed test.

3.5 Correlation Coefficient

In the spectral analysis, most of the mathematical problems encountered are the rela-
tionship between variables, such as the relationship between absorbance at different
wavelengths, the relationship between absorbance and concentration, the relationship
between properties and composition and the relationship between different proper-
ties. The relationship between variables can be mathematically divided into two
categories: functional relationship and correlation relationship [9, 10]. Functional
relations are deterministic relations, such as the relationship between circumfer-
ence and radius. As long as the radius is determined, the circumference of a circle
is determined. Correlation relationship is uncertain relationship, such as the rela-
tionship between height and weight, and the relationship between the teachers and
graduation rates, which does exist a certain relation between variables, but not the
one-to-one relationship. This relationship can be described by correlation (correla-
tion coefficient R or determination coefficient R2). Mathematical statistics methods
such as regression analysis could be used to find out the inner relationship, so the
relationship between these variables is also called a statistical relationship.

The linear correlation between the two variables is shown as the following three
changes: (1) Positive correlation: when one variable increases or decreases, the
other variable also increases or decreases accordingly; (2) Negative correlation:
when one variable increases or decreases, the other variable decreases or increases;
(3) No correlation: it means that the two variables are independent without linear
correlation. In statistics, correlation coefficient R or determination coefficient R2 is
commonly used to describe the degree of linear correlation between two variables.
The calculation formula of correlation coefficient R is as follows:

R =

n∑
i=1

(xi − x)
(
yi − y

)
√

n∑
i=1

(xi − x)2 ·
√

n∑
i=1

(
yi − y

)2
(3.19)

where xi, yi(i = 1, 2,…, n) is the sample value of two variables x and y;x and y are
the mean of the sample values of the two variables x and y, respectively; n is the
number of samples of the two variables.
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The values ofR orR2 are between -1 and 1.When the variables are fully correlated
(the correlation coefficient is 1), it becomes a functional relationship. If there is no
relationship between the variables, the correlation coefficient is close to or is zero.

In spectral analysis, the correlation coefficient is mainly used in two ways. One is
to calculate the correlation between the predicted value (xi) of the spectral method
and the measured value (yi) of the reference method for a group of samples. Another
use is to calculate the correlation between the absorbance (xi) of a wavelength and
the concentration to be measured (yi) of a set of samples.

3.6 Covariance and Covariance Matrix

The concept and operation of covariance and covariance matrix are often used in
chemometrics [11]. The two variables x and y are measured for n times, and n groups
of data (xi, yi) are obtained. Then the covariance of the two variables, cov(x,y), is
defined as follows:

cov (x, y) = 1

n − 1

n∑
i=1

(xi − x)(yi − y) (3.20)

If the correlation between variables x and y is poor, the absolute value of the
covariance will be small, but the size of the covariance often depends on the ruler
of the variable. The correlation coefficient is obtained by dividing the covariance by
the product of the standard deviation of x and y.

R = cov(x, y)

sx sy
=

n∑
i=1

(xi − x)(yi − y)

√
n∑

i=1
(xi − x)2 ·

√
n∑

i=1
(yi − y)2

(3.21)

Assume that the data ofm variables and n observations are shown in the Table 3.4.
Variance of variable xj can be calculated as follows:

Table 3.4 The data of m variables and n observations

The number of observations Variables

x1 x2 x3 … xm

1 x11 x12 x13 … x1m

2 x21 x22 x23 … x2m

… … … … … …

n xn1 xn2 xn3 … xnm
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s2j = 1

n − 1
(xi j − x j )

2 i = 1, 2, . . . , n; j = 1, 2, . . . ,m (3.22)

The covariance of variables xj and xk is calculated as follows:

cov
(
x j , xk

) = 1

n − 1

n∑
i=1

(
xi j − x j

)
(xik − xk) i = 1, 2, . . . , n; j, k = 1, 2, . . . ,m

(3.23)

The matrix composed of these variances and covariances is called variance-
covariance matrix, or covariance matrix:

C =

⎡
⎢⎢⎢⎣

s21 cov(1,2) · · · cov(1,m)

cov(2,1) s22 · · · cov(2,m)
...

...
. . .

...

cov(m, 1) cov(m, 2) · · · s2m

⎤
⎥⎥⎥⎦ (3.24)

where cov(x,x) = S2
x , that is, the elements on the diagonal of the matrix are the

variance of the variable. Since cov(j,k) = cov(k,j), the covariance matrix is diagonal
matrix.

The data in the above table is represented by a matrix:

X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...

xn1 xn2 · · · xnm

⎤
⎥⎥⎥⎦ (3.25)

The H matrix is obtained by subtracting the mean value of each column from
the element of each column of X matrix:

⎡
⎢⎢⎢⎣

x11 − x1 x12 − x2 · · · x1m − xm
x21 − x1 x22 − x2 · · · x2m − xm

...
...

. . .
...

xn1 − x1 xn2 − x2 · · · xnm − xm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h11 h12 · · · h1m
h21 h22 · · · h2m
...

...
. . .

...

hn1 hn2 . . . hnm

⎤
⎥⎥⎥⎦ = H (3.26)

The mean of each of the columns in the H matrix is zero. The covariance matrix
C can be obtained by mathematical processing of H matrix:
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cov(X) = 1

n − 1
HTH = 1

n − 1

⎡
⎢⎢⎢⎣

h11 h21 · · · hn1
h12 h22 · · · hn2
...

...
. . .

...

h1m h2m · · · hnm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

h11 h12 · · · h1m
h21 h22 · · · h2m
...

...
. . .

...

hn1 hn2 · · · hnm

⎤
⎥⎥⎥⎦

+ 1

n − 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

h2i1 · · · · · ·
∑

hi1hi2
n∑

i=1
h2i2

...

...
...

...

· · · · · ·
n∑

i=1
h2in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

s21 cov(1,2) · · · cov(1,m)

cov(2,1) s22 · · · cov(2,m)
...

...
. . .

...

cov(m, 1) cov(m, 2) · · · s2m

⎤
⎥⎥⎥⎦ = C (3.27)

Mahalanobis distance commonly used in spectral pattern recognition is a distance
calculation method based on covariance, which is used to represent the similarity
between unknown samples and certain types of samples [12]. Unlike Euclidean
distance, it takes the interrelation of various characteristic variables (e.g., a piece of
information about height will bring information about weight because the two vari-
ables are related) into account, and Mahalanobis distance is scale-invariant, namely,
independent of the scale of measurement. In the spectral analysis, Mahalanobis
distance is often used in the identification of outlier samples, cluster analysis, and
discriminant analysis.

3.7 Multivariable Graph Representation

3.7.1 Spatial Representation of Samples

Spatial mapping of samples is helpful to study the relationship between samples.
Usually, the spectral absorbance of a sample is used as the original characteristic vari-
able to characterize the spatial distribution of a group of samples by two-dimensional
or three-dimensional graphs. Since spectral variables are often with hundreds or
even thousands of dimensions, it is necessary to select or compress and reduce the
dimensionality of spectral variables (such as principal component analysis, PCA)
before drawing. For example, Fig. 3.6 shows the two-dimensional spatial distribu-
tion of 210 cigarette samples of four different brands, which is characterized by the
second-derivative absorbance at 5058 cm−1 and 4903 cm−1 [13].
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Fig. 3.6 Two-dimensional spatial distribution of 210 cigarette samples of four different brands at
5058 cm−1 and 4903 cm−1

Figure 3.7 shows the three-dimensional spatial distribution of Auricularia
auricula from four different producing areas by using PLS to reduce the dimen-
sionality of NIR spectrum. It can be clearly seen from Fig. 3.7 that Auricularia
auricula from different producing areas are grouped into one category, respectively

Fig. 3.7 Three-dimensional
spatial distribution of the
NIR spectra of four kinds of
Auricularia auricula from
different producing areas
after dimensionality
reduction by PLS
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Fig. 3.8 Three-dimensional
spatial distribution of the
NIR spectra by PCA scores
of different brands of instant
noodles

[14]. Figure 3.8 shows a three-dimensional spatial distribution diagram of the classi-
fication of different brands of instant noodles by using NIR spectroscopy combined
with PCA [17].

3.7.2 Box Plot

Box plot, also known as box plot, is used to reflect the central position and dispersion
range of data distribution with the first quartile, median quartile, third quartile, and
1.5 times of the upper and the lower quartile range (IQR) in a set of data as shown in
Fig. 3.9 [15]. Through the box-whisker diagram, we can roughly see whether the data
has symmetry (skewness and tail weight), and judge abnormal samples. By drawing
the box lines of multiple groups of data on the same coordinate, the distribution
difference of each group of data can be clearly displayed [16].

Quartiles use three points to divide a set of data into four equal parts, each
containing 25% of the data. What is commonly referred to as quartile data is the
value at the 25% position and the value at the 75% position, which are, respectively,
referred to as the lower quartile (Q1) and the upper quartile (Q3). When calculating
the quartiles for ungrouped data, you first sort all the data, and then determine the
position of the four quartiles. IQR is defined as follows:

IQR = Q3 − Q1 (3.28)
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Fig. 3.9 The elements of
box plot

Two line segments similar to the median line are drawn at Q3 + 1.5IQR and Q1–
1.5IQR. These two line segments are the cut-off points of outliers, which are called
the inner upper limit and inner lower limit. Points outside the inner limit represent
outliers. Sometimes, two line segments are drawn at Q3 + 3IQR and Q1−3IQR,
and they are called outer upper limit and outer lower limit. The outliers between the
inner limit and the outer limit are mild outliers, while those outside the outer limit
are extreme outliers.

Figure 3.10 shows the deviation box plot of a set of samples of validation set
predicted by PLS and Hierarchical Mixture of Linear Regressions (HMLR) models.
From Fig. 3.10, it can be clearly seen that the HMLR algorithm is superior to the PLS
algorithm [17]. Figure 3.11 is a turn-around time (TAT) box diagram of six analytical
instruments in a laboratory, from which the operation of each instrument in different
periods can be visually seen. It is helpful for the laboratory managers to grasp the
use of the instruments, to take targeted measures to improve the efficiency of the
instruments and enhance the visibility and controllability of devicemanagement [18].

3.7.3 Radar Chart

Radar chart is a widely used method for mapping multivariate data at present, and
the relationship and rule among samples can be studied intuitively by using radar
chart [19]. Suppose a sample data set have m variables, entirely standard drawing of
radar chart is as follows: first, a circle is draw and then divided into m equal parts
with the line from the center of circle to each part. The m lines will be seen as the
coordinate axis. Make appropriate scale for each coordinate axis according to the
value of each variable so that there is a scale on the corresponding coordinate axis
for the value of each variable. For any sample, determine its coordinates on m axes,
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Fig. 3.10 Box plot of prediction errors of the two algorithms

Fig. 3.11 Turn-around time (TAT) box plot of different analytical instruments in the laboratory
over different periods [18]

respectively, point out its coordinates on each coordinate axis, and connect m points
in turn to obtain an m-side shape. In this way, each sample can be represented by m-
side shape.When observing the shape of eachm-side shape, the similarity or inherent
law between the samples can be analyzed. When the sample number is small, all the
sample can be drawn in a circle; when the number of samples is large, am-side shape
can be drawn for each sample for analysis.

As shown in Fig. 3.12, Qin et al. used radar chart for the extraction of the NIR
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Fig. 3.12 PCA-radar chart generated from the spectra of different sample sets

spectra of tobacco leaves. The method firstly conducted PCA for the dimension
reduction of the NIR spectral data, and the radar chart was then employed for the
visual description of the quality stability trends of the products. Two characteris-
tics of amplitude and angle of gravity vector were defined. Then the model of the
quality stability and the abnormal type was established to guarantee the unification
of integrity and fuzziness of the spectra data and achieve quality monitoring and
counterfeit identification of the cigarette products [23].

As shown in Fig. 3.13, radar chart is widely used in aquaphotomics [20–24],

Fig. 3.13 NIR spectral radar chart of water and water vapor [30]
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Fig. 3.14 NIR spectral radar chart of methanol-YPD medium solutions (with different methanol
concentrations) [29]

which can obtain more information about changes in the chemical structure of water
molecules [25–28]. As shown in Fig. 3.14, Li et al. made radar chart according
to the absorbance of different low-content methanol-yeast extract peptone dextrose
(YPD)medium solutions based onwater matrix coordinates (WAMACS) of 12 water
spectral peaks [28, 29].As canbe seen fromFig. 3.14,whenmethanol is added toYPD
medium, the absorbance will still change even if the increase is 0.1%, indicating that
the addition of methanol will disturb the covalent bond and hydrogen bond of water
molecules in the solution, thus changing the spectrum of water. It can be observed
from the radar chart that the band of 7149–6954 cm−1 makes a great contribution to
distinguishing the solution of low concentration methanol-YPD medium. This may
be due to the low methanol content and the presence of a large amount of water in
the medium, which makes the weak hydrogen bond and symmetric O-H stretching
vibration in the solution more abundant. Therefore, this band plays a dominant role
in the water spectrum.
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Chapter 4
Spectral Preprocessing Methods

In addition to the chemical information of the sample itself, the spectrumalso contains
other irrelevant information, such as electrical noise, sample background, and stray
light. Therefore, it is necessary to eliminate this irrelevant information by spec-
tral preprocessing before modeling by chemometrics [1–3]. The commonly used
spectral preprocessingmethods includemean centering, auto-scaling, normalization,
smoothing, derivatives, standard normal variate transformation,multiplicative scatter
correction, Fourier transform, wavelet transform, orthogonal signal correction, and
net analyte signal [4, 5].

4.1 Mean Centering

Mean centering (MC) is the average spectrum that subtracts the sample spectrum
from the calibration set. The average column of the transformed spectral matrix of
calibration set X (number of samples n × number of wavelengths m) is zero. When
spectral analysis models are built by multivariate calibration methods, this method
correlates the change of the spectra rather than the absolute amount of the spectra
with the change of properties or composition to bemeasured. Therefore, before estab-
lishing a spectral quantitative or qualitative model, mean centering is often used to
increase the difference among the spectra of different samples. Thereby the robust-
ness and predictive power of themodel are improved [6].While transforming spectral
data in this way, the same processing for properties or compositional data is often
performed. Mean centering is one of the most commonly used data preprocessing
before establishing quantitative and qualitative models.

Average spectrum of the calibration set sample is first
−
x calculated.

−
xk =

n∑

i=1
xi, k

n
(4.1)
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where n is the number of samples in calibration set, k = 1, 2, …, m, and m is the
number of wavelength points. For unknown sample spectrum x (1×m), the centered
spectrum xcentered by mean centering is given below:

xcentered = x − _
x (4.2)

Figure 4.1 shows the original near-infrared (NIR) spectra of 80 corn samples.
Figure 4.2 displays the spectra preprocessed by mean centering.

Fig. 4.1 Original NIR
spectra of 80 corn samples

Fig. 4.2 NIR spectra of 80
corn samples preprocessed
by mean centering
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4.2 Auto-scaling

Auto-scaling is also known asmean variance, which ismean-centering divided by the
standard deviations of spectral matrix in calibration set. Firstly, the average spectrum
of the samples in calibration set x is calculated. Then the standard deviation spectrum
s is also calculated for the samples in calibration set.

sk =

√
√
√
√
√

n∑

i=1
(xi,k − −

xk)2

n − 1
(4.3)

where n is the number of samples in calibration set, k = 1, 2, …, m, and m is the
number of wavelength points.

The mean centralization is first performed for the unknown spectrum x (1 × m),
and then the variables are scaled by dividing the standard deviation spectrum s to
obtain the auto-scaled spectrum.

xautoscaled = x − _
x

s
(4.4)

Auto-scaled spectra are with a column mean of zero and a variance of 1. Auto-
scaling is particularly useful for modeling low-concentration components because it
gives the same weights to all wavelength variables in the spectra. Thus, auto-scaling
is a commonly used spectral data transformation. Figure 4.3 shows the auto-scaled
NIR spectra of 80 corn samples.

Fig. 4.3 NIR spectra of 80
corn samples preprocessed
by auto-scaling
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Fig. 4.4 NIR spectra of 80
corn samples preprocessed
by normalization

4.3 Normalization

Normalization has many algorithms, such as area normalization, maximum normal-
ization, and average normalization. In spectral analysis, the most commonly used
normalization is vector normalization. For a spectrum x (1 × m), the vector
normalization algorithm is as follows:

xnormalized = x − −
x

√
m∑

k=1
x2k

(4.5)

where
−
x =

m∑

k=1
xk

m , m is the number of wavelength points, k = 1,2, …, m. This is often
used to correct spectral changes caused by small light path differences. Figure 4.4 is
NIR spectra of 80 corn samples preprocessed by normalization.

4.4 Smoothing

The spectral signals obtained by the spectrometer contain both useful information
and random error, i.e., noise. Signal smoothing is one of the most commonly used
de-noising methods. It mainly takes the average of multiple measurements to reduce
the noise and improve the signal-to-noise ratio when the noise contained in the
spectrum is zero mean random white noise. The commonly used signal smoothing
methods are moving average smoothing and Savitzky-Golay convolution smoothing.
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Moreover, Fourier transformation and wavelet transformation can also be used for
spectral de-noising.

4.4.1 Moving Average Smoothing

Themoving average smoothing is shown in Fig. 4.5, it selects a window of smoothing
with a certain width (2w+1), with an odd number of wavelength points in each
window. Then the measured value of k wavelength point is replaced by the central
wavelength point k in the window and the mean measured xk at w before and after
k. At last, k from left to right is moved to complete the smoothing of all points.

xk,smooth = −
x
k

= 1

2w + 1

+w∑

i=−w

xk+i (4.6)

When using the moving average smoothing method, the window of smoothing
width is an important parameter. If the window width is too small, the de-noising
effect is not perfect. If the window width is too large and its mean is calculated, the
useful information is smoothed while smoothing the noise, resulting in the distortion
of the spectral signal (Figs. 4.6 and 4.7).

Fig. 4.5 Schematic diagram of window moving smoothing method
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Fig. 4.6 Smoothing effects
of moving average
smoothing with different
window size

Fig. 4.7 Loss of spectral
information caused by
over-smoothing

4.4.2 Savitzky-Golay Convolution Smoothing

Savitzky-Golay (S-G) convolution smoothing [7] is also known as polynomial
smoothing. The average after smoothing at wavelength k is as follows:

xk,smooth = −
xk = 1

H

+w∑

i=−w

xk+i hi (4.7)

In Eq. 4.7, hi andH are the smoothing factor and the normalization factor, respec-
tively, where H = ∑+w

i=−w hi . The purpose of multiplying each measurement by the
smoothing factor hi is to reduce the effect of smoothing on useful information. hk
can be obtained by using polynomial fit based on the principle of least squares. Table
4.1 shows the cubic polynomial SG smoothing coefficients.

The basic idea of S-G convolution smoothing is similar to moving average
smoothing. The difference between them is that S-G convolution smoothing is poly-
nomials least square fitting of the data in the moving window, which is essentially a
weighted average with more emphasis on the central role of the central point. S-G
convolution smoothing is a widely used de-noising method. The effect of moving
window width (often referred to number of smoothing points) is significantly lower
than the moving average smoothing (Fig. 4.8). Figure 4.9 shows the NIR spectrum
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Table 4.1 Savitzky-Golay smoothing coefficients for cubic polynomial with different moving
window size

Points 25 23 21 19 17 15 13 11 9 7 5

−12 −253

−11 −138 −42

−10 −33 −21 −171

−9 62 −2 −76 −136

−8 147 15 9 −51 −21

−7 222 30 84 24 −6 −78

−6 287 43 149 89 7 −13 −11

−5 343 54 204 144 18 42 0 −36

−4 387 63 249 189 27 87 9 9 −21

−3 422 70 284 224 34 122 16 44 14 −2

−2 447 75 309 249 39 147 21 69 39 3 −3

−1 462 78 324 268 42 162 24 84 54 6 12

0 467 79 329 269 43 167 25 89 59 7 17

1 462 78 324 264 42 162 24 84 54 6 12

2 447 75 309 249 39 147 21 69 39 6 −3

3 422 70 284 224 34 122 16 44 14 −2

4 387 63 249 189 27 87 9 9 −21

5 343 54 204 144 18 42 0 −36

6 287 43 149 89 7 −13 −11

7 222 30 84 24 −6 −78

8 147 15 9 −51 −21

9 62 −2 −76 −136

10 −33 −21 −171

11 −138 −42

12 −253

5175 805 3059 2261 323 1105 143 429 231 21 35

with noise by cubic polynomials with different movingwindowwidths. It can be seen
that the smoothing effect is improved significantly with the number of smoothing
points increasing.

4.4.3 Fourier Transform and Wavelet Transform

The Fourier transform for the spectrum is to decompose the spectrum into the sum
of sine waves with different frequencies. Compared with the useful signal, instru-
ment noise has the characteristics of small amplitudes and high frequencies. There-
fore, high frequencies are deleted. The original spectrum is reconstructed by inverse
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Fig. 4.8 Smoothing effects of quadratic polynomial S-G method with different window sizes

Fig. 4.9 Original and smoothing spectra by S-G smoothing method. From bottom to top are the
noised spectrum, the smoothing spectra by S-G cubic polynomial with 5 point, 11 point, and 23
point, respectively. An artificial shift was added to absorbance for distinguishing different spectra

Fourier transform from low frequencies. Most spectral noise is eliminated and the
spectrum is smoothed by this method.

The basic idea of wavelet transform for de-noising is similar to the Fourier
transform. Wavelet coefficients corresponding to the high-frequency scales obtained
by the wavelet transform are removed, and then the spectrum after de-noising is
reconstructed.

The principles of spectral de-noising of Fourier transform and wavelet transform
are detailed in Sects. 4.11 and 4.12 of this book.
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4.5 Continuum Removed

Continuum removed, also known as envelope removal, is a spectral processing that
effectively enhances the absorption characteristics of interest [8, 9]. It effectively
highlights the absorption and reflection characteristics of the spectral curves and
normalizes the reflectivity between 0 and 1, which facilitates the comparison of char-
acteristic values with other spectral curves, thus the characteristic bands for quan-
titative and qualitative analysis are extracted. The curve connecting the protruding
peak points on the spectral curve point-by-point linear is defined as the “Continu-
ous” or “envelope”. Moreover, the outer angle of the line at the peak point is greater
than 180°. The value on the original spectral curve is divided by the corresponding
value on the envelope, namely, the spectral de-envelope. Intuitively, envelopes are
equivalent to the “shell” of a spectral curve.

Continuum removed is widely used in the field of reflection spectra. For example,
Han et al. [10] screened out the characteristic variables related to the soil organic
matter content and established a calibration model to predict the soil organic matter
content by the hyperspectral reflectance of soil samples to use continuum removed. Li
et al. [11] improved the correlation between the raw canopy spectrumand the nitrogen
content of the leaves by processing the spectrum of wheat leaves by continuum
removed.

Continuum removed has many algorithms, of which Clark et al. are commonly
used to propose shell coefficients [12–14]. The implementation steps are as follows:

(1) All the local maxima on the spectral curve, that is, the protruding envelope
“peak” values are calculated by derivation. Then the maximum is obtained by
comparing all the local maxima.

(2) Taking themaximumpoint as an endpoint of the envelope, the slopes of the lines
connecting between this point and the maximal values in long wave direction
(the direction of the increase in wavelength) are calculated. Then, the point of
the maximum slope as the next endpoint of the envelope, this point is regarded
as the starting point of the cycle until the last point.

(3) The maximum point as an endpoint of the envelope, a similar calculation is
done in the short-wave direction (the direction of the decrease in wavelength).
Then, taking the point with the minimum slope as the next endpoint of the
envelope, this point is regarded as the starting point for cycling until the last
point;

(4) The envelope is formed by connecting all endpoints along the direction of
increasing wavelength. The reflectance of the corresponding band on the enve-
lope is divided by the actual spectral reflectance to obtain the normalized value
of envelope elimination.

Continuum removed can also be calculated by the following equations for the
selected spectral interval:

R
′
j = R j

Rstart + k(λ j − λstart)
(4.8)
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k = Rend − Rstart

λend − λstart
(4.9)

where Rj is the reflectance at wavelength j; Rj
’ is the reflectance after Rj is processed;

λj is the wavelength at j; λstar and λend are the starting and ending wavelengths of the
selected spectral range, respectively; Rstart and Rend are the reflectance at the starting
and endingwavelengths of the selected spectral range, respectively; and k is the slope
between the starting wavelength and the ending wavelength of the spectrum.

4.6 Adaptive Iteratively Reweighted Penalized Least
Squares

Adaptive iteratively reweighted penalized least squares (airPLS) is a stepwise approx-
imation background fitting algorithm [15]. It achieves background deduction by
introducing parameters that adjust the smoothness and fidelity of the curve to obtain
a spectrum with subtracted background. The algorithm consists of two main aspects:
a penalized least squares algorithm for the smoothing of the signals and an adaptive
iteration to convert the penalized process into a penalized least squares algorithm for
the baseline estimation.

(1) Penalized least squares algorithm

If x is the spectral analysis signal, z is the fitted vector, and the number of wavelength
points of them are both m. The accuracy of x and z can be expressed as the sum of
the squared differences of their errors.

F =
m∑

i=1

(xi − zi )2 (4.10)

The roughness of a vector z can be expressed as the sum of the squared differences
of its two adjacent terms:

R =
m∑

i=2

(zi − zi−1)
2 =

m−1∑

i=1

(�zi )2 (4.11)

The balance between fidelity and roughness can be expressed in terms of fidelity
plus a penalty for roughness as follows:

Q = F + λR = ‖x − z‖2 + λ‖Dz‖2 (4.12)
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where λ is an adjustable parameter. The λ is larger, the fitted z is smoother. D
corresponds to the difference matrix, e.g., Dz = �z. By finding the partial derivative
of the vector z and making it equal to 0 (∂Q/∂z = 0), an easily solvable equation for
the linear system can be obtained.

(
I + λDTD

)
z = x (4.13)

The above equation is a smoothingmethod by a penalized least squares algorithm.
A weight vector w of fidelity is introduced to perform baseline calibration by the
penalized least squares algorithm. Then w is placed at the corresponding position of
0 in the peaked segment, so that the fidelity of z with respect to m becomes

F =
m∑

i=1

wi (xi − zi )2 = (x − z)
′
W(x − z) (4.14)

where W is the diagonal matrix of wi on the diagonal. The above equation becomes

(
W + λDTD

)
z = W (4.15)

The above linear equation system is solved to obtain the fitted vector z.

z = (
W + λDTD

)−1
Wx (4.16)

(2) Adaptive iterative reweighting

The adaptive iterative reweighting is similar to weighted least squares and iterative
penalized least squares. However, the weights are calculated by different methods.
Moreover, the smoothing of the fitted baseline is controlled by adding a penalty.
Each step of the adaptive iterative reweighting process involves solving the following
weighted least squares problem:

Qt =
m∑

i=1

wt
i

∣
∣xi − zti

∣
∣2 + λ

m∑

j=2

∣
∣ztj − ztj−1

∣
∣2 (4.17)

where the weight vector w is obtained by the adaptive iterative method, and an initial
value w0 = 1 is given at the beginning. The w for each iteration step can be obtained
as follows after assignment:

wt
i =

⎧
⎨

⎩

0xi ≥ zt−1
i

e
t(xi−zt−1

i )
|d t | xi < zt−1

i

(4.18)
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where the vector dt is the negative part of the difference between the vector x and
the last fitted background zt−1 over the course of t iterations.

The fitted value zt−1 is the baseline value from the previous iteration. The ith point
is considered to be part of the peak when its value is greater than the selected baseline
value. Therefore, its weight is set to zero to ignore its role in the next iteration of
the fit. Iterations and reweights are performed continuously so as to eliminate the
points within peak positions automatically and gradually and background points are
retained in the weight vector w.

The termination conditions for the iterations are usually:

|dt | < 0.001 × |x| (4.19)

The airPLS algorithm has been widely used to eliminate baseline drift in Raman
spectra caused by fluorescence and it has become a common baseline correc-
tion method. Excellent results have been obtained by this method for the baseline
correction of NIR, LIBS and other spectra [16, 17].

Other methods are used for spectral baseline correction include polynomial fitting
(ModPoly) [18], iterative polynomial smoothing (IPSA) [19], adaptive minimal-
extreme baseline fitting (AdaptMinmax) [20], asymmetric weighted penalized least
squares (AsLS) [21], asymmetric reweighted penalized least squares (ArPLS) [22],
and locally symmetric reweighted penalized least squares (LSRPLS) [23]. The above
baseline correction methods are single raw spectrum input and single corrected
output (SISO). Another type of baseline correction method is multiple raw spec-
tral inputs and single corrected output (MISO). Yao et al. [24] have proposed
the BRACK method based on independent component analysis (ICA) and mixing
entropy criterion.

4.7 Derivative

First derivative (1st Der) and second derivative (2ndDer) are commonly used prepro-
cessing methods for baseline correction and resolution enhancement in spectral anal-
ysis. There are generally two methods for spectral derivation: direct differences and
S-G derivative methods.

4.7.1 Norris Method

The direct difference is the simplest derivative method for discrete spectra. For a
discrete spectrum xk , first and second derivative spectra at wavelength k with gap
size g are calculated as follows, respectively.
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Fig. 4.10 Schematic
diagram of Norris derivative
method (first derivative with
7-point smoothing and
3-point difference width)

First derivative:

xk,1st = xk+g − xk−g

g
(4.20)

Second derivative:

xk,2nd = xk+g − 2xk + xk−g

g2
(4.21)

To eliminate the noise caused by the spectral transformation, the original spectrum
is often smoothed before derivative. This method was first proposed by Norris et al.,
so it is often called the Norris derivative method [25]. As shown in Fig. 4.10, the
Norris derivative of 7-point smoothing and 3-point gap size are performed on the
spectrum. The spectrum is denoised by themoving average smoothingwith awindow
width of 7 points, and then by the direct difference with a gap size of 3 points.

For spectrawith high resolution andmanywavelength sampling points, the deriva-
tive spectrum obtained by direct difference is not much different from the actual.
However, the derivative obtained by this method has large errors for the spectra of
sparse wavelength sampling points. Then the S-G convolution derivative method can
be used.

4.7.2 Savitzky-Golay Convolution for Derivative Calculation

S-G convolution smoothing can also be used to obtain spectral derivatives. The
derivative coefficients which are similar to smooth coefficients can be calculated
by least squares. Tables 4.2 and 4.3 show first and second derivative coefficients
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Table 4.2 S-G first derivative coefficients with cubic polynomials and different moving window
sizes

Point 25 23 21 19 17 15 13 11 9 7 5

−12 30,866

−11 8602 3938

−10 −8525 815 84,075

−9 −20,982 −1518 10,032 6936

−8 −29,236 −3140 −43,284 68 748

−7 −33,754 −4130 −78,176 −4648 −98 12,922

−6 −35,003 −4567 −96,947 −7481 −643 −4121 1,133

−5 −33,450 −4530 −101,900 −8700 −930 −14,150 −660 300

−4 −29,562 −4098 −95,338 −8574 −1002 −18,334 −1578 −294 86

−3 −23,806 −3350 −79,564 −7372 −902 −17,842 −1796 −532 −142 22

−2 −16,649 −2365 −56,881 −5363 −673 −13,843 −1489 −503 −193 −67 1

−1 −8558 −1222 −29,592 −2816 −358 −7506 −832 −296 −126 −58 −8

0 0 0 0 0 0 0 0 0 0 0 0

1 8558 1222 29,592 2816 358 7506 832 296 126 58 8

2 16,649 2365 56,881 5363 673 13,843 1489 503 193 67 −1

3 23,806 3350 79,564 7372 902 17,842 1796 532 142 −22

4 29,562 4098 95,338 8574 1002 18,334 1578 294 −86

5 33,450 4530 101,900 8700 930 14,150 660 −300

6 35,003 4567 96,947 7481 643 4121 −1133

7 33,754 4130 78,176 4648 98 −12,922

8 29,236 3140 43,284 −68 −748

9 20,982 1518 −10,032 −6936

10 8525 −815 −84,075

11 −8602 −3938

12 −30,866

1,776,060 197,340 3,634,092 255,816 23,256 334,152 24,024 5148 1188 252 12

obtained by S-G with cubic polynomials, respectively.
The derivative spectra can effectively eliminate the interference from baseline

and other backgrounds to distinguish overlapping peaks, and improve resolution and
sensitivity. However, it also introduces noise and reduces the signal-to-noise ratio.
In the derivation, the selection of difference width (often known as derivative or
differential points) is quite important. If the difference width is too small, the noise
is large, which affects the prediction ability of the built analytical model. If the
difference width is too large, the spectrum becomes excessive smoothing. Then a lot
of details in the spectrum are lost. The optimal value can be selected by plotting the
difference width with the root mean squared error of calibration (RMSEC) or root
mean square error of prediction (RMSEP). Moreover, it is generally considered that
the difference width should not exceed 1.5 times the half-peak width of the curve



4.7 Derivative 125

Table 4.3 S-G second derivative coefficients with cubic polynomials and different movingwindow
sizes

Points 25 23 21 19 17 15 13 11 9 7 5

−12 92

−11 69 77

−10 48 56 190

−9 29 37 133 51

−8 12 20 82 34 40

−7 −3 5 37 19 25 91

−6 −16 −8 −2 6 12 52 22

−5 −27 −19 −35 −5 1 19 11 15

−4 −36 −28 −62 −14 −8 −8 2 6 28

−3 −43 −35 −83 −21 −15 −29 −5 −1 7 5

−2 −48 −40 −98 −26 −20 −44 −10 −6 −8 0 2

−1 −51 −43 −107 −29 −23 −53 −13 −9 −17 −3 −1

0 −52 −44 −110 −30 −24 −56 −14 −10 −20 −4 −2

1 −51 −43 −107 −29 −23 −53 −13 −9 −17 −3 −1

2 −48 −40 −98 −26 −20 −44 −10 −6 −8 0 2

3 −43 −35 −83 −21 −15 −29 −5 −1 7 5

4 −36 −28 −62 −14 −8 −8 2 6 28

5 −27 −19 −35 −5 1 19 11 15

6 −16 −8 −2 6 12 52 22

7 −3 5 37 19 25 91

8 12 20 82 34 40

9 29 37 133 51

10 48 56 190

11 69 77

26,910 17,710 33,649 6783 3876 6188 1001 429 462 42 7

peak. Figures 4.11 and 4.12 are spectra of 80 corn NIR spectra preprocessed by the
S-G first and second derivatives, respectively.

4.7.3 Wavelet Transform for Derivative Calculation

Wavelet transform is used in the calculation of the spectral derivatives by the special
properties of the wavelet basis function [26, 27]. It realized mainly by continuous
wavelet transform and discrete wavelet transform.
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Fig. 4.11 S-G first derivative NIR spectra of 80 corn samples with 11-point cubic polynomial

Fig. 4.12 S-G second derivative NIR spectra of 80 corn samples with 21-point cubic polynomial

(1) Continuous wavelet transform

The derivative of the spectrum can be approximated by continuous wavelet trans-
form with specific wavelet functions. For example, Haar wavelet is a step function,
which is convolution with the spectrum and becomes the first derivative. Then the
second derivative can be obtained by continuing convolution. Since thewavelet trans-
form has the function of smoothing and filtering noise, this method can solve the
noise problem when the higher-order derivative is calculated. Figure 4.13 shows the
second derivative spectral obtained by the sym2 wavelet function (scale 12) and the
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Fig. 4.13 Second derivative spectra by CWT with sym2 and 12 scale and SG with 13 points

commonly used S-G second derivative (13 points). It can be seen that the character-
istics of the second derivative spectral obtained by the wavelet transform are more
significant and the signal intensity is stronger. Figure 4.14 shows the NIR spectra of

Fig. 4.14 NIR spectra of the ethanol-water mixtures and their fourth derivative spectra obtained
by WT
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the ethanol-water mixtures and their fourth derivative spectra obtained by wavelet
transform [28].

(2) Discrete wavelet transform

Alexander et al. used the Daubechies group wavelet function (expressed by D2m) to
calculate the derivative of analytical signal [29]. The first derivative of the spectral
vector x can be expressed as

X(1) = C1,D2m − C1,D2m̃ · · ·m �= m̃ (4.22)

where m is a positive integer in the range of 1 to 10. C1,D2m and C1,D2m̃ are the
approximation signals of x obtained by D2m and D2m̃ discrete wavelet transform,
respectively.

The higher-order derivative of the spectrum can be calculated by taking the lower-
order as an input to discrete wavelet transform. The principle of wavelet transform
to decompose the spectrum is detailed in Sect. 4.12 of this book.

The wavelet basis functions used for first derivative calculation are Daubechies
1, bior 1.1, bior 1.3, Gaussian 1. The wavelet basis functions for second derivative
calculation are Daubechies 1, Symlets 2, Coiflet 1, bior 2.2, bior 2.6, Gaussian 1,
and Hat Mexican. The wavelet basis functions used for third derivative calculation
have Daubechies 3, Symlets 3, bior 3.1, bior 3.5, and Gaussian 3. The wavelet basis
functions used for fourth derivative calculation are Daubechies 4, Symlets 4, bior
4.4, Coiflet 2, and Gaussian 4.

In order to improve the signal-to-noise ratio, the derivative methods proposed
by Li et al. based on singular perturbation and Taylor series can also be used for
high-order derivative spectrum calculation [30].

4.7.4 Fractional Derivative

Traditional spectral derivatives use integer orders (commonly used are first and
second). However, it has been reported that the optimal results of spectral deriva-
tives are not all at integer order derivatives, but between zero and first derivatives or
between first and second derivatives [31]. Compared with integer order derivatives,
fractional order derivatives can more accurately reveal the changes of spectral details
with the change of the order. Therefore, they can better characterize the details of
the spectrum and balance the contradiction between spectral resolution and signal
intensity.

Fractional derivative has a variety of algorithms, of which fractional order S-G
derivative method (FOSGD) is more commonly used. The specific algorithm can be
found in the relevant literature [32].
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4.8 Standard Normal Variate and De-Trending

The standard normal variate transformation (SNV) is primarily used to eliminate
the effects of solid particle size, surface scattering, and optical path changes on the
NIR diffuse reflection spectra [33]. The influence of granularity size on the diffuse
spectra is shown in Fig. 4.15 and particle size on the NIR spectra of wheat grains and
wheat flour in Fig. 4.16. SNV has the same formula as the normalization algorithm.
However, the normalizations algorithm processes spectral columns of the spectral
matrix while SNV processes spectral rows of the spectral matrix.

SNV transforms the spectrum as follows:

xSNV = x − x
√

m∑

k=1
(xk−x)2

(m−1)

(4.23)

where x =
m∑

k=1
xk

m , m is the number of wavelength points, k = 1, 2, …, m.
In order to improve the correction effect of the SNV method, Bi et al. firstly

segmented the spectrum and then performed local SNV for each interval, which has
better result than SNV performed on the full spectrum [34]. Based on the idea of
physical factors such as the particle size,Rabatel et al. proposed theweighted standard
normal variate transformation, namely, variable sorting for normalization (VSN),
giving different weights to different wavelength variables before performing SNV
[35, 36]. In addition, other methods used to improve SNV correction effect include

Fig. 4.15 Effect of the granularity size on the diffuse reflectance spectra
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Fig. 4.16 Effects of granularity on NIR spectra for wheat grains and wheat flour

probabilistic quotient normallization (PQN), robust normal variate transformation
(RNV), etc. [37].

De-trending is commonly used for spectra after SNV to eliminate baseline drift of
diffuse reflectance spectra. The algorithm is very direct. Firstly, the spectrum x and
wavelength λ are fitted by a polynomial to form a trend line d, then d is subtracted
from x. The algorithm can be used in conjunction with SNV or alone. Reflection
spectral units are usually converted into log1/R before using SNV. Figures 4.17 and
4.18 show the NIR spectra of 80 corn samples preprocessed by SNV and SNV +
de-trending, respectively.
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Fig. 4.17 NIR spectra of 80 corn samples preprocessed by SNV

Fig. 4.18 NIR spectra of 80 corn samples preprocessed by SNV and quadratic polynomial de-
trending algorithms
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4.9 Multiplicative Scatter Correction

The purpose of multiplicative scatter correction (MSC) is basically the same as SNV,
which is mainly to eliminate the effect of scattering from uneven particle distribution
and particle size. It is widely used in solid diffuse reflection and slurry transmis-
sion (reflection) spectroscopy [38]. The MSC algorithm has the same properties as
the standardization, which is based on the spectral matrix of a set of samples for
calculation.

For a spectrum x (1 × m), the specific algorithm of MSC is as follows.

(1) The average spectrum x (i.e., the “ideal spectrum”) of the calibration set
samples is calculated.

(2) Linear regression between x and x is performed

x = b0 + xb (4.24)

where b0 and b are found by the least squares.

(3) MSC transforms the spectrum as follows:

xMSC = (x − b0)
/
b (4.25)

The average spectrum of sample in the calibration sets is required for MSC. That
is, b0 and b of the spectrum are first obtained, thenMSC transformation is performed.
The MSC algorithm assumes that the scattering is independent of the wavelength
and the concentration variation of the sample. Thus, the effect may be bad when
processing sample spectra with wide variation of component properties. It is proved
that MSC is linearly correlated with SNV. Furthermore, the processing results of the
two methods should also be similar [39]. Figure 4.19 shows the NIR spectra of 80
corns samples after MSC. It can be seen that the effect of MSC is similar to that of
SNV.

Based on theMSC algorithm, many improvedMSCmethods have been presented
[40–43], such as piecewise MSC (PMSC), loopy MSC (LMSC), extended MSC
(EMSC), inverse signal correction (ISC), extended ISC (EISC), etc.

PMSC is a one-dimensional linear regression of xi against the mean spectrum xi
in the wavelength range of the moving windowwithw. The slope bi and the intercept
ai of each moving window segment are found in turn by the least squares method.

LMSC replaces the mean spectrum of original spectra by MSC transformation
of the spectra in calibration set x, and then performs repeated MSC processing
repeatedly.

EMSC is a polynomial regression of x with and the average spectrum x, that is,

x = b0x + b1 + x2b2 (4.26)
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Fig. 4.19 NIR spectra of 80 corn samples preprocessed by MSC

Or a polynomial regression of x with the spectrum x and the wavelength vector
λ is performed, that is,

x = b0 + xb1 + λd1 + λ2d2 (4.27)

xMSC = (x − b0 − λd1 − λ2d2)/b1 (4.28)

ISC is the substitutionof x andx in the one-dimensional linear regression equation,
that is, x = b0 + xb1. EISC is a polynomial regression between the x and the mean
spectrum x and the wavelength vector λ, that is,

−
x = b0 + xb1 + λd1 + λ2d2 (4.29)

Many improved algorithms based on EMSC are presented, such as spectral
interference subtraction (SIS), eliminating internal repetitive differences by fusing
orthogonal projections, etc. [44–46].

In order to eliminate the influence of out-of-bounds samples and high leverage
point samples on the calibration results, Silalahi et al. proposed a robust and
generalized MSC method [47].
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4.10 Vector Angle Conversion

Vector angle conversion (VAC) is used to eliminate multiplicative interference in
the spectrum due to scattering and refraction. A spectrum can be considered as
a vector in the data space, where the vector mode (length) represents the measured
intensity. The vector direction is determined by the composition of the system, which
is expressed as the angle in space to the determined coordinates. The multiplicative
factor b causes the intensity to change, which is the vector mode and is changed,
the system composition is not changed, so the vector direction remains unchanged,
that is, the vector angle does not change with the mode. Therefore, the multiplicative
factor b can be eliminated by vector angle conversion [48].

As shown in Fig. 4.20, the spectrum S of the mixture consists of two components
(spectrum a and spectrum b), that is, vector a and vector b together form vector S.
When a and b are reduced in equal proportion, S and S′ do not change in direction.
However, it is only when the ratio of a and b changes that their combined vector
changes direction. Furthermore, the vector angle and the system composition ratio
have a functional relationship, which is independent of the vector mode.

A fixed vector a in space exists at an angle θ with a vector S that varies with
composition and can be calculated by the dot product:

cos θ = a · S
|a| |S| (4.30)

If S is affected by multiplicative factor b and becomes S′, S′ = bS, substituting
into the formula for calculating the included angle can be obtained as

a · S′

|a| |S′| = a · bS
|a| |bS| = a · S

|a| |S| = cos θ (4.31)

The above formula illustrates that the vector angle is not affected by themultiplica-
tive factor b. Moreover, it can be proved that there is a linear relationship between

Fig. 4.20 Schematic
diagram of the relationship
between the composition of
the sample system and the
vector direction
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vector angle and component concentration. Therefore, a quantitative calibration
model can be established by using the vector angle instead of the spectrum.

The basic steps of the VAC method [49] are shown as follows:

(1) An appropriate reference vector a is selected to calculate the angle between
the direction measurement vector S and it. The reference vector a should be
orthogonal to the background, but not orthogonal or similar to the measured
component. To obtain the reference vector, the spectral matrix of calibra-
tion set is usually processed by singular value decomposition (SVD) or prin-
cipal component analysis (PCA). Its loading for first principal component can
approximately meet this requirement.

(2) The measurement signal S and the reference vector a are divided into m inter-
vals, respectively (or by using a moving window). The angle cosine between
each interval vector pair is calculated to form the angle cosine vector [cosθ1
cosθ2 …cosθm]. The spectra of all samples in the calibration set are converted
into the corresponding included angle cosine vectors, which constitutes the
cosine vector matrix.

The quantitative model between the cosine vector matrix and the concentration
vector is established by multiple linear regression or PLS, etc. For the spectrum x of
the sample to be measured, it is first divided into m intervals, then the angle cosine
vector is calculated with the corresponding interval of the reference vector a. Finally,
the concentration value is predicted by the established calibration model.

In addition to quantitative analysis, the spectra multiplicatively corrected by VAC
can also be used for discriminative analysis [50].

4.11 Fourier Transform

Fourier Transform (FT) plays an important role in signal processing technique, which
enables the conversion between frequency domain functions and time domain func-
tions as shown in Fig. 4.21 [51]. In a spectrometer using the Michael interference

Fig. 4.21 Schematic diagram of FT converting time domain function to frequency domain function
for two sine functions with periods of 1 s and 1/3 s in the time domain (a), the sum of the two sine
functions in the time domain (b) and their frequency domain result obtained by FT (c)
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principle, the interferogram (time domain spectrum) can be converted into a spectrum
(frequency domain spectrum) by the Fourier transform.

The FT of a spectrum is the decomposition of the spectrum into a superposition
sum of many sinusoidal waves of different frequencies. By this method, spectral
de-noising, data compression, and information extraction can be realized.

For m discrete spectral data points x0, x1,…„ xm−1 at equal wavelength intervals,
the discrete Fourier transform (DFT) is

xk,FT = 1

m

m−1∑

j=0

x j exp

(−2iπk j

m

)

k = 0, 1, ...,m − 1 i = √−1 (4.32)

The inverse Fourier transform (IFT) is as follows:

x j =
m−1∑

k=0

xk exp

(−2iπ j

m

)

j = 0, 1, ...,m − 1 i = √−1 (4.33)

The imaginary part of the original data xj is zero, and its Fourier transform
frequency spectrum xk, FT is composed of real and imaginary parts xk, FT=Rk+iLk,
where

Rk = 1

m

m−1∑

j=0

x j cos(
2πk j

m
) (4.34)

Lk = − 1

m

m−1∑

j=1

x j sin(
2πk j

m
) (4.35)

The power spectrum (PS) of FT is

PSk = R2
k + L2

k (4.36)

Instrument noise is smaller in amplitude and higher in frequency compared to
the useful information signal. Therefore, higher frequency signals are deleted to
eliminate most spectral noise and make the signal smoother. By the low-frequency
signals, the original spectral data is reconstructed by inverse Fourier transform to
achieve noise removal (as shown in Fig. 4.22).

Derivative and convolution can also be performed on the raw spectral data based
on FT to improve the resolution [53]. Furthermore, the Fourier coefficients or power
spectra obtained by Fourier transform are directly involved in building quantitative
calibration models or pattern recognition models as feature variables, which can
greatly reduce the computing time without sacrificing accuracy.
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Fig. 4.22 Example of signal de-noising by FT for original noised signal [52] (a), frequency signal
by FT (b), reconstructed signal after intercepting frequency less than 10 Hz (c), reconstructed signal
after intercepting frequency less than 20 Hz (d)

4.12 Wavelet Transform

The signals are decomposed into a series of accumulation of sine waves of different
frequencies byFT. Since sinewaves are not limited in time, FT can better delineate the
frequency characteristics of the signal. However, it has no resolution in the space-time
domain and cannot be used for local analysis. The basic idea of wavelet transform
(WT) is similar to the FT, which is to decompose the signal into a superposition of
a series of wavelet functions, all of which are obtained by translating and scaling
a mother wavelet function. Wavelet analysis has positive localization properties in
both the time and frequency domains. It can replace high-frequency components
with gradually finer time or spatial domain substitution steps size, so that it can
focus on arbitrary details of the object. Therefore, WT is known as a “mathematical
microscope” for analyzing signals, and has a wide range of applications in signal
processing of analytical chemistry.

The essence of wavelet transform is to project the signal x(t) onto the wavelet
�a, b(t), which is the inner product of x(t) and �a, b(t), to obtain wavelet coefficients
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that are easy to process. The wavelet coefficients are processed according to the
need of analysis, then the processed signal is obtained by inverse transform of the
processed wavelet coefficients.

Wavelets are function family that satisfy certain conditions generated by �(t)
stretching and translation �a,b(t):

�a,b(t) = 1√|a|�
[
t − b

a

]

, a, b ∈ R, a �= 0 (4.37)

where a is used to control the dilation, which called the scale parameter; b is used
to control the position, called the translation parameter, which becomes the wavelet
base or wavelet mother function; and �(t) must satisfy two conditions.

(1) Small: �(t) rapidly converges to zero or rapidly decays to zero.
(2) Wave:

+∞∫

−∞
�(t) = 0 (4.38)

In the wavelet transform of the analyzed signal, the discrete wavelet transform
(DWT) is generally used.

Discrete wavelet definition: a = am0 (a0 > 1,m ∈ Z),b = nb0am0 (b0 ∈ R, n ∈
Z) Therefore,

�m,n(t) = a
− m

2
0 �(a−m

0 t − nb0) (4.39)

Generally a0=2, b0=1, which called dyadic wavelet. For k discrete spectral data
points x1, x2, …, xk at equal wavelength intervals, and its discrete dyadic wavelet
transform is

WTx (m, n) ≤ xi , 2
− m

2 �(2−mti − n) ≥
k∑

i=1

2− m
2 �(2−mti − n)xi (4.40)

The above formula illustrates that the wavelet transform is actually a projection of
the discrete signal onto thewavelet basis function, with differentm and n representing
different resolutions (scales) and different time domains (translations). Different
m and n can adjust wavelet function in different local time domains and different
resolutions.

Compared with the basic functions used in FT (only trigonometric functions),
the wavelet functions used in WT are not unique, that is, �(t) has diversity, the
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same problem is analyzed with different wavelet functions sometimes the results
are very different. Therefore, the selection of wavelet function is a difficulty in the
practical application of WT. At present, the best wavelet function is usually selected
by comparing the results of experience or continuous trial.

In the numerous wavelet basis function family, some wavelet functions have been
proved effective in practice. The most commonly used in spectral analysis mainly
include Haar, Daubechies (dbN), Coiflet, and Symlets.

�m, n(t) generally does not have an analytic expression. In order to realize finite
DWT. Mallat proposed multi-resolution signal decomposition (MRSD) or Pyramid
is often used in numerical calculation, which is also known as Mallat algorithm.

Discrete representation of �m, n (t) as a pair of low-pass filters H = {hp} and
high-pass filters G = {gp}, (p∈Z) with {hp*} and {gp*} being the corresponding
mirror filters. For k discrete spectral data points x1, x2,…, xk at first-classwavelength
intervals, denoted asC(p), the orthogonal discrete dyadic wavelet decomposition can
be written as

C j (i) =
∑

p∈Z
h∗(p − 2i)C j−1(p) (4.41)

D j (i) =
∑

p∈Z
g∗(p − 2i)Cj−1(p) (4.42)

where j= 0, 1,…, J, J is the highest decomposition order. Due to the orthogonality
of decomposition, the original signal C0 can be reconstructed by Cj and D j:

C j−1(i) =
∑

p∈Z
h(i − 2p)C j (p) +

∑

p∈Z
g(i − 2p)C j−1(p) (4.43)

The relationship between the scale parameter a and j is a = 2 j. The resolution is
defined as 1/a. As j increases, the scale binary expansion of the decomposition and the
detail resolution decreases. C j and D j are called discrete approximation and discrete
detail at 2-j resolution, respectively. That is, Cj denotes the low-frequency component
with frequencies below 2−j, while D j denotes the high-frequency component with
frequencies between 2−j and 2−j+1.

The low-pass filter H= {hp} and the high-pass filter G= {gp} have the following
relationship:

gp = (−1)ph p−1 and
∑

p∈Z
hp = √

2,
∑

p∈Z
gp = 0 (4.44)

The wavelet basis (scale function and wavelet function) can be generated by the
given filter coefficients. The approximation and detail coefficients of the wavelet can
be derived directly from the filter coefficients. It is not necessary to know exactly the
wavelet basis function, which greatly simplifies the calculation.
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For a spectrum x (1×k), the above DWT based on Mallat algorithm can be
expressed in a matrix as

xWT = WxT (4.45)

where xWT is called the wavelet coefficient and W is a matrix of order k × k
containing the approximation and detail coefficients associated with the specified

wavelet, that is, W =
[
G

H

]

. Its function is to perform two related convolution

calculations on x using a low-pass filter H and a high-pass filter G, respectively.
Figure 4.23 shows a schematic diagram of the cubic wavelet transform decom-

position of a spectral vector using the Mallat algorithm. The dimension of the final
wavelet coefficients obtained is the same as that of the original spectrum. The compu-
tational examples ofwavelet decomposition and reconstruction are given in Figs. 4.24
and 4.25, respectively (Fig. 4.26).

Figure 4.26 is the diffused reflectance NIR spectrum of polypropylene powder.
Figure 4.27 shows the high-frequency discrete details cd2 (a), cd4 (b) and low-
frequency approximation ca9 (c) obtained by using db4 mother wavelet function to
decompose the NIR spectrum in Fig. 4.26 nine times. It can be clearly seen that
the low-frequency approximation signal ca9 contains mainly the strong background
information of the spectrum. The detail signal cd2 is mainly high-frequency noise.

Fig. 4.23 Schematic diagram three-time decomposition of the original spectrum by MRSD
algorithm
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Fig. 4.24 Calculation example of wavelet decomposition of original signal using filter coefficient
matrix [54]

The cd4 clearly distinguishes the effective feature information in the original spec-
trum. Simlar to FT, WT can be used in spectral analysis for spectral de-noising,
spectral data compression, extraction of feature information, etc. [55].

The general steps of WT for smoothing and noise filtering are as follows:

(1) The original spectrum is decomposed by WT to obtain high-frequency and
low-frequency wavelet coefficients.

(2) The wavelet coefficients which are considered to represent noise are removed
by threshold (called noise filtering), or the wavelet coefficients which are
considered to high-frequency (low-scale) elements are removed by threshold
(called smoothing).

(3) The filtered spectral signal is obtained by inverse transformation of the
processed one. The threshold usually has two forms: hard threshold, where
all wavelet coefficients below the threshold are set to zero; Soft thresholding,
where wavelet coefficients smaller than the threshold are set to zero and the
threshold is subtracted from the absolute value of wavelet coefficients larger
than the threshold. A number of reported estimationmethods for thresholds are
presented, such as simple soft and hard threshold, sure method, visu method,
hybrid method and minmax method, etc.
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Fig. 4.25 Calculation example of reconstructingwavelet coefficients by filter coefficients transpose
matrix [54]

Fig. 4.26 Diffused reflectance NIR spectrum of polypropylene powder
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Fig. 4.27 Detail and approximation signals obtained by Db4 wavelet decomposition for NIR spec-
trum of polypropylene sample, approximation signal ca9 (a), high-frequency signal cd2 (b) and
cd4 (c)
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The basic principle of data compression by WT is similar to de-noising and
generally takes the following steps:

(1) WT is applied to the original data to obtain wavelet coefficients.
(2) The threshold method is used to remove coefficients from the wavelet coef-

ficients that are sufficiently small to be considered as not representing useful
information and the processed coefficients are saved. When needed, the orig-
inal data is obtained by inverting the transformation. The threshold is gener-
ally determined by empirical values or obtained by trial. For example, WT can
compress the IR spectral database and reduce the storage space of the spectral
library.

WT can also be used to extract feature information.Wavelet coefficients reflecting
different information canbe obtained after the decomposition of the original spectrum
by WT. The wavelet coefficients related to the components to be measured can be
determined by a priori knowledge or trialmethods,which can be directly used to build
multivariate quantitative or qualitative calibration models for the feature variables.

In addition, the WT can be used for the calculation of spectral derivatives, as
shown in Sect. 4.7.3 of this book.

4.13 Image Moment Methods

Moment invariants are one of the important features of image description and are
mainly used to represent geometric features of image. Because of its powerful multi-
resolution capability and inherent invariance, even if the image undergoes changes
such as rotation, scaling, and translation, the calculated moments remain basically
unchanged. Tchebichef and Krawtchouk are two commonly used discrete orthog-
onal moments with good performance. Image moments have been widely used for
image processing in fields such as computer vision. In recent years, image moments
have been applied in quantitative or qualitative analysis of substances by spectro-
scopic techniques because of their advantages such as multi-resolution and inherent
invariance [56–58].

Since Tchebichef moment is an orthogonal moment with discrete orthogonal
polynomial as the basis function, it does not include any numerical approximation
and does not require coordinate space transformation. It has no information redun-
dancy in the representation of image information, thus has better performance. By
Tchebichef image moment, the characteristic information of the target can be effec-
tively extracted from spectra to build a model and satisfactory results can be obtained
without any complicated preprocessing. Furthermore, the interference problems such
as overlapping peaks, noise, and scattering can be solved by the multi-resolution
capability of image moments [59, 60].

For a spectrum f (x) with N number of wavelength points, the Tchebichef curve
moment (Tn) at order n is defined as
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Tn = 1

ρ(n, N )

N−1∑

x=0

tn(x) f (x) (n = 0, 1, 2, . . . N − 1) (4.46)

ρ(n, N ) = N

2n + 1

(
N 2 − 1

)(
N 2 − 22

) · · · (N 2 − n2
)

(4.47)

where tn(x) is a discrete polynomial of Tchebichef curve moment at order n, ρ(n,
N) is the square of the parametric number, and f (x) is the absorbance at wavelength
point x.

The recurrence relationship is as follows:

ρ(n, N ) = 2n − 1

2n + 1

(
N 2 − n2

)
ρ(n − 1, N ) (4.48)

(n + 1)tn+1(x) − (2n + 1)(2x − N + 1)tn(x) + n
(
N 2 − n2

)
tn−1(x) = 0 (4.49)

where tn(x) and ρ(n,N) are normalized to make the results more stable and with less
fluctuation range as follows:

t̃n(x) = tn(x)

β2(n, N )
(4.50)

ρ̃(n, N ) = ρ(n, N )

β2(n, N )
(4.51)

where β(n, N) is the scale factor and is a function of N, usually defined as β(n, N)
= N2.

The standardized Tchebichef curve moment (Tn) is defined as

Tn = 1

ρ̃(n, N )

N−1∑

x=0

t̃n(x) f (x) (n = 0, 1, 2, . . . N − 1) (4.52)

ρ̃(n, N ) = N

2n + 1

(

1 − 1

N 2

)(

1 − 22

N 2

)

· · ·
(

1 − n2

N 2

)

(4.53)

The recurrence relation for the standardized Tchebichef curve moment is

t̃0(x) = 1 (4.54)

t̃1(x) = (2x − N + 1)/
N (4.55)

nt̃n(x) − (2n − 1)t̃1(x)t̃n−1(x) + (n − 1)

(

1 − (n − 1)2

N 2

)

t̃n−2(x) = 0 (4.56)
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ρ̃(0, N ) = N (4.57)

ρ̃(n, N ) = 2n − 1

2n + 1

(

1 − n2

N 2

)

ρ̃(n − 1, N ) (4.58)

The reconstructed spectrum is calculated by the following equation:

f̂ (x) =
nN∑

n=0

Tn t̃n(x) (4.59)

where nN is the maximum order of the Tchebichef curve moment during the
reconstruction, nN ≤ N.

The reconstruction error ε can be selected by reconstructing the error nN defined
as

ε =
N−1∑

x=0

∣
∣
∣ f (x) − f̂ (x)

∣
∣
∣ (4.60)

Liu et al. applied Tchebichef image moment to the quantitative analysis of
mixtures by IR spectroscopy and solved the problem of inaccurate quantitative anal-
ysis results due to spectral overlap and shift in IR spectroscopy [56]. Pan Zhao
et al. combined Krawtchouk image moment with fluorescence spectra and gener-
alized regression neural networks to establish a quantitative model for predicting
PAH content, which obtain accurate analytical results [57]. Xue et al. used Zernike
moment to extract features fromgrayscale images of 3Dfluorescence spectra and then
established a quantitative model for humic acids, which obtained more reliable and
accurate results compared with N-way partial least squares and alternating trilinear
decomposition methods [58]. Yin et al. introduced a modeling method combining
Tchebichef image moment and PLS in the quantitative analysis of terahertz spectra
to predict the content of zinc oxide in rubber additive mixtures, which improved the
accuracy and stability of the analysis [59]. Li et al. usedTchebichef imagemoment for
UV-Vis spectra to establish a prediction of skin whitening agents in cosmetics. Zhu
et al. used Tchebichef image moments to process NIR spectra of naphtha and estab-
lished calibration models for predicting the composition of detailed families, whose
prediction results were superior to conventional multivariate calibration methods
[61].
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4.14 External Parameter Orthogonalization

External parameter orthogonalization (EPO) is a spectral preprocessing method
based on principal component analysis (PCA) [62]. Assuming that the external inter-
ference variables and concentration variables in the spectrum are independent, the
purpose of EPO is to project the spectrum into a space orthogonal to the interference
variables (e.g., sample temperature and water content in the sample, etc.) to achieve
the role of interference filtering. The spectral matrix is decomposed as

X = XP + XQ + E (4.61)

where P and Q are the projection operator matrices on the concentration and
interference subspaces, respectively, and E is the residual matrix.

The main steps of the EPO are described below by the moisture content in the
sample as the interfering variable [63, 64].

Xdry is spectral matrix (n×m) without water in calibration set, and XM1,XM2,…,
XMk are the spectral matrices of water-containing samples corresponding to the Xdry

calibration set samples with k different water contents. Each matrix size is also n ×
m, where n is the number of samples and m is the number of wavelength variables.

(1) The average spectral vectors of Xdry, XM1, XM2,…, XMk matrices are
calculated, respectively, xdry, xM1, xM2, …,xMk .

(2) The difference spectra of xM1, xM2,…,xMk and xdry are calculated, respec-
tively. The difference spectral matrix D with dimension k × m is formed.

(3) The singular value decomposition is performed on the covariance matrix of
matrix D

[U,S,V] = svd
(
DTD

)
(4.62)

(4) The dimension f of the EPO is set. The submatrix Vf of the f factors in front
of matrix V is taken.

(5) The Q matrix is calculated as follows:

Q = V fVT
f (4.63)

(6) The projection matrix P is calculated with I as the unit matrix

P = I − Q (4.64)

For a spectrum xM of an arbitrary water content sample, the corrected anhydrous
spectrum xEPO is obtained as

xEPO = xMP (4.65)
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Fig. 4.28 Diffused reflectance NIR spectra of soil samples with different water contents

Fig. 4.29 Spectra preprocessed by EPO method

The EPO is mainly used to eliminate the influence of temperature and water
content in the sample on the spectra [65, 66]. Figure 4.28 shows the diffuse reflectance
NIR spectra of soils with different water contents. Figure 4.29 shows the results after
the EPO. It can be seen that this method can eliminate the influence of moisture on
the spectra very well.

4.15 Generalized Least Squares Weighting

Thegeneralized least squaresweighting (GLSW) is similar to theEPO,which focuses
on removing the effect of external interference (e.g., temperature) on the spectrum
by constructing a filter [67–69].

The main steps of the GLSW are described below with the sample temperature
as the interference variable.

(1) XT1 and XT2 are the spectral matrix of the calibration set samples at two
temperatures, T1 and T2, respectively. Firstly, mean centralization is performed
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on XT1 and XT2, respectively. Then the difference spectral matrix Xd of the
two matrices is calculated.

(2) The covariance matrix C is calculated as follows:

C = XT
dXd (4.66)

(3) C is decomposed to obtain the left eigenvector V and the diagonal matrix S of
singular values:

C = VS2VT (4.67)

(4) The matrix D is calculated as

D =
√
S2

α
+ I (4.68)

where I is the unit matrix and α is the weight parameter, which is generally
between 0.0001 and 1. The smaller α is, the stronger the filtering ability is.

(5) The filtering matrix P is calculated as

P = VD−1VT (4.69)

For the spectrum xT obtained at one temperature, the spectrum xGLSW at the
reference temperature obtained after its correction is

xGLSW = xTP (4.70)

4.16 Loading Space Standardization

The loading space standardization (LSS) method focuses on eliminating the effect
of sample temperature on the spectra [70, 71]. XT1, XT2, …, XTK represent the
spectral matrix obtained for n calibration set samples at temperatures T1, T2, …, TK ,
respectively. The main steps of the LSS are as follows:

(1) XT1, XT2, …, XTk are combined to obtain the spectral matrix:

Xcomb = [XT1XT2 . . .XTk] (4.71)

(2) Singular value decomposition of Xcomb is performed:

[U, S, V ] = svd(Xcomb)
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(3) The principal component f is set, and T is calculated by taking the Uf and Sf
of the first f factors:

T = U f S f (4.72)

(4) The loading matrix is calculated for XTk :

VT
Tk = T+XTk, k = 1, 2, . . . , K (4.73)

(5) Relational model between the corresponding elements of the loading matrix
VTk and temperature is established as follows:

vTk,i, j = ai, j + bi, jTk + ci, jT
2
k (4.74)

where vTk,i,j is the (i, j)th element of VTk .

After the model parameters a i,j,b i,j , and c i,j are obtained, the spectrum xtest
firstly obtained at temperature t, then xtest can be normalized to the spectrum xstand
corresponding to any reference temperature tref according to the following equation:

vt,i, j = ai, j + bi, j t + ci, j t
2, vtref,i, j = ai, j + bi, j tref + ci, j t

2
ref (4.75)

xstand = xtest
(
VT

t

) + (V tref − V t)
T + xtest (4.76)

where vt,i,j is the (i,j)th element of V t and vtref,i,j is the (i,j)th element of V tref.

4.17 Oblique Projection

Oblique projection is a mathematical method for extracting the spectra of pure
compounds from the spectra of complex mixtures [72, 73]. The oblique projec-
tion divides the spectral data space X into two parts, one part is the vector subspace
S of the component to be measured and the other part is the adjacent subspace H
of the sample which is composed of other components besides the component to be
measured. The oblique projection is tomodel the spectral signal of the pure substance,
i.e., the oblique projection operator, which separates the spectral signal S of the pure
substance to be measured from the mixture spectra X.

The separation model, i.e., the oblique projection operator, is established for the
component vector S and the background signal H in the known modeling sample.
The oblique projection operator ES|H is

ES|H = S
(
StPHS

)−1
StPH (4.77)
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where PH = I − H
(
H tH

)−1
H t (4.78)

The pure signal c of the component to be measured in the mixed sample spectrum
x can be separated by the oblique projection:

c = x ES|H (4.79)

The pure signal c of the measured component is separated by the oblique projec-
tion. The ratio of this signal maximum cmax to the pure spectral signal smax of the
measured component is used as the pure signal intensity of the measured compo-
nent I. The intensity I is proportional to the concentration of the component to be
measured in the mixture which can establish a standard working curve [74, 75].

4.18 Orthogonal Signal Correction

The spectral preprocessing methods mentioned above only process the spectral data
without considering the influence of the concentration matrix. Thus, some useful
chemical information for establishment of the calibration model may be lost or noise
removing may be incomplete, which affects the quality of the model during the
preprocessing. Orthogonal signal correction (OSC) and net analysis signal (NAS)
are both spectral preprocessing methods based on the participation of concentration
matrix. The basic principle of these kinds of preprocessing methods is to remove
the information in the spectral matrix irrelevant to the components by orthogonal
projection before establishing the quantitative calibration model, in order to simplify
the model and improve the prediction ability of the model.

OSC has three ways to realize: orthogonal signal correction (OSC) [76], direct
orthogonal signal correction (DOSC) [77], and direct orthogonal (DO) [78, 79],
where OSC has a variety of algorithms.

Generally, tthe first several principle components of PCR or PLS are usually not
the matrix information related to concentration, but unrelated to concentration when
the spectral matrix has a small relation to the concentration matrix or the background
noise of the spectral matrix is too large. Therefore, before the quantitative calibration
model is established, the unrelated spectral signals to the concentration matrix are
filtered by orthogonal mathematical methods. It can reduce the number of principle
components of themodel and further improve the prediction ability. In addition, OSC
can be used to solve problems such as model transfer in multivariate calibration, as
well as outlier detection. The followingmainly describes several common algorithms
for OSC.
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4.18.1 Wold Algorithm

Wold et al. [76] first proposed the idea of OSC, the specific algorithm is as follows:

(1) The original spectralmatrixXn×k and concentration vectorYn×1 in calibration
set are mean centering centralized or standardization.

(2) The first main component score vector t of X is calculated that is spectral
matrix.

(3) Orthogonal treatment of t to Y:

tnew =
(
I − Y

(
Y T Y

)−1
Y T

)
t (4.80)

(4) The weight vector w is calculated, w is the regression coefficient obtained by
PLS or PCR between X and tnew.

(5) The new t is calculated as

t = Xw (4.81)

(6) Determine whether there is ||t-told||/||t||<10–6, if met on to the next step,
otherwise return to the step (3).

(7) The loading vector calculated as follows:

PT = t T X/
t T tnew (4.82)

(8) The orthogonal signal in X is subtracted as given below:

X = X − tpT (4.83)

(9) Return to step (2) until the cycle has completed the required number of main
factors f (f is the number of main factors to be orthogonal).

(10) For the predicted vector xnew, the corrected spectrum can be obtained from
the weight w and loading p:

t = xTnew − w (4.84)

xTOSC = xTnew − tpT (4.85)

4.18.2 Fearn Algorithm

Fearn proposed a simple and fast OSC algorithm based on the Wold algorithm [80].
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(1) The original calibration set spectral matrix X (n × k) and concentration of
matrix Y (n × 1) are to be mean centering, centralization, or standardization.

(2) M is calculated (I-unit matrix) as follows:

M = I − XTY
(
YTXXTY

)−1
YTX (4.86)

(3) Z is calculated as

Z = XM

(4) The singular value of Z is decomposed as follows:

[U, S, V ] = svd
(
ZT

)
(4.87)

(5) The previous number of f characteristic values to be orthogonal processing g
and the corresponding loading matrix C are obtained as follows:

g = diag
(
S f

)
(4.88)

C = V f (4.89)

(6) The weight vector wi is calculated as:

wi = MXTC i/gTi , i = 1, 2, . . . , f (4.90)

(7) The score vector is calculated as follows:

ti = Cig
T
i (4.91)

(8) The loading vector is calculated as follows:

pi = Xt ti
/
t T
i
ti (4.92)

(9) The orthogonal signal in X is subtracted as given below:

XOSC = X −
f∑

i=1

ti p
T
i (4.93)

(10) For the predicted vector xnew, the corrected spectrum is determined by the
weight w and loading p:

t = xTneww (4.94)
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xTOSC = xTnew − tpT (4.95)

Based on the Fearn algorithm, the partial orthogonal signal correction (POSC)
[81] was proposed to solve the local characteristics of orthogonal unrelated. The
results of two sets of NIR spectral data show that their performance is slightly better
than OSC, but at the same time it brings the problem of selecting window size. The
comparison between theWold algorithmand the Fearn algorithm shows that theWold
has a mathematical basis for t and p, but not for w, while the Fearn has a theoretical
basis for w but not for t and p. Li combined the two methods and proposed a new
OSC algorithm [82].

4.18.3 Direct Orthogonal Signal Correction Algorithm

Different from the Wold algorithm, direct orthogonal signal correction (DOSC)
algorithm which is proposed by Westerhuis [77] firstly orthogonalizes the spectral
matrix X and concentration matrix Y. Then principal components analysis (PCA) is
performed on the orthogonalized X to obtain T and P. The specific algorithm is as
follows:

(1) The original spectral matrix X (n × k) and concentration matrix Y (n × 1) in
calibration set are mean centering, centralized, or standardized.

(2) M is calculated as follows:

M = XT
((

XT
)−1

)T
Y (4.96)

(3) Z is calculated as follows:

Z = X − MM−1X (4.97)

(4) PCA is performed on ZZt, and the first f principal component score matrix Tf

needed for orthogonal processing is selected.
(5) The weight matrix Wf is calculated and the broad inverse X-1 is obtained by

partial least squares regression (PLS).

W f = X−1T f (4.98)

(6) The new Tf is calculated as follows:

T f = XW f (4.99)

(7) The loading matrix Pf is calculated as follows:
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Pf = XT T f
/
T T
f T f

(4.100)

(8) XDOSC is calculated as follows:

XDOSC = X − T f P
T
f (4.101)

(9) For the predicted vector xnew, the corrected spectrum is determined by the
weight W and loading P.

T = xTnewW (4.102)

xTOSC = xTnew − T Pt (4.103)

4.18.4 Direct Orthogonal Algorithm

The difference between the direct orthogonal (DO) algorithm and theWold algorithm
is that Wold algorithm uses inverse partial least squares regression to filter out the
signals unrelated to the concentration matrix, while DO algorithm filters out the
signals unrelated to the concentration matrix directly by orthogonal spectral matrix
[78, 79]. Therefore, the DO algorithm is simpler and faster than the OSC algorithm.
The two algorithms have some differences in the results of the actual preprocessing
of the spectrum. The DO operation steps are as follows:

(1) The original calibration set spectral matrix X (n × k) and concentration of
matrix Y (n × 1) are to be mean centering, centralization, or standardization.

(2) M is calculated as follows:

M = XTY
(
Y T Y

)−1
(4.104)

(3) Z is calculated as follows:

Z = X − YMT (4.105)

(4) PCA is carried out on Z, and the score matrix Tf and loading matrix Pf , which
need orthogonal processing, are taken as the first f .

(5) The new Tf is calculated as

T f = XP (4.106)

(6) XOD is calculated as

XOD = X − T f PT
f (4.107)
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(7) For the predicted vector xnew, the corrected spectrum is determined by the
loading P

T = xnewP (4.108)

XT
OD = xTnew − TPT (4.109)

4.18.5 Application of Orthogonal Signal Correction
Algorithm

When using the OSC algorithm to preprocess the spectrum, the following two prob-
lems should be paid attention to. (1) The selection of principal components (PCs) for
spectral orthogonalization. 1–5 PCs are generally selected. However, the final deter-
mination of the number of PCs depends on the prediction results of unknown samples.
Therefore, it can be selected by plotting the standard error of prediction (SEP) of
the validation set with the number of PCs. (2) The influence of concentration matrix
accuracy on spectral orthogonal results. The accuracy of the concentration reference
matrix is of great importance to spectral orthogonal processing. The measurement
results of the reference method are not accurate, some information related to the
concentration matrix is filtered out when the spectrum is orthogonal processed with
the data, part of the information related to the concentration matrix is filtered out,
while the irrelevant signals are retained, thus making the prediction ability of the
calibration model worse. Therefore, in the use of orthogonal spectral preprocessing
method, it is important to ensure the accuracy of the concentration reference data.

OSC algorithm is proposed to solve the problem of calibration transfer for NIR
analysis [83]. Subsequently, theOSC algorithmwas used as a comparisonmethod for
almost all calibration transfer problems [84, 85]. Geladi et al. [86] compared several
calibration transfer methods (FIR, WT, PDS, and S-G smoothing). The prediction
of lake water pH analysis model is established by the NIR spectrum of sediments
at the bottom of the lake to transfer between different instruments, to prove that
the results of OSC preprocessing method are perfect. The OSC method used by
Blanco et al. [87] effectively eliminated the differences between the two types of
NIR spectral data (online and laboratory solid drugs) and obtained better calibration
and prediction results than first derivative, SNC and MSC preprocessing methods.

The individual PLS method can eliminate nonlinear and other irrelevant variables
to a certain extent in the calibration process. Therefore, in most cases, the OSC
algorithm does not significantly improve the predictive ability of the model, nor
does it substantially simplify the number of principal factors used by the model (the
sum of the number of OSC orthogonal main factors and the number of OSC-PLS
main factors are basically the same as the number of main factors used in the use
of PLS alone) [88]. Bertran et al. [89] tried to use the OSC algorithm to improve
the NIR spectral prediction ability for low-concentration components. Although the
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result was not ideal, the OSC algorithm can explain the spectral features well and
intuitively. Trygg et al. [90–92] also incorporated OSC into the PLS regression steps
and proposed a number of new multivariate calibration methods.

Zhang et al. [93] research results showed that OSC for PLS modeling cannot
effectively improve the model prediction ability due to the existence of overfitting.
Therefore, they combined the modeling of OSC and MLR to obtain better results
than the PLS model.

4.19 Net Analyte Signal

Net analyte signal (NAS) [94–96] is also a preprocessing algorithm involving concen-
tration matrix, which was first proposed by Lorber [97]. Its basic idea is basically
the same as OSC, which is to remove information irrelevant to the components in
the spectral matrix by orthogonal projection. The specific algorithm of NAS is as
follows:

(1) The original calibration set spectral matrixX (n× k) and concentration matrix
Y (n × 1) are to be mean centering, centralization, or standardization.

(2) Z that is the part of X that is orthogonal with Y is calculated as follows:

Z = (I − YYT/
(
YTY

)
)X (4.110)

where I is a n × n unit matrix.
(3) PCA is carried out on Z, and the first f loading matrices P = Pf that need

orthogonal processing are taken.
(4) The orthogonal projection matrix R is calculated (I-unit matrix, k×k) as

follows:

R = I − P f PT
f (4.111)

(5) The processed Xnas by NAS is calculated as follows:

Xnas = XR (4.112)

(6) The predicted vector xnas is calculated as follows:

xnas = xnewR (4.113)

The spectralmatrix of the calibration set afterNASprocessing spectral is generally
established by CLS, PLS, or PCR. In addition, NAS is used to calculate figure of
merit of multivariate calibration models, such as sensitivity, selectivity, detection
limits, and confidence intervals, as well as to detect outlier and select wavelengths
[98–101].
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Boschetti et al. [102] usedNAS/CLS to establish a calibrationmodel formeasuring
the content of two additives in rubber by the NIR spectroscopy, with results compa-
rable to PLS and PCR used separately. Hector et al. [103] compared the differ-
ences between NAS and OSC algorithms, and established models with OSC/CLS,
OSC/PLS, NAS/CLS, and NAS/PLS, respectively; however, the prediction ability
of NAS and OSC models was not significantly improved. Berger et al. [104–106]
have proposed a new multivariate calibration method based on NAS-Mixed Linear
Analysis (HLA). Xu et al. [107] also proposed a calibration method based on NAS
that does not require the selection of the best number of factors. Faber et al. [108]
used NAS to evaluate the effects of spectral preprocessing methods MSC, first-order
derivatives, and second-order derivatives on the predictive ability of NIR calibration
models.

In the spectral analysis field, in addition to OSC andNAS algorithms, interference
elimination algorithms (IIR) [109] and orthogonal algorithms which proposed by
Ferre et al. are all the preprocessing methods involving concentration matrix [110].
The IIR method is mainly used to solve the problem of measuring low-concentration
substances by NIR or IR spectroscopy.

4.20 Optical Path-Length Estimation and Correction

Optical path-length estimation and correction (OPLEC) is an algorithm that combines
spectral correction with regression [111–113]. The method first uses the calibration
sample set spectral matrix and the corresponding concentration vector to estimate
the light scattering multiplicative effect parameters caused by the difference phys-
ical properties of each sample in the calibration sample set. Then “double calibration
strategy” was used to eliminate the spectral scattering multiplicative effect of the
unknown sample to be measured. This method can effectively separate the multi-
plicative effect caused by the difference of physical properties of the sample from
the spectral contribution caused by the change of chemical component content.

The influence of solid particle size or solid content in turbid liquids on the sample
spectrum can be expressed by the following model:

x = b
g∑

i=1

ci si + d + e (4.114)

where x is the spectrum; ci and si are the concentration of component and the pure
spectrum of the ith component, respectively; d is the deviation of the model; e is the
measurement error of the spectrum; and b is the change of light transmission of light
in the sample due to change in the physical properties of the sample, resulting in a
multiplicative effect. b varies from sample due to different physical properties of the
sample. One of the main ideas of the OPLEC is to estimate the multiplicative effect
b of each corrected sample based on the spectral data of the corrected sample set.
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The OPLEC estimates that the multiplicative effect b is also based on the PCA.
When the calibration set spectral matrix X (n × m) and concentration vector y (n
× 1), n is the number of calibration set samples and m is the number of spectral
wavelength variables, the main steps of the OPLEC method are as follows:

(1) SVD decomposition of spectral matrix X:

[U, S, V ] = svd(X) (4.115)

(2) The principal component number g was set (g is abstract active chemical group
fraction in the sample), the previous number of g factor Ug is taken.

(3) After deduction, it can be deduced that the multiplicative effect vector b of
the calibration set samples can be obtained by solving the following constraint
minimization problem:

min
b

f (b) = 1

2
bT

((
I −UgU

T
g

) + diag
(y/

w
)(
I −UgU

T
g

)
diag

(y/
w

))
b

(4.116)

the constraint is −b ≤ −1.
In Eq. 4.116, diag(y/w) is y/w’s diagonal matrix and w is the weight

parameter, which can be set to the maximum value in concentration vector y.
The multiplicative effect vector b in the upper formula can be solved by the

quadratic programming.
(4) The following two calibration models are established:

diag(b)y = α11 + Xβ1 (4.117)

b = α21 + Xβ2 (4.118)

where 1 is the vector of element 1, diag(b) is the diagonal matrix, and its
diagonal element is the corresponding element of vector b.

The parameters of the two calibration models, α1, β1, α2, and β2, are available
by PLS.

For the spectral xun of the sample to be tested, the multiplicative effect can be
eliminated by the ratio of the predicted values of the two corrected models, thus
predicting the concentration value of the sample to be tested yun.

yun = α11 + xβ1

α21 + xβ2
(4.119)

Surface-enhanced Raman scattering (SERS) has the characteristics of high sensi-
tivity, strong spectral characteristics, and fast detection. However, the SERS signal
intensity of complex system samples depends not only on the concentration of the
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substance to be tested in the sample, but also is related to the physical properties of
the SERS substrate, such as the shape, particle size, and aggregation of nanoparti-
cles. The reproducibility and stability of common SERS substrates are poor, which
made the accuracy of SERS quantitative analysis results not meet ideal require-
ments. Based on OPLEC and combined with the internal standard method, Hu and
Jin et al. proposed a series of multiplicative effect models for SERS (MEMSERS)
for surface-enhanced Raman spectroscopic quantitative analysis, which could effec-
tively eliminate the effect of changes in the inhomogeneity physical properties of
SERS substrates on the accuracy of quantitative analysis results [114–116].

4.21 Two-Dimensional Correlation Spectroscopy

Strictly speaking, two-dimensional correlation spectroscopy (2DCOS) is not a
preprocessing method, but a combination of spectral experimental and data
processing method.

In 1986, Noda [117] firstly proposed an experimental scheme to obtain 2DCOS,
which dynamically altered the absorption spectrum of the sample by acting on the
sample system in a certain form of perturbation (initially a low-frequency distur-
bance of sine waveforms). Then a mathematical correlation analysis is performed on
time-varying spectrum to generate a two-dimensional correlation infrared spectrum.
Subsequently, in 1993, Noda proposed the concept of a generalized 2DCOS. The
external perturbation is extended from the fixed form of sinusoidal waveforms to
any form that can cause changes in spectral signal, such as temperature, concentra-
tion, pressure, sample composition, reaction time, magnetic field, etc. Furthermore,
2DCOS is extended from IR spectroscopy to NIR, Raman, fluorescence, electron
spin resonance spectrum, and other technical fields [118].

The change in the regional molecular environment induced by perturbation can
be represented by the corresponding change of time in various spectra. The instan-
taneous fluctuation of this spectrum is often referred to as the dynamic spectrum of
the system. In the IR spectrum, typical changes in the observed dynamic spectrum
include changes in absorption intensity, displacement of absorption peaks changes
in directional absorption (dichromatic effect), and so on. Different types of interfer-
ence can cause different responses in the system, which is making spectral changes
different. 2DCOS can be obtained by some simple mathematical processing of these
dynamic spectra, mainly cross-correlation analysis.

Assuming that the external disturbance acts on the sample system to be studied,
a series of dynamic spectra x (v, t) is obtained between the maximum (Tmax) and
minimum (Tmin) of the external disturbance variable, where v is the spectral coordi-
nate (e.g., wavenumber, wavelength, displacement, etc.), and the external disturbance
variable t can be a variable such as temperature, pressure, or concentration.

First, the dynamic spectrum is transformed from time domain to frequency domain
spectrum by FT.
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X1(ω) =
+∞∫

−∞
x(v1, t) e−iω tdt = XRe

1 (ω) + iXIm
1 (ω) (4.120)

where XRe
1 (ω) and XIm

1 (ω) are the real and imaginary parts of x (v1, t) after the
transformation, respectively, and ω represents independent frequency components
varying with time. Similarly, the conjugate function of the dynamic spectral Fourier
transformation is

X2(ω) =
+∞∫

−∞
x(v2, t) e+iω tdt = XRe

2 (ω) − iXIm
2 (ω) (4.121)

Mathematical cross-correlation analysis of a pair of dynamic spectral signals
transformed by Fourier measured at different spectral variables v1 and v2 results in
two-dimensional correlation intensity.

X(v1, v2) = 1

π(Tmax − Tmin)

+∞∫

0

X1(ω)X2(ω)dω = ϕ(v1, v2) + iψ(v1, v2)

(4.122)

where ϕ(v1, v2) and ψ(v1, v2) are the real and imaginary parts, respectively. They
correspond to the synchronization and asynchronous correlation spectral intensity of
dynamic spectral changes.

In the actual calculation, the Hilbert transformation matrix method is used [118].
For the dynamic spectral matrix X (n×m) obtained by n experimental conditions,m
is the number ofwavelength point of the spectrum, and its synchronization correlation
spectrum can be calculated as follows:

ϕ(i, j) = 1

n − 1

n∑

k=1

xk,i xk, j (4.123)

where xk,i is the absorbance at the ith wavelength in the spectrum obtained by the
kth experimental condition, i, j = 1,…,m. It can also be expressed as a matrix:

ϕ = 1

n − 1
XTX (4.124)

The asynchronous correlation spectra are calculated as follows:

ψ = 1

n − 1
XTHX (4.125)
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where H is the Hilbert transformation matrix (n × n), the elements

hi, j = 1

π( j − i)
, (i �= j), hi, j = 0, (i = j), i, j = 1, . . . , n (4.126)

2DCOS can be visualized by three-dimensional or two-dimensional contour map,
which is convenient for analyzing two-dimensional information intuitively. In a
contour plot of a 2DCOS, the z-axis value is represented by contour in the x–y-
plane. The 2DCOS is a flexible and effective spectral analysis technique, which
emphasizes the subtle characteristics of spectral changes caused by external distur-
bances, improves the spectral resolution, and also can analyze the interaction between
molecules.

Two-dimensional infrared (2D IR) correlation spectroscopy is a widely used
analytical method, which has been successfully applied in polymer, protein, liquid
crystal materials, biology, and other research fields. China has edited a book enti-
tled “Atlas of Two-dimensional Correlation Infrared Spectroscopy for Traditional
Chinese Medicine Identification”, which can be used to distinguish different levels
of complex traditional Chinese medicine by 2D IR correlation spectroscopy. 2DCOS
has alsomademany research achievements in NIR spectroscopic analysis [119, 120].
For example, Wu et al. [121] studied the hydrogen bond interaction between amino
groups in polyamide and polyurethane, revealing the existence of different hydrogen
bond states in the sample.Ozaki et al. [122] demonstrated that two-dimensional corre-
lation NIR spectroscopy has its unique advantages in studying the two-dimensional
structure of proteins. Liu et al. [123] studied the molecular structure and stability of
ascorbic acid through two-dimensional correlation NIR spectroscopy, and identified
the authenticity of traditional Chinese medicines. Barton et al. [124] used 2DCOS
to analyze the differences between NIR spectrometers. Sasic et al. [125] extended
the traditional wavelength-wavelength 2DCOS to the sample-sample 2DCOS and
analyzed theNIR spectrumof temperature-sensitive oleic acid andmilkwith different
protein content, which obtained effective quantitative and qualitative information.
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Chapter 5
Wavelength Selection Methods

In the method of multivariate calibration in combination with spectra, the tradi-
tional view is that the multivariate calibration method (such as partial least squares,
PLS) has strong anti-interference ability and can participate in the establishment of
multivariate calibration model using the full spectrum. With the further research and
application of PLS and other methods, it is possible to obtain better quantitative cali-
bration models by selecting characteristic wavelengths or wavelength intervals with
specific methods. Wavelength (variable) selection can simplify the model, improve
the operation efficiency of themodel, and strengthen the interpretability of themodel.
More importantly, when uncorrelated or nonlinear variables are eliminated, the cali-
bration model with high prediction ability and good robustness can be obtained
[1–3]. Therefore, the selection of wavelengths has become one of the key steps in the
process of establishing calibration model, and has also become a research hotspot in
the field of chemometrics and spectral analysis [4, 5].

In 2012, Mehmood et al. reviewed the variable selection algorithm based on PLS,
and classified the algorithm as shown in Fig. 5.1 [6]. According to the classifica-
tion of variable selection methods in machine learning, they are divided into three
categories: filter methods, wrapper methods, and embedded methods. In the filter
method, the variables are evaluated independently without considering the depen-
dence or synergy betweenvariables. The commonly usedmethods include correlation
coefficient method and analysis of variance (ANOVA) method. The wrapper method
takes the correlation between variables into account and selects the combination with
the best performance by evaluating the influence of the combination effect of vari-
ables on the model performance. The commonly used methods include interval PLS
(iPLS) method and genetic algorithm (GA). The embedded method selects variables
while establishing the model. The most commonly used strategy is to restrict the
complexity of the model by adding regular terms, such as least absolute shrinkage
and selection operator (Lasso)method, and the selection of variables in random forest
(RF) also belongs to the embedded method. In addition, according to the continuous
features of NIR spectroscopy, wavelength interval selection (WIS) and wavelength
point selection (WPS) are often used to classify variable selection methods for NIR
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Fig. 5.1 Schematic diagram of PLS-based variable selection process, including filter methods,
wrapper methods, and embedding methods [6]

spectral data [4]. WIS methods regard a number of continuous wavelengths or a
wavelength band as a unit. Whereas WPS methods consider each wavelength point
as a unit (i.e., a variable) when conducting variable selection, resulting in that the
selected variables are discrete. Moreover, some classifications of variable selection
methods are also based on selection process and final output [4].

In 2019, Yun et al. thoroughly reviewed the variable selection algorithms in anal-
ysis of NIR spectral data. Four factors, including initialization of variables, modeling
method, evaluation metric, and selection strategy, were used to generalize variable
selection methods (Fig. 5.2). Initialization of variables considers the number of the
input of variables in the first step. Some methods take all variables into account for
initialization,while samplingmethods such asMonteCarlo (MC) sampling [7],Boot-
strap sampling [8], and binary matrix sampling (BMS) [9] are often used to generate
subsets of variables. Modeling method factor is to select a modeling method to build
the relationship between the selected variables and the property of interest. The
prediction performance of built model with selected variables is assessed based on an
evaluation metric. Finally, a selection strategy is used to determine the optimal vari-
able subset including filter-based, extreme value, sequential, exhaustive, intelligent
optimization algorithm-based (IOA-based), and model population analysis-based
(MPA-based) searches.

5.1 Correlation Coefficient and Analysis of Variance
Method

Correlation coefficient method is to calculate the correlation between the corre-
sponding absorbance vector x of each wavelength in the spectral matrix of cali-
bration set and the concentration vector y of the component to be measured in the
concentration matrix. Then a wavelength-correlation coefficient R diagram or the
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Fig. 5.2 Classification of variable selection methods based on four factors including initialization
of variables, modeling method, evaluation metric, and selection strategy

determination coefficient R2 diagram is drawn, from which the greater the corre-
sponding absolute value of correlation coefficient (or determination coefficient), the
more information the wavelength has. Therefore, the wavelengths whose correla-
tion coefficients are greater than the threshold value can be selected to participate in
building themodel based on the given threshold value of known chemical knowledge.
The correlation coefficient R is calculated by the following formula:

R =

n∑

i=1
(xi − −

x)(yi − −
y)

√
n∑

i=1
(xi − −

x)2
n∑

i=1
(yi − −

y)2

(5.1)

−
x =

(
n∑

i=1

xi

)

/n (5.2)

−
y =

(
n∑

i=1

yi

)

/n (5.3)

where n is the number of samples in the calibration set.
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Since the correlation coefficient method is based on linear statistical method, the
results selected by this method are often unreliable when the sample distribution of
nonlinear correlation and calibration set is not uniform.

If the mathematical operation data between the wavelength (such as the difference
between wavelengths or the ratio between wavelengths) has a linear relationship
with the concentration value, then the wavelength can be selected through the two-
dimensional graph of the correlation coefficient between the difference or the ratio
of wavelengths and the concentration value (Fig. 5.3) [10, 11].

The method of ANOVA is to obtain the wavelengths-standard deviation graph
through the ANOVA of the spectral matrix in the calibration set at various wave-
lengths. The larger the standard deviation is, the more significant the spectral change
is. Similar to the correlation coefficient method, a threshold value is given to select
the wavelength band. Since ANOVA is not used to optimize the selection of wave-
length for the component to be measured, it is seldom used in quantitative models
and more used in qualitative models.

Fig. 5.3 Two-dimensional diagram of correlation coefficient between the difference or the ratio of
wavelengths and the concentration value (D740nm and D522nm pointed by the arrow are selected
variables) [10]
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5.2 Simple-To-Use Interactive Self-modeling Mixture
Analysis Method

Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) is used to
distinguish the pure component spectrum from the mixture spectral array method.
One of the key steps is to identify the variable (pure wavelength) of the pure compo-
nent, and the principle of selection is to maximize the variance and be uncorrelated
[12, 13].

Let the spectral matrix X (n × m), where n is the number of samples and m is the
number of wavelength points. The steps of SIMPLISMA algorithm are as follows:

(1) Select the first variable and calculate the purity value pi,1:

pi,1 = σ i

(μi + α)
(5.4)

where σi is the standard deviation of the ith wavelength, μi is the mean value of the
ith wavelength, α is the compensation term used as the correction factor of the low
absorption intensity (noise level) variable, and i = 1, 2, …, m.

(2) Select the jth variable (j ≥ 2). First, the correlation matrix C is calculated as
follows:

C = XuXT
u/n (5.5)

where Xu is the spectral matrix after row area normalization. Correlation weight
coefficient ωi, j is calculated as follows:

ωi, j =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ci,i ci,p1 · · · ci,p j−1
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cp j−1,i · · · · · · cp j−1,p j−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(5.6)

where j represents the jth variable to be selected, pj−1 represents the (j−1)th variable
has been selected, and p1 represents the first variable has been selected. When the
jth variable is highly correlated with the selected (j-1)th variable, the value of ωi, j is
close to zero; otherwise, the value of ωi, j is large. The purity value of the wavelength
is generally calculated as follows:

pi, j = σi

(μi + α)
ωi, j (5.7)

wherein ωi,1 of the selected first variable is calculated as follows:
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ωi,1 = μ2
i + σ 2

i

μ2
i + (σi + α)2

(5.8)

The wavelength with the largest purity value is successively selected as the jth
variable until the number of variables required to complete the selection is completed.

The spectral matrix S (r × m) of the pure compound in the spectral matrix X (n
× m) of the mixture can be identified by using the SIMPLISMA algorithm, where
r is the pure group fraction in the mixture, and the matrix decomposition formula is
as follows:

X = CS (5.9)

whereC is the concentration matrix of the pure compound (n× r), the absorbance of
the pure wavelength determined by the analysis is used as the value of the Cmatrix,
and the number of wavelengths selected is the pure group fraction r in the mixture
(the value of r can be determined by SVD decomposition), then calculate as follows:

S = (
CTC

)−1
CTXT (5.10)

The actual concentration of the pure compound is calculated after the normaliza-
tion of the S matrix. Due to the strong characteristic peak information of Raman
spectra, SIMPLISMA algorithm has a good application effect in Raman spec-
troscopy, especially surface-enhanced Raman scattering (SERS), for detection of
pesticide residues in fruits and vegetables [14, 15]. Qin et al. used spatial migra-
tion Raman spectroscopy combined with SIMPLISMA algorithm to obtain the
visual distribution map of lycopene in tomatoes with different maturity [16]. Khod-
abakhshian et al. used SIMPLISMA algorithm to extract the spectra of pure tannic
acid components from pomegranate fruit samples, and then conducted spectral infor-
mation divergence (SID) to distinguish four different maturity stages of pomegranate
fruits, including immature stage (S1), semi-ripe stage (S2), semi-ripe stage (S3), and
fully mature stage (S4) [17].

5.3 Successive Projections Algorithm

The successive projections algorithm (SPA) is a forward loop selection method that
starts at one wavelength and calculates its projections upon unchosen wavelengths
in each loop [18, 19]. The largest wavelength of the projected vector is introduced
into the wavelength combination. Each new selected wavelength has the least linear
relationshipwith the previous one. For the spectralmatrixX (n×m) of the calibration
set, given the number of wavelengths to be selected h, the approach of SPA algorithm
is as follows:
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(1) Before the start of the first iteration (p = 1), select a column vector Xj in the
spectral matrix, denote as Xk(0), that is, k(0) = j, j = 1, …, m.

(2) Denote the set of column vector positions that have not been selected as s, s =
{j, 1 ≤ j ≤ m, j /∈ {k(0), …, k(p−1)}}.

(3) Calculate the projection of the remaining column vector Xj (j ∈ s) and the
currently selected vector Xk(p−1), respectively:

PX j = X j − (
XT

jXk(p−1)
)
Xk(p−1)

(
Xk(p−1)

TXk(p−1)
)−1

, j ∈ S (5.11)

(4) Extract the sequence number of the wavelength that has the maximum
projection value: k(p) = arg(max(‖PXj‖)), j ∈ s.

(5) Let Xj = PXj, j ∈ s.
(6) p = p + 1. If p < h, return to Step (2) for a new loop.

Finally, the wavelength selected is k(p), p = 0, …, h−1. For each initial k(0),
cross-validation analysis of MLR or PLS is carried out after a loop, and the k(p)
corresponding to theminimum rootmean square error of cross validation (RMSECV)
was the final selection result.

SPA method has been applied in multivariate quantitative and qualitative analysis
of a variety of spectra and achieved good results [20–22].

5.4 Variable Importance in Projection

For PLS regression, in addition to using the regression coefficient to select variables,
important variables can also be screened through the weight vector w, score vector
t, and load vector q obtained in the PLS regression model. Variable importance in
projection (VIP) is a wavelength selection method based on PLS regression model,
which assesses the importance of the independent variable by its explanatory ability
to the dependent variable [23, 24].

The VIP value of each wavelength is calculated by the following formula:

VIP j =

√
√
√
√
√
√
√
√

m
h∑

k=1

(

q2
k t

T
k tk

(
w jk

‖wk‖
)2

)

h∑

k=1
q2
k t

T
k tk

(5.12)

where j = 1, 2, …, m, and m is the number of the whole wavelengths, while h is the
optimal number of PLS principal component.
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VIP comprehensively considers the contribution of spectrum to the construction
of PLS score and the explanatory ability of PLS score to the concentration variable,
which represents the importance of wavelength to model fitting. The interpretation
ability of the wavelength to the concentration is transmitted through the PLS score. If
the score has a strong interpretation ability to the concentration and the variable plays
an important role in the construction of the score, then the VIP value of the variable
will be large, indicating that this wavelength has a strong interpretation ability to the
concentration [25]. The wavelength points of which VIP values are greater than 1
are usually selected as characteristic variables.

In addition to the VIPmethod, somemethods also employed the generated param-
eters from PLS regression model, such as selectivity ratio (SR) by Kvalheim et al.
[26] and significance multivariate correlation (sMC) by Tran et al. [27].

5.5 Interval Partial Least Squares Method

Interval partial least squaresmethod (iPLS) is a wavelength interval selectionmethod
proposed by Nørgaard et al. [28, 29]. Its principle focuses on important spectral
regions and removing interference from other regions to divide the whole spectrum
into several sub-intervals with equal width. PLS regression is then conducted on each
sub-interval to find the intervals whose prediction performance of model surpass the
full-spectrummodel based on RMSECV values. “The main advantage of using iPLS
is the graphical output giving an overview of the spectra data and in displaying
interesting spectral areas which could be selected” [30].

As shown in Fig. 5.4, in order to find a better interval combination with several
different intervals corresponding to low RMSECV values, backward iPLS (BiPLS)
[31] and forward iPLS (FiPLS) [31], synergy iPLS (SiPLS) based on greedy algo-
rithm [29], and GA-iPLS based on genetic algorithm [30] were developed as
expanding iPLS.

5.6 Moving Window PLS

iPLS divides the interval with a fixed and equal width, and the intervals are not over-
lapped with each other, which may lose some spectral information due to continuous
features of NIR, resulting in making the optimization space of variable combination
smaller. The basic idea of moving window PLS (MWPLS) is to continuously move
a window along the spectral axis and build a model by cross validation for each
moving wavelength interval. The overlapping intervals obtained by MWPLS can
provide more spectral information than non-overlapping ones by iPLS. The sum of
squares of residuals (PRESS or SSR) corresponding to a series of different windows
(moving wavelength intervals) and the number of PLS factors can be obtained. After-
ward, the spectral interval with high information content related to the component to
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Fig. 5.4 Schematic diagram of wavelength interval selection by BiPLS, FiPLS, and GA-iPLS [30]

be measured can be selected by plotting it as shown in Fig. 5.5) [32]. As can be seen
from Fig. 5.5, the information in the spectral range of 700–800 cm−1 is obviously
better than that in the spectral range of 2400–3000 cm−1.

The width of window is a very important parameter in both the iPLS method and
the MWPLS method. On the basis of MWPLS, some people proposed searching
combination MWPLS (SMWPLS) and changeable size MWPLS (CSMWPLS) to
better optimize the combination of wavelength interval, which allow formore precise
wavelength interval selection [33, 34].

Fig. 5.5 Sum of squares of residuals in different spectral intervals obtained by MWPLS method
[32]
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5.7 Recursive Weighted PLS

Recursive weighted PLS (rPLS) is a variable selection method proposed by Rinnan
et al. [35]. The basic idea is to take the regression coefficient of PLS regression
model as the weight of corresponding variables, and recursively act on the original
data matrix to increase the contribution degree of important variables and reduce
the contribution degree of minor variables. Regression coefficients can reflect the
importance of variables. A regression coefficient close to 0 indicates aminor variable,
while a regression coefficient with a larger absolute value indicates an important
variable.

The rPLS method recursively uses the estimated regression coefficient to reeval-
uate the independent variable, and then determines the reduced subset of the variable.
PLS regression is carried out on this subset. The recursive relation is as follows:

Xi = Xi diag(bi−1) (5.13)

whereXi is the new variable with updatedweightX,Xi−1 is the variable with updated
weightX previously, and bi−1 is the regression coefficient of the previousmodel. The
algorithm first establishes the standard PLS model between X1 (initial independent
variable) and y and obtains the regression coefficient b1. Then the PLS model is
repeatedly established according to the above recursive relation until the regression
coefficient no longer changes. That is, only elements 0 and 1 are included in the final
regression coefficient vector.

This method is usually able to converge to a finite number of variables (usually
equivalent to the number of factors in PLS models), which is very conducive to
the interpretability of the model. In addition, rPLS method only needs to determine
the number of factors, without setting parameters such as threshold or confidence
interval. Thus, it has a high degree of automation.

5.8 Elimination of Uninformative Variables

The elimination of uninformative variables (UVE) [36] is a kind of wavelength
selection method based on PLS regression coefficient b, and the basic idea of this
method is to take the regression coefficient as the measurement index of wavelength
importance. The specific algorithm is as follows:

(1) PLS regression was performed on the spectral matrix X (n × m) and concen-
tration matrix y (n × 1) of the calibration set, and the optimal number of PLS
factors f was selected.

(2) A noise matrix R (n × m) is artificially generated, and X and R are combined
to form a matrix XR (n × 2 m), in which the first m is listed as X and the
second m is listed as R.
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(3) Build PLS model with matrix XR and y by removing one sample at a time
based on cross validation, then n PLS regression coefficients were obtained to
form matrix B (n × 2 m).

(4) Calculate the standard deviation s (1 × 2 m) and mean vector me (1 × 2 m) of
matrix B (n × 2 m) in columns, and then calculate the stability as follows:

hi mei/si , i = 1, 2, . . . , 2m (5.14)

(5) In the interval of [m + 1, 2 m], take the maximum absolute value of h as hmax

= max(abs(h)).
(6) In the interval of [1,m], the variables inmatrixX of which h values are less than

hmax are removed, and the remaining variables are formed into a new matrix
XUVE selected by UVE method.

UVE method integrates noise and concentration information in the selection of
wavelengths, which is also intuitive and practical (Fig. 5.6). Some literatures have
shown that the UVE result is superior to the variable selection method based on
correlation coefficients and other methods.Wavelength selection methods using PLS
regression coefficient b or weight w also include interactive variable selection (IVS)
[37] and ordered predictors selection (OPS) [38].

The combination ofMonteCarlo (MC) samplingmethod andPLS regression coef-
ficient b for the screening of variables is a kind of method that has attracted more
attention and wide application recently. In this method, MC strategy is introduced
into UVE-PLS to replace the traditional leave one out cross validation (LOOCV) [7].
Each time, a certain proportion of samples were randomly selected from the sample
set as the training samples, and the PLS regression model was established to obtain
the regression coefficient b. This step was then repeated for N times. It uses MC

Fig. 5.6 Schematic diagram of selecting wavelength by UVE method [30]
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sampling or random sampling to randomly select a part of samples from the calibra-
tion set for PLS modeling. The processes of sampling and modeling are repeated for
hundreds of times, and then the wavelength corresponding to the significant regres-
sion coefficient b is selected in accordance with certain rules. TheMC-UVEmethod,
which is composed of MC and UVE method, has attracted extensive attention [39].
The regression coefficient matrix B (N × m) composed of N regression coefficients
of PLS models is obtained, then the ith variable (i = 1, 2, …, m) can be calculated
by the following formula:

hi = mean(bi ) / std(bi ), i = 1, 2, . . . ,m (5.15)

where mean(bi) and std(bi) represent the mean and standard deviation of the ith
variable’s regression coefficient, respectively. The larger the absolute value of hi is,
the more important the corresponding variable is. Whether to remove the ith variable
is decided according to the absolute value of hi. As shown in Fig. 5.7 [40], since its
variables are directly determined by the stability, it is more convenient than the UVE
method to estimate the cutoff threshold by adding random noise variables into the
original data matrix.

Han et al. adopted an integration strategy to improve the stability of the MC-UVE
algorithm. The results showed that the selected cumulative frequencies of eachwave-
length varied from high to low after repeated running ofMC-UVE, and the reliability
and prediction ability of the MC-UVE algorithm were significantly improved after
removing wavelengths with lower selected frequencies by setting thresholds [41].

0 100 200 300 400 500 600 700
-40

-30

-20

-10

0

10

20

30

40

Wavelength index

R
el

ia
bi

lit
y 

In
de

x

A

C

B

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

Regression coefficient

Fr
eq

ue
nc

y A

BC

Fig. 5.7 Stability of variable (left panel) and regression coefficient frequency (right panel) obtained
by MC-UVE method [40]
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5.9 Global Optimization Methods

Random search and global optimization algorithms, also known as swarm intelli-
gence or metaheuristics, such as genetic algorithm (GA), simulated annealing algo-
rithm (SA), tabu search (TS), ant colony optimization (ACO), particle swarm opti-
mization (PSO), cuckoo search (CS), firefly, bat algorithm (BA), gravitational search
algorithm (GSA), random frog (RF), grey wolf optimizer (GWO), whale optimiza-
tion algorithm (WOA), and cat swarm optimization (CSO), have shown strong search
ability in solving real problems [42]. They can approach the optimal solution of the
problem in a reasonable time. These algorithms involve artificial intelligence, statis-
tical thermodynamics, biological evolution, and bionics, and most of them are based
on certain natural phenomena, so they are also called intelligent optimization algo-
rithms [43]. These methods are easy to introduce heuristic logic rules, and the algo-
rithm principle is intuitive and easy to code and implement, and can find the global
optimal solution with a large probability. One of the biggest characteristics of these
methods is that they can retain the combination advantage among variables. These
advantages have made the stochastic optimization algorithm successfully applied to
many optimization problems, such as artificial neural network (ANN) or support
vector machine (SVM) parameter optimization and wavelength selection in spectral
data.

5.9.1 Genetic Algorithm

Genetic algorithm (GA) was originally proposed by Holland in 1975. It refers to
the natural selection and genetic mechanism in the biological world and uses the
operation of operators such as selection, crossover, and mutation to keep the vari-
ables with better objective function value and eliminate the ones withworse objective
function value bymeans of continuous genetic iteration, finally achieving the optimal
result. At present, genetic algorithm has been widely applied in the field of analyt-
ical chemistry, among which good results have been obtained in variable selection
[44, 45].

The realization of GA mainly includes five basic elements: parameter coding,
initialization of the population, design of fitness function, genetic operation design,
convergence criterion, and selection of variables. It can be seen from Fig. 5.8 about
the specific genetic algorithm implementation flow diagram.

(1) Parameter coding

Because GA is not suitable to deal with spatial data directly, it is necessary to express
them as genotype string structure data of genetic space by encoding, which generally
adopts binary string form based on 0/1 character. A problemwithm parameters (such
as wavelength) can be represented by a string of vectors (corresponding to chromo-
somes) containingm× p characters (corresponding to genes), where p represents the
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Fig. 5.8 Flow chart of GA algorithm implementation

number of genes required for each parameter. For wavelength selection, p usually
selects 1, that is, each gene in a chromosome which corresponds to an actual param-
eter. If the gene is 1, it means the parameter it represents is selected. While the gene
is 0, it is not selected.

(2) Initialization of the population

An initial population of a given size is generated randomly or according to certain
restrictive conditions. The size of the population, i.e., the number of individuals
(chromosomes), can be selected according to the number of parameters (genes),
generally 30–100.

(3) Design of fitness function

The GA evaluates the individual according to the fitness function, which is used as
the basis for future genetic operation. In the whole process of search evolution, only
fitness function is related to the specific problem solved. Therefore, the determination
of fitness function is very important. For wavelength selection, the fitness function
can adopt the correlation coefficient (R), RMSECV, orRMSEPbetween the predicted
value and the actual value of the dependent variable as parameters in the process of
cross validation or prediction.

(4) Genetic manipulation design

Selection: Selection operator, also known as replication operator, directly inherits
the individuals with high fitness to the next generation by selection or creates new
individuals through crossover or mutation and then inherits to the next generation.
The selection operation is based on the fitness assessment of the individuals in the
population. The purpose of selection is to avoid genetic defects and improve global
convergence and computational efficiency. Selection methods include fitness ratio,
optimal preservation, certain sampling, and sorting selection, among which the most
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commonly used selection method is fitness ratio method, also known as the wheel
methodwhere the selection probability of each individual is proportional to its fitness.

Crossover: Crossover is the process that when two paired chromosomes exchange
parts of their genes in a way that creates two new individuals. It is the most important
operator in the GA and also the main method of generating new individuals, by
which the search process is achieved to a large extent. Therefore, it determines the
global search ability of the GA. The crossover operators include random one-point
crossover, two-point andmulti-point crossover, and uniform crossover and arithmetic
crossover, and the crossover probability is generally selected with 0.5–0.8. Before
crossover operation, individuals in the group must be paired. At present, random
pairing strategy is commonly used, that is,N individuals in the group randomly form
N /2 pairs of paired individuals, and crossover operation is carried out between two
individuals in these paired individuals.

Mutation: Mutation is the complement operation of some genes in the individual
chromosome coding string, that is, 0 becomes 1 or 1 becomes 0. The purpose of
introducing mutation operator is to maintain the diversity of population, prevent
premature convergence phenomenon, and improve the local search ability ofGA.The
crossover operator andmutation operator are combined to complete the global search
and local search of the search space, so that the GA can complete the optimization
process with good search performance. The simplest mutation operator is the basic
location mutation operator, namely, one or more genes are randomly selected from
the individual to change with the mutation probability, which is in the range of 0.01 ~
0.1. In addition, there are mutation operators such as uniformmutation, non-uniform
mutation, boundary mutation, and Gaussian mutation.

(5) Convergence criterion

All conventional mathematical programming methods have strict convergence
criteria in mathematics, but the convergence criteria of GA are basically heuristic.
Therefore, GA has more criteria, such as calculation time, computer variables, or
the quality of the solution to determine criteria. Selection of the number of genetic
iterations is a common convergence termination condition, and its value range is
generally 100–1000.

(6) Selection of variables

After the termination of genetic iteration, all the variables were rearranged according
to the selection frequency, and then the optimal number of variables was selected by
plotting the number of selected variables and the fitness function, and the selected
variables were then obtained.

Because of its global optimization and easy realization, GA has become a more
commonly used and effective wavelength selection method. The selection of wave-
lengths can not only optimize the model and improve its prediction ability, but also
establish a robust model with little influence of external factors such as ambient
temperature. In addition, the spectral region of the component to be measured can be
better explained by the selected characteristic wavelength. GA can be used to select
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Fig. 5.9 The wavelength marked with asterisk is the variable selected by GA [44]

the variables of various quantitative calibration methods, as shown in Fig. 5.9. GA
and MLR are combined to determine the hydroxyl number of polyether polyols by
NIR spectroscopy, and MLR method based on the seven variables selected by GA is
equivalent to the results of full spectrum by PLS.

However, the following problems should be paid attention to in practice: (1) Since
the initial population of the GA is selected at random, selection, crossover, and muta-
tion also have strong randomness. Thereafter, the consistency of each wavelength
selection result cannot be guaranteed. (2) When using the GA, the ratio between the
number of wavelengths and the number of samples in calibration set is generally less
than 4 according to experience, otherwise the results obtained are not reliable. (3)
The appropriate fitness function is particularly important for the GA, and the results
obtained by different fitness functions will be quite different.

5.9.2 Simulated Annealing Algorithm

Simulated annealing (SA) algorithm was proposed by Kirkpatrick et al. in 1983
[46]. Its basic ideas originate from the principle of metal annealing. Annealing is
the heating and cooling of a material at a specific rate to increase the size of the
grain and reduce defects in the crystal lattice. The atoms in the material will stay at
the position where the internal energy has a local minimum. Heating increases the
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energy, and the atoms will leave the original position and move randomly in other
positions. Annealing coolsmore slowly,making it more likely that the atomswill find
their internal energies lower than they originally were. According to the Metropolis
criterion, the probability that a particle tends to equilibrium at temperature T is
e−�E/(kT ), where E is the internal energy at temperature T, �E is its change value,
and k is Boltzmann’s constant. The steps of SA to solve the combination optimization
problem are as follows: the internal energy E is simulated as the objective function
value F and the temperature T evolves into the control parameter T. Starting from
the initial solution and the initial value of the control parameter T 0, the iteration of
“generating a new solution→ calculating the objective function→ judging whether
to accept → accepting or rejecting” is repeated for the current solution, and the T
value is gradually attenuated. The current solution at the termination of the algorithm
is the approximate optimal solution [47]. The steps for SA are as follows:

(1) Set the termination temperature T e, the initial temperature T 0, the cooling
coefficient β, and the total number of iterations L, and generate an initial
solution x0 at random. Let xbest be equal to x0, and calculate the objective
function value E(x0).

(2) Set the iteration number i = 1.
(3) For the current optimal solution xbest, a newsolution xnew is generated according

to a neighborhood function. First calculate the new objective function value
E(xnew), and then calculate the increment of the objective function value�E=
E(xnew)−E(xbest). If �E < 0, xbest = xnew; if �E > 0, calculate the probability
p = exp(−�E /Ti) and generate a uniformly distributed random number s in
the interval [0, 1]. if p > s, xbest = xnew, otherwise xbest does not change.

(4) i = i + 1. If i reaches the maximum number of iterations L, the iteration will
be terminated; otherwise, step (3) will be returned.

(5) The current objective function value is compared with the historical objective
functionvalue. If it is smaller, the historical value is updatedwith the parameters
of the current state. Then, let T k+1 = T k·β to cool the temperature.

(6) If T k+1 > T e, return to step (3) after initializing the number of iterations (i = 1);
otherwise, the calculation ends and the wavelength index value corresponding
to the minimum value of the objective function comes as output.

5.9.3 Particle Swarm Optimization

Particle swarm optimization (PSO) was first proposed by Eberhart and Kennedy in
1995 [48]. Its basic concept is derived from the study on the foraging behavior of
birds, and it is an evolutionary computing technology derived from the study on the
predation behavior of birds. It finds the optimal region in the complex search space
through the interaction between particles [49, 50].

PSO is similar to GA, which is a global optimization technology based on swarm
evolution. The system initializes a group of random solutions and finds the optimal
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value through iteration. However, there is no crossover andmutation process likeGA;
instead, it follows the optimal particle in the solution space to search. Compared with
GA, PSO is simple, easy to implement, and has no more parameters to adjust.

In the PSO algorithm, the solution of each optimization problem is a bird in spatial
search, which is abstracted as a particle without mass and volume and extended
to a multi-dimensional space. The position and flight speed of a particle in multi-
dimensional space are, respectively, represented as a vector. All particles have an
adaptive value determined by an evaluation function. In addition to knowing the
best position they have found so far and current position, the particles also know
the best position they have found so far for all the particles in the entire population.
The particle is determined by its own experience and the best experience of its
companions. The steps of PSO algorithm are as follows:

(1) Initialize a group of random particles. The number of particles depends on the
complexity of the problem. For general optimization problems, a good result
can be obtained by taking 20–40 particles. Randomly initialize the position
and velocity of each particle in the crowd and make them be scattering across
the entire space. The ith particle is represented by an m-dimensional vector
(spectrum) xi = (xi1, xi2, …, xim). The “flying” velocity of the ith particle, that
is, the rate of position change of the ith particle, is expressed as vi = (vi1, vi2,
…, vim).

(2) Evaluate the fitness of each particle. Store the current position and fitness value
of each particle in the pbest of each particle, and store the position and fitness
value of all the individuals with the best fitness value in gbest. Remember
the optimal position of the ith particle so far, that is, the individual optimal
position is pi = (pi1, pi2, …, pim). The optimal position of the whole particle
swarm so far is the global optimal position p = (pg1, pg2, …, pgm), and the
algorithm assumes that all particles move toward the individual and global
optimal positions.

(3) Update the velocity and position of the particle with the following formula:

vid(new) = w × vid(old) + c1r1 × (pid − xid) + c2r2 × (pgd − xid) (5.16)

xid(new) = xid(old) + μ × vid(new) (5.17)

where d = 1, 2,.., m and w are non-negative constants, called inertia factors,
which are used to balance global search and local search, and are between 0
and 1. The learning factors c1 and c2 are non-negative constants and usually
take an integer value between 0 and 4. r1 and r2 are random numbers between
0 and 1. μ is called a constraint factor and is used to control the weight of
speed.

(4) For each particle, the fitness value is compared with the best position experi-
enced. If it is better than the previous position, it can be seen as the current
best position.
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(5) Compare all current values of pbest and gbest, and update gbest.
(6) If the stop condition is met (the minimum error standard is specified or the

iteration has reached the specified number of times), the search will stop and
the results will be output; otherwise, the search will return to Step (3) and
continue.

In order to avoid the convergence of the PSO algorithm to the local search, the
ability of the algorithm to overcome the local search is enhanced to force a certain
percentage of particles to fly randomly (for example, 10%)without following the two
optimal values. PSO has developed into a variety of deformation and improvement
algorithms, such as PSOwith compression factor [51], PSOwith changeable learning
factor, variable dimension PSO [52], and second-order oscillating PSO [53].

5.9.4 Ant Colony Algorithm

Ant colony optimization (ACO) algorithm was proposed by Marco Dorigo in 1992
[54], which was inspired by the behavior of ants finding their way in search of
food. Ants are social insects, and a group of ants working together can easily find the
shortest path from the nest to the food source. Through a large number of studies, it has
been found that individuals of ants transmit information through pheromones left on
their paths, and ants can guide their forward direction according to the concentration
of pheromones. Therefore, the more ants that travel along a particular path there are,
the more probability it is that a latecomer will choose that path. This constitutes a
positive feedback phenomenon of ant colony behavior.

In the ACO algorithm, human worker colony with a finite size can cooperate
to search for a better solution to solve the optimization problem. Each ant builds
a feasible solution from the selected initial state according to the criteria given by
the problem. Each ant collects information about the characteristics of the problem
and its own behavior, and uses this information to modify the presentation of the
problem. Instead of direct communication, ants use pheromones to guide information
exchange. Each ant can find a solution, but it is probably a bad one. High-quality
solutions can be found through global cooperation among all the individuals in the
group [55, 56]. The flow of the basic ACO is shown in Fig. 5.10.

There are many strategies for variable selection using ACO algorithm [57, 58],
one of which is introduced as follows:

(1) Construct pheromone vector τ , whose dimension is 1×m, andm is the number
of variables. Initialize it by assigning all elements to 1. The number of ants in
the ant colony ϕ, the number of variables l to be selected, and the number of
iterations are determined first.

(2) Calculate probability vector p and cumulative probability vector cp as given
in the following formula:
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Fig. 5.10 Flow chart of the basic ACO algorithm

pk = τk
m∑

k=1
τk

, k = 1, 2, 3, . . . ,m (5.18)

cpk =
k∑

k=1

pk, k = 1, 2, 3, . . . ,m (5.19)

(3) The cumulative probability vector cp initializes the ant colony ϕ according
to the random variable generated by uniform distribution, so that the variable
with high pheromone concentration can be selected more frequently.

(4) Calculate the fitness of each ant according to the following formula:

Fitness function : G f = 1

PRESS f × l f
, f = 1, 2, 3, . . . , ϕ (5.20)

Normalize Gn f : Gn f = 0.8 × G f

φ∑

f =1
G f

, f = 1, 2, 3, . . . , ϕ (5.21)

(5) The first 50% ants with the highest fitness (ϕbest) were used to update the
pheromone vector τ according to the fitness. The higher the fitness, the more
pheromones would be released as formula 5.22 shows.

τk(t + 1)τk(t)
[
τk(t) × Gn f

]
, f = 1, 2, 3, . . . , ϕbest, k ∈ β f (5.22)

where β f is the variable selected by the f th ant.
(6) Volatilization of pheromones, that is, pheromones will dissipate over time to

prevent the infinite accumulation of pheromones as formula 5.23 shows.

τkτk × ρ (5.23)

where ρ is constant, 0≤ρ≤1.
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(7) Determine whether the termination condition is met. Otherwise, return to step
(2) to continue iteration.

ACO algorithm has been successfully used for the selection of efficient wave-
lengths in the scope of Vis-NIR [59], NIR [60–62], MIR, Raman [63, 64], and
fluorescence [65] spectroscopy with various kinds of applications.

5.10 Model Population Analysis-Based Methods

Model population analysis (MPA) firstly proposed by Li et al. [5] is a general frame-
work for developing a new type of chemometrics algorithm for modeling in various
aspects of variable selection, outlier detection, model comparison, and applicability
domain definition [66]. The core idea of MPA is to statistically extract and analyze
useful information from output of the sub-models built with a large population of
generated sub-dataset. The three key elements of MPA are as follows:

(1) random sampling is used to randomly generate N sub-datasets (e.g., 500);
(2) for each sub-dataset, a sub-model is built, and there are thus N sub-models;

and
(3) Statistically analyze an outcome of interest of all N sub-models.

As can be seen from Fig. 5.11, for variable selection methods based on MPA,
a large population of sub-datasets are obtained with the aid of several sampling
methods on both variable space and sample space, including MC sampling, Boot-
strap sampling, binary matrix sampling, and permutation. For each sub-dataset, a
sub-model is then built with the modeling method such as PLS, PCR, MLR, and
SVM. Thereafter, the distributions of regression coefficients for uninformative vari-
ables and informative variables, the distribution ofRMSECVfor each variable subset,
and the difference between the two distributions of RMSECV with and without the
specific variable are used to assess the variable or variable subset based on some
criteria, such as mean value, standard deviation (STD), 95% confidence interval,
statistical test, and so on. During the last decade, a great many variable selec-
tion methods based on MPA strategy were proposed, such as competitive adap-
tive reweighted sampling (CARS) [67], variable combination population analysis
(VCPA) [68], modified VCPA (mVCPA) [68], permutation combination population
analysis (PCPA) [69], random frog (RF) [70], stability and variable permutation
(SVP) [71], iteratively retains informative variables (IRIV) [9], iteratively variable
subset optimization (IVSO) [72], variable permutation population analysis (VPPA)
[73], bootstrapping soft shrinkage (BOSS) [8], variable iterative space shrinkage
approach (VISSA) [74], randomization test (RT) [75], sampling error profile analysis-
least absolute shrinkage and selection operator (SEPA-LASSO) [76], and weighted
voting strategy-LASSO (WV-LASSO) [77].
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Fig. 5.11 The framework and three key elements of model population analysis (MPA) strategy in
developing variable selection methods

5.10.1 Competitive Adaptive Reweighted Sampling

The competitive adaptive reweighted sampling (CARS) algorithm is very popular
in analysis of spectral data [67]. In this method, each variable is regarded as an
individual and the selection process of variables is in an iterative way. At the same
time, the exponentially decreasing function (EDF) is introduced to control the rate
of remaining number of variables, which has high computational efficiency, and can
overcome the combination explosion problem in variable selection to some extent,
and then screen out the optimal subset of variables. The implementation steps of the
algorithm are as follows:

(1) MC sampling method was used for sampling N times, and each time 80%
samples were randomly selected from the samples set as the calibration set.
The extracted spectral matrix X (n × m) and concentration matrix y (n × 1)
were used to establish PLS regression models.
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(2) Eliminate wavelengths with relatively small absolute value of regression coef-
ficient by enforce with the aid of EDF. During the ith sampling, the rate of
remaining number ofwavelengths ri can be obtained according to the following
EDF formula:

ri = ae−ki (5.24)

where a and k are constants, and the calculation formula of a and k are as follows:

a =
(m

2

) 1
N−1

(5.25)

k = ln
(
m
2

)

N − 1
(5.26)

It can be seen that in the first sampling, all m variables are used for modeling,
r1 is thus equal to 1. When the N th sample is run, only two wavelengths are used,
so rN = 2/m. Figure 5.12 vividly shows the EDF attenuation process with N of 50
times. In the first stage, the number of variables decreases quickly for fast selection
of variables and, in the second stage, the number of variables decreases slowly for
refined selection of variables. This way can not only improve the calculation speed,
but also screen out important variables.

(3) The variables with large absolute value of regression coefficient in PLS model
were screened out through N times of sampling, and the PLS regression

Fig. 5.12 Graphical illustration of exponentially decreasing function (EDF). In the first stage, the
number of the variables is reduced rapidly. While in the second stage, it decreases in a mild way,
namely, refined selection
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model was established with the new variable subset generated each time. The
RMSECV of each model was calculated, and the variable subset with the
smallest RMSECV value was selected as the optimal variable subset.

Currently, CARS algorithm has been widely used in the selection of wavelength
variables of NIR spectroscopy, UV-Vis spectroscopy, Raman spectroscopy and laser
induced breakdown spectroscopy [78–81], and its effect is better than SPA and UVE
methods in most cases. However, owing to random sampling, CARS presents the
unstable result when implemented many times.

5.10.2 Iteratively Retaining Informative Variables

Iteratively retaining informative variables (IRIV) is a representative variable selec-
tion method based on MPA framework. Specially, IRIV first adopts BMS to get N
data subset from a given set of samples. All variables can be divided into strongly
informative variable, weakly informative variable, uninformative variable, and inter-
fering variable based on statistical analysis. It iteratively removes uninformative and
interfering variables which are useless for the model and retains the informative vari-
ables for the model. For the original spectral data of p-dimensional variables of m
samples, IRIV selects variables through the following four steps:

(1) Generate a binarymatrixA’withm rows and p columns containing only “1” and
“0”. The number “1” represents the variables that are included for modeling,
while “0” represents the variables that are not included. In each column of
A’, the number of ones and zeros in each column is the same. Figure 5.13
shows the process of generation of sub-datasets by BMS method. Each PLS
model is then established according to the samples selected from each row of
matrix A. RMSECV value obtained from fivefold cross validation was taken
as the evaluation metric, and the vector with the size of m × 1 was denoted as
RMSECV0.

(2) To assess each variable’s importance through its interaction with other vari-
ables, in the ith column of the matrixA (i= 1, 2, …, p), “1” is replaced by “0”,
and “0” is replaced by “1” to get a new matrix B as shown in Fig. 5.13. Simi-
larly, PLSmodel is established based on the samples selected from each row of
matrix B, and a vector of m × 1 is obtained, which is denoted as RMSECVi.
Define ϕ0 and ϕi to evaluate the importance value of each variable:

ϕ0k=
{
kthRMSECV0 i f Aki = 1
kthRMSECVi i f Bki = 1

, �ik=
{
kthRMSECV0 i f Aki = 0
kthRMSECVi i f Bki = 0

(5.27)
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Fig. 5.13 Graphical illustration of binary matrix sampling (BMS)

where kth represents the k row in the vector, and kthRMSECV0 and kthRMSECVi

represent the values of the kth row in the vectorsRMSECV0 andRMSECVi, respec-
tively. The mean values of ϕ0 and ϕi are denoted as Mi,in and Mi,out, respectively.
DMi is obtained by subtracting the two mean values of Mi,in and Mi, out. P = 0.05
is defined as the threshold for Mann-Whitney U test, and the variables are finally
divided into four categories:

if DMi < 0 and Pi < 0.05, it is a strongly informative variable;

if DMi < 0 and Pi > 0.05, it is a weakly informative variable;

if DMi > 0 and Pi > 0.05, it is uninformative variable;



194 5 Wavelength Selection Methods

if DMi > 0 and Pi < 0.05, it is the interfering variable.

(3) In each iteration, strongly and weakly informative variables are retained, and
uninformative variables and interfering variables are eliminated. Return to
Step (1) and proceed to the next iteration until only the strongly and weakly
informative variables are left.

(4) Backward elimination is used to further optimize the variable subset with
informative variables. Firstly, the PLS model of all left informative variables,
denoted as t, was established to obtain RMSECVt . Then, by eliminating the jth
variable (j = 1, 2…, t), PLS model was established for t−1 variables to obtain
RMSECV−j. If RMSECV−j is less than RMSECVt , the jth variable would
be excluded, otherwise it would be retained. In this process, the remaining
variables are the final characteristic variables.

Figure 5.14 shows four types of variables screened by the IRIV method for the
diesel fuels data set. 1236 nm is a strongly informative variable. RMSECV signifi-
cantly increased after this variable was removed from themodel. 1050 nm is aweakly
informative variable. RMSECV slightly increased after this variable was removed
from the model. 1468 nm is an uninformative variable, and RMSECV decreased
slightly after this variable was removed from the model. 1502 nm is an interfering
variable, andRMSECVdecreased significantlywhen this variablewas removed from
the model.

Fig. 5.14 Four types of variables screened by IRIV method (a strongly informative variable, b
weakly informative variable, c uninformative variable, d interfering variable) [9]
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5.10.3 Variable Combination Population Analysis

Variable combination population analysis (VCPA) is another widely used method
based on the framework of MPA [68]. Like IRIV, VCPA also uses BMS to generate
a large group of random variable combinations. When there are enough random
variable combinations, the model prediction error of these combinations should be
a normal distribution, as shown in Fig. 5.15. The left and right ends of the distri-
bution are the enrichment areas of good models and bad models, respectively. The
probability of better variable combination in the enrichment area of good model is
large, while the probability of occurrence in the enrichment area of bad model is
small. Based on this feature, VCPA only takes a certain proportion of good models
in the distribution each time, and counts the frequency of each variable existing in
these good models. Afterward, it assesses the variables according to the ranking
of frequency from high to low, and then removes a certain proportion of variables
forcibly at the end by using EDF because these variables make the least contribu-
tion to the good model. Next, it continues to use BMS to generate a large group of
random variable combinations with the remaining variables, and iteratively retained
variables according to the ratio of remaining variable by EDF. VCPA uses EDF
to shrink the variable space continuously, and retained variables that contribute
greatly to the model for each iteration. When the variable space becomes smaller,
the mean RMSECV value of all variable combinations gradually decreases as shown
in Fig. 5.16. Therefore, with a small and optimized variable space, VCPA can then
select the variable subset that significantly improves the prediction performance of
the model.

The detailed process of VCPA algorithm is as follows:

Step (1): Use the BMS method to generate a binary matrix M with only “1”or “0”.
The matrixM (k× p) contains k rows and p columns. The rows represent the number
of random samples. The columns correspond to the columns of sample matrix X.

Fig. 5.15 Distribution of RMSECV values based on a population of built models. The lower the
RMSECV, the better the model. The best models are located in left side of the distribution [68]
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Fig. 5.16 The evolution of variable spaces after each EDF iteration and the RMSECV distribution
with the corresponding variable space

Each column inM is disrupted. After disruption, each row is a random combination
of “0” and “1”, that is, each row is a combination of randomvariables, and the number
of “1” in each column remains unchanged.

Step (2): Each row in M is a random variable subset. Each row is modeled by PLS,
and the RMSECV value is calculated to assess each variable subset. The smaller the
RMSECV value, the better the model.

Step (3): Sort RMSECV value from small to large, and the ratio, σ, of all RMSECV
values is regarded as goodmodel, i.e., the top kσ of RMSECV ranking corresponds to
the combination of variables. Then count the number of occurrences of each variable
in this kσ combinations. The more variables appear, the more they contribute to a
good model, and vice versa.

Step (4): For the variables with small contribution from the good model, the EDF is
used to forcibly remove them through Eq. 5.28:

θ = ln(p/ω)

N
(5.28)

where N is the number of EDF iterations and the proportion of remaining variables
for the ith EDF and θ is a constant that controls the EDF. When i is 0, all variables
are included for modeling, only ω variables are retained at the N th time. Thus, θ can
be computed through Eq. 5.25 and EDF function (Eq. 5.21).

Step (5): After removing a certain proportion of variables according to EDF, return
to step (1) with the number of remaining variables until the number of EDF iterations
has conducted completely. The variable space is shrunk continuously based on EDF
process as shown in Fig. 5.16, which means that it can better select the important
variables in the small and optimized variable space after all EDF iterations have been
conducted completely.

Step (6): Determine the optimal variable subset by investigating all possible combi-
nations through greedy algorithm. The larger the ω, the more combinations there
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are. The preset of ω should be based on the computation ability. Generally, ω is set
to 14. When ω = 14, the number of all combinations is 214–1 = 16,383.

5.10.4 Other Methods

In addition to the wavelength selection methods commonly used in spectral anal-
ysis introduced above, there are many variable selection methods for NIR spectral
data. They include iterative prediction weighting [82], iterative reweighted partial
least squares [83], Boruta algorithm based on random forest [84], ridge regression
method based on least square L2 regularization [85], Lasso method based on L1
regularization [86], least angle regression method [87], regularization of PLS using
the elastic net method with L1 and L2 regularizations [88], regularized PLS [89],
and sparse PLS (SPLS) [90]. In the regularized PLS method, both L1 and L2 norm
penalty regularization terms are introduced to generate sparsity of the model. The
sparse solution of the principal component load coefficient is solved by an alter-
nating iterative algorithm to achieve spectral data reduction and the selection of key
wavelengths.

Machine learning algorithms tend to have the problem of the samples with high
dimensionality, which makes it difficult to select key variables from numerous vari-
ables in the regression or classification. But if the built model with these variables is
a sparse model, indicating only a few variables have made contribution to the model;
in other words, most variables made no contribution or tiny contribution. At this
time, the variable with the coefficient is non-zero and can be only focused, which is
the variable selection method through sparse model.

5.10.5 Wavelength Selection Method Based on Hybrid
Strategy

With the continuous development of variable selection methods, the joint use of
various different algorithms has been paid more and more attention. By taking the
advantage of the complementarity among different algorithms, these hybrid methods
firstly select the wavelength interval or wavelength point roughly, and then finely
and optimally select fewer and more effective variables. The prediction ability of the
models built on this basis is usually better than that of the single variable selection
method. Yu et al. reviewed variable selection methods based on hybrid strategy and
systemically classify them into two categories such as two-step and three-step hybrid
strategy [91].

Two-step hybrid methods are formed by combining two different methods. Most
of them employed the methods in sequence. The later method makes a further opti-
mization on the variable subset optimized by the former method as the above method
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mentioned. For example, Yu et al. compared a variety of variable screening methods
and found that the CARS-SPA method screened 37 characteristic wavelengths from
2001 wavelengths in the hyperspectral full band, and the PLS model established for
soil organic matter content had the best effect [92]. Liu et al. selected wavelengths
of siPLS-IRIV hybrid method for the identification of olive oil quality by NIR spec-
troscopy, and the result was superior to that of siPLS method alone [93]. Liang
et al. used CARS-IRIV algorithm to screen the hyperspectral characteristic variables
and established the LS-SVMmodel for predicting the soluble solid content of Korla
perfumed pear, which simplified the operation of the model and improved the predic-
tion accuracy [94]. Cai et al. used MC-UVE-SPA algorithm to extract 27 effective
variables from 4254 variables in the original NIR spectrum, and built an analytical
model for predicting strawberry soluble solid content by combining color features
[95].Wang et al. combined UVE-CARS to screen wavelengths of hyperspectral data,
and predicted and visualized total flavonoids content in Cerasus Humilis fruit during
storage periods [96]. Three-step hybrid methods employed three different variable
selection algorithms to thoroughly select characteristic variables. Yu et al. applied
iPLS, modified VCPA (mVCPA), VIP, GA, and IRIV to construct four three-step
hybrid methods as iPLS-VIP-GA, iPLS-VIP-IRIV, iPLS-mVCPA-GA, and iPLS-
mVCPA-IRIV [91] as shown in Fig. 5.17. In the first step, iPLS was used to select
several informative wavelength intervals in rough way. In the second step, VIP and
mVCPA were applied to make fine selection to further filter some unimportant vari-
ables and shrink variable space. In the third step, based on the variables retained in the

Fig. 5.17 Flow chart of the three-step hybrid strategy. Step1: rough selection. Step 2: fine selection.
Step 3: optimal selection [97]
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first two steps, GA and IRIV were employed to make a further optimization to deter-
mine the optimal variable subset, which exploit the advantage of optimization ability
of GA and IRIV with fewer variables. They have been applied successfully into two
benchmark NIR data sets including beer and tobacco, and detecting the freshness of
tilapia fillets. The results showed that the three-step hybrid methods present a better
prediction performance than two-step hybrid methods and other single methods [97].

Besides, some hybrid methods were created by embedded the core idea of one
method into another. For example, Yun et al. introduced the idea of MWPLS algo-
rithm into random frog (RF) algorithm and proposed the interval random frog (iRF)
method [98]. Yun et al. determined the structure of a proportion of chromosomes in
the initial population of GA by PLS large regression coefficient (LRC) and proposed
the LRC-GA-PLS method which can make the GA optimization better toward the
optimal solution and efficiently screen key wavelengths [99].

In addition to the above two ways of hybrid method, another hybrid method first
employs different variable selection methods to obtain different variable subsets, and
the final optimal variable subset is determined based on different selected variable
subsets using set operation in mathematics, such as intersection or union. Shen et al.
also conducted intersection fusion of variables obtained from a variety of wave-
length selection methods. As shown in Fig. 5.18, VIP method, Boruta algorithm,
GA-RF algorithm, and GA-SVM algorithm were adopted to select characteristic
wavelengths, respectively, and then the intersection of all selected wavelengths is

Fig. 5.18 Schematic diagram of wavelength selection by multiple algorithms combined with Venn
diagram [100]
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obtained through Venn graph [100]. Six variable selection methods including regres-
sion coefficient, Lasso, CARS, rPLS, sMC, and minimum redundancy maximum
relevance (mRMR) were used by Song et al. to obtain six optimal variable subsets
for LIBS data sets, respectively. The six variable subsets were sorted based on their
RMSECV values, and the first three variable subsets with lower RMSECV value
were fused by union operation to gain the final variable subset [109]. Although the
number of this kind of hybridmethods is still relatively small, it deserves our attention
as they can consider the good results of many methods to make a decision.

5.11 The Selection of Spectral Preprocessing
and Wavelength Selection Methods

Spectral preprocessing and wavelength selection are the critical steps in the estab-
lishment of multivariate quantitative and qualitative models, directly determining the
prediction ability and long-term reliability of themodels. At present, there are dozens
of spectral preprocessing and wavelength selection methods involved in literatures,
and each method, such as wavelet transform, has different functions and parameters.
Therefore, in the practical application, wewill encounter the problem of how to select
the optimal method and the optimal order of spectral preprocessing and wavelength
selection methods. At the same time, we need to consider the influence of outlier
samples and linear and nonlinear modeling methods.

Generally, the optimal spectral preprocessing method is not the same for different
analytical systems and problems to be solved. But certain rules can be found. For
example, derivative method is generally used for baseline correction, while multi-
plicative scatter correction (MSC), standard normal variate (SNV), and second
derivative methods are used for diffuse reflection spectrum to eliminate light scat-
tering caused by uneven particle distribution, and wavelet transform (WT) can effec-
tively eliminate spectral background and improve the robustness of the model. If
properly used, wavelength selection methods can always simplify the model and
improve the ability of prediction. In the order of spectral preprocessing operation,
baseline correction is usually carried out first, then noise is eliminated, and scat-
tering correction and normalization are carried out in subsequence. However, in
specific applications, some possible methods or their combinations still need to be
compared to obtain the best results [101]. Diwu et al. also conducted the research on
the influence of 120 combinations of ten preprocessing methods on the NIR spec-
tral model, and the results showed that different sample sets had different optimal
spectral preprocessing methods [102].

If the analytical system is relatively complex, only one spectral preprocessing
method could not get better results. In this case, different spectral preprocessing and
wavelength selectionmethods can be combined to obtain the expected results, but the
combination of different spectral preprocessing methods and wavelength selection
methods and their execution order still need to be optimized.
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In the early stage, it is proposed in some literature that factor design method was
adopted to solve the combination problemof preprocessingmethods [103].Gerretzen
et al. also adopted design of experimental (DoE) method to integrate variable selec-
tion into the preprocessing selection approach to enhance the objective interpretation
of built model [104, 105]. Zhao et al. used systematic tracking mapping to select
the best combination of preprocessing methods, wavelength selection methods, and
quantitative calibration methods at the same time (Fig. 5.19) [106]. Laxalde et al.
used GA to optimize the selection of the combination of preprocessing method and
wavelength selection and achieved good results (Fig. 5.20) [107]. Stefansson et al.
also presented a fastmethod for performingGA-PLS to allowwavelength selection to
be evolved containing variables from amixture of different preprocessing techniques
[108]. Based on the idea of system modeling, Gao et al. adopted D-optimal exper-
imental design to optimize the modeling parameters such as spectral preprocessing
method andwavelength selectionmethod globally, thus improving the robustness and
predictive ability of the model [109]. It is also an important development direction
in the future to integrate the preprocessing and wavelength selection methods into
the multivariate calibration step to form new calibration and preprocessing methods,
rather than using them separately before calibration.

Fig. 5.19 Systematic tracking mapping was used to select the optimal model [106]
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Fig. 5.20 Encoding the co-optimization problem byGA for spectral preprocessing and wavelength
selection methods [107]
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Chapter 6
Spectral Dimensionality Reduction
Methods

6.1 The Multicollinearity Problem

The premise of multiple linear regression (MLR) is that the independent variables
must be independent from each other. However, there is often a certain degree of
correlation between the spectral variables, resulting in statistical multicollinearity.
Multicollinearity means the high correlationship among the independent variables

in the linear regression model. The value of the regression coefficient obtained
∧
b is

unstable and difficult to interpret due to the existence of highly correlated relation-
ships among the independent variables. The regression coefficients may become very
sensitive to small changes in the sample data, making the values of the regression
coefficients difficult to estimate precisely. There may be even a phenomenon that
the positive and negative signs of the regression coefficients are opposite to those of
theoretical research or experience [1].

For example, if X =
[
1 2
1 2.00001

]
, y =

[
3

3.00001

]
, then

∧
b = (X TX)−1X Ty =[

1

1

]
. But if there are test errors, y =

[
3.00011
2.99990

]
,

∧
b =

[
44.9985

−20.9992

]

It can be seen thatwhen y value changes slightly, the regression coefficient changes
greatly, even the positive and negative sign changes. The reasons for the above results
are that matrix X has serious collinearity, i.e., X is an ill-conditioned matrix, and
serious errors will be occured when the inverse of XTX is obtained.

However, if X =
[
1 2
3 0.00001

]
, y is equal to the

[
3

3.00001

]
and

[
3.00011
2.99990

]
,

respectively. The value of the regression coefficient
∧
b,

[
1

1

]
and

[
0.99996

1.00007

]
can

be obtained, respectively. It can be seen that if the variables of the X matrix are
independent from each other, the regression coefficient calculated byMLR is robust.

At present, there are several commonly usedmulticollinearity diagnosticmethods.
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(1) Correlation coefficient diagnostic method of independent variables: calculate
the pairwise correlation coefficient of variables. If the value of correlation
coefficient between independent variables is very large, it indicates that there
is a strong linear relationship between the corresponding two independent
variables. However, it is limited to the linear correlation between two variables,
and it is invalid for the collinearity among multiple variables.

(2) Variance inflation factor (VIF) can be diagnostics by Eq. 6.1.

V I Fi = 1

1−R2
i

, (i = 1, 2, 3, . . . k) (6.1)

where k is the number of variables, R2
i is the coefficient of determination

obtained by taking the ith independent variables as the dependent variables
and using the remaining (k-1) variables as the multiple linear regression.
The closer R2

i is to 1, the larger theVIF i is, which indicates that the collinearity
between the ith variable and other independent variables are stronger. It can be
used to diagnose the extent to which variable is affected by multicollinearity.

(3) Conditional number diagnostic method: Singular value decomposition is
performed on the X matrix, and the ratio of the maximum and minimum
singular values is calculated, namely, the conditional value. The range of the
conditional value is 1~∞, and the larger the conditional value is, the greater the

possibility of the existence of collinearity is. For example, X =
[
1 2
1 2.00001

]

the conditional value is 1 × 106, X =
[
1 2
3 0.00001

]
, the conditional value is

1.77.

Takingpattern recognition classification as an example,Hughes et al. gave the rela-
tionship among the complexity of measurement data, average recognition accuracy,
and the number of calibration samples [2]. The measurement data complexity here
refers to the degree of detail of the data acquired by the measuring device, namely,
the dimensions of the feature data (the number of wavelength points in the spectra).
As shown in Fig. 6.1, with the constant increase of the dimension of feature data,
if the number of calibration samples are small and cannot meet the requirement of
the dimension increase of feature space, the higher-dimensional features will cause
the classification accuracy to increase first and then decrease, which is called the
Hughes phenomenon. Therefore, for finite samples in practical applications, there is
an optimal dimension of feature data to achieve the optimal classification accuracy.
Therefore, dimensionality reduction of spectral data is also an effective method to
reduce the Hughes phenomenon.

As shown in Fig. 6.2, the methods for dimensionality reduction of spectral data
mainly include feature selection and feature extraction. As shown in Fig. 6.3, feature
selection is to select a feature subset from the feature set. Feature selection does
not change the properties of the original feature space, just selects some important
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Fig. 6.1 The accuracy of classification for finite data set [2]

Fig. 6.2 Classification diagramof the realizationmethods of spectral data dimensionality reduction
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Fig. 6.3 Schematic diagram of feature selection
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Fig. 6.4 Schematic diagram of feature extraction

features from the original space to formanew low-dimensional space. The commonly
used feature selection methods (wavelength variable selection methods) are intro-
duced in Chap. 5. As shown in Fig. 6.4, feature extraction (feature transformation)
refers to the transformation of the original feature space to generate a new feature
space with lower dimension and each dimension is independent of each other. This
chapter mainly introduces the method of spectral feature extraction.

Feature extraction is divided into linear and nonlinear methods. Linear methods
include principal component analysis (PCA), independent component analysis (ICA)
and multi-dimensional scaling (MDS). The nonlinear methods include isometric
mapping (ISOMAP), local linear embedding (LLE), and t-distributed stochastic
neighborhood embedding (T-SNE). At present, most of these nonlinear methods
are proposed based on the strategy of manifold learning, which is a hot spot in
pattern recognition and machine learning research. It can reduce the dimension of
high-dimensional data space nonlinearly, reveal itsmanifold distribution, and find out
the specific low-dimensional structure hidden in the high-dimensional spectral data.
Manifold learning has been widely used for dimensionality reduction and feature
extraction of spectral data in recent years.
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6.2 Principal Component Analysis

6.2.1 Theory of Principal Component Analysis

Principal component analysis (PCA) plays an important role in chemometrics. In fact,
PCA is a very traditional technique of multivariate statistical analysis, first proposed
by Hotelling in 1933.

The key purpose of PCA is to reduce the dimension of data and transform the
original variables, so that a few new variables are linear combinations of the original
variables. At the same time, these variables should express the data characteristics of
the original variables as much as possible without losing of information [3, 4]. PCA
transforms the data into a newcoordinate system (see Fig. 6.5) such that themaximum
variance of any data projection is at the first principal component (PC1), the second
maximum variance in the second coordinate (PC2), and so on. The new variables
obtained by the transformation are orthogonal to each other and unrelated to each
other, which eliminate the overlapping parts among many coexisting information,
that is, the possible multicollinearity among variables is eliminated.

PCA decomposes the spectral matrixX (n×m) into the sum of the cross products
of m vectors, that is:

X = t1pT1 + t2pT2 + t3pT3 + . . . tnpTm (6.2)

where t is called the score vector and P is called the loading vector, or principal
component (PC). It can also be written in the following matrix form: X = TP T,
where T = [ t1 t2 … tn] is called the score matrix and P = [ p1 p2 … pm] is called the
loading matrix, as shown in Fig. 6.6.

Each score vector is orthogonal to each other, that is, for any i and j, when i �= j,
tiTtj = 0. Each loading vector is also orthogonal, and the length of each loading vector

Fig. 6.5 Schematic diagram
of principal component
analysis
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Fig. 6.6 Schematic diagram of matrix decomposition by PCA

is 1, that is, piTpj = 0, i �= j; piTpi = 1, i = j. From the above vector properties, it is
not difficult to get: ti = Xpi. This illustrates the mathematical significance of PCA,
namely, each score vector is actually a projection of thematrixX in the direction of its
corresponding loading vector p. The length of vector ti reflects the coverage degree
of matrix X in the direction of pi and reflects the relationship among samples. The
greater its length is, the greater the coverage or variation range of X in the direction
of pi is.

As shown in Fig. 6.5, loading vector p1 represents the direction in which matrix
X has the greatest change (variance), p2 is perpendicular to p1, and represents the
second largest change direction inX, and pm represents the smallest change direction
in X. From the point of probability statistics, the greater the variance of a random
variable, the more information it contains; if the variance of a variable is zero, the
variable is a constant and does not contain any information. When there is a certain
degree of linear correlation among the variables in the matrix X, the change of X
will be mainly reflected in the directions of the first few loading vectors, and the
projection of X on the last few loading vectors is very small, so it can be considered
that they are mainly caused by measurement noise.

In this way, the PCA decomposition of matrix X can be written as follows:

X = t1pT1 + t2pT2 + t3pT3 + . . . t f pTf + E (6.3)

where E is the error matrix and represents the change of X in the direction of
the loading vector from pf to pm. Since the error matrix E is mainly caused by
measurement noise, ignoring E will not cause significant loss of large amount of
information in the data, and will also play the effect of removing noise. In practical
applications, the number of principal components (PCs) f is often much smaller than
m, so as to serve the purpose of data compression and feature extraction.

It can be proved that the PCAof X is actually equivalent to the eigenvector analysis
of covariance matrix XTX of X. The loading vectors of matrix X are actually the
eigenvectors of matrix XTX. If the eigenvalues of the XTX are arranged as follows:
λ 1 ≥ λ2 ≥ … ≥ λm, then the eigenvectors p1, p2, …, pm are the loading vectors of
the matrix X.
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Fig. 6.7 Schematic diagram of matrix decomposition by SVD

PCA and singular value decomposition (SVD) are closely related to each other.
The SVD can decompose the real number matrix of any order into the product of
three matrices (Fig. 6.7), i.e.,

X = USVT (6.4)

where S is a diagonal matrix and collects the singular values of matrixX. In fact, it is
the square root of the eigenvalues of covariance matrix XTX. U and VT are standard
column orthogonality and standard orthogonal matrix, respectively. Column and row
eigenvectors corresponding to these eigenvalues are collected. In fact, the product
of matrix U and matrix S is equal to the score matrix T in the PCA and matrix V is
equal to the loading matrix P.

The PCA of the spectral matrix X can be interpreted as follows, the loading
vector P can be understood as the normalized spectra of the “pure component”
extracted from the spectra of the mixture system, and the corresponding score vector
t can be understood as the weight of the “pure component” in different samples,
namely, the concentration. That is to say, the original spectra of the samples can
be reconstructed by multiplying these “pure components” by their corresponding
weights and summing them up, which is consistent with the Lambert-Beer law and
the principle of additive property in spectral analysis.

6.2.2 Determination of Principal Component Number

The sum of the first f eigenvalues of the covariance matrix of
∑ f

i=1 λi is divided by
the sumof all its eigenvalues

∑min(n,m)
i=1 λi , which is called the cumulative contribution

rate of the first f PCs, and represents the proportion of the data changes explained
by the first f PCs in the total data changes. The number of selected PCs depends on
the cumulative variance contribution ratio of the PCs. Generally, the number of PCs
required to make the cumulative variance contribution rate greater than 85–95% can
represent most of the information provided by the original variable. The eigenvalues
can be plotted against each PC to select the number of PCs, as shown in Fig. 6.8.
The number of PCs f should be selected as 5.

The PC number of the X matrix can also be determined by the indicated function
method (IND), which is defined as follows:



216 6 Spectral Dimensionality Reduction Methods

Fig. 6.8 Variation of eigenvalue with the number of principal components

I N D =

√√√√√√
min(n,m)∑
i= f +1

λi

max(n,m)[min(n,m) − f ]5 (6.5)

Starting from f = 1, calculate the IND value corresponding to different f . The
IND value decreases gradually with the increase of f , and then increases again, so
there is a minimum value. The f corresponding to the minimum value of the IND
function is the number of PCs.

For spectral analysis, sometimes the loading matrix P can be used to help deter-
mine the PC. When the loading vector corresponding to a component number obvi-
ously shows a noise trend, it indicates that it is near the number of PCs of the spectral
matrix.

6.2.3 Algorithm of Principal Component Analysis

In practice, the nonlinear iterative partial least squares (NIPALS) algorithm proposed
by H Wold in 1966 is often used to calculate PCA. NIPALS algorithm is more
suitable for microcomputer calculation, because it is an iterative algorithm with
simple calculation steps and fast speed. In the calculation, PCs with large variance
or large eigenvalue are given first, rather than all factors are calculated at once. The
process of NIPALS algorithm is as follows.

(1) Take a vector x in X as the starting value of t: t = x.
(2) Calculate pT
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pT = tTX/tTt (6.6)

(3) Normalize pT

pT = pT/ ||p|| (6.7)

(4) Calculate t

t = Xp/pTp (6.8)

(5) Compare the new and the old t, and see if the convergence condition is satisfied.
If the convergence condition is met, proceed to step (6), otherwise jump back
to step (2).

(6) If the required PCs have been completed, the calculation will be stopped.
Otherwise, calculate the residual matrix E

E = X−tpT (6.9)

(7) Replace X with E, go back to step (1), and find the next PC.

After NIPALS calculation,X is transformed into an orthogonal PCmatrixT. It can
be proved that the eigenvector p obtained by NIPALS algorithm is the eigenvector of
matrix XTX. The NIPALS algorithm has been widely used in chemometrics because
of its high speed, simple steps, and easy application on computers.

For the spectrum of unknown sample xun, the score vector tun of the spectrum of
the unknown sample can be calculated through the loading matrix P obtained above

tun = xunP (6.10)

6.2.4 Application of Principal Component Analysis

The purpose of calculating PCs is to project the high-dimensional data into a lower-
dimensional space. At the same time, these new variables can reflect the information
of the original variables as much as possible and are independent of each other.

For PCA model,

X = TPT + E (6.11)

Score matrix T can be used as characteristic variable for quantitative analysis,
such as input variable ofMLR, namely, principal component regression (PCR), input
variable of artificial neural network (ANN), support vector regression (SVR), etc. [5].
The score matrix T is also often used in qualitative analysis, such as the characteristic
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variable to calculate the Mahalanobis distance among samples to judge the outlier
samples. In fact, thePCscore vector canbedirectly plotted in twoor three dimensions,
and the classification of different samples can be realized through graphics display
of computer screen. In addition, the spectral residual matrix E can also be used for
qualitative analysis (such as SIMCA method, the identification of spectral residual
outlier samples, etc.).

The Hotelling T 2 statistics and Q statistics in the multivariate statistical process
control (MSPC) are calculated based on the score matrix T and the residual matrix
E, respectively [6, 7].

6.2.5 Multivariate Resolution Alternating Least Squares

Multivariate curve resolution-alternating least squares (MCR-ALS) is a bilinear-
based spectral matrix decomposition method. It uses alternating method to iterate.
The concentration and spectral distribution curves of the pure components in the
complex system can be obtained [8–10].

The expression of decomposition of spectral matrix D in MCR-ALS model is
similar to that of PCA. In essence, the score matrix is further analyzed in PC space,
so as to estimate the pure spectra. The model of MCR-ALS is as follows:

D = CST + E (6.12)

where D is the spectral matrix constituted by n samples of different concentrations,
the dimension is n × m, and m is the number of wavelength points of the spectra.
There are k independent chemical components in the mixture; C is the concentration
matrix of pure components, and the dimension is n × k. S is a pure component
spectral matrix with a dimension of m × k. E is the measurement error matrix.

As shown in Fig. 6.9, the calculation steps of MCR-ALS are as follows:

(1) Determine the number of components of the spectral matrix. PCA (SVD
decomposition) or prior knowledge is usually used to determine the number of
components of the system.

(2) Initialize pure component concentration matrix C or pure component spec-
tral matrix S. Simple-to-use interactive self-modeling mixture analysis
(SIMPLISMA) method is usually used for the initial pure component spec-
tral matrix S. The specific algorithm of SIMPLISMA is described in Sect. 5.2
of this book.

(3) Repeat the iterative calculation of C and S through the following two
expressions until convergence is achieved, and the iterative calculation ends:

C = D
(
ST

)+
(6.13)
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Fig. 6.9 Flowchart of resolution-alternating least squares algorithm (MCR-ALS)

ST = C+D (6.14)

where (ST)+ and C+ are the generalized inverse matrices of St and C, respectively. If
St and C are full rank matrices, their generalized inverse matrices are S(STS)−1 and
(CTC)−1C, respectively.

In the calculation of MCR-ALS, there are permutation uncertainties, strength
uncertainties, and rotation uncertainties, so it is necessary to introduce constraints to
reduce or restrain the uncertainty of MCR-ALS. Commonly used constraints include
concentration and spectral non-negative constraint, closure constraint, unimodality
constraint, and correlation constraint [11–13].

6.2.6 Band Target Entropy Minimization

Before introducing band target entropy minimization (BTEM), a brief introduction
to target transformation factor analysis (TTFA) is given. In this method, the spectral
matrix of a mixture is decomposed to determine whether there is a target object in
the mixture.

The expression of decomposition of the mixture spectral matrix D by TTFA is
the same as that of PCA. Its essence is to rotate the loading vector so as to resolve
the pure spectra. The model of TTFA is as follows:
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D = CST + E (6.15)

where D is the spectral matrix constituted by nmixture samples of different concen-
trations, and the dimension is n × m, and m is the number of wavelength points of
the spectra. There are k independent chemical components in the mixture; C is the
concentration matrix of pure components, and the dimension is n × k. S is a pure
component spectral matrix with a dimension of m × k. E is the measurement error
matrix.

The main steps of TTFA algorithm:

(1) PCA is performed on D at first.

D = UVT + E (6.16)

where U, V, and E are score, loading, and residual matrix, respectively. The
dimensions of U and V are n × k and m × k, respectively.

V contains all the spectral information of S, so the loading vector is also called
the abstract spectrum. Therefore, any pure spectral s vector in S can have a
linear representation of the loading vector V.

s = Vr (6.17)

where r is a rotation vector and its dimension is k × 1.
(2) If the reference spectrum of the target object is s0, then the rotation vector r

can be obtained by the least square method:

r = (
VTV

)−1
VTs0 (6.18)

(3) Calculate the reconstructed spectrum s by Eq. 6.17.
(4) Check the similarity between the reference spectrum s0 and the reconstructed

spectrum s. If the consistency between the two is verified, the target is consid-
ered to exist in the mixture. Otherwise, the target is not contained in the
mixture.

BTEM decomposes the spectral matrix of the mixture in the same way as TTFA,
except that the reference spectrum s0 is not needed when calculating the rotation
vector r. Instead, the objective function is designedby combining the concept of target
band and information entropy minimization in the spectrum. The optimal rotation
vector r was searched by simulated annealing algorithm to minimize the objective
function. Finally, the pure component spectrum of the target object is obtained by
Eq. 6.17. The detailed steps of BTEM algorithm can be seen in references [14, 15].
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The central idea of BTEM method is to conduct PCA on the original spectral
matrix of the mixture and decompose it into multiple loading vectors. The inter-
ested spectral features are identified from these feature vectors by visual observa-
tion, and select one of the interested spectral features to be retained during spectral
reconstruction. The proposed method can compulsively preserve the selected spec-
tral features and reconstruct the pure component spectra of the whole target object
with the minimum entropy of the target band. Compared with TTFA, it does not
require a priori information about the target (such as reference spectra), nor does it
rely on the advantages of statistical test. The BTEM method has been successfully
applied to various solid and liquid phase reaction systems, and successfully recon-
structed complex spectra such as Raman spectroscopy, Fourier transform infrared
spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and mass spectrometry
(MS) [16–18].

In addition to the MCR-ALS, TTFA, SIMPLISMA, and BTEM algorithms intro-
duced in this book, interactive principal component analysis (IPCA) [19], orthogonal
projection approach-alternating least squares (OPA-ALS) [20, 21], and target partial
least square (TPLS) [22] can be used to identify the pure component spectra from
the mixture spectral matrix.

6.2.7 Multilevel Simultaneous Component Analysis

Multilevel simultaneous component analysis (MSCA) method is proposed on the
basis of PCA for data analysis with different types of variance in the data [23]. A two-
level MSCA model can explain the inter-individual and intra-individual variances
in the data, respectively. For an individual, this model can be expressed by Eq. 6.10
[24].

Xraw,i = 1Kim
T + 1Ki t

T
b,iP

T
b + Tw,iPT

w + EMSCA,i (6.19)

The constraint condition is
{∑l

i=1Ki tTb,i = 0
1TKi

Tw,i = 0
(6.20)

where 1Ki represents the column vector of size Ki, mT represents the overall mean
value, tTb,i and Tw,i represent the scores of between-individual and within-individual
models, respectively, and Pb and Pw represent the loadings of two models, respec-
tively. EMSCA,i represents the residual matrix and 0 represents a zero vector. By
imposing constraint conditions on the score, the three parts of the model are guaran-
teed to be orthogonal to each other, that is, models at different levels can be explained
by different types of variance in the data, respectively.
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Since the MSCA method can analyze the data at different levels, it can be used to
distinguish the temperature-controlled near-infrared (NIR) spectral data and investi-
gate the effects of temperature and concentration on the spectrum at the same time.
If the volume ratio of water and ethanol is the same for each group of samples, the
volume concentration of isopropanol is 10, 20, 30, 40, 50, 60, 70, 80, and 90% of the
mixed solution (i.e., Ki = 9), each group of sample data contains spectra measured
at 7 temperatures, i.e., 7 individuals Xraw,i (i = 1,2,…,7).

The calculation of MSCA model includes the following two main steps [25]:

(1) Firstly, the overall centralization of Xraw is carried out, and then the one-level
model is obtained by PCA analysis to the matrix composed of the mean vector
of each individual. Since this model only explains the variance between indi-
viduals (temperature), it is called the between-temperature model. The model
only considers the temperature effect and excludes the concentration effect.
Therefore, the score calculated by the model between temperatures is called
the temperature coefficient, and the quantitative relationship between spec-
trum and temperature (QSTR) can be obtained by the temperature coefficient
at different temperatures.

(2) Conduct local centralization of each individual after overall centralization,
eliminate temperature effect through this step, and then PCA decomposition
of matrix composed of all individuals is carried out to get the model. Since
this model only considers the changes in the spectrum generated by changes in
the individual or concentration, it is called the within-temperature model. The
model only accounts for the concentration effect and excludes the temperature
effect, so the score of the model is called the concentration coefficient. The
quantitative relationship between the spectrum and the concentration can be
obtained by the concentration coefficient at different concentrations.

The MSCA method is not only used for the establishment of two-level models
(such as temperature and concentration), but also used for the establishment of three-
level models. For example, the influence of temperature, concentration, and pH value
on the spectrum can be investigated simultaneously [26].

6.3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) and PCA are both linear data analysis
methods. The basic idea of linear data analysis is to express the high-dimensional
original data vector as a linear combination of a set of low-dimensional vectors
through some appropriate transformation or decomposition. NMF requires the coef-
ficients of these linear combinations are non-negative, that is, for any given non-
negative matrix V (n × m), the goal of NMF algorithm is to find a non-negative
matrix W (n × r) and a non-negative matrix H (r × m), such that V = Wh is satis-
fied, so as to decompose a non-negative matrix into the product of two non-negative



6.3 Non-negative Matrix Factorization 223

matrix [27–29], where n is the number of samples, m is the number of wavelength
variables, and r is the number of PCs of the system.

If the evaluation function F is constructed by the square of the residual Euclidean
distance:

F =
∑
i, j

(
Vi j − (WH)i j

)2
(6.21)

Then, matricesW and H can be obtained through a simple iterative process. The
main steps of the algorithm are as follows:

(1) Random initial values are assigned to non-negative matricesW and H.
(2) Calculate W from H:

W
′
ia = Wia

∑
μ

Viμ

(WH)iμ
Haμ (6.22)

where i = 1, 2,…, n, a = 1, 2,…, r, μ = 1, 2,…, m.
(3) Column normalization:

Wia = W
′
ia∑

j
W ja

(6.23)

Among them, i = 1, 2,…, n, a = 1, 2,…, r, j = 1, 2,…, n. W’in represents
the new iteration value of Win.

(4) Calculate H from W:

H
′
aμ = Haμ

∑
i

Wia
Viμ

(WH)iμ
(6.24)

Among them, i = 1, 2,…, n, a = 1, 2,…, r, μ = 1, 2,…, m.

When the iteration reaches the maximum number of iterations or the sum of
squares of residuals between original data and reconstructed data is less than a given
threshold, the iteration terminates.

It can be seen from the above calculation steps that NMF is performed based on
each element in the matrix, rather than each vector in the matrix as PCA calculates,
and the decomposition results of NMF can better represent the local characteristics
of data. When the variables overlap with each other seriously, usually NMF can still
find the “basis function” that characterizes the data structure, so NMF can directly
extract the pure chemical composition information from the complexmixed systems.
In addition, the “basis functions” of NMF are combined into individual variables by
linear summation, which is more consistent with the combined characteristics of
response spectra of different chemical components. In order to further improve the
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separation ability of highly overlapping spectra, Gan et al. [30] proposed a non-
negative matrix decomposition method based on pure variable initialization. Yin
et al. [31] proposed a non-negative matrix decomposition method based on spectral
feature constraints.

6.4 Independent Component Analysis

The purpose of independent component analysis (ICA) is to separate statistically
independent source signals frommulti-dimensionalmixed signals of unknown source
signals by linear transformation [32, 33]. For spectral matrix X with n × m dimen-
sions, where n is the number of samples and m is the number of wavelength points,
supposing that the number of ICA components and the number of samples are the
same as n, n < m, ICA model can be expressed as

X = AS (6.25)

where A is the mixed matrix, dimension n × n, S is the component matrix, and
dimension n × m. Since both A and S are unknown, ICA is the optimal solution for
finding the S, so that

S = WS (6.26)

That is, to find a suitable separation matrix W (n × n), and then to obtain the
independent component S. The diversity of ICA objective function and optimization
algorithm determine the complexity of ICA algorithm. In the specific application
process, many typical algorithms have been formed, mainly including the following:
fast ICA algorithm for maximum likelihood function estimation, mutual informa-
tion minimization, non-Gaussian maximization, information maximization, nega-
tive entropy maximization, etc. Fast ICA algorithm is commonly used [34, 35]. The
specific steps are as follows:

(1) The spectral matrix X is processed by mean centering.
(2) X was whitened. By SVD decomposition of the covariance matrix of X, the

eigenvalue diagonal matrix D and eigenvalue vector matrix Q were obtained.
U = D1/2QT was calculated, and the whitened matrix Z was

Z = UX (6.27)

(3) Set the number of components that need to be estimated n, let the number of
iterations p, and randomly initialize the transformation matrix W.

(4) Calculate the separation matrix W.
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Wp = E
{
Zg

(
WT

p Z
)} − E

{
g

′ (
WT

p Z
)}
W (6.28)

where E {·} is the mean value operation function; g (·) is a nonlinear function,
usually using the tanh function; and g(·) is the first derivative of the function
g’ (·).

(5) The orthogonal matrix W.

Wp = Wp −
p−1∑
j=1

(
WT

p Wj
)
Wj (6.29)

(6) Standardization matrix W.

Wp = Wp/
∥∥Wp

∥∥ (6.30)

Judge whetherWp converges. If it converges, separate an independent component
and proceed to the next step. If it does not converge, then return to step (4) to continue
iterative calculation.

Let p = p + 1. If p ≤ n, go back to step (4) until n independent components are
calculated.

Calculate the composition matrix

S = WX (6.31)

For the new spectrum x (1 × m), the vector a after dimensionality reduction by
ICA is

a = xS−1 (6.32)

where the dimension of a is 1 × n.

6.5 Multi-dimensional Scaling Transformation

Multi-dimensional scaling (MDS) transformation, also known as multi-dimensional
scaling analysis, is a visualization method to display high-dimensional multivariate
data in low-dimensional space.When the similarity (or distance) among each pair of n
samples is fixed, the basic goal ofmulti-dimensional scaling is to determine the repre-
sentation of these samples in low-dimensional (Euclidic) space (called perceptual
mapping), and make it “roughly match” with the original similarity (or distance) as
far as possible. Thismethod canminimize any deformation caused by dimensionality
reduction, so it is also called “Similarity structure analysis” [36].
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If X is an n × m-dimensional matrix composed of sample xi, n is the number
of samples, m is the number of wavelength variables, i = 1,2… n, the steps of the
multi-dimensional scaling algorithm are as follows:

Calculate the Euclidean distance between two samples in the distance X matrix
dij, i, j = 1, 2…, n, forms the distance matrix D.

The centralized inner product matrix B is further calculated from the distance
matrix D, B = (bij) n×n,

bi j = 1

2

⎛
⎝−d2

i j + 1

n

n∑
j−1

d2
i j + 1

n

n∑
i−1

d2
i j − 1

n

n∑
i=1

n∑
j=1

d2
i j

⎞
⎠ (6.33)

Conduct orthogonal decomposition of matrixB,B=USUt; select f largest eigen-
roots and their corresponding eigenvectors; and get the fitting composition Z in f-
dimensional space, Z= Sf1/2Uf

t, where Sf =Diag (λ1, λ2…, λf) are the first f eigen-
roots of matrix B and Uf = [u1, u2… uf] is a matrix composed of corresponding
eigenvectors. Z is the final matrix of multi-dimensional scaling transformation and
its dimension is n × f .

In essence, the basic goals of multi-dimensional scaling transformation and PCA
are consistent. They both transform the high-dimensional spatial data into the low-
dimensional space through the mapping of spatial variables, so as to maintain the
original relationship of the data of each research object, and minimize any deforma-
tion caused by dimensionality reduction. The difference is that MDS takes samples
as the analysis object, while PCA takes variables as the analysis object. It is mathe-
matically proved that the f-dimensional principal coordinate of Z after MDS trans-
formation is exactly the value of the first f PCs obtained by using PCA after the
centeralization of X matrix.

Chen et al. [37] used multi-dimensional scaling to reduce spectral variables,
combined with multi-linear regression, to establish a quantitative model of four
clinical biochemical indicators (glucose, low-density lipoprotein cholesterol, triglyc-
erides, and urea).Wang et al. [38] used theMDSmethod to reduce the infrared spectra
of asphalt and established a discrimination model that quickly identifies different
brands.

6.6 Isometric Mapping

Isometricmapping (ISOMAP) [39] is a nonlinear dimensionality reduction technique
and belongs to manifold learning method. MDS is a linear dimensionality reduc-
tion method. The Euclidean distance matrix constructed by MDS cannot reflect the
nonlinear relationship between the sample points of manifolds. However, some of
the data in the spatial distribution is like a twisted strip or spherical, etc. A common
example is about the globe, if the South Pole to the North Pole, and the Euclidean
distance is the linear distance of point to point, but the ant cannot walk in this way,
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the shortest distance can be reached only by walking in the direction of the meridian,
and this distance is called geodesic distance [40].

In order to keep the intrinsic geometric properties of data points (geodesic distance
between two points) unchanged, ISOMAP algorithm uses geodesic distance among
sample points to replace Euclidean distance on the basis of MDS. The approximate
value of geodesic distance measurement can be obtained by using shortest path
algorithm to reconstruct the local geodesic distance in the neighborhood. The samples
in Fig. 6.10a are distributed on a Swiss-roll. The Euclidean distance between two
points linked by the dashed line cannot represent the true distance between two
points. The curve distributed on the manifold surface is the geodesic of the two
points, which cannot be obtained under the condition that the manifold is unknown.
The geodesic distance between the two points can be approximated by piecing the
distance in the neighborhood through the shortest path algorithm, as shown in the
curve in Fig. 6.10b. Figure 6.10c is the projection of two points and two paths
(corresponding to geodesic distance and short-range distance splicing, respectively)
in the space after dimensionality reduction using ISOMAP.

The ISOMAP algorithm first uses the shortest path in the nearest neighbor graph
to get the approximate geodesic distance, inputs the distance into MDS instead of
the Euclidean distance, and then finds the low-dimensional coordinates embedded
in high-dimensional space. If is an n × m-dimensional matrix composed of samples,
n is the number of samples, m is the number of wavelength variables, i = 1,2…,n,
set the dimensionality reduction number d and the adjacent number k, the ISOMAP
algorithm is as follows:

(1) Construct K-neighborhood graph G. Calculate the Euclidean distance Dij
E

between each sample xi and the rest sample xj. When xj is one of the k samples
nearest to xi, it is considered that xi and xj are adjacent, that is, graph G has
edge Eij, and the weight of edge Eij is set as dijE.

(2) Calculate the shortest path.When graphG has edge Eij, set shortest path dijG =
dijE; otherwise, dijG is equal to infinity. In Figure G, the shortest path distance
matrix DG is obtained according to Dijkstra algorithm or Floyd algorithm.

Fig. 6.10 The “Swiss-roll” data set, illustrating how ISOMAPexploits geodesic paths for nonlinear
dimensionality reduction. a For two arbitrary points (circled) on a nonlinear manifold. bAn approx-
imation (red segments) to the true geodesic path c The two-dimensional embedding recovered by
ISOMAP in step three low-dimensional projection results [39]
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(3) Calculated dimensional embedding. MDS is applied to the short-path distance
matrix DG:

➀ Calculate the matrix R (n × n)

R = (
rij

) =
((

dGij
)2

)
(6.34)

➁ Calculation matrix H(n × n)

H = (
hi j

) = (
δi j−1/n

)
(6.35)

where δij = 0 (i = j),δij = 1(i = j)
➂ Calculate the matrix

LG = −HRH/2 (6.36)

PerformSVDdecomposition onLG, because thematrixLG is symmetric,
that is,

LG = UTSU (6.37)

➃ Calculate the projection matrix M (n × d) of low-dimensional space. d
row and n column before matrix U are taken to form matrix Ud, d row and
d column before matrix S are taken to form matrix Sd , then

M = Sd1/2Ud (6.38)

Yang et al. [41] applied ISOMAP algorithm to the dimensionality reduction of
NIR spectra, and then established a quantitative model by using PLS. The results
showed that the prediction error could be significantly reduced when there was a
nonlinear relationship between the property data and NIR spectra. Yu et al. [42] used
ISOMAP algorithm to reduce the dimension of the NIR spectra of knots in solid
wood plates, and then realized the effective modeling of the angle of the knot edge
by using wavelet neural network. Lu et al. [43] applied ISOMAP algorithm to the
dimensionality reduction of soil hyperspectral data, used random forest method to
build the calibrationmodel of copper content inmine tailings soil, and obtained better
results than PCA dimensionality reduction. Ding et al. [44] also applied ISOMAP
algorithm to dimensionality reduction of hyperspectral data, and the branching of
similar categories could be greatly improved by using fewer feature dimensions.
Li et al. [45] proposed an improved supervised dimensionality reduction method of
ISOMAP,which used the correlation of spectral data itself to guide the construction of
neighborhood map and reduce the sensitivity to noise and neighborhood parameters.
Zhou et al. [46] proposed an ISOMAP algorithm based on matrix partitioning and
automatic map adjustment to reduce the complexity of calculation and improve the
calculation rate.
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6.7 Local Linear Embedding

Local linear embedding (LLE) is a nonlinear dimensionality reduction method.
Compared with the traditional PCA dimensionality reductionmethod, which focuses
on the sample variance, LLE focuses onmaintaining the local linear characteristics of
the sample during dimensionality reduction, and can effectively realize the mapping
of data from high-dimensional space to low-dimensional space [39].

Thebasic ideaofLLEalgorithm is to reveal the nonlinear dimensionality reduction
of theglobal nonlinear structure through the joint of local linear relations in the sample
space. The specific description of the algorithm is as follows: let X = {x1, x2,…,
xN} be the spectra of N input samples, and its low-dimensional mapping is Y= {y1,
y2,…, yn}, and yi are eigenvectors of spectra xi. Any Xi can be expressed as a linear
combination of the spectra of its k adjacent samples:

xi =
k∑
j=1

wi jxi j (6.39)

Among them, xij is the j spectrum closest to xi and wij is the linear reconstruction
coefficient. LLE realizes the mapping of samples from high-dimensional space in
low-dimensional space through local linear relations. The specific algorithm is as
follows:

Input: Spectral matrix of sample set X = {x1, x2,..., xn}, the nearest neighbor k,
the dimension reduced to d.

Output: Low-dimensional sample set matrix Y ={y1, y2,..., yd}.

(1) Take Euclidean distance as a measure to calculate the spectra of k samples
closest to Xi {xi1, xi2,…, xik}.

(2) Calculate the local variance matrix Zi and calculate the corresponding weight
coefficient vector:w i

Zi = (
x − x j

)(
xi − x j

)T
(6.40)

wi = Z−1
i 1k

1Tk Z
−1
i 1k

(6.41)

Among them, 1k is the k dimension full 1 vector, wi = (wi1,wi2,…,wik)T.
(3) According to the weight coefficient matrix W of all sample spectra in the

sample set, the calculation matrix

M = (I − W) (I − W)T (6.42)

where I is the identity matrix.
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(4) Calculate the second eigenvector of matrixM to the eigenvector corresponding
to D + 1 minimum eigenvalue, that is, the output low-dimensional sample set
matrix Y = {y2, y3,…, yd+1}.

Duan et al. [47] used LLE to conduct nonlinear dimensionality reduction of the
visible NIR spectra of eggs, and then used SVR to establish a model to predict egg
freshness. The dimensionality reduction effect of LLE was better than that of PCA.
Kang et al. [48] combinedLLEwith SVR to establish an analysismodel for predicting
COD in water samples by UV-Vis spectra, which can effectively extract nonlinear
features in the spectra. Xu et al. [49] divided the NIR spectra of tobacco samples into
regions, then performed LLE dimensionality reduction, and constructed a similarity
measurement model. The accuracy rate was 93.3%, which improved the robust-
ness and accuracy of the similarity measurement of NIR spectra. Zhang et al. [50]
combined LLE with Gaussian process regression (LLE-GPR) to detect the quality
of red pine nuts by NIR spectroscopy, which could accurately distinguish normal
pine nuts from moldy pine nuts. Fan et al. [51] based on the fluorescence spectrum
characteristics of TCM properties combined the LLE algorithm with random forest
algorithm to construct the LLE-RF fluorescence spectrum classification model of
cold and warm TCM, which has a good classification and recognition results.

6.8 T-Distributed Stochastic Neighborhood Embedding

T-distributed stochastic neighborhood embedding (t-SNE) algorithm is a popular
mainifold learning method for visual data dimensionality reduction. This algorithm
can not only map the nearby points in the flow pattern to the nearby points in the
low-dimensional representation, but also preserve the geometry of all scales, that
is, map the nearby points to the nearby points and map the distant points to the
distant points. T-SNE algorithm is a method of dimensionality reduction analysis
using probability. It converts the Euclidean distance between any two data points
in a high-dimensional space into the similar probability. In addition, the conditional
probability of the stochastic neighbor embedding algorithm (SNE) is replaced by
the joint probability between the data points in the high-dimensional space and the
data points simulated in the low-dimensional space, so as to solve the problem of
asymmetry in the SNE algorithm [52]. In addition, the algorithm adopts t-distribution
in the low-dimensional space, which is a typical long-tail distribution. It can make
the data points with medium and low equal distances in the high-dimensional space
have a larger distance after the mapping, thus effectively solving the problem of data
points crowding in the low-dimensional space.

For n × m-dimensional spectral matrix X, where n is the number of samples and
m is the number of wavelength points, the t-SNE steps are as follows:
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(1) The joint probability Pef in the m-dimensional space is calculated. Similar
conditional probability Pe/f and pf /e of two spectra in m-dimensional space
can be calculated.

pe| f =
exp

(
−∣∣∣∣x f − xe

∣∣∣∣22σ 2
f

)
∑n

f=1

∑n
g=1 exp

(
−∣∣∣∣x f − xg

∣∣∣∣22σ 2
f

) ( f �= g) (6.43)

p f |e =
exp

(
−∣∣∣∣xe − x f

∣∣∣∣22σ 2
e

)
∑n

e=1

∑n
g=1 exp

(
−∣∣∣∣xe − xg

∣∣∣∣22σ 2
e

) (e �= g) (6.44)

where Pe/f represents the probability that the f sample is distributed around
sample e, pe/e = 0, and σf represents the variance of the Gaussian distribution
in the center of xf .

The high-dimensional joint probability PEF is expressed as follows:

pe f = p f |e + pe| f
2n

(6.45)

(2) Calculate the joint probability qef in the low-dimensional space:
T-SNE algorithm adopts t-distribution in low-dimensional space, and the

joint probability qef of low-dimensional space Z (n × d, where d is the
dimension after dimensional reduction) is expressed as follows:

qe f =
(
1 + ∣∣∣∣ze − z f

∣∣∣∣2)−1

∑n
g=1

∑n
l=1

(
1 + ∣∣∣∣zg − zl

∣∣∣∣2)−1 (g �= l) (6.46)

(3) Calculate the KL divergence between pef and qef , and set it as the objective
function C, i.e.,

C = KL(P ||Q) =
n∑

e=1

n∑
f=1

pe f log2
pe f
qe f

(6.47)

KL divergence is used to measure the similarity of two spatial distributions
of high and low dimensions. The goal of SNE algorithm is to minimize the KL
distance for all data points in the sample set.

(4) Take the derivative of the low-dimensional expression corresponding to the
input data with the objective function C:

δC
δZe

= 4
n∑

f=1

(pe f − qe f )(ze − zf)(1 + ||ze − zf ||2)−1
(6.48)
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The low-dimensional expression is taken as an optimizable variable to be
optimized, and the optimal simulation point of the input matrix X in the low-
dimensional space is obtained.

(5) Define the perplexity:

Per p( pe) = 2H(pe) (6.49)

Among them,

H( pe) = −
n∑
f=1

p f |elog2 p f |e (6.50)

The perplexity can be interpreted as the number of valid nearest neighbors
near a point, which is usually selected between 5 and 50. It is a global parameter
that controls thefitting and affects the complexity of theGaussian distribution in
higher-dimensional space. It is necessary to adjust the perplexity continuously
in order to get the optimal dimensionality reduction result.

(6) In order to obtain the minimum objective function C, multiple iterations of the
input matrix X are needed. By adjusting the parameters such as the perplexity,
learning rate η, and momentum α(t), the specific iteration steps are as follows:

➀ The perplexity is calculated, and the iteration number T, learning rate η,
and momentum α(t) are set.
➁ Calculate the pef at a given perplexity.
➂ Initialize Z(0) with the normal distribution N(0, 10−4I).
➃ Iterate from t = 1 to T.
➄ Calculate QEF in low dimensions.
➅ Calculate the gradient δC

δZ .
➆ Update all landowners

Z(t) = Z(t−1) + η
δC
δZ

+ α(t)(Z(t−1) − Z(t−2)) (6.51)

➇ Determines whether t is equal to T, otherwise t = t + 1, returns ➄.

Wang et al. [53] established a random forest model to identify egg origin using the
short-wave NIR spectral feature extracted by t-SNE, and the result was better than
that of PCA. Li et al. [54] used t-SNE to reduce the dimension of NIR spectra of, and
then realized the identification of different wood species through cluster analysis.
Li et al. [55] used t-SNE to map sample points of high-dimensional terahertz time
domain spectra to low-dimensional space, and realized visual observation of sample
features in low-dimensional space. Li et al. [56] used t-SNE to reduce the dimension
ofNIR spectra of pine nuts, whichwas used as the input of SVMclassificationmodel,
and the accuracy of identification of pine nuts storage period could reach 97.5%.
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6.9 Other Algorithms

In addition to PCA, ICA, and MDS, there are also projection pursuit (PP), minimum
noise fraction rotation (MNF Rotation), etc. [57, 58] for linear dimensionality reduc-
tion. Among the nonlinear dimensionality reduction methods, there is kernel PCA
(KPCA) and kernel ICA (KICA) based on kernel function.

In the nonlinearmanifold dimensionality reduction, besides LLE, ISOMAP, and t-
SNE, there are alsoLaplacian eigenmaps (LE) [59–61], locality preserving projection
(LPP) [62], diffusion maps (DM) [63], Hessian locally linear embedding method
(HLLE) [64], linear local tangent space alignment (LLTSA) [65], etc. [66].

This chapter mainly discusses spectral dimensionality reduction methods based
on spectra. If concentration or classification is considered to participate in data
dimensionality reduction, which is called supervised data dimensionality reduction,
methods such as partial least squares (PLS), canonical correlation analysis (CCA),
Fisher linear discriminant analysis (LDA), supervised locality preserving projection
(SLPP) can be considered [67, 68].
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Chapter 7
Linear Calibration Methods

7.1 Univariate Linear Regression

Unary linear regression is the simplest linear regression with the formula of y =
b0 + bx + ε, where x is an observable and controllable variable, and it is often
called an independent variable or a controlled variable (absorbance of NIRS), y is
the dependent variable (such as the benzene content of gasoline, the protein content
of wheat, etc.), b0 and b are regression coefficients, ε is measurement error.

In regression analysis, the main purpose is to find the best estimated values of b0
and b based on a set of nmeasured values (xi, yi), so as to achieve the closest degree
of ŷ and y. Once b̂0 and b̂ are calculated, they can be used for predictive analysis [1].

Estimated values of b0 and b are often obtained by least square method as consid-
ering sum of square Q(b0, b) = ∑n

i=1 (yi − b0 − bxi )2, find b0 and b that minimize
Q(b0, b) as its estimation, that is, Q(b̂0, b̂) = min

b0,b
Q(b0, b).

As for,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Q

∂b0
= 2

n∑

i=1

[yi − b0 − bxi ] = 0

∂Q

∂b
= 2

n∑

i=1

(yi − b0 − bxi )xi = 0

(7.1)

Solution

⎧
⎨

⎩

b̂ = Lxy

Lxx

b̂0 = y − b̂x
(7.2)

where b̂0 and b̂ are the least square estimate values of b0 and b, respectively.

Lxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2i − 1

n

(
n∑

i=1

xi

)2
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Lxy =
n∑

i=1

(xi − x)(yi − y) =
n∑

i=1

xi yi − 1

n

(
n∑

i=1

xi

)(
n∑

i=1

yi

)

(7.3)

where x and y are the average values of n measurement data xi and yi, respectively.
In spectral analysis, unary linear regression is often used to evaluate the correlation

between the spectral prediction results of a set of samples and the results of the
reference method.

7.2 Multiple Linear Regression

In practice, multiple regression methods are used in many cases to better describe
the relationship between variables. Actually, the method of dealing with multivariate
is basically the same as that of single variate, except that the calculation of multiple
linear regression (MLR) is much larger, and computers are generally involved for
processing [2].

Suppose there is a relationship between the dependent variable y and the
independent variables x1, x2, ……, xm: y = b0 + b1x1 + ... + bmxm + ε;

For n sets of measurement data:

(y1; x11, x2, . . . . . . , x1m)

(y2; x21, x22, . . . . . . , x2m)

. . . . . . . . .

(yn; xn1, xn2, . . . . . . , xnm)

where xij is the ith observation value of the independent variable xj, yi is the ith value
of the dependent variable y, and m is the number of independent variables (such as
m spectral wavelengths participating in the regression). Data structure of the model
is as follows:

y1 = b0 + b1x11 + b2x12 + ... + bmx1m + ε1

y2 = b0 + b1x21 + b2x22 + ... + bmx2m + ε2

... ... ... ...

yn = b0 + b1xn1 + b2xn2 + ... + bmxnm + εn

Above equation can be written in matrix form as y = Xb + ε

where
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y =
⎡

⎣
y1
...

yn

⎤

⎦ X =

⎡

⎢
⎢
⎣

1 x11 ... x1m
1 x21 ... x2m
... ... ... ...

1 xn1 ... xnm

⎤

⎥
⎥
⎦ b =

⎡

⎣
b0
...

bm

⎤

⎦ε =
⎡

⎣
ε1

...

εn

⎤

⎦ (7.4)

The estimated value of y obtained by the least square method is
∧
y, and residual

sum of squares is Sres = εTε = (y – Xb)T(y – Xb) = yTy – bTXTy – yTXb + bTXTXb.
To obtain the minimum value of Sres, b must satisfy the equation: ∂Sres

∂b =
∂
∂b (y − Xb)T(y − Xb) = 0, that is, –2X T(y – Xb) = 0.

Formal equation is obtained as X TXb = X Ty.
Solve the above equation and get the estimated value of regression coefficient as

∧
b = (X TX)–1X Ty.

MLR is a basic algorithm for early quantitative analysis of NIRS that is suitable
for simple systems with particularly good linear relationships. The formula is very
clear and simple, without considering the influence of mutual interference between
components. But MLR has many limitations. Firstly, due to the dimension limit of
equation, the number of variables (wavelength points) involved in the regression
cannot exceed the number of samples in calibration set. The limited wavelengths
would inevitably lose many useful spectral information. Secondly, spectral matrix X
often has a collinearity problem, that is, at least one column or one row in X can be
expressed by a linear combination of other columns or rows, leading to |XTX| to be
equal to or close to zero. This kind of ill conditioned matrix cannot find its inverse
matrix or the obtained inverse matrix is unstable. Thirdly, because the noise of the
X matrix is not considered in the regression process, it often leads to the occurrence
of over-fitting, which will greatly reduce the predictive ability of model.

7.3 Concentration Residual Augmented Classical Least
Squares

Concentration residual augmented classical least squares (CRACLS) is an improved
algorithm proposed on the basis of multiple linear regression [3, 4].

If the calibration set spectral matrix is X(n × m), n is the number of samples, m
is the number of wavelength points; concentration matrix is Y(n × p), and p is the
number of components, then the CRACLS algorithm steps are as follows:

(1) Calculate the absorption coefficient matrix S: S = (YTY)−1 YTX
(2) Calculate the concentration prediction matrix Y

∧

: Y
∧

= XST(SST)−1

(3) Calculate the concentration residual matrix E: E = Y
∧

−Y
(4) Amplify a column in the concentration residual matrix E to the concentration

matrix Y to obtain a new concentration matrix Y+

(5) Replace Y with Y+, repeat Steps (7.1)–(7.4) until the error E meets the
requirements.
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This methodmaintains the advantages of the least squaremethod and can partially
solve the problem of spectral overlap, improve the utilization of spectral information,
and obtain a model with better predictive ability. Similarly, the above strategy can
also be used to augment the spectral residuals as spectral residual augmented classical
least squares (SRACLS) [5, 6].

7.4 Stepwise Linear Regression

Stepwise linear regression is a method of solving multicollinearity through variable
selection. All possible variable combinations of m wavelengths would be listed to
relate variable y to establish an MLR regression equation, and then the optimal
equation according to the screening criterion is selected. In practice, the stepwise
variable selection method is commonly used as three methods including stepwise
backwardmethod, stepwise forwardmethod, and stepwise regression analysis (SRA)
[7, 8].

(1) Stepwise backward method (reverse screening): From the regression equation
containing all m variables, according to the criterion, it eliminates a variable
that does not have a significant effect on y at a time until it cannot be eliminated.

(2) Stepwise forward method (forward screening): Start with a first variable, it
introduces a variable that has a significant impact on y each time, until it
cannot be introduced.

(3) Stepwise regression analysis (reverse and forward combining screening): Start
with a first variable, it introduces a variable that has a significant impact on
y each time, until it cannot be introduced. Then, it eliminates a variable that
does not have a significant effect on y at a time until it cannot be eliminated.
Repeat the above forward and reverse screening until it is unable to be selected
or excluded.

When using stepwise regression, the problem often encountered is that there are
multiple interactions between input variables, which are not only related to output,
but also related to each other. In this case, an input variable in the model may shield
the influence of other variables on the result. Thus, the variables selected by the
stepwise regression method are not optimal in most cases. Besides, the work of
screening more than a dozen variables from hundreds or even thousands of actual
wavelengths is extremely overloaded.As a result, principal component regression and
partial least squares methods developed based on factor analysis have well solved
the above problems and become the common algorithms in modern spectroscopy
analysis.



7.5 Ridge Regression 241

7.5 Ridge Regression

For the multicollinearity problems, Hoerl proposed an improved least squares esti-
mation method named Ridge Regression in 1962. When | X TX |≈0, a matrix of
normal numbers λI (h > 0, I is the identity matrix) to X TX, then the probability that
the matrix (X TX + λI)−1 is close to singularity will be much smaller than that of
(X TX)−1. The ridge regression estimate of the regression coefficient is expressed as
b(λ) = (X TX + λI)−1X Ty.

When using regularization, attention needs to be paid to the choice of regulariza-
tion parameter λ [9]. If λ is too large, all regression coefficients will be minimized,
and the final model will be almost a horizontal straight line, causing under-fitting
problems. If λ is too small, then the regular term is almost ineffective, which will
lead to improper solutions to over-fitting or multicollinearity problems.

7.6 Lasso Regression

Least absolute shrinkage and selection operator (Lasso) introduces a norm penalty
term in the least square regression estimation, that is, adds a L1 regular term, which
is generally used to calculate the sum of absolute errors between two vectors, as is to
calculate the absolute value. The L1 norm has natural advantages in terms of sparse
solution. It compresses the regression coefficients of some less contributing variables
to 0, thereby removing useless information features to achieve the purpose of sparse-
ness and feature selection. Formula for solving the Lasso regression coefficient is as
follows:

β̂(Lasso) = argmin
β

⎡

⎣
n∑

i=1

⎛

⎝yi −
m∑

j=1

xi, jβ j

⎞

⎠

2

+ λ

m∑

j=1

∣
∣β j

∣
∣

⎤

⎦ (7.5)

p∑

j=1

∣
∣β j

∣
∣ ≤ t (7.6)

The above can be rewritten in matrix form as

β̂Lasso(λ1) = argmin
β

⎧
⎨

⎩
βT

(
XT X

)
β − 2yT Xβ + λ1

p∑

j=1

∣
∣β j

∣
∣

⎫
⎬

⎭
(7.7)

where t is constraint constant and t ≥ 0, λ is the regularization parameter, also
known as the penalty coefficient; i = 1, 2, …n, n as sample number, j = 1, 2, …m,
m is the number of wavelength points of the spectrum. As λ increases, the optimal
solution

∑p
j=1

∣
∣βj

∣
∣ will decrease, the coefficients of some independent variables will
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be compressed to 0, so as to achieve reduction of high-dimensional data, which can
better solve many problems in high-dimensional data modeling. The essence of the
Lasso algorithm is to minimize the residual sum of squares under the constraint that
the sum of the absolute values of the regression coefficients is not greater than λ to
generate some regression coefficients strictly equal to 0, and finally obtain the esti-
mated values of the parameters. Because a penalty term is added, the Lasso algorithm
is a biased estimation method compared to the classical least square method, which
improves the predictive ability of the model by sacrificing part of the deviation and
also makes the model more stable.

There havebeenmany reports onLasso regression, such as the use ofLassomethod
inNIRS to predict the physical properties of pulpedwood [10], rapid determination of
eucalyptus extract content [11], Lasso combined with Boosting method to analyze
the high-concentration zinc ions and trace cobalt ions by UV spectroscopy [12],
hand-held LIBS analyzer for prediction of element content in soil [13], and Lasso
combined with Just-in-time (JIT) framework to solve the problems of online NIRS
nonlinearity and multiple operating conditions [14].

Also, Lasso is an effective variable selection method. Study revealed the accuracy
and stability of theMatsutake authenticity discriminationmodel and the edible fungus
classification model selected by Lasso were higher than those of the PCA method
[15]. The combined interval PLS (siPLS) and Lasso were combined to select the
characteristic wavelength of NIRS for monitoring the pH value during the solid-state
fermentation of straw feed protein [16]. Lasso combined with logistic regression was
used for the selection of UV spectral characteristics of fiber dye classification [17].
Lasso alongwith aweighted voting strategywas proposed for selecting characteristic
variables of NIRS [18].

7.7 Least Angle Regression

Least angle regression (LARS) is a method of solving linear regression and vari-
able selection proposed by Efron in 2004, which is similar to the form of forward
stepwise regression. From the perspective of the solution process, it is an efficient
solution of the Lasso method [19, 20]. Variables of forward stepwise regression are
increasing by one at a time, until there are no variables to introduce. This method
has an obvious disadvantage, that is, because there may be a correlation between the
respective variables, the selection of subsequent variables may make the previously
selected independent variables unimportant. It does not consider removing unim-
portant variables from the selected variables, and the final “optimal” subset may
contain some independent variables that have little effect on the dependent variable.
Forward stagewise method is more cautious than the forward stepwise method. The
algorithm increases or decreases a small amount on the corresponding coefficient of
the selected variable each time, and the other coefficients remain unchanged. This
process can be repeated until all residuals are zero or the coefficients are equal to
zero. Therefore, this algorithm may require thousands of steps to arrive at the final
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model. The least angle regression combines the advantages of these two algorithms,
and the amount of calculation is not that large.

For example, the algorithm takes the largest step along the direction of x1 until
another variable x2 has as much correlation with the current residual. Next, calcula-
tion is not along the direction of x2 but along the equiangular line of the two vectors,
until the third variable has as much correlation with the current residual. Then, the
algorithm continues along the direction equiangular with the three vectors, that is, the
“least angle direction”, until the fourth variable enters the “most relevant set”, and
so on. Its equiangularity makes it easier to calculate the step length of the iteration
compared to the forward stepwise method.

Suppose a spectral array X composed of n samples, where each spectrum x is
composed of pwavelength variables, denoted as ai, I = 1, 2,…, p, the corresponding
concentration vector is y (dimension is n), b is the regression coefficient vector
(dimension is p), and the concentration regression residual vector is r (dimension is
n), then the calculation of least angle regression is as follow:

(1) Center the mean of X and y, and the residual r = y−y, y is the mean value of
the concentration vector, and all elements of the regression coefficient vector
b are set to 0;

(2) Select the variable ai that is most relevant to the residual r;
(3) Change the coefficient of the variable ai from 0 to the least squares coefficient

〈ai , r〉, Where 〈ai , r〉 is the inner product of ai and r, until the residual correla-
tion of the new variable aj is greater than the residual correlation of the variable
ai;

(4) The coefficients bi and bj corresponding to aj and ai are updated together in
the direction of adding the least squares estimation of the new variable until a
new variable is selected according to the above rules;

(5) Repeat the operations from (7.2) to (7.4) until all variables are selected, and
the final estimate is the solution of the least square method.

Detailed mathematical algorithm of least angle regression can be found in the
references [21].

Yan et al. used the LAR to eliminate the collinearity between the variables in
the full spectrum to obtain the initially selected wavelengths, then used the GA-PLS
method to further optimize the final model [22]. LAR was used to select the char-
acteristic wavelengths of NIRS of citrus leaves, and the accurate detection of citrus
yellow dragon disease was realized through the nuclear extreme learning machine
[23].

7.8 Elastic Net

Ridge regression cannot make any regression coefficient zero, but can only make
it infinitely approach zero, so the model is more difficult to interpret. After the L1
regularization term is introduced, Lasso can not only shrink variables like ridge
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regression, but also shrink certain regression coefficients to zero accurately, which
greatly improves the explanatory nature of the model. However, in the case of high
collinearity, Lasso may forcefully delete a certain predictive feature, which will lose
the predictive ability of the model [24].

Based on the ridge regression and the Lasso regression, Zou et al. proposed an
elastic network by combining the two regularization methods of L1 norm and L2
norm.

β̂(Elastic Net) = argmin

⎧
⎨

⎩
Y − Xβ2 + λ1

p∑

j=1

∣
∣β j

∣
∣ + λ2

p∑

j=1

β2
j

⎫
⎬

⎭
(7.8)

If α = λ1/(λ1 + λ2), λ = λ1 + λ2,
Above formula can be written as

β̂(Elastic Net) = argmin

⎧
⎨

⎩
Y − Xβ2 + λ

⎡

⎣α

p∑

j=1

∣
∣β j

∣
∣ + (1 − α)

p∑

j=1

β2
j

⎤

⎦

⎫
⎬

⎭
(7.9)

s.t. (1 − α)‖β‖2 + α‖β‖1 ≤ t, t ≥ 0.

where t ≥ 0, is the constraint constant, (1 − α)β2 + αβ1 is the penalty for elastic
net, also a convex combination of Lasso penalty and ridge regression penalty. When
α = 0, the elastic net becomes ridge regression, when α = 1, it becomes Lasso
regression. Elastic net can effectively handle the situation when the dimension of
the feature vector is much larger than the sample size, and automatically select the
feature vector with group effect from it.

Zheng et al. used the elastic net in the NIRS modeling process, when the number
of variables is much larger than the samples, the elastic net can compress the number
of variables to an appropriate degree, select important independent variables that
have a significant impact on the response variable, and establish a linear model with
better performance [25]. Zhao et al. adopted LASSO and elastic net to reduce the
dimensionality of IR spectra of the mixed gas. In the bands where the absorption
peaks overlapped severely, the characteristic wavelengths selected by the elastic net
were more advantageous [26].

7.9 Principal Component Regression

7.9.1 Theory

The first f score vectors obtained by the principal component analysis of the spectrum
matrix X are used to form a matrix T = [t1, t2, …, tf ], instead of absorbance variables
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for MLR regression, then a principal component regression (PCR) model is obtained
as y = Tb + E. The least square solution of regression coefficient b is B = (TTT)−1

TTY.
For the spectra x of the tested samples, first, the score vector is obtained from the

loading matrix by principal component analysis: t = xP. Then, the final result will
be obtained through the PCR model b as y = tb.

PCR effectively overcomes the problem of unstable calculation results caused by
MLR due to severe collinearity (pathological matrix) between input variables. On the
premise of maximizing the useful information in the spectra, it also suppresses the
influence of measurement noise on the model by ignoring those secondary principal
components and further improves the predictability of models. This method can be
applied to the complex systems, and the target components can be predicted more
accurately without knowing the presence of specific interfering components.

7.9.2 Method for Selecting the Optimal PCs

In principal component regression (including the PLS introduced in the next section),
it is particularly important to determine the optimal number of principal components
(PCs) (also known as principal factors) participating in the regression. As shown in
Fig. 7.1, if too few PCswere selected (too few features), certain useful information of
the original spectra would be lost, as well, the regression fitting would be insufficient,
which is called under-fitting. Performance of under-fitting is that the obtained model
has poor predictability on the calibration set samples, and the potential rules within
the spectral data have not been fully learned. In the regression, besides for the under-
fitting caused by the lack of feature variables and the inability to correctly establish
the mapping, the inappropriate selection of the regression algorithm (e.g., the linear
regression algorithm selected for the nonlinear data set), or the unreasonable setting
of modeling parameters can also lead to the occurrence of under-fitting.

Fig. 7.1 Selection of the
optimal main components
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Fig. 7.2 Scheme of under-fitting, moderate fitting, and over-fitting

If too many PCs were selected, the measurement noise would be included too
much, and the prediction error of model would increase significantly, which is called
over-fitting (Fig. 7.2). Thus, a reasonable determination of the number of PCs partic-
ipating in the establishment of the model is one of the effective methods to make full
use of spectral information and filter out noise. In practice, over-fitting may occur
if the number of calibration samples was too small or lacks representativeness, or
the algorithm used is not appropriate, etc. That is, the model performs well on the
calibration set, but poorly on the testing set.

(1) Leave-one-out cross validation

In spectral analysis, cross validation is the most choice, and prediction residual error
sum of squares (PRESS) is the most commonly used criterion. Specific steps are as
follows:

For a certain factor f , take only one sample as prediction from n calibration
samples, which is leave-one-out cross validation (LOOCV), in other words, n-1
samples are used to establish a calibrationmodel andpredict the sample to be retained.
After repeated modeling and prediction, until the n samples are predicted once and
only once, the PRESS value corresponding to this factor f is obtained as PRESS =∑n

i=1 (yi − ŷi )2. Relationship between the standard error of cross validation (SECV)

and the PRESS value is SECV =
√

PRESS
n−1 , where the smaller the PRESS or SECV

value, the better the predictability of model.
Generally, themethod of plotting PRESS value against the PCs (called the PRESS

diagram as Fig. 7.3) is often used to establish the optimal number of PCs. The
theoretical PRESS graph usually shows a decreasing trend with the increase of the
PCs. When PRESS reaches the lowest point, a slight rise or fluctuation shows up,
indicating that after this point, the added PCs is a noise component that has nothing to
dowith themeasured component. Corresponding to the lowest point of PRESS graph
is the optimal number of PCs. If there was no minimum value, the first point when
PRESS value reaches a fixed level can be regarded as the optimal PCs. However,
in some cases, such as narrow sample distribution, relatively weak information, or
abnormal samples, a non-ideal PRESS graph may appear. In this case, the SECV can
be compared with the repeatability standard deviation of the reference method. If
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Fig. 7.3 PRESS graph obtained by leaving-one-out cross validation

the SECV is significantly below the repeatability standard deviation of the reference
method, it indicates that the model is likely to be over-fitting.

In fact, the inflection point of PRESS graph is not very obvious, which brings
difficulties to the selection of the optimal PCs. Thus, theF test can be introduced [27].
Suppose the PCs corresponding to the minimum PRESS value is r∗, and calculate
F(r)= PRESS(r)/PRESS(r∗), r = 1, 2,…, r∗, when F(r)<Fα , n, the corresponding
minimum r is the optimal PCs. Where, Fα , n is the critical value of F when the
confidence degree is (1−α) and the degree of freedom is n (n is the number of
samples in the calibration set). Usually, the value of α is 0.25.

(2) Multi-fold cross validation

In many circumstances, LOOCV probably overemphasizes the calibration samples
and selects too many PCs, resulting in an over-fitting situation [28]. For the case
where calibration samples are not adequate, the “leave more out” cross validation
can be tried. Take the leave three out as an example, that is, three samples are selected
for validation from n calibration samples for each modeling run, and the remaining
(n−3) samples are used to build the calibration model, that requires C3

n runs of
modeling to complete all possible three validation samples combinations. Given 100
calibration samples, the number of cross validations required would be 161,700 runs.
Moreover, leaving out onemore sample, the number of cross validationswill increase
exponentially.

When the number of calibration samples is large (over 800 samples), the multi-
fold cross validation (MFCV) can be practiced. It randomly breaks the order of
calibration samples, and divides them into m groups, then use (m−1) samples to
predict the left out group samples when modeling. Optimized PCs are selected by
the PRESS curve.
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Although each sample has been traversed and predicted once in the multi-fold
validation, this strategy still has many missing-test samples. For example, using the
“ten-fold” validation, assuming there are 100 calibration samples, then the number
of samples per fold is 10, and the number of cross-validation only needs to be 10
runs. But in fact, there are C10

100 ways to select 10 from 100 samples, and the “ten-
fold” validation only selects 10 of them. Therefore, factors such as the way samples
grouped and outliers will affect the final result.

(3) Monte Carlo method

In addition to LOOCV and MFCV, there are also Bootstrap and Monte Carlo cross
validation for selecting the number of PCs [29]. Basic idea of the bootstrap is to
randomly select samples from the entire calibration setwith “send-back” replacement
to form a new calibration set, the number of which is the same as the original set.
Repeat this step several times to get several bootstrap calibrations, and use them to
build models, respectively. Then the original calibration is employed for prediction,
and themean value of the corresponding prediction error is regarded as the parameter
for selecting PCs.

Monte Carlo method randomly selectsm samples from the calibration samples to
establish the calibration model, uses the remaining (n–m) samples as the prediction
set. Sampling is repeated several times, mean value of the prediction error is taken as
the parameter for selectingPCs. It is generally believed that the sampling frequency of
Monte Carlo method is n2 (n is the number of calibration samples), which can ensure
the representativeness and unbiasedness of sampling. Compared with LOOCV, the
Monte Carlo method pays more attention to prediction (usually 75% for calibration,
25% for prediction), which effectively avoids the possible over-fitting problem (too
many PCs). Meanwhile, it avoids the exponential increase in modeling times caused
by the leave more cross validation.

In order to further evaluate the influence of prediction on the selection of PCs,
Filzmoser et al. proposed a strategy of repeated double cross validation [30]. As
shown in Fig. 7.4, this method first divides the calibration samples into new cali-
bration samples and test samples through Monte Carlo sampling, and then performs
Monte Carlo again on the new calibration samples to obtain training samples and
validation samples. It predicts the test samples based on the optimal model estab-
lished by the training set, repeats sampling several times, and selects the optimal
number of PCs according to the distribution of RMSEP of the obtained test sets.

It is worth noting that, for calibration sets with high spectral quality, high accuracy
of concentration, uniform sample distribution, sufficient number, and no outlier, the
number of optimal PCs selected by the abovemethodusually does not have significant
difference.

(4) Sum of ranking differences

In order to overcome the problem of over-fitting due to the selection PCs and other
modeling parameters, Gowen et al. suggested that in the process of determining
model parameters, not only indicators that characterize model bias (as RMSECV)
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Fig. 7.4 Scheme of the number of PCs selected by the repeated double cross-validation strategy

should be considered, but also indicators that characterize model variances (2-norm
of regression coefficient) should be involved [31–33].

Kalivas et al. proposed to use the sum of ranking differences (SRD) algorithm to
determine parameters of multivariate calibration model by combining the indicators
that characterize themodel deviation andmodel variance [34]. It takes all the possible
parameters and evaluation indicators (bias or variance) as the input of the SRD
matrix, and then selects a model that is agreed upon by the evaluation indicators of
each model according to the SRD algorithm, whose corresponding parameters are
the final modeling parameters. In recent years, the SRD algorithm has been used to
compare the pros and cons of calibration models, the identification of outliers, and
the evaluation of spectral experiments [35, 36], etc.

7.9.3 Partial Least Squares Regression

In PCR, only the spectral array X is decomposed to eliminate noise information.
Similarly, the concentrationmatrixY also contains useless information,which should
be treated in the same way, and the influence of the concentration matrix Y should
be considered when decomposing the spectral matrix X. Partial least squares (PLS)
is a multiple factor regression method based on the above ideas [37].

PLS first decomposes the spectral matrix X and the concentration matrix Y, and
its model is as follows:

Y = UQT + EY =
f∑

k=1

ukqT
k + EY (7.10)

X = TPT + EX =
f∑

k=1

t k pTk + EX (7.11)
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where tk(n × 1) is the score of the k-th PCs of the absorbance matrix X; pk(1 × m)
is the loading of the k-th PCs of the absorbance matrix; uk(n × 1) is the score of
the k-th PCs of the concentration matrix Y; qk(1 × m) is the loading of the k-th PCs
of the concentration matrix Y; f is the number of PCs. Thus, T and U are the score
matrices of X and Y, P and Q are the loading matrices of X and Y, EX and EY are
the PLS fitting residual matrix of X and Y, respectively.

The second step of PLS is to conduct linear regression of T and U.
U = TB
B = (TTT)−1 TTY
When predicting, first the score T(unknown) of the unknown sample spectral matrix

X(unknown) needs to be solved according to P, and then the predicted concentration
value is obtained from the following equation: Y (unknown) = T(unknown) BQ.

In the actual PLS calculation, PLS combinesmatrix decomposition and regression
into one step, in other words, the decomposition of X and Y matrices are performed
at the same time. Before calculating each new PC, the score T of X is exchanged
with the score U of Y, so that the PC of X is directly related to Y. Thus, when PLS
calculates the PCs, it needs to consider the calculated variance of PCs to be as large
as possible, while also making PCs and concentration related to the greatest extent.
The maximization of variance is to extract as much useful information as possible,
and the maximum correlation with the concentration is to make the best use of the
linear relationship between spectral variables and concentration. So it covers the
shortcomings of PCR only decomposing X.

PLS is calculated by the nonlinear iterative partial least squares algorithm
(NIPALS) proposed byWold. The specific algorithm is as follows. In the calibration,
the residual matrix E is ignored, and the PC is as 1, then:

For X = tpT, multiply the left side by tT to get pT = tTX/tTt; multiply the right
side by p to get t = Xp/pTp.

For Y = uqT, multiply the left side by uT to get qT = uTY/uTu; divide both sides
by qT to get u = Y/qT.

(1) Find the weight vector w of the absorbance matrix X

Take a column of the concentration matrix Y as the initial iterative value of
u, replace t with u, and calculate w.

Equation is X = uwT, the solution is wT = uTX/uTu.
(2) Normalize the weight vector w

wT = wT
/∥
∥wT

∥
∥

(3) Find the factor score t of the absorbance matrix X

Calculate t from the normalized w by equation: X = twT.
T = Xw/wTw.

(4) Find the loading q value of the concentration matrix Y

Use t instead of u to calculate q by equation of Y = tqT.
qT = tTY/tTt.
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(5) Normalize the loading vector q

qT = qT
/∥
∥qT

∥
∥

(6) Find the factor score u of the concentration matrix Y

Calculate u from qT by equation of Y = uqT.
U = Yq/qTq.

(7) Then replace t with this u and return to step (1) to calculate wT, and calculate
tnew from wT, iteratively. If t has converged as ‖tnew-told‖ ≤ 10−6‖tnew‖, go
to step (8) for calculation, otherwise return to Step (1).

(8) Find the loading vector p of absorbance matrix X from the converged t by
equation X = tpT.

pT = tTY/tTt
(9) Normalize the loading p

pT = pT
/∥
∥pT

∥
∥

(10) Standardized the factor score t of X

t = t‖p‖

(11) Standardized the weight vector w

w = w‖p‖

(12) Calculate the relationship between t and u
b = uTt/tTt

(13) Calculate the residual matrix E
EX = X–tpT

EY = Y–btqT

(14) ReplaceX with EX , replace Y with EY , and return to step (1), by analogy, find
the w, t, p, u, q, and b of X and Y. Finally, the optimal PCs f is determined
by cross validation.

As for the unknown sample xunknown, the prediction process is as follows:

(a) Let h = 0, yunknown = 0;
(b) Set h = h + 1, and calculate

th = xunwh
T

yunknown = yunknown + bhthqhT

xunknown = xunknown—thphT

(c) If h < f , go to step (2), otherwise, stop the calculation, and the final
yunknown is the predicted value.

Besides, the unknown sample xunknown can also directly calculate the
predicted value through the following equation.
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yun = bPLSxun, where bPLS = wT (pwT)−1 q, and it is the regression
coefficient of PLS.

The PLS regression can often be grouped in PLS1 and PLS2. In fact, PLS1 and
PLS2 share the same algorithm. The difference is that PLS1 only calibrates one
component at a time,while PLS2 can simultaneously calibrate regression formultiple
components.

PLS2 uses the same set of score T and loading matrix P when calibrating all
components, obviously, the T and P obtained in this way are not optimal for the
concentration vector used in Y. Especially for complex systems, it will significantly
reduce the prediction accuracy.

In PLS1, the calibrated T and P are optimized for each concentration vector
in Y. When the concentration of different components in the calibration set varies
greatly, for example, the concentration range of one component is 50% to 70%, and
other one is 0.1–1.0%, prediction results of PLS1 are usually better than PLS2 and
PCR because it is optimized for each tested component. In spectral analysis, if not
specifically noted, PLS usually refers to the PLS1 method.

From the above introduction, it can be concluded that MLR, PCR, and PLS are
actually connected and coherent, and there is a gradually developed course of the
linear multivariate calibration. Overcoming the weaknesses of MLR sub-rank inver-
sion and insufficient use of spectral information, PCR uses PCA to decompose the
spectral array X, and performs MLR regression by the score vector, significantly
enhancing the model prediction. PLS decomposes the spectra X and concentration Y
simultaneously, strengthens the corresponding calculation relationship between the
two matrices, assuring the best calibration model established. Up to now, PLSR is a
perfect combination of MLR, canonical correlation analysis (CCA), and PCA. This
is why PLS is most widely used in spectral multivariate calibration analysis.
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Chapter 8
Nonlinear Calibration Methods

8.1 Artificial Neural Network

8.1.1 Introduction

Artificial neural network (ANN) is based on simulations of the structure of the
human brain. It stores both the storage and calculation of information in neural
units. From certain perspective, neural network can simulate the activity process of
human brain nervous system. It has the ability of self-learning, self-organization, self-
adaptation, strong fault-tolerant ability, distributed storage and parallel processing of
information, and highly nonlinear expression, which is not available in other tradi-
tional multivariate calibration methods. More and more analytical chemists begin to
use the ANN method to solve problems in analytical chemistry, such as nonlinear
multivariate calibration, pattern recognition, QSAR, and spectral library retrieval.

(1) Biological neural network

There are approximately 1011–1012 biological neurons in the human brain. Each
neuron is connected to approximate 103–105 neurons. These neurons are connected
by about 1015 connections into a vast and complex network system. The neuron
has an independent ability to receive, process, and transmit electrochemical signals,
which is through the neural pathways that constitute the brain’s transmission system.
Figure 8.1 shows the typical structure of biological neurons and their interconnection.

Biological neurons are structurally composed of cyton, dendrite, axon, and
synapse, which are used to receive, transmit and process information between
neurons. Dendrites receive input from other neurons, and axons provide output to
other neurons. Electrochemical signals between neurons pass through their surface,
and these neuron-to-neuron connections are called synapses. On the receiving side
of the synapse, signals are sent into the cyton, where they are combined. Some of the
input signals act as stimuli and some act as inhibitions. When the cumulative stimuli
received in the cyton exceed a threshold, the cyton is excited, and it sends signals
along the axon through the branches and tendrils to other neurons.
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Fig. 8.1 Schematic diagram of typical biological neurons

In this system, each neuron is connected with synapses to many other neurons in
the system. It is thought that the same signal that the same neuron bursts through its
axis may have different effects on different neurons that receive it, depending on the
corresponding synapse. The greater the synaptic “connection strength”, the stronger
the received signal, and vice versa, the weaker the synaptic “connection strength”,
the weaker the received signal. Synaptic neurons combine the input signals of each
synaptic point in some way and trigger the output signals under certain conditions,
which is transmitted to other neurons through the axon. It can be seen that the basic
structural and functional unit of the biological nervous system is the biological neuron
(i.e., nerve cell), which has the functions of receiving, processing, and outputting
information. A large number of biological neurons are connected with each other
through synapses, forming a complex information transmission network system.
ANN is designed according to the inspiration obtained from the biological neural
network.

(2) Neuron

Neuron, also known as node, is the most basic unit of neural network. Artificial
neuron is a kind of approximation of biological neuron in function. It simulates the
processing process of the input signal of biological neuron to some extent, and its
characteristics determine the overall characteristics of neural network to a certain
extent. For each artificial neuron, it can receive a set of input signals from other
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Fig. 8.2 Model of an artificial neuron

neurons in the system. Each input corresponds to a weight, and the weighted sum
of all the inputs determines the activation state of the neuron. Here, each weight
corresponds to the “connection strength” of the synapse. The interconnection of a
large number of simple neurons constitutes the neural network system, which has
powerful functions of information processing and computation.

The artificial neuronmodel can be described in Fig. 8.2,which ismainly composed
of the following five parts.

➀ Import. x1, x2, x3…, xm represents m input variables of the neuron.
➁ Network weights and thresholds. w1,w2, w3…, wm are the network

weights, which represents the connection strength between the input variable and
the neural network. b is the threshold value or the bias value of the neuron. The
introduction of the bias value can make the transfer function move left and right, and
improve the possibility and ability to solve practical problem. These two parameters
are dynamically tunable.

➂ Sum units. The summation unit performs the weighted summation of input
variables, which is the first step in the processing of input signals by a neuron.

net =
m∑

i=1

xiwi + b (8.1)

➃ Transfer function. f represents the transfer function of the neuron, or the excita-
tion function, the transmission function, the action function, etc. It is used to perform
functional operation on the calculation result of the summation unit to get the output
of the neuron. This is the second process of processing the input variable by the
neuron. Table 8.1 shows several typical neuron transfer functions.
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Table 8.1 Forms of several typical neuron transfer functions

➄ Output. After the weighted sum of the input variables and the transformation
of the transfer function, the final output is

o = f (wp + b) (8.2)

In ANN, neurons are often referred to as “processing units” or sometimes “nodes”
from the point of view of the network.

(3) The main connection patterns of neural networks

Neural network system is a highly interconnected complex nonlinear system. There
are many connections between neurons. According to the topological structure of the
network, the neural network structure can be divided into two categories: hierarchical
structure and interconnected structure. The hierarchical structure of neural network
divides neurons into input layer, intermediate layer (hidden layer), and output layer
according to their function and order. Each neuron of the input layer is responsible
for receiving input information from the outside world and transmitting it to the
neurons of the hidden layer. The hidden layer is the internal information processing
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layer of the neural network, which is responsible for information transformation.
It can be designed as one or more layers according to the needs. The last hidden
layer transmits information to the neuron of the output layer for further processing
and then outputs the result of information processing to the outside world. However,
in the interconnected network structure, there may be a connection path between
any two nodes, so the interconnected network can be subdivided into three types
according to the connection degree of nodes in the network: fully interconnected,
local interconnected, and sparse connected.

According to the connection orientation (or information flow direction), neural
networks can be divided into two types: feedforward network and feedback (recur-
sive) network. The structure of the simple feedforward network is the same as that of
the hierarchical network. The feedforward network is named because the direction
of network information processing is from the input layer to the hidden layer and
then to the output layer. In the feedforward network, the output of the previous layer
is the input of the next layer, and the information processing has the directivity of
transferring layer by layer, and there is a general no feedback loop. Therefore, this
kind of network can easily be linked together to build a multi-layer feedforward
network. Feedforward networks include multi-layer perceptron (MLP) and learning
vector quantization (LVQ) networks. The structure of feedback network is the same
as that of single-layer fully interconnected network. The output of the neuron is fed
back to the same or anterior neuron, and the signal can flow forward and backward.
Therefore, all nodes in the feedback network have information processing function,
and each node can not only receive input from the outsideworld, but also output to the
outside world. Hopfield network and Elmman network are representative recursive
networks.

(4) Learning methods of neural networks

Learning method is the main symbol of ANN intelligent characteristics. Because
of the learning algorithm, ANN has the ability of self-adaptation, self-organization
and self-learning. Currently, there are many learning methods of neural network,
which can be classified into supervised learning, unsupervised learning, reinforce-
ment learning, and other categories according to whether there is a tutor or not. In
the supervised learning, the output of the network is compared with the expected
output (namely the teacher signal), and then the weight of the network is adjusted
according to the difference between the two, and the difference is finally reduced.
The typical representative of this method is BP-ANN. In the unsupervised learning,
the input mode is put into the network, and the network automatically adjusts the
weight according to the preset rules (such as competition rules). There is no need
to train the known samples, so that the network finally has the function of pattern
classification, such as Kohonen neural network and Hopfield model. Reinforcement
learning is a kind of learning style in between the above two.
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8.1.2 Back Propagation-Artificial Neural Network

Amongmanyneural networks, back propagation-artificial neural network (BP-ANN)
is the most widely used method. According to statistics, BP network is used in more
than 80% of neural network applications. It is the most representative and widely
used networkmodel. BP network is a kind of feedforwardmulti-layer neural network
composed of nonlinear transformation neural units. The transfer function used by
its neurons is usually Sigmoid differentiable function, which can realize arbitrary
nonlinear mapping between input and output, and has excellent nonlinear mapping
approximation and generalization (prediction) ability. In spectral analysis, BP neural
network has been used to establish nonlinear calibration model with large sample
size.

BP neural network consists of three parts: input layer, hidden layer, and output
layer. Figure 8.3 depicts the topology of a typical BP neural network, with circles
representing neurons. The data is input from the input layer, processed by standard-
ization, and transmitted to the second layer with weights, namely, the hidden layer.
The hidden layer transmits the data to the output layer after calculating the weight,
threshold, and excitation function. The output layer gives the predicted value of the
neural network and compares it with the expected value. If there is an error, the
error will be propagated back from the output and the weight and threshold will be
adjusted to make the network output gradually consistent with the expected output.

BP algorithm consists of four processes: the input mode from the input layer
through the middle layer to the output layer of the “mode forward propagation”
process. The error signals between the expected output and the actual output are
corrected layer by layer from the output layer through the middle layer to the input
layer in the process of “error backwardpropagation”.Thenetwork “memory training”
process is carried out repeatedly alternately by “mode forward propagation” and

Fig. 8.3 Topological structure of typical BP neural network
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“error backward propagation”. The network tends to converge, that is, the process
of “learning convergence” in which the global error of the network tends to the
minimum.

The standard BP learning algorithm is a gradient descent algorithm, that is, the
weight and threshold of the network are adjusted along the negative gradient direction
of network error change. Finally, the network error reaches a minimum value (the
error gradient at this point is zero).

Generally speaking, in network training, the least square function is used as the
error function or the objective function, i.e.,

E =
n∑

r=1

p∑

k=1

(yrk − ork)
2 (8.3)

where ok is the output value of node k, yk is its corresponding expected output value,
p is the number of nodes in the output layer, and n is the number of training samples.
As shown in Fig. 8.4, in the BP algorithm, the weight correction calculation is first
carried out from the output layer, and then the weight correction of the hidden layer
is carried out.

The algorithm of standard BP network is as follows:

(1) The initial weight in the range (0, 1) is given by a random number.
(2) Input the vector of the sample into the input layer.
(3) Forward information transmission is calculated from Eqs. 8.4–8.6 below.

Fig. 8.4 Schematic diagram of error back propagation algorithm
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➀: Output of the hidden layer

g j = 1

1 + e−net j
(8.4)

Among them

net j =
m∑

i=1

wi j xi + b j (8.5)

where i = 1, 2, . . . ,m, m is the number of nodes in the input layer, j = 1, 2, . . . , h,
h is the number of nodes in the hidden layer, wij is the connection weight between
input layer node i and hidden layer node j.

➁: Output of the output layer

ok = 1

1 + e−netk
(8.6)

Among them

netk =
h∑

j=1

v jk g j + bk (8.7)

where k = 1, 2, . . . , p, p is the number of nodes in the output layer, vjk is the
connection weight between hidden layer node j and output layer node k.

➂: Error

E =
n∑

i=1

p∑

j=1

(yi j − oi j )
2 (8.8)

where n is the sample size.

(4) Calculate the error parameters δ of the output layer and the hidden layer.

δk = (yk − ok) f
′(netk) (8.9)

Among them, if the transfer function is logarithmic sigmoid function,

f ′(netk) = f (netk)[1 − f (netk)] (8.10)

δk = (yk − ok) · ok · (1 − ok) (8.11)

where k = 1,2,…p, p is the number of nodes in the output layer.
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Error parameters of hidden layer

δ j =
(

∑
∂kwkj

)
f ′(net j ) (8.12)

If the transfer function is logarithmic sigmoid function

f ′(net j ) = f (net j )[1 − f (net j )] (8.13)

then

δ j =
(

∑

k

δkvk j

)
· g j · (1 − g j ) (8.14)

where j = 1, 2, . . . , h, h is the number of nodes in the hidden layer, k = 1, 2, . . . , p,
p is the number of nodes in the output layer.

(5) The connection weight between hidden layer node j and output layer node k is
adjusted.

v jk(l + 1) = v jk(l) + ηδkg j (8.15)

Connection weight between input layer node i and hidden layer node j is
calculated.

wi j (l + 1) = wi j (l) + ηδ jxi (8.16)

where η is learning rate (i.e., step length), which determines the rate of training
(iteration), (l + 1) is the number of iterations in training.

(6) Repeat Steps 2–5 to calculate the next training sample.

(7) For the training samples used, the iteration is stopped when the error reaches a
predetermined value. One weight training for all samples in the training set is called
one iteration. Generally, it takes hundreds of iterations (100–5000) to minimize the
error, and it is better to randomly select training samples for each iteration.

In order to speed up the iterative process and prevent the oscillation of the iter-
ative process, a learning algorithm with momentum factor can be adopted to add a
“momentum” item to the weight modification value.

�w(l + 1) = ηδo + α�w(l) (8.17)

where α�w(l) is the momentum term (or inertia term), and the initial value of the
momentum factor α is usually set to 0.9.
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The standard BP learning algorithm is gradient descent algorithm, that is, the
weight and threshold of the network are adjusted along the negative gradient direction
of network error change, and finally the network error reaches a minimum value (the
error gradient at this point is zero). Gradient descent learning algorithm has inherent
disadvantages such as slow convergence speed and easy to fall into local minimum.
Therefore, there are many improved fast algorithms, which can be divided into two
main categories in terms of improvement ways. One is to use heuristic learning
method, such as the learning algorithm with momentum factor mentioned above,
variable learning rate learning algorithm, “elastic” learning algorithm, etc. The other
is to adopt more effective numerical optimization algorithms, such as conjugate
gradient learning algorithm,Quasi-Newton algorithm, and Levenberg-Marquardt (L-
M) optimization algorithm. At present, in the establishment of spectral quantitative
model, most of the L-M optimization algorithm is used. This learning algorithm can
effectively prevent the network from falling into local minimum and increase the
reliability of BP algorithm.

8.1.3 Design of BP-ANN

When BP-ANN is used for modeling, the following network parameters need to be
selected and set.

(1) Input and output variables: the scores of principal component analysis (PCA)
or partial least squares (PLS) are usually used as input variables, which not
only greatly reduces the training time and network size, but also the input vari-
ables are orthogonal, and the noise is eliminated under the premise of almost
no loss of major spectral information. The quantitative calibration method
combining PCA or PLS with ANN is called PCA-ANN or PLS-ANNmethod.
The input variables can also adopt the wavelength variables selected by simu-
lated annealing algorithm and genetic algorithm (GA), as well as the coeffi-
cients obtained by Fourier transform and wavelet transform. Since the node
value in the neural network is defined as between 0 and 1, the input variable x
is often preprocessed by the following equation:

xpi = 0.8
xi − xmin

xmax − xmin
+ 0.1 (8.18)

where xi is the ith variable, xmin and xmax are the minimum value and the
maximum value of the variables, respectively.

(2) Number of hidden layer networks: usually choose a hidden layer, namely,
three layers BP network, which can be used to solve the nonlinear quantitative
calibration of most problems. For more complex problems, at most two hidden
layers can be selected. In theBP algorithm, the error propagates from the output
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layer to the input layer, and the more layers there are, the less reliable the back
propagation error will be when it is close to the input layer. The effect can be
imagined by using such an unreliable error to correct the weight.

(3) Number of hidden layer nodes: generally speaking, the more hidden layer
nodes can store more information. However, with the number of hidden layer
nodes increasing, the weight increases square, which leads to longer training
time.Moreover, formore hidden layer nodes,more training samples are usually
needed. Otherwise, the resulting mathematical model is unstable, that is, the
results on the training set appear to be good, but the result of the prediction set
maybepoor,which is often referred to as “over-fitting”. “Over-fitting” is caused
by fitting the noise in the test. Less hidden layer nodes store less information,
which cannot fully reflect the complex functional relationship between input
and output variables. Moreover, it is easy to fall into local minimum in the
training process (Fig. 8.5), and the established model cannot correctly transmit
nonlinear information. The number of nodes h in the hidden layer can be
selected as the initial value through some empirical formulas, and then the
optimal value can be finally determined by gradually increasing or decreasing
the number of nodes by 1–3.

(4) Initial weight: in neural network, initial weight has a great influence onwhether
learning reaches local minimum, whether convergence can be achieved and the
length of training time. If initialweights are different, the output is generally not
the same. How to select the optimal weights is still no rule to follow. At present,

Fig. 8.5 Phenomenon of trapping in local minima
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the common method is to try different initial weights by experiment (such as
random numbers). Sometimes, if the initial weight is not selected properly, the
BP algorithm will not be able to obtain satisfactory results. In this case, it is
suggested to reinitialize the weight and let the network learn again. In order to
prevent accidental correlation or local optimization, it is suggested to repeat the
calculation at least 50–200 times under the same network structure and take the
average value. Genetic algorithm (GA) or particle swarm optimization (PSO)
can also be used to optimize the initial weights and thresholds of the neural
network.

(5) Transfer function: for nonlinear problems, the input layer and hidden layer
mostly adopt nonlinear transmission function, while the output layer adopts
linear transmission function such as Purelin function to maintain the range of
output. In terms of nonlinear transfer function, logarithmic sigmoid function
is used when the sample output is greater than zero, otherwise tangent sigmoid
function is used.

(6) Learning rate: the effectiveness and convergence of BP network depend on
the learning rate to a large extent. In the initial stage of learning, a larger
learning rate is expected to accelerate the learning process and convergence
speed. However, when the training process is close to the optimal weight
value, the learning rate must be quite small, otherwise it will oscillate and
cannot converge. The method of variable learning rate can be adopted, which
is generally selected as the values between 0.001 and 0.8, and then dynamically
changed according to the gradient change and the change value of mean square
error in the training process.

(7) Learning algorithms: when selecting learning algorithms for training BP
network, it is necessary to consider the complexity of the problem, size
of sample set, network size, error target and problem type (function fitting
or pattern recognition). Table 8.2 compares the several typical fast learning
algorithms, which can be used as a reference when selecting algorithms.

(8) Termination condition: once the training reaches the maximum number of
training, or the sum of the square of the network error drops below the expected
error, the network will stop learning. In addition, in order to solve the “over-
training” problem, that is, although the error of the training set can continue to
decrease during the iteration process, the deviation of the prediction set starts
to rise, which is caused by the model being built to “fit” individual sample
(Fig. 8.6).

Usually, the training set is divided into two parts. One part is the calibration
set or training set, whose prediction error is transmitted in reverse to adjust the
weight. The other part is the test set or validation set, which does not participate
in the training directly, but its prediction residual error sum of squares (PRESS)
is used for the training of the control network. As shown in Fig. 8.7, in the initial
stage of training, the error of the test set usually decreases with the decrease of the
network training error. However, when the network begins to be “over-trained”, the
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Table 8.2 Comparison of several typical BP fast learning algorithms

Learning
algorithm

Apply to problems Convergence Memory Other characteristics

L-M optimization
algorithm

Function fitting Fast convergence
and small
convergence error

Big Performance
deteriorates as the
network size
increases

L-M optimization
algorithm for
Bayesian
regularization

Function fitting Convergence is
slow

Medium It is suitable for
function fitting of
small-scale network
and has good
generalization ability

Quasi-Newton
algorithm

Function fitting Convergence
faster

Larger The amount of
computation
increases
geometrically with
the increase of
network size

Elastic learning
algorithm

Pattern recognition Convergence is the
fastest

Smaller The performance
becomes worse with
the decrease of
network training
error

Conjugate
gradient algorithm

Function fitting
Pattern recognition

Fast convergence
and stable
performance

Medium Especially suitable
for the large scale of
the network

test error will gradually increase.When the test error increases to a certain extent, the
network training will stop in advance, and then the training function will return to the
network object with the minimum verification error. Test error does not participate
in the network training, but it can be used to evaluate the rationality of the network
of training results and training set composition. If the training error and validation
error reached the minimum training step difference is very big, or the change trend
of error curve difference is quite different, it indicates that the sample composition
of the training set is not very reasonable and needs to be redivided. This method is
simple and effective, often gets good results, and the training time is greatly reduced.
This approach is commonly referred to in the literature as “early-stopping”.

8.1.4 Other Types of Neural Networks

Radial basis function networks (RBF) is a single-hidden layer feedforward network
proposed by Moody and Darken, in which input layer nodes directly transmit input
signals to the hidden layer. The function of hidden layer node is a radial basis function
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Fig. 8.6 Phenomenon of over-training

Fig. 8.7 Test set monitoring the training process of training set [3]
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Fig. 8.8 RBF neuron model

such as Gaussian function, while the output layer node is usually a simple linear
function.

RBF network can determine the corresponding network topology according to
the problem, which has the characteristics of fast learning speed, no local minimum
problem and easy convergence for iterative training. Neuron model of RBF neural
network as shown in Fig. 8.8, ||dist|| module for calculating the Euclidean distance
between the input vector x and the weight vector w, and the transfer function of
RBF neurons usually uses Gaussian function: f (net) = exp

(−net2
)
, its net input

value is the Euclidean distance between the input vector x and the weight vector w
multiplied by the threshold value of b (||dist||·b), which can also be written ‖x−w‖√

2σ
,

namely, b = 1√
2σ
, σ is the variance of Gaussian function.

Center and width are two important parameters of RBF neurons. The weight
vector w of the neuron determines the center of the radial basis function. When the
input vector x coincidences with the weight vector w, the output of the RBF neuron
reaches the maximum. The farther the distance between the input vector x and w is,
the smaller the neuron output will be. This feature makes RBF network very suitable
for approximating fuzzy rules. Neuron threshold b determines the width of the radial
basis function. When b is larger, the attenuation range of the function will be larger
when the input vector x is far away from w.

The structure of RBF network is similar to that of BP network, which is a three-
layer forward network. The first layer is the input layer, which is composed of input
nodes. The input layer does not process information. The second layer is the hidden
layer, the number of units depends on the need of the description problem, and each
neuron in the hidden layer represents a group of radial basis functions. The third
layer is the output layer, which responds to the action of the input pattern. The basic
idea of forming RBF network is that the radial basis function is used as the “basis”
of the hidden unit to form the hidden layer space, so that the input vector is directly
mapped to the hidden space (without weight connection). When the center point of
the radial basis function is determined, this mapping relationship is also determined.
The mapping from hidden layer space to output space is linear, that is, the output of
the network is linear weighted sum of the output of hidden units.
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The training and learning method of RBF network is similar to that of BP
network. Theoretically, RBF network and BP network can approximate any contin-
uous nonlinear function as well. The main difference between them is that they use
different transfer functions. The hidden layer in BP network usually uses sigmoid
function, which is non-zero over an infinite range of input space, while the transfer
function of RBF network is local.

Another commonly used method in the spectral analysis is the Kohonen network.
It belongs to self-organizing neural network and will be introduced in the section of
pattern recognition.

8.1.5 Optimization of Neural Network Parameters

In the traditional BP neural network, the weights and thresholds are determined
randomly and easily fall into the local minimum, which has a great influence on the
accuracy of the prediction results. GA is self-adaptive and global optimal, and it is
easy to search the global optimal solution. Therefore, the GA can be used to optimize
the initial weights and thresholds of the neural network. After optimization, the BP
network has a fast convergence speed and is not limited to local optimum.

GA to optimize theBP neural network in order to get better network initial weights
and threshold value, as shown in Fig. 8.9, the basic framework is using the GA
individuals on behalf of the network’s initial weights and threshold. The individual
value of initialization of the BP neural network prediction error as the individual
fitness values, and through the selection, crossover, and mutation operation to find

Fig. 8.9 Flowchart of BP neural network optimization by GA
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Fig. 8.10 Flowchart of BP neural network optimization by PSO

the optimal individual, that is, the initial weight of the optimal BP neural network
[4, 5].

In addition to GA, PSO and ant colony algorithm can also be used to optimize
the initial weight of BP neural network. Figure 8.10 shows the calculation flow of
optimizing BP neural network with PSO [6, 7].

8.2 Support Vector Machine

8.2.1 Introduction

Support vector machine (SVM) is a new pattern recognition method developed
on the basis of statistical learning theory (SLT) established by Vapnik after the
1990s [8, 10]. Since SLT is a statistical learning method, established specifically
for small samples, SVM can effectively overcome the disadvantages of neural
network, including difficult convergence, unstable solution, and poor generalization
(i.e., predictive ability). Furthermore, SVM has advantages compared with many
traditional pattern recognition algorithms for pattern recognition of small-sample,
nonlinear and high-dimensional data spaces. At present, SVM has been widely used
in pattern recognition, signal processing, signal communication, etc.

The basic idea of SVM comes from the optimal classification surface of linear
discrimination, which is to require the classification surface to not only separate the
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Fig. 8.11 Schematic diagram of common (a) and optimal (b) hyperplane

two samples without error, but also tomaximize the classification interval (Fig. 8.11).
Through the realization of the optimal classification surface, a direct advantage is to
improve the prediction ability and reduce the classification error rate.

Let two classes of linear separable total training sets be (xi , yi ), i = 1, . . . , n,
training set with a total of n samples, x ∈ Rd , d as the number of characteristic vari-
ables, and y ∈ {+1,−1} is the class label. The general form of the linear discriminant
function in d-dimensional space is the g(x) = wT x + b, classification surface equa-
tion for wT x + b = 0, which normalizes the discrimination function so that all
samples of both classes satisfy |g(x)| ≥ 1. When the |g(x)| = 1, of the sample
nearest to the classification surface so that the classification interval is equivalent
to 2/||w||. Thus, making the classification interval maximum is equivalent to making
||w|| or ||w||2 minimum. If it is required that the classification surface to classify all
the samples correctly, it must be met

yi
(
wT xi + b

) − 1 ≥ 0, i = 1, . . . , n (8.19)

Therefore, the classification surface that meets the above conditions and mini-
mizes the ||w||2 is the optimal classification surface, and passing the training samples
on the H1, H2 closest to the classification surface and parallel to the optimal classifi-
cation surface, even those with the above equality are called support vectors, because
they support the optimal classification surface.

From the above analysis, it is concluded that the problem of obtaining the optimal
classification surface can be expressed as a constrained optimization problem, that
is, finding the ||w||2/2 minimum under the constraint condition yi

(
wt xi + b

)−1 ≥ 0.
To do this, the following Lagrange function can be defined:

L(w, b, α) = 1

2
wTw −

n∑

i=1

αi
[
yi

(
wT xi + b

) − 1
]

(8.20)

where αi ≥ 0 is the Lagrange coefficient, the goal of the problem is to obtain the
minimum of the Lagrange function for w and b.
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Find the partial differential of the above equation for w and b, respectively, and
make it equal to 0, turn the original problem into a simple convex quadratic planning
dual problem:

Under the constraints
∑n

i=1 αi yi = 0 and αi ≥ 0, the maximum value for the
following function can be solved:

Q(α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j
(
xTi x j

)
(8.21)

This is a problem of finding the extreme value of quadratic function under
inequality constraints, there is a unique optimal solution, and the optimal solution of
this optimization problem must be met

αi
[
yi

(
wT xi + b

) − 1
] = 0, i = 1, . . . , n (8.22)

If αi
* is the optimal solution obtained, w∗ = ∑n

i=1 α∗
i yi xi , for most samples

αi
*will be 0. The samples whose αi

* value is not 0 are support vectors, which are
usually only a small part of the whole training set samples.

After solving the above problems, the optimal classification function can be
obtained:

f (x) = sgn
(
w∗T xi + b∗) = sgn

(
n∑

i=1

α∗
i yi x

T
i x + b∗

)
(8.23)

The sgn() is a symbolic function, and since the αi
* corresponding to the non-

support vector is 0, the sum in the equation actually sums only for the support
vectors. While b* is the threshold for classification, it can be obtained by either one
support vector by the constraint αi

[
yi

(
wT xi + b

) − 1
] = 0, or by taking the median

of any pair of support vectors of the two classes.
When the two classes of samples cannot be completely separated with a super-

plane, and a few samples are misclassified, at this time, the relaxation variable ξ i,
ξi ≥ 0, i = 1, . . . , n can be introduced to make the superplane wT x + b = 0 to
satisfy yi

(
wT xi + b

) ≥ 1 − ξi . When 0 < ξi < 1, the sample xi is still correctly
classified, and when ξi ≥ 1, the sample xi is misclassified. To do this, the following
objective function is introduced:

φ(w, ξ) = 1

2
wTw + C

n∑

i=1

ξi (8.24)

where C is a constant greater than zero, called the penalty factor. It plays a role in
controlling the degree of penalty for the misclassified samples, realizing a compro-
mise between the proportion of the misclassified samples and the complexity of the
algorithmic. This optimization problem can be solved by the samemethod as solving
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the optimal classification surface, obtaining a quadratic function extremal problem,
and also obtaining the almost exact same result, just the constraint of αichanges to
0 ≤ αi ≤ C .

If a simple hyperplane in the original space cannot get a satisfactory classification
effect, a complex hypersurface must be used as the interface. For this linear nonsep-
arable issues, the SVM algorithm introduces the kernel space theory in which the
low-dimensional input space data is mapped to the high-dimensional feature space
(Hilbert space) through the nonlinear mapping function ϕ(x), and then seeks the
optimal linear classification surface in this new space. It is shown that if the appro-
priate mapping function ϕ(x) is selected, the input space linear nonseparable issues
will be transformed into a linear separable problem in the feature space (Fig. 8.12).

In the nonlinear case, the classification superplane is

wφ(x) + b = 0 (8.25)

The optimization function is

Q(α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j
〈
φ(xi ), φ

(
x j

)〉
(8.26)

Fig. 8.12 Mapping from low-dimensional to high-dimensional feature space bynonlinear functions
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where
〈
φ(xi ), φ

(
x j

)〉
represents the inner product (or point product) of ϕ(xi) and

ϕ(xj).
The optimal classification function obtained is

f (x) = sgn

(
n∑

i=1

α∗
i yi 〈φ(xi ), φ(x)〉 + b∗

)
(8.27)

However, if classification or regression are conducted directly in high-dimensional
space, there are problems such as determining the form and parameters of the
nonlinear mapping function, the dimension of feature space (high dimension, or
even infinite dimension), while the biggest obstacle is the “dimensional disaster” in
high-dimensional feature space operations. These problems can be effectively solved
by using the kernel function,whichK(·) is defined as K (

xi , x j
) = 〈

φ(xi ), φ
(
x j

)〉
, that

is, the kernel function transforms the inner product operation of high-dimensional
space into the kernel function K(·) calculation of low-dimensional input space. It
solves the problems of “dimensional disaster” computed in the high-dimensional
feature space and lays the theoretical foundation for solving complex classification
or regression problems in a high-dimensional feature space.

Instead of
〈
φ(xi ), φ

(
x j

)〉
with kernel function K

(
xi , x j

)
, the optimization function

changes to

Q(α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j K
(
xi , x j

)
(8.28)

The corresponding discriminant function also changes to

f (x) = sgn

(
n∑

i=1

α∗
i yi K (xi , x) + b∗

)
(8.29)

This is the SVM,where xi is a support vector and x is an unknown vector. Since the
final discriminant function contains only a linear combination of the inner product
of the unknown vectors and the support vectors, the computational complexity at
recognition depends on the number of support vectors.

After adopting the kernel function, there is no need to know the specific form of
the nonlinear mapping function ϕ(x). There are mainly several common forms of
nuclear functions, all of which are corresponding to the existing algorithms.

(1) The kernel function of the polynomial form

K
(
xi , x j

) = [(
xTi x

) + 1
]q

(8.30)

At this time, the corresponding SVM is an order q polynomial classifier.
(2) The kernel function of the radial basis form
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Fig. 8.13 Schematic diagram for decision rules of SVM

K
(
xi , x j

) = exp
(−‖xi − x‖2/2σ 2

)
(8.31)

At this time, the corresponding SVM is a radial basis function classifier
distinguished from the traditional radial basis RBF function in that the center of
each basis function here corresponds to a support vector. Those support vectors
and their output weights are determined automatically by the algorithm.

(3) S-shaped kernel function,

K
(
xi , x j

) = tanh
(
β0

(
xTi x

) + β1
)

(8.32)

Moreover, there are exponential radial kernel function, Fourier series, spline
function, B spline function, etc.

As shown in Fig. 8.13, the discriminant function of the SVM is formally similar to
a neural network whose output can be seen as a linear combination of several hidden
layer nodes, and each hidden layer node corresponds to the inner product of a input
sample and a support vector. Therefore, the SVM is also called the support vector
network. SVM implements a two-layer perceptron neural network, where both the
network weights and the number of hidden layer nodes are automatically determined
by the algorithm.

For classification learning problems, traditional pattern recognition methods
emphasize dimensionality reduction, while SVM is the opposite of this. For the
nonlinear problem that the two types of samples in the feature space cannot be
separated by the hyperplane, SVM adopts the mapping method to map it to the
higher-dimensional space, and obtains the hyperplane equation which best distin-
guishes the two types of sample points as the criterion to distinguish the unknown
samples. Since the inner product operation is only changedby thekernel function after
the dimension increase, the complexity of the algorithm does not increase with the
increase of the dimension, thus limiting over-fitting. Although with a small number
of known samples, it can still effectively make statistical forecasts. The specific steps
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to apply SVM are: selecting the appropriate kernel function→ solving the optimiza-
tion equation to obtain the support vector and the corresponding Lagrange operator
→ obtaining the optimal classification surface discriminant equation.

Introduction above is a binary classifier. The SVM-based construction of multi-
valued classifiers can be realized by combining multiple binary sub-classifiers, and
the specific construction includes one-to-one and one-to-many ways. The imple-
mentation steps for mode recognition of SVM are relatively simple, without a long
training process. It only needs to solve the optimal hyperplane according to the initial
sample to find the support vector, and then determine the discrimination function,
and then it can be generalized to identify other unknown samples. The accuracy of
the SVM is greatly affected by the parameters of the kernel function itself. How
to select these parameters, such as the width of the radial basis function, and the
order of the polynomial kernel function, there are no mature methods and generally
determined by multiple attempts.

8.2.2 Support Vector Regression

The SVM method was first proposed for the pattern recognition problem. With
the introduction of ε insensitive function, SVM has extended for nonlinear regres-
sion and function approximations, and shows good learning performance, especially
for solving the regression problem of small samples [11]. The following is a brief
introduction to the support vector regression (SVR) method based on SVM.

For a linear regression system, f (x) = wT x + b, and its calibration set sample
(xi , yi ), i = 1, 2, . . . , n, n is the number of calibration samples. If all the calibration
data can be fitted with a linear function with precision ε, without error, ε is a normal
number,

yi − wT xi − b ≤ ε

wT xi + b − yi ≤ ε (8.33)

Considering the allowable fitting error, the relaxation factors ξ i and ξ *
i, ξi , ξ ∗

i ≥ 0
are introduced, and the above equations become

yi − wT xi − b ≤ ε + ξi

wT xi + b − yi ≤ ε + ξ ∗
i (8.34)

ξi , ξ
∗
i ≥ 0



278 8 Nonlinear Calibration Methods

Similar to the SVM problem for pattern recognition, the problem can be trans-
formed into finding the minimum of the following function under the above
constraints:

L
(
w, ξ, ξ ∗) = 1

2
wTw − C

n∑

i=1

(
ξi + ξ ∗

i

)
(8.35)

where item 1 is tomake the regression function flatter in order to improve the general-
ization ability, while item 2 is to reduce the error. The constantC is a constant greater
than zero, called the penalty factor or the regularization coefficient, which represents
the degree of penalty for a sample that exceeds the error ε. The dual problem can
be obtained by using the Lagrange optimization method, that is, maximizing the
following objective function for Lagrange factors αi and α*

i under the constraints of∑n
i=1

(
αi + α∗

i

) = 0, 0 ≤ αi ≤ C and 0 ≤ α∗
i ≤ C :

W
(
α, α∗) = −ε

n∑

i=1

(
αi + α∗

i
) +

n∑

i=1

yi
(
α∗
i − αi

) − 1

2

n∑

i=1

n∑

j=1

(
α∗
j − α j

)(
α∗
i − αi

)(
xti x j

)

(8.36)

Get a regression function of

f (x) =
n∑

i=1

(
α∗
i − αi

)(
xTi x j

) + b (8.37)

In the equation, only a few parts of the
(
α∗
i − αi

)
are not zero, and their corre-

sponding samples are called support vectors. If the fitted mathematical model is
expressed as a curve in multi-dimensional space, the result obtained on the ε insen-
sitive function is the “ε pipeline” containing the curve and the training point. Of all
the samples, only that portion of the sample points distributed on the “pipe wall”
determines the location of the “pipeline”, and this part of the training samples is the
support vector.

As shown in Fig. 8.14, in the case of a nonlinear problem, the main idea of the
SVR method is to transform the original problem into a linear problem in a high-
dimensional space through nonlinear transformation and solve it linearly in the high-
dimensional space. As the SVMmethod of pattern recognition, nonlinear regression
can be achieved as long as the kernel function K

(
xi , x j

)
replaces the point product

xTi x j operation in the regression function. In this way, the nonlinear solving problem
becomes to maximize the following objective function for the Lagrange factors αi

and α*
i under the constraints of

n∑
i=1

(
αi + α∗

i

) = 0, 0 ≤ αi ≤ C and 0 ≤ α∗
i ≤ C :
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Fig. 8.14 Schematic diagram of SVR topological structure

W
(
α, α∗) = −ε

n∑

i=1

(
αi + α∗

i

) +
n∑

i=1

yi
(
α∗
i − αi

)

− 1

2

n∑

i=1

n∑

j=1

(
α∗
j − α j

)(
α∗
i − αi

)
K

(
xi , x j

)
(8.38)

Using the same optimization method, the nonlinear regression function is
obtained as

f (x) =
n∑

i=1

(
α∗
i − αi

)
K

(
xi , x j

) + b (8.39)

Kernel functions such as polynomial, radial basis, and S-form are also mostly
used in SVM regression methods.

Using the ε insensitive function, the above optimization algorithm is expressed
by the matrix as

min
p

1

2
pTHp + cT p (8.40)

Among them,
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p =
[

α

α∗

]
, H =

[
X −X

−X X

]
, X =

⎡

⎢⎢⎢⎢⎢⎣

K (x1, x1) · · · K (x1, xk)
· ·
· ·
· ·

K (xk, x1) · · · K (xk, xk)

⎤

⎥⎥⎥⎥⎥⎦
, c =

[
ε + Y
ε − Y

]
,Y =

⎡

⎢⎢⎢⎢⎢⎣

y1
·
·
·
yk

⎤

⎥⎥⎥⎥⎥⎦
. Its constraints are p · (1, . . . , 1,−1, . . . ,−1) = 0, 0 ≤

αi ≤ C , 0 ≤ α∗
i ≤ C , where i = 1, . . . , n, n is the number of samples in the cali-

bration set. The above algorithm can be easily implemented by using the MATLAB
language.

It shows the advantage of SVR is specifically clear for the finite sample case, with
the purpose to obtain the optimal solution under the existing information, instead of
just optimal value when the sample number tends to infinity. SVR solution algorithm
can be transformed into a quadratic optimization (quadratic programming) problem.
In theory, the global optimum can be obtained for SVR. It adopts kernel function to
realize the transformation from nonlinearity in low-dimensional space to linearity in
high-dimensional space, which ensures that the algorithm has good generalization
ability and solves the problem of dimension disaster. However, due to the dimension
of the H matrix is twice the number of samples, the number of samples that can be
processed by this method cannot be too large.

8.2.3 Least Squares Support Vector Regression

To reduce training time, reduce computational complexity, and improve generaliza-
tion abilities, some improved SVMalgorithms such as least squares SVM (LS-SVM)
and weighted SVM were proposed. The LS-SVM uses least squares linear systems
as a loss function, reduces the computational complexity, and accelerates the solution
by solving a set of linear equations instead of the more complex quadratic program-
ming method adopted by the traditional SVM. LS-SVMmethod has been applied in
the qualitative and quantitative spectral analysis [12–14].

The objective optimization function of the LS-SVM algorithm is

min J (w, e) = 1

2
wTw + 1

2
γ

n∑

i=1

e2i (8.41)

Constraint: yi = wTϕ(xi ) + b + ei .
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where w is the weight vector; γ is the regularization parameter; ei is error; xi and yi
are input and output variables of calibration set, respectively; i = 1, . . . , n, n is the
number of samples of calibration set.

The following Lagrange function can be defined:

L(w, b, α, e) = J (w, e) −
n∑

i=1

αi
[
wTφ(xi ) + b + ei − yi

]
(8.42)

where αi is the Lagrange coefficient. The above optimization problems can be
transformed into solving the linear equations:

[
0 lT

l � + 1
γ
I

][
b
α

]
=

[
0
y

]
(8.43)

where l = [1, 1, . . . , 1]T ; The I is a unit matrix; � = 〈
ϕ(xi ), ϕ

(
x j

)〉 = K
(
xi , x j

)
,

i, j = 1, . . . , n;α = [α1, α2, ..., αn]T;y = [y1, y2, ..., yn]T.
Making A = � + 1

γ
I , the matrix equation can be solved:

b = lT A−1y

lT A−1l
(8.44)

α = A−1(y − bl) (8.45)

For unknown sample x, the predicted value of LS-SVM is

y(x) =
n∑

i=1

αi K (x, xi ) + b (8.46)

The standard SVM solves a convex quadratic programming. Its solution is unique
and optimal, without local extremal problem for general neural networks. When
the linear equations are solved with LS-SVM, its solution satisfies the extremal
conditions, but it is not guaranteed to be the global optimal solution. However, it is
solved faster and has less computational resources required for solving.

8.2.4 Optimization of Support Vector Regression Parameters

In SVRmethods, the selection of the penalty factorC and the kernel radius parameter
σ is crucial to the construction of the regression function. The penalty factor C
represents the importance of the SVM algorithm to the abnormal points and affects
the prediction accuracy of the model. The larger the C, the smaller the training set
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error, and the larger the C will easily lead to over-fitting; the smaller the C, the larger
the training set error, and the smaller the C is easy to underfitting. Too large or too
small theCwill weaken themodel generalization ability. σ represents the distribution
of data mapped to high-dimensional feature space, affecting the training speed of the
model. The faster speed will be abtained with larger σ and fewer support vectors.
Otherwise, smaller σ and more support vectors will induce slower speed.

For the selection of these two parameters, the common method is to have C and σ

take values within a certain range, and then adopt the interactive verification method
to find the best parameters [15] by grid search method based on a certain step length.
However, this method is time consuming, especially when looking for the best point
in a larger range, as it needs to traverse all the parameter points in the grid.

To search for optimal parameters over a wider range, heuristic algorithms such as
GA, PSO, and gray wolf optimization (GWO) to select penalty factor C and kernel
parameter σ , tending to be more [16, 17] efficient than grid search methods. Particle
optimization group algorithm is a group intelligence algorithm that simulates bird
group foraging, each particle represents a possible solution vector. The quality of
particles is judged according to the fitness function value and realizes the particle
position and speed continuously updated by learning from the global and individual
optimal solutions, and finally realizes the purpose of global optimization [18, 19].
Figure 8.15 shows the algorithm process for optimizing the SVR parameters with
PSO.

Fig. 8.15 Flowchart of parameters optimization of support vector machine by PSO
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8.3 Relevance Vector Machine

Relevance vector machines (RVM) is a new supervised learning approach similar
to SVM, based on kernel function mapping that transforms the nonlinear problem
in low-dimensional space into the linear problem in high-dimensional spaces. It is
trained in the Bayesian framework and builds a sparse model [20] based on active
correlation decision theory under prior conditions. In the iterative learning of the
training sample set, the posterior distribution of the parameters independent of the
predicted values gradually tends to zero, and the points corresponding to the non-zero
parameters can reflect the core characteristics of the data, known as the relevance
vectors, reflected in the data the most core characteristics. Compared to the SVM,
RVM reduces the operation amount of the kernel function and outperforms the SVM
[21, 22] in terms of sparsity and generalization abilities.

Given the training set input vector X = {x1, x2, ..., xn}T and the corresponding
output y = {y1, y2, ..., yn}T, n as the number of training set samples. The purpose of
learning is to apply these training data and prior knowledge to design a system that
predicts the system to output y* for the new input x*.

Suppose that the target value is a combination of an unknown function and some
noise:

y = f (X,w) + ε (8.47)

where w is the model weight, w = {w1,w2, ...,wm}T,m is the number of wavelength
variables, ε is the noise with zero mean and σ 2 variance. f (X,w) is the family of
functions, given by the following equation:

f (X,w) =
m∑

i=1

wi�(x) + w0 (8.48)

where �(x) is a set of nonlinear basis functions (kernel functions):

�(x) = {ϕ1(x), ϕ2(x), . . . , ϕm(x)}T (8.49)

The Gaussian function centered on each training sample is usually chosen as the
base function, and the weight w can be trained by maximum likelihood methods in
the Bayesian framework:

p
(
y|w, σ 2) = (

2πσ 2)−n/2 exp

{
−‖y − w�‖2

2σ 2

}
(8.50)

To avoid over-fitting, sparse Bayesian learning method gives a priori conditional
probability distribution to the weight w:
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p(w|α) =
n∏

i=0

N
(
wi |0, α−1

i

)
(8.51)

where superparametric α = {α0, α1, ..., αn}T, each weight of the wi corresponds to
a unique superparametric αi. Parameters are affected by the prior distribution. The
training set samples are constantly trained, most of the superparametric αi will tend
to infinity, and the corresponding weight wi will go to 0, thus ensuring the sparsity
of the RVM.

According to the Bayesian rule, the posterior probability on the weights can be
obtained:

p
(
w|y, α, σ 2

) = (2π)−
n+1
2 |�|− 1

2 exp

{
−1

2
(w − μ)T�−1(w − μ)

}
(8.52)

Posterior covariance � = (�TB� + A)−1

Mean μ = ��TB y.

where A = diag(α0, α1, α2, . . . , αn), B = σ 2 In.
Based on the maximum expectation hyperparameter estimation, after multiple

iterative calculations can obtain:

(αi )
new = γi

/
μ2
i (8.53)

(
σ 2

)new = |y − �μ|2
n − �iγi

(8.54)

where μi is the ith posterior mean weight, γi = 1 − αi�i i .
For the prediction of the weight posterior probability distribution, the constraints

of both αMP and σ 2
MP take the maximum value, and according to the normal

distribution properties, p(y∗|y) is conformed to the normal distribution:

p
(
y∗|y, αMP , σ 2

MP

) = N
(
μ∗, σ 2

∗
)

(8.55)

where

σ 2
∗ = σ 2

MP + �
(
x∗)T��

(
x∗) (8.56)

y∗ = μT�
(
x∗) (8.57)

Ying et al. [23] adopted RVM to establish an calibration model for predicting the
content of elements in soil by laser-induced breakdown spectroscopy, and the results
outperformed the SVM model and the least squares vector model in stability and
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prediction accuracy.Wang et al. [24] selected characteristic variables through random
forest, and then established a model of infrared (IR) spectroscopy for predicting the
acid value of diesel engine oil byusing theRVM, and the resultswere satisfactory.Zhu
et al. [25] combined IR spectroscopy with RVM to identify the origin of mushroom,
and the results were comparable to KNN and SVM, and the identification correct rate
was higher than 90%. Zhu et al. [26] established a recognitionmodel for the detection
of infertile eggs and fertilized eggs based on the hyperspectral information fusion
and RVM. It outperforms the SVM in both computational speed and recognition
accuracy. Fu et al. [27] used near-infrared (NIR) spectroscopy combined with RVM
to establish a model to judge the Tetrastigma Hemsleyanum of Chinese medicinal
materials, with the recognition accuracy of 100%.

8.4 Kernel Partial Least Squares

The success of SVM in the field of machine learning has led people to “kernel-
ization” various traditional linear methods to nonlinear ones by inner products. The
idea of kernel function has gradually developed into kernel method, which provides a
unified framework for dealing with many problems [28, 29]. As shown in Fig. 8.16, a
variety of kernel function-basedmethods is derived by combining the kernel function
with different chemometric algorithms, such as kernel principal component analysis
(KPCA), kernel Fisher discriminant analysis (KFDA), kernel principal component
regression (KPCR), kernel partial least squares (KPLS), and kernel ridge regression
(KRR). The design of kernel function and chemometric algorithm can be carried out
separately. To solve different problems, different kernel functions and chemometric
algorithms can be selected. These methods have shown good performance in appli-
cations in many fields, among which the KPLS method is being adopted more and
more [30–33].

For the training sets X and Y, given the kernel function type and the maximum
number of principal factors f , the KPLS algorithm is as follows:

(1) Calculate the kernel matrix K (n × n) of matrix X (n × m, n is the number of
samples in the training set, and m is the number of variables) by the kernel function.

Fig. 8.16 Framework of implementation steps for calibration method based on kernel function
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(2) Centralized processing of the kernel matrix K by the following equation:

K̃ =
(
I − 1

n
llT

)
K

(
I − 1

n
llT

)
(8.58)

where I is the unit matrix, and l is the n-dimension full 1 column vector.

(3) Initialize variable u.

(4) t = K̃ u, t = t/‖t‖.
(5) c = Y T t .

(6) u = Yc, u = u/‖u‖.
(7) Repeat (3)–(6), until it converges.

(8) Calculate K̃ and Y

K̃ = (
I − t tT

)
K̃

(
I − t tT

)
(8.59)

Y = Y − t tTY (8.60)

Back to (4) until all f , u and t vectors are obtained.
(9) The predicted value of the training set samples

Ŷ = K̃U(T T K̃U)−1T TY (8.61)

where T = [
t1, t2, . . . , t f

]
,U = [

u1, u2, . . . , u f
]
.

For the validation set Xtest (p × m, p is the number of samples for the validation
set, m is the number of variables), its kernel matrix K test is calculated by the kernel
function. The kernel matrix K test is centralized by the following equation.

K̃ test =
(
K test − 1

n
llTK

)(
I − 1

n
llT

)
(8.62)

The predicted value of the samples in the validation set is calculated.

Ŷ = K̃ testU(T T K̃U)−1T TY (8.63)

Compared with ANN and SVM, KPLS has fewer parameters, faster calcula-
tion speed, and easier implement. It is promising to be a commonly used nonlinear
multivariate calibration method.
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8.5 Extreme Learning Machine

The extreme learning machine (ELM) is a single-hidden layer feedforward neural
network, which overcomes the shortcomings of traditional BP-ANN, including slow
training speed, easy to fall into local minima, and selection sensitivity of learning rate
[34]. ELM randomly generates the connection weight between the input layer and
the hidden layer and the threshold value of the hidden layer neurons, and obtains the
output layerweight with a very small 2-norm through theMoore-Penrose generalized
inverse. It is no need to adjust during the training process, the only need is to set the
number of hidden layer neurons and the activation function of hidden layer neurons
to obtain the unique optimal solution. Therefore, compared with traditional SLFNN,
ELM has the characteristics of easy selection of parameters, fast learning speed, and
strong generalization abilities. Figure 8.17 shows the schematic diagram of the ELM
topology.

For a training set containing N calibration samples, xi is the spectral vector of
the ith sample (n × 1), containing n wavelength variables. yi is the concentration
vector of the ith sample (m × 1), containing m concentration samples. The standard
SLFNN algorithm with H hidden nodes is as follows.

H∑

i=1

βi fi
(
x j

) =
H∑

i=1

βi f
(
ai x j + bi

)
, j = 1, 2, . . . , N (8.64)

where ai = [ai1, ai2, . . . , ain]T , is theweight of n-dimensional input layer and hidden
layer, bi is the threshold of ith node. βi = [βi1, βi2, . . . , βim]T is the weight of the
m-dimensional output layer and hidden layer. fi

(
x j

)
is the activation function.

The above equation can be expressed as

Fig. 8.17 Schematic diagram of ELM topological structure
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H∑

i=1

βi fi
(
x j

) = Hβ (8.65)

where

H =
⎡

⎣
f (a1x1 + b1) . . . f (aH x1 + bH )

. . . . . .

f (a1xN + b1) . . . f (aH xN + bH )

⎤

⎦ (8.66)

The parameters of theELMdonot need to be fully adjusted throughout the training
process, only the connection weights between the hidden layers and output layers
need to be set, and their values can be obtained by the following equation:

min
β

‖Hβ − YT‖ (8.67)

The solution is

β
∧

= H+YT (8.68)

whereH+ is theMoore-Penrose generalized inverse of the hidden layer output matrix
H, and YT is the transpose of the output matrix Y.

Kernel extreme learning machine (KELM) introduces kernel functions into ELM.
It replaces random mapping in ELM with kernel mapping and uses kernel functions
tomap all input samples fromN-dimensional space to high-dimensional hidden layer
feature space, which effectively improve the unsatisfactory generalization ability and
stability problems caused by randomization of hidden layer parameters. By solving
it at once, the method can obtain the least square solution of the weight, which is
faster and the generalization performance is more stable than the ELM algorithm.
The type and parameters of kernel function are themain factors of the performance of
the KELM, once the parameters are selected. The results are stabilized and no longer
mixed with random. The parameters of the KELM can be optimized selection by
using optimization algorithms such as cuckoo search (CS) algorithm, PSO algorithm,
chaos particle swarm optimization (CPSO), and GA [35, 36].

Zhu et al. [37] used ultraviolet-visible spectroscopy technology and ELM to iden-
tify the sex of embryonated chicken eggs in the early incubation period, and adopted
GA to optimize the weight variables of the ELM model and the threshold of hidden
layer neurons. The accuracy of the recognition rate was above 85%. Han et al. [38]
combined NIR spectroscopy with ELM to quickly identify adulterated pork in beef,
and obtained satisfactory identification results. Lu et al. [39] adopted the compressed
self-encoding network (CAE) in deep learning to extract the deep features in the NIR
spectral data of citrus leaves, and then sent the extracted deep features into the ELM
model for identification. The established citrus yellow-shoot disease identification
model (CAE-ELM) had great robustness and scalability. Pan et al. [40] had carried
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out the study of PCA combined with ELM assisted laser-induced breakdown spec-
troscopy (LIBS) in the classification and identification of aluminum alloys. Results
showed that the PCA-ELM classification model has high accuracy and stability and
can finely classify waste aluminum according to their respective component brands.
Based on laser-inducedfluorescence spectroscopy (LIF), Zhou et al. [41] successfully
identified the types of edible oil using KELM. Liang et al. [42] used laser-induced
breakdown spectroscopy combined with KELM to classify the origin of the root of
red-rooted salvia, and the results were better than the least squares support vector
machine and random forest.

Rao et al. [43] combined stack auto-encoders (SAE) with ELM to establish a
depth neural network prediction model (SAE-ELM) for hyperspectral imaging to
predict apple hardness, which had better prediction performance than traditional
ELM model. Xia et al. [44] used ELM to build models for the IR spectral data of
lubricating oil, which can effectively identify the types and predict the additives
content in lubricating oil. Wang et al. [45] optimized the connection weight and
threshold of ELM network through GA, improved the instability of the prediction
results caused by the randomness of ordinary ELM connection weight and threshold,
and established a model of NIR spectroscopy to predict the moisture content of
jujube. Wei et al. [46] adopted KELM optimized by GA to establish a model for
hyperspectral nondestructive detection of the total number of bacteria on the surface
of cooled mutton.

In order to further improve the prediction accuracy and stability of ELM, Bian and
Chen [47, 48] proposed ensemble ELM modeling methods for quantitative analysis
of NIR spectroscopy, respectively. Shan et al. [49] proposed stacked ensemble ELM
(SE-ELM),whereNIR spectrawere divided into segments andmultiple ELMmodels
were built, and then thesemodels were combinedwith different weights (Fig. 8.18) to
further improve the generalization performance of themodel. Hu et al. [50] combined
the stacked partial least square regression based on the variable importance in the
projection (VIP-SPLS) with the ELM algorithm to propose an improved extreme
learning machine (iELM). This method used VIP-SPLS algorithm to establish a
regression model between the hidden layer output matrix H and the concentration
to be measured, which replaced the calculation process of matrix H generalization
inverse, and solved the problem of high dimensionality and highly collinearity of the
hidden layer output matrix due to the large number of NIR spectral variables to a
certain extent.

8.6 Gaussian Process Regression

Gaussian process regression (GPR) is a machine learning method that has been
developing continuously in the past decade and has received more and more atten-
tion. It combines the related theories and methods of kernel-based machine learning
and Bayesian-based machine learning and has the advantages of the above two
machine learning methods. It has a strict theoretical basis of statistics and is suitable
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Fig. 8.18 Schematic diagram for the framework of SE-ELM model

for dealing with complex learning problems, such as nonlinearity, small samples,
and high dimensions, and has strong generalization ability. Compared with neural
networks, SVM, and other methods, this method has the advantages of easy imple-
mentation, self-adaptive hyperparameters, flexible non-parametric inference, and
statistical significance of the prediction results [51, 52]. At present, GPR has been
applied to the regression and classification and other fields and has become a research
hotspot in the field of machine learning at home and abroad [53, 54].

GPR treats f (x) values directly in function space as random variables and a priori
distribution of f (x) as Gaussian distributions, based on the following basic principles:

Given a set of training samples D = {(xi , yi )|i = 1, 2, ..., n} = (X, y), the
regression model can be represented as

y = f (x) + ε, ε ∼ N
(
0, σ 2

)
(8.69)

where X is the n × d-dimensional matrix composed of the input vector xi, y is the
n-dimensional vector consisting of output scalar yi , n is the number of training set
samples, d is the number of spectral variables and ε is Gaussian white noise with σ 2

n
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variance. A Gaussian process is determined entirely by its mean function m(x) and
covariance function k(x, x’). For easy to calculate, the mean functionm(x) is usually
treated as 0,

f (x) ∼ GP(0, k(x, x ,)) (8.70)

The priori distribution of the training set output value y is

y ∼ N
(
0, K + σ 2

n I
)

(8.71)

where I is an unitmatrix,K = K(X,X) = k(xi , x j )n×n is the symmetrical covariance
matrix, representing the correlation between xi and xj.

For the input vector x*of the sample to be tested, the joint Gaussian distribution
composed by the corresponding output value y* and the sample output y of the
training set is

[
y
y∗

]
∼ N (0,

(
K (X, X) + σ 2

n I
K (x∗, X)

K (X, x∗)
k(x∗, x∗)

)
(8.72)

where K (X, x∗) = K (x∗,X) is the n × 1-dimensional covariance matrix between
the training set sample X and the sample x* to be tested, and the k(x∗, x∗) is the
autocovariance of the sample x* to be tested.

The posterior distribution of y* can be obtained by the Bayesian principle:

y∗|X, y, x∗ ∼ N
(
y∗
∧

, cov(y∗)
)

(8.73)

where

y∗
∧

= K(x∗, X)[K (X, X) + σ2
n I ]−1y (8.74)

cov
(
y∗) = k

(
x∗, x∗) − K

(
x∗, X

)[
K (X, X) + σ 2

n I
]−1

K
(
X, x∗) (8.75)

where y∗
∧

and cov(y∗) represent Gaussian regression models for the predicted output
values and predicted variances of the sample x* to be tested, respectively.

In GPR, the selection of covariance function (also known as kernel function) and
related parameters determines the fundamental performance of Gaussian process
model being built. The most commonly used covariance function is the square
exponential covariance function:



292 8 Nonlinear Calibration Methods

k
(
xp, xq

) = σ 2
f exp

(
− 1

2l2
(
xp − xq

)2
)

(8.76)

where σ 2
f is the overall measure of prior knowledge, and l is the degree to control

the local relevance.
The value of the hyperparameter � = (

σ f , l
)
has a great influence on the predic-

tion effect of the model, and the negative logarithm likelihood function L(�) is
generally used as the optimization target function of the hyperparameter. L(�) is

L(�) = −1

2
yT

(
K + σ 2

n I
)−1

y − 1

2
lg

∣∣K + σ 2
n I

∣∣ − n

2
lg 2π (8.77)

Calculate the partial derivative of each parameter of the negative logarithm likeli-
hood function L(�), and then use the conjugate gradient iteration method to obtain
the optimal hyperparameter �̂. By obtaining the optimal hyperparameter, the results
of GPR can be obtained by calculating the equations of y∗

∧

andcov(y∗).
GPR model parameters are usually obtained by conjugate gradient method.

However, the optimization effect of conjugate gradient is strongly dependent on
the initial value, and there are disadvantages of difficult to determine the number of
iterations and easy to fall into the local optimal. Therefore, the parameters of GPR
model can be optimized by using optimization algorithms such as PSO.

Martinez-Espana et al. [55] adopted GPR methods to establish a quantitative
model for the prediction of soil critical properties by portable infrared spectroscopy,
and the results were better than random forests and PLS. Ying et al. [56] used
microwave plasma torch atomic emission spectroscopy (MPT-AES) combined with
GPR to establish a model for predicting the content of five chemical elements in
ginseng, and obtained better results than SVR. Li et al. [57] used NIR spectroscopy
combined with the PLS, LS-SVR, and GPR method to establish a calibration model
to predict the content of active ingredients in Tanreqing injections, and the results
showed that LS-SVR and GPR method gave a better prediction result. Xu et al. [58]
combined the wavelength selection strategy of synergy interval with GPR (SiGPR)
and established a model of NIR spectroscopy to predict the moisture content and
pH value of the solid-state fermentation process of the monascus. This method
could effectively select the wavelength range and improve the accuracy of the NIR
calibration model.

At present, there are some shortcomings in GPR, such as limitation to the assump-
tion of Gaussian noise distribution. Some improved algorithms that reduce the
amount of calculation and break through the assumption of Gaussian noise distri-
bution have been proposed, prompting the continuous development of GPR models.
For example, Liu et al. [59] proposed a new noise-level-penalizing robust Gaussian
process regression method (NLP-RGP), which can better deal with training set with
outliers.
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Chapter 9
Method of Selecting Calibration Samples

9.1 Introduction

In the process of establishing the calibration model, it is very necessary to select the
samples that participate in the calibration set to establish a robust model. As shown
in Fig. 9.1, the selection of samples is to select the row vector of spectral matrix
X and the row vector of corresponding concentration matrix y, and the selection of
wavelength is to select the column vector of spectral matrix X.

The established methods combined spectra and chemometrics are used to analyze
most complex analytical systems, such as gasoline, wheat, and tobacco. For this
kind of calibration samples that cannot be obtained by manual preparation, actual
samples must be collected. With routine laboratory analysis of samples, thousands
of samples can be obtained in a few months, but it is possible that more than 80%
of these samples are duplicates. Therefore, it is necessary to select strong repre-
sentative samples to establish a calibration model, which can not only improve the
speed of model establishment but also reduce the storage space of the model library.
More importantly, when the sample outside the model boundary is encountered, the
application range of the model can be expanded through fewer samples, which is
convenient for model update and maintenance [1, 2]. In addition, if the collected
samples do not have the corresponding basic concentration data, the cost will be
huge if all samples are analyzed and tested without screening.

The ideal calibration set should meet the following conditions: (1) The samples in
calibration set should include all possible composition of samples to be tested in the
future; (2) Its concentration (or property) range should exceed the situation that may
be encountered in the sample to be tested in the future (generally, its standard devi-
ation should be greater than 5 times of the reproducibility of the reference method);
(3) The physicochemical parameters of the samples in the calibration set should be
evenly distributed as shown in Fig. 9.2a; (4) The calibration set should have enough
number of samples to statistically determine the mathematical relationship between
the spectral variable and the concentration (or properties) (usually the number is
not less than 6 (f + 1), and f is the number of PLS factor). In the actual production

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
X. Chu et al., Chemometric Methods in Analytical Spectroscopy Technology,
https://doi.org/10.1007/978-981-19-1625-0_9

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1625-0_9&domain=pdf
https://doi.org/10.1007/978-981-19-1625-0_9


298 9 Method of Selecting Calibration Samples

Fig. 9.1 Schematic diagram of selection of calibration samples (left) and spectral variables (right)
for spectral matrix X

Fig. 9.2 Schematic diagram of uniform distribution (a) and Gaussian distribution (b) of sample
concentration in calibration set [3]

process, especially in the large-scale process industry, the composition concentration
of the collected samples is mostly Gaussian as shown in Fig. 9.2b. If these samples
are not selected to directly participate in the establishment of the calibration model,
the “Dunne effect” phenomenon is likely to occur in the prediction, that is, the regres-
sion prediction results tend to the central value as Fig. 9.3 displays [3]. In addition,
the number of samples in the calibration set should be large enough to statistically
determine the quantitatively functional relationship between the spectral variables
and the physicochemical parameters to be calibrated.

It is difficult to obtain a relatively ideal sample set by random selection, and it is
often not satisfactory to select calibration samples only according to the concentration
distribution, because the spectra of two samples with the same concentration may
be quite different. Currently, the most commonly used method is the Kennard-Stone
selection method based on spectral variables [4–7].
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Fig. 9.3 Schematic diagram of Dunne effect [3]

Before selecting calibration samples, outliers should be eliminated first. These
abnormal samples may contain abnormal chemical components or have extreme
concentrations that are significantly different from other samples. If these abnormal
samples participate in the establishment of the model, the accuracy and robustness
of the calibration model will be affected.

In addition to the optimization selection of calibration set, test set and validation
set also need to select samples with strong representativeness. In fact, the represen-
tativeness requirement of set test or validation set samples is not lower than that of
calibration set. The method of selecting calibration samples can be applied to the
selection of samples for validation set and test set. For example, the Duplex method
use Kennard-Stone (K-S) methods alternately to divide samples into calibration and
validation set [8].

As shown inFig. 9.4, the uniformity and representativeness of the selected samples
can be checked through the concentration value distribution map of the samples
of calibration set or validation set. As shown in Fig. 9.5, the concentration value
distribution of the samples of calibration set or validation set can also be checked by
the violin plots, which are a combination of box plots and kernel density plots, and
can show the concentration and dispersion of data.

In addition, the consistency of sample distribution of calibration and validation
set can be evaluated by skewness and kurtosis.

Skewness is a measure of the direction and degree of the distribution skew of
a set of data, namely the numerical characteristics of the degree of the asymmetry
of variables. The greater the skewness, the stronger the data asymmetry. As shown
in Fig. 9.6, the definition of skewness includes a normal distribution (skewness =
0), a right skewness distribution (also called a positive skewness distribution, with
skewness > 0), and a left skewness distribution (also called a negative skewness
distribution, with skewness < 0).
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Fig. 9.4 Concentration value distribution diagram of calibration set and validation set samples

Fig. 9.5 Violin diagrams of calibration set and validation set samples [9]. The dark area indicates
the inter-quartile range and the white dot indicates the median value of the dataset

The calculation formula of skewness is as follows:

Iskewness = 1

n

n∑

i=1

(xi − x)3
(
1

n

n∑

i=1

(xi − x)2
)3/2

(9.1)

Kurtosis, also known as kurtosis coefficient, is a statistical measure to describe the
steepness of the distribution pattern of a set of data. Kurtosis reflects the sharpness
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Fig. 9.6 Skewness characteristics of the distribution of a set of data

of the peak. The greater the kurtosis, the steeper the data distribution curve, which
is compared to a normal distribution. As shown in Fig. 9.7, kurtosis includes normal
distribution (kurtosis value = 0), positive kurtosis (kurtosis value > 0), and negative
kurtosis (kurtosis value < 0). The calculation formula of kurtosis is as follows:

Ikurtosis = 1

n

n∑

i=1

(xi − x)4/

(
1

n

n∑

i=1

(xi − x)2
)2

− 3 (9.2)

Homogeneity test of variance for the samples of calibration and validation set is
evaluated by Levene test which can be used for the sample of normal distribution
and also for the sample of non-normal distribution. At the same time, the size of two
groups of samples for comparison cannot be equal.

Fig. 9.7 Kurtosis
characteristics of the
distribution of a set of data
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9.2 Kennard-Stone Method

Based on the Euclidean distance between variables, theKennard-Stone (K-S)method
[4] uniformly selects samples in the feature space. The spectrum can be directly used
as the characteristic variable, or the principal component score can be selected as
the characteristic variable after the analysis of the spectrum by PCA. The selection
process of calibration samples by K-S method is as follows:

Assume that there is a total of Z samples, fromwhich n samples should be selected
into calibration set.

(1) First, calculate the Euclidean distance dij between pairs of all samples, and
select the two samples with the longest distance, Z1 and Z2, to enter the
calibration set.

(2) Calculate the distance between the remaining (Z2) samples and the two selected
samplesZ1 andZ2 and take theirminimumvalues asmin (di, Z1, di, Z2), and then
select a sample Z3 corresponding to the maximum value as max (min(di, Z1,
di, Z2)) to enter the calibration set.

(3) Calculate the distance between the remaining (Z3) samples and the three
selected samples Z1, Z2, and Z3 and take their minimum value as min(di, Z1,
di, Z2, di, Z3), and then select a sample Z4 corresponding to the maximum value
as max(min(di, Z1, di, Z2, di, Z3)) to enter the calibration set.

(4) Repeat the above process until n samples are selected into calibration set.

Figure 9.8 shows PCA results of NIR spectra of 210 calibration samples selected
from 300 tobacco samples by K-S method.

Fig. 9.8 Result of Selecting Calibration Samples (O-Original samples, × -Selected calibration
samples) by K-S method



9.2 Kennard-Stone Method 303

K-S method is usually based on spectral variables for distance calculation. In
order to obtain representative samples in concentration space, concentration array
can be used to replace spectral matrix in distance calculation [10].

Duplex method alternately applies K-S method to the selection of samples into
calibration set and validation set to ensure that both calibration set and validation set
sample are representative.

9.3 Sample Set Partitioning Based on Joint X–Y Distances
(SPXY) Method

K-Smethod selects samples based on the spectral characteristics without considering
the influence of concentration array. For low content components, if the spectral
characteristics are not significant, K-S method may not obtain satisfactory samples
in calibration set. Galvao et al. proposed Sample set partitioning based on joint x–y
distances (SPXY)method on the basis ofK-Smethod [11]. The step-by-step selection
process of SPXY method is the same as that of K-S method, except that the newly
defined dxy(i, j) is used when calculating the distance between samples as follows:

dxy(i, j) = dx (i, j)

maxi, j∈(1,z)(dx (i, j))
+ dy(i, j)

maxi, j∈(1,z)
(
dy(i, j)

) , i, j ∈ [1, Z ] (9.3)

In the formula, dx(i, j) is the distance between samples calculated with spectra
as characteristic parameters, and dy(i, j) is the distance between samples calculated
with concentration as characteristic parameters. In order to make the samples have
the same weight in the spectral space and the concentration space, they are divided
by their respective maximum values for normalization processing, respectively. In
order to highlight the role of spectral space or concentration space, the weighted
method can be used to select samples as follows [12]:

dxy(i, j) = α
dx (i, j)

maxi, j∈(1,z)(dx (i, j))
+ dy(i, j)

maxi, j∈(1,z)
(
dy(i, j)

) (1 − α)i, j ∈ [1, Z ]

(9.4)

where α is the weighting factor, and 0 ≤ α ≤ 1.

9.4 Optimizable K-dissimilarity Selection Method

When selecting calibration samples, both representativeness and diversity of samples
need to be taken into consideration. The so-called representativeness means that the
selected samples should reflect the attributes of all the samples in the whole dataset
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as much as possible. Whereas, diversity means that the differences between selected
samples should be as large as possible, so that they can be easily distinguished from
each other. Optimizable K-dissimilarity selection (OptiSim) is a method that can
select both representative and diversified samples [13, 14].

OptiSim algorithm involves three parameters: K defines the size of the subset of
samples in each iteration; R defines the minimum similarity that is allowed between
a valid candidate sample and a selected sample;M is the total number of samples of
the selected representative subset. The algorithm is described as follows:

(1) Select a sample randomly from the sample set, create a candidate sample buffer
pool in the remaining dataset, and create an empty recycle bin and subset of
samples.

(2) A sample is randomly taken from the candidate buffer pool. If it is more similar
to any selected sample than R, it will be discarded and put into the recycling
bin. Otherwise, add it to the subsample set.

(3) Repeat Step (2) until the subset includes K samples or the candidate buffer
pool is exhausted.

(4) If the number of samples in the subset is less than K and the candidate buffer
pool is exhausted, all samples are taken from the recycle bin and put into the
candidate buffer pool. Step (2) is returned.

(5) If the subset is empty, exit.
(6) Scan the subset and find out the “best” sample, which refers to the sample with

the largest difference with other selected samples.
(7) Take out the “best” sample from the subset and add it to the selection set.
(8) Take out the samples that are not selected from the subset and put them into

the recycling bin.
(9) Determine whether the number of selected samples has reachedM. If so, quit;

Otherwise, go back to Step (2) and start a new subset.

The balance between representativeness and diversity of selected samples can be
controlled by K value. Low K value produces more representative selection, while
large K value can select samples with more diversity. If K is equal to the total
number of samples in the dataset, that is, all objects as candidates in each step are
considered, and the first two selected objects are not put back into the candidate pool,
then OptiSim is a special case of the maximum-heterogeneity algorithm. If K = 1,
it is a special case of the minimum-heterogeneity algorithm.

9.5 Other Methods

In order to solve the shortcomings of the K-S method, Liu et al. proposed the Rank-
K-S method, which firstly sorted the samples according to the concentration value
and divided the whole concentration interval into multiple intervals, and then used
the K-S method to select the representative samples into calibration set for each
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interval [15]. According to this idea, the SPXY method can also be improved to the
Rank-SPXY method.

Selecting samples into calibration set can also be carried out by the way of elim-
inating samples. The basic principle is to calculate the Euclidean distance between
each sample and the adjacent samples with the characteristics of the spectra (or the
scorematrix of PCA), and determine the threshold according to the density of sample
distribution. As shown in Fig. 9.9, for each sample, all the samples whose distance is
less than the threshold value are eliminated, so as to eliminate the redundant samples,
and the remaining ones are used as calibration samples.

Another method is to condense the sample to obtain a representative sample. This
kind of method is characterized by spectra (or the score matrix of PCA) for cluster
analysis (such as Kohonen network method), and the cluster number is the number
of samples to be selected into calibration set. One or several of each category are
selected as calibration samples (Fig. 9.10) [16, 17]. Spectral and concentration data
of all samples in each category can also be averaged and used as a calibration sample.

Fig. 9.9 Schematic diagram of eliminating the redundant samples. ◯ represents the selected
samples into calibration set.� represents the redundant samples whose Euclidean distance between
it and its adjacent calibration samples is less than the threshold value

Fig. 9.10 Cluster analysis for selection of calibration samples
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The advantage of this method is that the accuracy of the basic data can be improved
to some extent through data averaging. Chen et al. applied isolation forest (IForest)
algorithm to detect outliers and select representative subsets [18]. Isolation forest, an
ensemble of isolation trees (ITree), can provide a ranking of samples which reflects
the degree of outliers and representativeness. All samples are sorted according to
their scores obtained by IForest. The outliers are ranked at the top of list and their
scores are significantly larger than normal samples, and then excluded from the
representative samples. Further, the samples with scores which are larger than 0.5
are selected as normal uncommon samples. Finally, the required number of samples
from the remaining samples is uniformly selected as representative normal common
samples as shown in Fig. 9.11.

Wavelength selection methods such as successive projection algorithm (SPA) can
also be used for the selection of calibration samples. As shown in Fig. 9.12, after the
transpose of spectral matrix X, samples can be selected by conducting SPA [19].

Based on the different spatial distributions of samples in different spectra, Li et al.
adopted the consensus strategy of combining different derivative spectral spaces to
select representative calibration samples [20]. As shown in Fig. 9.13, the K-Smethod
was firstly adopted to select the intersection samples from the zeroth derivative, the
first derivative and the second derivative space as the basic calibration set, and then the
extended calibration samples were selected from the samples with large prediction
errors. In addition, Rowland-Jones et al. adopted themethod of design of experiments
(DoE) to select 20 representative samples in the design space from 957 samples in the
historical sample base for calibration set [21]. Rius et al. used the Fedorov algorithm
in D-optimal design method to select representative samples [22, 23].

Fig. 9.11 Overview of isolation forest on detecting outliers and selecting representative subsets.
Red circles in the ITree represent outliers in samples, dark blue circles represent normal uncommon
samples, and light blue circles represent normal common samples [18]
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Fig. 9.12 Schematic diagram of the SPA method used in the process of selecting samples for
calibration set [19]

Fig. 9.13 Strategy diagram for selecting calibration samples based on spatial distribution of
different spectra [20]
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Chapter 10
Detection Methods for Outlier Samples

The identification of outliers in spectral analysis is mainly used in two aspects: one is
the identification of outliers in the process of model building; the other is the determi-
nation of whether the samples to be tested are the outliers of the model in predictive
analysis. The second aspect is also regarded as the domain of applicability which is
the third principle of five OECD principles as “a defined domain of applicability”
[1, 2].

10.1 Detection of Outlier Samples During Calibration
Process

Two types of outlier samples may appear in the calibration process. The first type is
the sample with extreme composition, often called the high leverage point sample,
which has a strong influence on the regression results. Such outlier samples are
usually detected by the combination of principal component analysis (PCA) and
Mahalanobis distance (MD) (PCA-MD) method [3]. The calibration samples with
greater MD than 3f /n are excluded, where f is the number of principal components
used in PCA and n is the number of samples in the calibration set.

Here the MD is defined as follows:

MDi = [(ti − t̄) · (TT
cenTcen)

−1 · (ti − t̄)T ] (10.1)

where ti is the score of the spectrum of the ith sample in the calibration set, T is the
score matrix of all the samples in the calibration set, t̄ is the average score vector
of T, Tcen is the mean-centered matrix of T, that is Tcen = T − t̄, and MDi is the
Mahalanobis distance of the ith sample in the calibration set. The partial least squares
(PLS) score can also be used to calculate MD.
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The second type of outlier samples refers to samples in calibration set with statis-
tical difference between the reference value and the predicted value. The existence
of such outlier samples indicates that the reference data may be subject to large
errors. The outlier samples can be eliminated by considering the reproducibility
requirements specified by the corresponding reference method, that is, the calibra-
tion samples whose deviation between the predicted value of cross validation and the
measured value of the reference method is greater than the reproducibility specified
by the corresponding reference method can be eliminated. If the reference method
does not provide reproducibility, the following formula can be used to eliminate
calibration samples:

(yi − ŷi ) > 2 × SECV ×
√
n − f − 1

n
(10.2)

where f is the number of the optimal principal component selected by PLS or PCR,
and n is the number of samples in calibration set. SECV is the standard error of cross
validation.

It can also be identified by t-test, which is defined as

ti = ei
SEC

√
1 − MDi

(10.3)

where ti is the t-test value of the ith sample of the calibration set, and ei is the
difference between the predicted value of the ith sample in the calibration set and
the reference data. MDi is the Mahalanobis distance of ith sample, while SEC is the
standard error of calibration. The t value is compared with the critical value of the
t distribution with n−f−1 degree of freedom. The samples whose t value is larger
than the critical value are excluded. Sometimes, for simplicity, outlier samples of
which with deviations are greater than 2.5–3 times SECV can be eliminated.

10.2 Detection of Outlier Samples During the Prediction
Process

The identification of outlier samples in the prediction process is mainly used to
check whether the samples to be tested are within the coverage of the established
calibration model, so as to ensure the accuracy of the prediction results. According
to ASTM E 1655–05 [4], outlier samples of model include three categories: (1) the
outlier samples based on concentration, that is, the use of MD to detect whether
the concentration of the unknown sample exceeds the concentration range of the
calibration samples; (2) the outlier samples based on spectral residual, namely, using
the root mean square of spectral residual (RMSSR) to detect whether the unknown
sample contains the component which does not exist in calibration set; (3) the outlier
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Fig. 10.1 Schematic diagram of three types of outlier samples

samples based on the nearest distance, that is, the nearest distance is used to detect
whether the unknown sample is located in the areawith sparse distribution of samples
in calibration set [5–7]. When any of the spectral residual, MD and nearest neighbor
distance of the unknown sample exceeds the corresponding threshold (Fig. 10.1), it
indicates that the sample is an outlier sample of the model, and the accuracy of its
prediction results will be greatly questioned.

(1) Identification of outlier samples based on concentration

The PCA-MD method, which combines PCA and MD, is usually used to identify
outlier samples based on concentration. For the spectrum of unknown sample, the
spectral loadingmatrix and scorematrix obtained by the calibration samples is calcu-
lated, and then theMD is calculated. The outlier samples were determined according
to theMD threshold defined during the prediction process. For example, for a system
consisting of amixture of three pure substances,A,B, andC, the concentration ranges
of the three components in the calibration set are 0–10% of component A, 5–25% of
component B, and 50–75% of component C. If a sample to be tested is composed of
5% of component A, 40% of component B and 55% of component C, the sample is
identified as an outlier sample because the concentration of component B is beyond
the concentration range of the calibration samples.

(2) Identification of outlier samples based on spectral residual

Spectral residuals can be used for detection when the unknown sample contains a
component which does not exist in the calibration set. The selected principal compo-
nent f is used to reconstruct the spectral matrix X of the calibration set to obtain the
reconstructed spectral matrix X

∧

then the spectral residual matrix of the calibration
set can be obtained as follows:

R = X − X
∧

(10.4)

The RMSSR of the spectral residual of each sample of the calibration set can be
calculated by the following formula:
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RMSSRi =
√
ririT

f
(10.5)

where ri is the spectral residual of the ith sample in the spectral residual matrix R of
the calibration set. RMSSRi is the root mean square of the spectral residual of the ith
sample of the calibration set, and f is the optimal number of principal components
selected in the calibration process of PLS. The threshold of spectral residual root
mean square can be determined by the spectral repeatability.

For the unknown sample spectra x, the spectral score is first calculated by the
spectral loading matrix of the model with PLS, and the spectral residual matrix can
be obtained by reconstructing x

∧

as follows, and then its RMSSR was calculated:

r = x − x
∧

(10.6)

If RMSSR value is greater than the defined threshold, it indicates that the sample
is an outlier sample of spectral residual, that is, the sample may contain components
that do not exist in the calibration set.

For example, for a system consisting of a mixture of three pure substances, A, B,
and C, the concentration ranges of the three components in the calibration set are
0–10% of component A, 5–25% of component B, and 50–75% of component C. If
a sample to be tested consists of 9% of component A, 10% of component B, 61%
of component C and 61% of component D, then the sample is an outlier sample of
spectral residual, because the sample contains component D which does not exist in
the sample of calibration set.

(3) Identification of outlier samples based on the nearest distance

If the calibration samples are unevenly distributed in the variable space, an unknown
sample to be testedmay fall into a calibration spacewith less relative sample aggrega-
tion regardless of itsMDandRMSSRvalueswhich are less than the setting threshold.
In this case, it is necessary to use the nearest distance to detect whether the unknown
sample falls into the blank area of the calibration space. PCA-MDmethod is usually
used to calculate the nearest distance. The specific steps are as follows: Calculate
the MD between all samples in the calibration set through the principal compo-
nent score t, and get the maximum NNDmax value, which represents the maximum
distance between samples in the calibration set.

For unknown sample spectra, obtain the spectral loading matrix by the samples
in the calibration set, then calculate its score and the MD between each sample, and
calculate the minimum value. If the minimum value is greater than the NNDmax,
indicating that the sample falls into the space with less distribution of calibration
samples, and this kind of sample is called the outlier samples based on the nearest
distance.



10.3 Other Detection Methods 313

10.3 Other Detection Methods

In fact, there aremany forms of the outlier sample of themodel.As shown in Fig. 10.2,
the outlier samples of the model can be divided into score distance outliers (samples
1 and 4), spectral residual distance outliers (samples 5), and bad leverage points that
have a large spectral residual distance and a large score distance (samples 2 and 3)
[8, 9]. Sometimes, the classical method cannot detect these outlier samples at the
same time, and they will affect the accuracy and robustness of the model to a certain
extent.

At this time, Monte Carlo cross-validation (MCCV) method can be used to diag-
nose the outlier samples. First, a certain proportion of samples (such as 80%) are
selected from the calibration set through MC sampling as the training samples, and
the remaining samples (20%) are taken as the samples of the independent test set.
The process is repeated N times, and N training subsets and corresponding N test
subsets can be obtained. The model is established with each training subset and the
corresponding test subset samples are predicted. The outlier samples are diagnosed
according to the statistical distribution characteristics of the prediction errors of each
sample (such as the mean value and standard deviation of the error distribution)
[9–11]. This kind of method is based on the MPA framework as we introduced it in
Chap. 5 [12, 13].

Figure 10.3 shows the results obtained by MCCV [14]. Figure 10.3a shows the
mean (X-axis) and standard deviation (Y-axis) of the error distribution, and Fig. 10.3b
shows the distribution of the sample prediction error. Among this, three types of
samples can be determined, the normal sample (sample A), the outlier sample in
the X-direction (sample B), and the outlier sample in the Y-direction (samples C,
D, and E). As can be seen from Fig. 10.3, for normal samples, the mean error is

Fig. 10.2 a Different types of outliers when a three-dimensional dataset is projected on a robust
two-dimensional PCA-subspace. b The corresponding outlier map [8]
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Fig. 10.3 a diagnosis plot of outlier samples based on themean and standard deviation of prediction
errors of Monte Carlo cross validation. Three kinds of samples that are most representative of (A)
a normal sample, (B) an X-outlier, and (C, D, and E) Y-outliers are selected. b the distributions of
prediction errors of A, B, and C outlier samples [14]

around 0, and the standard deviation of the error distribution is very small. For the
outlier sample in the X-direction (sample B), the mean error is close to zero, but the
standard deviation of the error distribution is large. For the outlier samples in the
Y-direction (samples C, D, and E), not only the mean error deviates from zero, but
also the standard deviation of the error distribution is large.

To further improve the identification efficiency of outlier samples, Zhang et al.
proposed an enhanced MC outlier sample identification method based on the inter-
active prediction model established by normal samples and independent validation
of suspected outlier samples [15, 16].

Based on cluster analysis algorithm of the model, Chen et al. proposed sampling
error profile analysis (SEPA) algorithm [17], using a variety of statistical indicators
for a comprehensive analysis of random sampling error, such as the median and
standard deviation of the error distribution, distribution skewness, and distribution
kurtosis. The indicator can be used not only for the screening of outlier samples, but
also for the evaluation of spectral preprocessing methods and wavelength selection
methods.
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Chapter 11
Maintenance and Update of Calibration
Model

11.1 Necessity

The maintenance and update of the calibration model is one of the main tasks of
spectroscopy combined with chemometrics analysis. No matter how advanced the
instruments or how large the model library is, the established calibration model
is not permanent. In practice, there are usually samples that models cannot cover
(Fig. 11.1). Therefore, model updates are necessary, even in many cases, this work
has become a key factor affecting the successful application of this technology.

Wise et al. provided a routine for model maintenance (Fig. 11.2) [1], which
involves the maintenance and transfer of models between instruments (refer to
Chap. 16).

When there are samples outside the model boundary, we should figure out the
reason why they fall outside. ➀ Chemical composition of the tested sample has
changed. As shown in Fig. 11.3, there are two types of outlier samples with chemical
composition, one is that the chemical composition has changed (spectral residual
outlier samples); the other one is that the chemical composition has not changed,
but the concentration range of one or more components has changed significantly
(principal component scores are out of bounds) [2]. ➁ Samples without change of
chemical composition, but with changes in the spectrometer caused by the environ-
ment, abnormal operation of the light source, significant changes in the temperature
or particle size of the sample, etc. If in case ➀, it is necessary to add these samples to
the sample collection in time, update the calibration model, and expand the coverage
of the model. If in case ➁, it needs to eliminate hardware failures to ensure the
consistency of analysis conditions.

Common problems of spectrometer hardware include the aging of light sources,
lasers, electronic components, contamination of reference materials, and changes in
wavelength accuracy and S/N ratio caused by other factors.

Changes in test samples include changes in natural products (such as grains,
tobacco, and forages) due to climate, species evolution, genetic changes, etc.,
industrial products change due to changes in raw materials, production formulas,
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Fig. 11.1 Scheme of training and test set coverage. A: Basic coverage, no need to maintain the
model; B: problem of noncoverage and the model needs to be maintained

Fig. 11.2 Rout of model maintenance

Fig. 11.3 Scheme of the spatial distribution of PCA scores of two types of outliers due to chemical
composition variation
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processing techniques, processing parameters, etc., as well as changes in sample
preparation due to grating, mixing (homogenization), sieving, drying, pressure,
density, and thickness.

For outlier samples caused by temperature, moisture, or particle size, these vari-
able factors can also be introduced into the model, but it will reduce the accuracy of
model by a certain extent [3, 4]. Therefore, it is very necessary to use the comparative
data of regular validation samples to update the model in a fixed period (as 2 months)
to improve the robustness of the model [5, 6].

We can use quality control samples (or actual test samples) to monitor the model
or instrument status and other factors that affect the accuracy of prediction through
the quality control chart. The monitoring frequency of quality control samples needs
to be determined according to the actual situation. It can be once a day, or the quality
control samples can be measured before each routine analysis. In the quality control
chart, when a sample exceeds the action limit or is outside the alarm limit for 3 times
in a row, 2 times in a row, or on the same side of the zero line for 9 times in a row,
the model update procedure should be started.

Figure 11.4 is a quality control chart for analyzing fat content in grain feed by
NIRS. As shown, there are no monitoring points exceeding the action limit, however,
from the 14th to the 22nd points, there have been 9 consecutive times on the same side
of the zero line. Plus, from the 26th to 28th points, there are 2 out of 3 consecutive
times outside the alarm limit. It is indicated that there are systematic errors in the
prediction results, and it is necessary to update the model or check whether the test
environment or instrument status is in a normal state [7].

As shown in Fig. 11.5, the quality control diagram of another model for the

Fig. 11.4 Quality control chart for determination of crude fat content in grain feed ingredients. 1
Upper action limit, UAL, + 3SEP, 2 Upper warning limit, UWL, + 2SEP, 3 Lower warning limit,
LWL, -2SEP, 4 Lower action limit, UAL, + 3SEP
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Fig. 11.5 Quality control chart for the determination of a parameter in a model. 1 Upper action
limit, UAL, + 3SEP, 2 Upper warning limit, UWL, + 2SEP, 3 Lower warning limit, LWL, -2SEP,
4 Lower action limit, UAL, + 3SEP

determination of a certain index, before the first 35 monitoring points, there is a
situation that two of the three consecutive detections are outside the alarm limit, and
at the same time, one monitoring point exceeds the upper limit of the action limit,
which indicates the model is not in an ideal status. After adding new samples to re-
update the model (after 35 monitoring points), all quality control points are within
the controllable range, indicating that performance of the updated model has been
significantly improved.

Fig. 11.6 Two clusters of
samples due to changes in
the production process
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Fig. 11.7 a The model built by class I samples cannot correctly predict class II samples; b The
updated model by adding class II samples predicts class II samples well

When updating the model, it is necessary to re-check the outliers of calibration
process, because if only one sample representing a new range or new type was added,
then the new sample may be kicked as an outlier. So it is required to add multiple
new samples of each type to calibration model. After updated, model needs to be
re-validated, and can be validated with the initial validation set samples, but the
proportion of samples representing the new range or new type should not be less
than the proportion of new samples in the calibration set.

Themost direct way to update themodel is to add new samples (spiked samples) to
the old calibration set to forma newone, and use PLS and other calibrationmethods to
recalculate themodel [8, 9]. The number and representativeness of additional samples
are related to the multivariate calibration method used [10, 11]. For example, when
the old calibration set samples are relatively little, adding a few samples will have a
great impact on the model. As shown in Fig. 11.6, due to changes in the production
process, class I samples and class II samples have been produced. In Fig. 11.7, the
model established by the class I cannot accurately predict the class II sample. After
adding two representative samples, the new model can be well adapted to the class
II sample [12].

Along with samples in the calibration set increases, the burden of calculations
(cross validation tests, etc.) caused by the large scale of data will become more and
more prominent. Accordingly, the recursive partial least square (RPLS) method can
be used to update the model adaptively [13, 14].

11.2 Recursive Exponentially Weighted PLS

Recursive exponentially weighted PLS (REWPLS) was proposed by Dayal et al. in
1997. Given a new calibration sample, the regression coefficients of the model will
be recursively updated [15, 16]. For the existing calibration set spectra matrix X(n
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× m) and concentration matrix Y (n × p), the spectrum of a newly added calibration
sample is x, and the corresponding concentration is y. The steps of the recursive
exponentially weighted PLS method are as follows.

(1) Calculate the covariance matrix of the existing spectra and concentration
matrix.

Rold
xx = X tX, Rold

xy = X tY (11.1)

(2) Calculate the covariance matrix after adding a new sample.

Rxx = λRold
xx + x txRxy = λRold

x y + xt y (11.2)

where X, Y, x, and y are all variables after the mean centralization or
standardization process, and λ is the forgetting factor, usually 0 < λ < 1(0.95).

(3) Set k = 1, the largest number of PCs is A.
(4) Calculate the weight vector wk .

wk = Rxywk = wk/||wk || (11.3)

(5) Calculate rk .

rk = wk(k = 1), rk = wk − pt1wk r1 − pt2wk r2 . . . − ptk−1wk rk−1(k > 1)
(11.4)

(6) Calculate the score and loading vector.

t tk tk = r tkRxx rk
ptk = r tkRxx/r tk rk
q t
k = r tkRxy/t tk tk (11.5)

(7) Update the covariance matrix Rxy.

Rxy = Rxy − pkq
t
k

(
t tk tk

)
(11.6)

(8) If k = A, go to the next step; otherwise, k = k + 1, go back to step (4).
(9) Calculate regression coefficient b.

b = [r1 · r2...r A][q1 · q2... · q A]t (11.7)

For the new calibration sample x and y, themean value is centered by the following
equation.

Set x old and y old are mean vectors of X and Y, respectively.
Then,
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x̄ = (n − 1)/n × x̄old + 1/n × x (11.8)

y = (n − 1)/n × yold + 1/n × y (11.9)

The mean centered vectors
∼
x and

∼
y of the new calibration samples x and y are.

∼
x= x − x (11.10)

∼
y= y − y (11.11)

Since the dimension of covariance matrix Rxx is m × m, the dimension of Rxy is
m × p, so the calibration process has nothing to do with the number of samples, only
the number of wavelength variables. The forgetting factor λ reduces the influence of
the historical calibration set, so it can better solve the problem of little influence on
the model given the few new samples [17, 18].

11.3 Block-Wise Recursive PLS

In the above REWPLS, recursive calculation is performed when a new calibration
sample is involved to obtain a new PLSmodel. However, in practice, there are usually
a certain number of accumulated calibration samples that are expected to be combined
with the original model to form a new PLS model. Therefore, a block-wise recursive
PLS was proposed by Qin et al. in 1998 [19].

In order to be suitable for the recursive algorithm, Helland et al. modified the
classic nonlinear iterative partial least squares algorithm (NIPALS) proposed by
Wold [20]. It normalizes the score matrix T of X, instead of normalizing the weight
W and loading matrix P, which can obtain a feature that is actually very important
for various recursive PLS algorithms, i.e., T tT = I, where I is the identity matrix.
Specific algorithm is as follows.

(1) Take a column yi of the concentration matrix Y as the initial iteration value of
u, and generally take the column with the largest variance.

(2) Calculate the weight vector of X, w = Xtu/(utu).
(3) Calculate the score vector of X, t = Xw/||Xw||.
(4) Calculate the weight vector of Y, c = Y tt/|| ttt ||, and score vector u = Yc.
(5) If the difference between the obtained t and the last iteration result meets the

set allowable error, proceed to the next step, otherwise return to Step (2).
(6) Calculate the loading vector of X, p = Xtt, and the loading vector of Y, q =

Y tu/|| utu ||.
(7) Calculate the regression coefficients of the internal model, b = utt/|| ttt ||.
(8) Calculate the residual matrix, EX = X−tpt, EY = Y−btqt.



324 11 Maintenance and Update of Calibration Model

(9) Replace X with EX, replace Y with EY, go back to step (1), by analogy, find
the w, t, p, u, q, and b for PCs of X and Y.

Based on T tT = I, the following features can be introduced.

X tX = PT tT P t = P P t (11.12)

X tY = PT tT BQt = PBQt (11.13)

If the former calibration set matrix is X, Y, and X1, Y2 are the new sample
calibration matrix, the new calibration set can be expressed as

Xnew =
[
X
X1

]
,Y new =

[
Y
Y 1

]
(11.14)

It can be concluded that

X t
newY new =

[
X
X1

]t[
Y
Y 1

]
=

[
P t

X1

]t[
BQt

Y 1

]
(11.15)

As seen, performing PLS regression on

[
X
X1

]
and

[
Y
Y 1

]
is the same as the model

parameters obtained by performing regression on

[
P t

X1

]
and

[
BQt

Y 1

]
.

From the above, the algorithm of the block-wise recursive PLS is as follows.

(1) Perform mean centralization and standardization of former calibration data
matrix X and Y.

(2) Use the improved NIPALS to calculate the PLS model (take k PCs).

{X, Y} PLS→ P, T , B, Q (11.16)

(3) After preprocessing, a new batch of calibration data matrix X1 and Y2 is
acquired to form a new full calibration data matrix:

Xnew =
[

λP t

X1

]
Y new =

[
λB Qt

Y 1

]
(11.17)

where λ is the forgetting factor, usually 0 < λ < 1(0.95).
(4) Perform PLS regression on Xnew and Ynew and new model is generated.

Xnew,Y new
PLS→ P, T , B, Q (11.18)



11.3 Block-Wise Recursive PLS 325

It can be seen that the block-wise recursive PLSonly needs to retain the parameters
of the former PLS model, other than the former calibration set. If n1 new calibration
samples are added and the model is updated with block-wise recursive PLS, the
calculation amount is k + n1, while the conventional PLS is n + n1 when updated.
In practice, sample n is usually far more than PCs k. This change of block-wise
recursive PLS significantly reduces the computation burden and storage space, and
with the more samples, the advantages of block-wise recursive PLS will be more
prominent [21].

To weaken the influence of original data on the new model, the former model
matrix can be weighted by the forgetting factor, and then combined with the new
data to form the input and output data matrix of PLS regression. The best PCs of
block-wise recursive PLS can be determined by cross validation.

11.4 Just-In-Time Learning and Active Learning

For online spectral analysis, people are increasingly using a combination of Just-
in-time learning (JITL), moving windows, and recursive methods to update models.
JITL is an online update method of local model based on database. Its basic idea is
similar to the local weight regression strategy, which builds real-time model on the
new samples to adapt to the latest process situation so as to improve the predictivity
of modeling [22–24]. As reported, with the help of JITL modeling and Gaussian
process regression methods, [31] proposed an automatic real-time model calibration
strategy and realized the “intelligence” of model maintenance [25].

In the recent years, the idea of active learning (AL) in machine learning has been
used to maintain the spectral calibration model [26–30]. AL uses a certain algorithm
to locate themost useful unlabeled samples andhand themover to experts for labeling,
and then use the located samples to train the classificationmodel to improve themodel
accuracy.At present, themost popular application in spectral analysis ismodel update
based on AL and SVM classification, which is called incremental support vector data
description (ISVDD). It implements the uncertain sampling strategy of AL algorithm
to select certain new samples closest to the optimal hyperplane for classification and
add them to the old calibration set. It tries to make the old calibration model has all
the information of the new tested samples, so as to update the model and improve
the predictability of calibration model.
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Chapter 12
Pattern Recognition Methods

12.1 Introduction

In the practical application of molecular spectral analysis technology, there has
always been a situation that we only need to know the class or grade level of the
samples instead of knowing the certain components and their contents in the samples,
which is the qualitative analysis problem.Wherein, the pattern recognitionmethod in
chemometrics is usually involved. Different samples can be classified and identified
according to some common characteristics by spectral data, so as to find the internal
relations between the measured samples and obtain decision-making information.
Therefore, pattern recognition is a kind of important means to transform spectral
data into information needed to solve practical problems.

Pattern recognition methods can be divided into supervised and unsupervised
types according to the learning process (or training process). Supervised pattern
recognition method is to use a group of known classes of samples as a training
set and makes the computer learn from these already known samples. This method
of calculating the classifier is also called “managed” or “teacher” of learning, in
which the training set is “teacher”. The classification model is obtained by learning
process so as to predict the class of unknown samples. The unsupervised method
is a classification method that the class of samples is unknown in advance and the
training process is not required.

The steps of establishing pattern recognition (or qualitative model) are gener-
ally composed of four parts, as shown in Fig. 12.1, including data acquisition,
preprocessing, feature extraction and selection, and classification decision [1, 2].

Data acquisition includes collection of the sample and themeasurement of spectral
data, as well as identification and analysis of the class of training samples by tradi-
tional methods. The more samples and the stronger representativeness are, the more
reliable the results are. Common spectral preprocessing methods include derivative,
MSC, SNV, mean-centering and standardization, etc.

In pattern recognition, the spectral information is used as the original feature vari-
able. The extraction of feature information is a crucial step. The selection of feature
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Fig. 12.1 Basic structure of pattern recognition system

variables will directly affect the results of classification or recognition. The purpose
of feature selection is to make similar samples close to each other in the feature
space and the heterogeneous samples far away. Feature extraction and compression
are sometimes inseparable and they are generally carried out at the same time. The
most commonly used method is principal component analysis (PCA) and the first
several principal components scores with large eigenvalues are generally selected as
feature variables to participate in pattern recognition.

Of course, in the practical application process, for some special analysis systems,
the principal componentswith large eigenvalues are not the preferred feature variable.
Thus, it is necessary to select variables from the principal components through opti-
mization methods such as chemical knowledge or genetic algorithm, which is called
feature selection. If these spectral features are only a part of the feature variables,
other physicochemical parameters such as density are also involved in the feature
variables. It is necessary to preprocess these feature variables by normalization or
logarithmic transformation in order to eliminate the scale difference and increase the
comparability among the variables. Other commonly used variable compression and
extraction methods include: wavelength variables or their mathematical combination
selected by chemical knowledge andoptimizationmethods such as genetic algorithm;
The wavelength intervals or their encompassing areas selected according to chem-
ical knowledge; The coefficients or their mathematical combinations obtained by
mathematical processing to spectra such as wavelet transform or Fourier transform,
etc.

In spectral pattern recognition, the common supervised pattern recognition
methods include minimum distance discriminant method, Bayes discriminant
method, K-nearest neighbor method, BP neural network, soft independent modeling
of class analogies (SIMCA), etc. The common unsupervised pattern recognition
methods include cluster analysis and unsupervised neural networks.
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12.2 Unsupervised Pattern Recognition Methods

In many practical problems of pattern recognition for samples, people often know
nothing about the intrinsic classification of data in advance, and then unsupervised
pattern recognition methods are needed. Clustering analysis is the representative
of unsupervised methods. The main idea is to use similar samples to be similar to
each other, which is often called “birds of a feather flock together”. Similar samples
have small distances from each other in multi-dimensional space, while the distance
between dissimilar samples should be larger. Clustering analysis is to make similar
samples “together” so as to achieve the purpose of classification.

In spectral qualitative analysis, clustering analysis is widely used, such as clus-
tering analysis of different classes of plant samples to study the genetic relationship
between them. In addition, clustering analysis is often combined with quantitative
multivariate calibrationmethods such as PLSorANN. Firstly, the calibration samples
are divided into several classes by clustering analysis. Secondly, models are estab-
lished for each class of samples to improve the prediction ability of the model. This
section mainly introduces the commonly used hierarchical cluster analysis (HCA)
method, K-means clustering method, Fuzzy clustering method, and Kohonen neural
network (KNN) for spectral qualitative analysis, etc.

It is worth noting that clustering analysis is actually a process that requires the
participation of multiple parties. It cannot be separated from the participation of
experts in this field. The clustering algorithm is only a part of the whole clus-
tering process. Generally, satisfactory classification results cannot be achieved only
by relying on pure mathematical clustering algorithms.

12.2.1 Similarity Coefficients and Distances

The important components of clustering analysis are the distance between samples,
the distance between classes, the way of merging classes and the number of clusters.
The first problem to be solved is the similarity between two samples. There are
usually two definitions of intimacy between samples, which are similarity coefficient
and distance. They regard each sample as a point in the m-dimensional space (m-
variables), in which the degree of intimacy between samples is defined.

Similarity coefficient is expressed by cosine and correlation coefficient:
Cosine:

cosαi j =
∑m

k=1 xik x jk
√∑m

k=1 x
2
ik

∑m
k=1 x

2
jk

(12.1)
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where xik represents the kth feature variables of the ith sample. If two samples are
exactly the same, the angle cosine cosα = 1. Conversely, if they are completely
different, cosα = 0.

Correlation coefficient;

ri j =
∑m

k=1 (xik − xi )
(
x jk − x j

)

√
∑m

k=1 (xik − xi )
2∑m

k=1

(
x jk − x j

)2
(12.2)

xi, xj is the mean value of all feature variables in the ith and jth samples, respectively.
The closer the two samples are, the closer the similarity coefficient between them is
to 1 (or −1).

Distance is usually represented by Euclidean distance and Mahalanobis distance:
Euclidean distance:

Di j =
√
∑m

k=1

(
xik − x jk

)2
(12.3)

Mahalanobis distance:

Mi j =
√

(xi − x j )V−1(xi − x j )T (12.4)

where xi and xj are the spectral row vectors of samples ith and jth. V–1 is the inverse
matrix of the class X covariance matrix, i.e.

V−1 =
[

1

n − 1
(X − −

x)T(X − −
x)

]−1

=
(

1

n − 1
XT

cenXcen

)−1

(12.5)

The Mahalanobis distance between sample xi and a class of X is

Mi =
√

(xi − −
x)

(
1

n − 1
XT

cenXcen

)−1

(xi − −
x)T (12.6)

where
−
x is the average spectrum of classX,Xcm is the spectral matrix after X-means

centralization.
In the actual calculation, the spectral data X is usually replaced by the PCA score

T at this time.

Mi =
√

(ti − −
t )

(
1

n − 1
T T
cenTcen

)−1

(ti − −
t )T (12.7)

It can also be written as:
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Fig. 12.2 Schematic diagram of Mahalanobis distance compared with Euclidean distance

Mi =

√
√
√
√
√
√(n − 1)

f∑

j=1

(

ti j − −
t j

)2

λ j
(12.8)

where tij is the jth principal component score of sample xi,
−
t j is an average score for

the jth principal component of classX, λ j is the jth eigenvalue of a matrix XT
cenXcen ,

f is the selected number of principal components.
As can be seen from the above equation, compared with Euclidean distance,

Mahalanobis distance takes the variation (variance) of the same feature variable in
the same class and the variation (covariance) between different feature variables into
account. Therefore, as shown in Fig. 12.2, for two samples in the same class, the
Mahalanobis distance is small and the Euclidean distance may be large. On contrary,
the two samples in different classes may have the largeMahalanobis distance and the
Euclidean distance may be small. Since Mahalanobis distance takes the distribution
of samples into account, it plays an important role in identifying samples outside the
model.

12.2.2 Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA) is also known as pedigree clustering method,
which is one of the most widely used clustering analysis methods. It adopts a non-
iterative hierarchical clustering strategy. The basic idea is that each sample is consid-
ered to be self-classification, and then the distance between classes is specified. First
of all, since each sample is a class of itself and the distance between classes is equiv-
alent. The pair with the smallest distance is selected and merged them into a new
class. The distance between the new class and other class is calculated. Second of all,
the two classes with the smallest distance are merged into a class so that each class is
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Fig. 12.3 Final result
obtained by hierarchical
cluster analysis

reduced until all samples are clustered into a class. According to the merging process
of samples, we can get the pedigree figure of HCA (as shown in Fig. 12.3). It can
show all the intermediate situations from the process of all samples being classified
into one class to the whole being classified into one class in detail. It reflects the
affinity of all samples from coarse to fine. Then according to certain principles, such
as domain experts choose the appropriate classification threshold by experience or
domain knowledge to determine the final classification results.

In the hierarchical clustering method, there are many definitions of distance
between classes. Therefore, the hierarchical clustering method is divided into
many methods according to the definition of distance between classes, such as
single linkage, complete linkage, median method, centroid method, average linkage,
flexible-beta method and Ward’s minimum-variance method.

There are five most commonly used distance methods.

(1) Single linkage: the distance between classes is equal to the distance between
the nearest two samples of two classes.

(2) Complete linkage method: the distance between classes is equal to the distance
between the farthest two samples of two classes.

(3) Median method: the distance between classes is neither the nearest distance
between the two classes nor the furthest distance instead of taking the distance
between the two.

(4) Centroid method: It starts from the physical center. It represents class by the
centeroid and uses the distance between two kinds of centroids to describe the
similarity between classes.
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(5) Ward’s minimum-variance method: It is also calledWardmethod in some liter-
ature, which adopts uneven judgment rules. From the perspective of variance
analysis, it is believed that the correct classification should make the intra-class
variance as small as possible and the inter-class variance as large as possible.

The steps of HCA are as follows:

(1) The beginning of the clustering analysis process is that each sample forms its
own class (There are n classes of n samples), and then calculates the distance
between each sample and merges the two samples with the nearest distance
into one class.

(2) Select and calculate the distance between classes, then merge the nearest two
classes. If the number of classes is greater than 1, continue to merge classes
until all samples are classified as one class.

(3) Finally, draw the hierarchical clustering pedigree figure.

Hierarchical clustering method can get a complete clustering pedigree figure,
which can explain all clustering schemes from class 1 to class n in detail. It is one
of the most widely used methods in practice. However, using different calculation
methods between inter-class, distance, the results are not exactly the same and some-
times get very different clustering results. Generally speaking, single linkagemethod
is applicable to the class of long strip or S-shaped distribution. Complete linkage,
centroid method and Ward method are applicable to the class of ellipsoidal distri-
bution. In the preliminary clustering analysis, different distance methods should be
investigated first and the optimal distance is determined by comparing their results.

12.2.3 K-Means Clustering

By using HCA, once a sample is divided into a certain class, it will be not changed.
This requires the division must be very accurate. Moreover, since HCA needs to
calculate the distance matrix, the storage cost is large when dealing with a dataset
with a large sample size. MacQueen et al. proposed a dynamic clustering method
based on iterative operation in 1967. Firstly, a rough preliminary classification were
given, then the clustering results were dynamically modified according to certain
principles until reasonable classification results were obtained. Dynamic clustering
method usually requires artificially to give the number of classes k or some thresholds
in advance.

K-means clustering method is a commonly used dynamic clustering analysis
method. It divides the samples to be clustered into k classes according to the number
of classes k determined in advance, so that the sum of squares of distances from all
samples in the clustering domain to the clustering center is minimized.

The algorithm is an iterative process with the following steps.

(1) Firstly, k samples are randomly selected from n clustering samples { x1, x2,…,
xn} as the initial clustering centers.
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(2) Calculate the distance between each sample and the k clustering centers and
divides them into the nearest class.

(3) Calculate the mean value of each point in each class as a new central point.
(4) Calculate the distance between each sample and these new centers then

reclassify them according to the minimum distance principle.
(5) Calculate square error function

J =
k∑

i=1

n∑

j=1

di j
∥
∥x j − wi

∥
∥2 (12.9)

where wi is the clustering center of class i, k is the number of clusters, n is the
number of samples and dij is used to indicate whether xj of sample jth belongs
to class i. If xj belongs to class i, dij = 1. If xj does not belong to class i, dij =
0.

(6) Repeat steps (3–5) above until J does not change significantly or reaches a
pre-set maximum number of iterations.

K-means clustering algorithm has a clear idea, simple algorithm and fast conver-
gence speed, which is more suitable for large sample size. Therefore, it has been
widely used. However, this method requires domain experts to determine the number
of clusters k in advance. If the selection is not appropriate, the final classification
result will be affected. Moreover, this method is sensitive to the center point of
the initial clustering and sometimes convergences to local optimal solution due to
improper selection.

Aiming at resolving theweakness ofK-means clustering algorithm, there aremany
improved algorithms. For example, the iterative self-organizing ISODATA algorithm
proposed by the United States Bureau of Standards is one of the representative
algorithms. The ISODATA algorithm has six parameters. When there are too many
and too scattered elements in a certain class, it can be divided into two class. When
there are few samples in a certain class, it performs the merging operation with
another class. Such a self-organizing process is more flexible to control the number
of classes and has better adaptability and flexibility than the K-means algorithm.
However, there are many parameters in this algorithm, which make it difficult to
optimize the whole algorithm.

At present, most of the global optimization methods (such as genetic algorithm,
simulated annealing algorithm, ant colony algorithm, and particle swarm algorithm)
are used to improve the K-means clustering algorithm [3–5] to obtain the optimal
clustering numbers and clustering centers.

The following is a brief introduction about the K-means clustering method based
on GA. This method tries to obtain the global optimal solution by GA and improves
the convergence speed by K-means method. Firstly, the first generation of GA is
randomly generated and evolved. In each generation of evolution, the K-means
method is used to further optimize each individual and these local optimal results
are used to replace the original individual and continue to evolve until the maximum
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number of iterations or the results meet the requirements. Based on different coding,
evolutionary strategies, and fitness functions, a variety of genetic K-means clustering
algorithms can be designed. The general steps of such algorithms are as follows:

(1) The fitness function is defined and the genetic parameters are set. Such as
the number of clustering, population size, crossover probability, mutation
probability, and the maximum number of iterations.

(2) The initial population is generated randomly.
(3) The fitness of each individual in the population is calculated.
(4) Crossover, mutation, and K-means clustering operations are selected to

generate a new generation of groups.
(5) Steps (3–4) are repeated until the maximum number of iterations is reached.
(6) The fitness of the new generation is calculated and the optimal individual with

the maximum fitness is taken as the final K-means clustering result.

12.2.4 Fuzzy K-Means Clustering

Since the boundaries between objective things are not often very clear, it is undoubt-
edly appropriate to introduce fuzzy mathematics into clustering analysis to deal with
the clustering problem of fuzzy things. In fact, fuzzy clustering analysis is one of the
most rapidly developed clustering methods in recent years. Among them, fuzzy K-
means clustering algorithm is one of the most popular algorithms in fuzzy clustering
methods in current.

The clustering criterion function of classical K-means clustering algorithm is the
sum of error squares function.

J =
k∑

i=1

n∑

j=1

di j
∥
∥x j − wi

∥
∥2 (12.10)

where wi is the clustering center of class i, k is the number of clusters, n is the
number of samples and dij is used to indicate whether xj of sample j belongs to
class i. If xj belongs to class i, then dji = 1. If xj does not belong to class i, then
dji = 0. dji is either 1 or 0. However, it is not so absolute in practice, xj belongs to
a class of membership (μij) that is often a number between 0 and 1. Therefore, the
fuzzy K-means clustering algorithm changes dij to μij, μij ∈ [0,1] and its clustering
criterion function is changed to:

J =
k∑

i=1

n∑

j=1

(μi j )
m
∥
∥x j − wi

∥
∥2 (12.11)

where μij is the membership degree of sample xj to class i, and
∑k

i=1 μi j = 1. The
sum of membership degree of each sample is 1. m is the weighted index and m > 1,
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which is to enhance the contrast of xj of belonging to various degrees. The greater the
value of m is, the greater the fuzzy degree of the classification matrix is. Generally,
m is taken as 1.1–2.0.

∥
∥x j − wi

∥
∥ is the Euclidean distance between sample xj and

cluster center wi.
It can be seen from the above that the objective function J represents the sum

of squares of weighted distances between sample xj and each cluster center wi, and
then its weight is the mth power of sample xj belonging to the membership degree
μij of cluster wi, while the optimal clustering is to minimize the objective function
J. Therefore, in order to get the best clustering result, the appropriate membership
degree μij and clustering center wi are required. It can be proved that when m > 1, xj
�= wi, the membership degree μij and clustering center wi can be calculated by the
following two iterative Equations.

μi j =

(
1

‖x j−wi‖2

) 1
m−1

k∑

h=1

(
1

‖x j−wh‖2

) 1
m−1

(12.12)

wi =
∑n

j=1 (μ j i )
mx j

∑n
j=1 (μ j i )m

(12.13)

The specific algorithm of fuzzy K-means clustering method is as follows [6].

(1) Fixed classification k, weighted index m, and convergence threshold ε (gener-
ally 0.01). The initial membership degree matrix U(0) is selected and the
element μij meets the requirement:

0 ≤ μij ≤ 1, ∀i,j
k∑

i=1
μi j = 1, ∀i (12.14)

(2) According to the calculation equation of clustering center and U(q), the
clustering center wi

(q) is calculated and q is the number of iterations.
(3) U(q+1) is obtained from the obtained wi

(q) and the membership degree
calculation equation.

(4) If max {|U(q) − U(q+1)|} ≤ ε, then stop the iteration, U(q+1) and the corre-
sponding wi

(q) are the results. Otherwise, return step (2) and continue
iteration.

(5) In the obtained membership degree matrix U, let the maximum element in
each column be 1 and the rest be 0. A general classification matrix is obtained,
which is the classification result.
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12.2.5 Gaussian Mixture Model

Gaussian mixture model (GMM) is the sum of multiple single Gaussian models
(as shown in Fig. 12.4), which represents the probability density function of data
by linear combination of multiple Gaussian functions. Its expression ability is very
strong, so any distribution can be expressed by GMM. The mathematical form of
Gaussian mixture model is as follows.

p(x) =
K∑

k=1

wkgk
(
x|μk, �k

)
(12.15)

where K is the number of single Gaussian models. gk is the single Gaussian model
with mean valueμk and covariance matrix Σk. wk is the weight coefficient of gk and
satisfies the following constraints.

wk > 0
K∑

k=1

wk = 1 (12.16)

The parameters μk , Σk , and wk of GMM are usually obtained by expectation
maximization algorithm (EM). It is an iteration method that estimates the class of
each sample and the probability distribution parameters of each class. EM algorithm
is a local optimization algorithm, which is sensitive to the setting of initial parameters
and easy to fall into local optimum. Therefore, intelligent optimization algorithms
(such as particle swarmoptimization algorithm) can also be used to obtain the optimal
model parameters.

In addition to clustering analysis, GMM can also be used for regression calcula-
tion. Gaussian mixture regression (GMR) predicts the joint density of future objects
by constructing a series of GMM and then obtains the probability density and
regression function from each GMM.

Li et al. extracted the feature of GC–MS signals of tea by PCA and combined
with 10 variables such as tea polyphenols measured by liquid chromatography. They

Fig. 12.4 Schematic
diagram of Gaussian mixture
model
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used GMM to classify the tea samples and the accuracy of prediction set reached
90% [7]. Sun et al. used GMM based on particle swarm optimization and GMR
combined with mid-infrared spectroscopy to qualitatively and quantitatively analyze
olive oil adulteration samples, and achieved good results [8]. Wang et al. used near
infrared spectroscopy (NIR) combined with GMRmethod to predict and analyze the
growth process of yeast. The results are superior to the methods of kernel partial
least squares, support vector machine, and extreme learning machine [9].

12.2.6 Self-organizing Neural Network

Self-organizing neural network is a kind of learning neural network without teachers.
It can simulate that human beings can automatically adapt to unpredictable environ-
mental changes according to past experience. Through self-training, the network
can automatically classify the input samples. Because there is no teacher signal,
self-organizing neural network usually uses competition principle to conduct online
study. In the competition network, the output layer is also called competition layer.
The weights connect with input nodes and inputs are called the input layer together.
The activation function of the competition network is called the binary {0,1} func-
tion. The most typical self-organizing neural network is Kohonen self-organizing
feature map (SOM) that was proposed by Kohonen in 1981, which is also called
Kohonen network [10].

The Kohonen network structure is shown in Fig. 12.5. It is a simple two-layer
network. The number of input layer neurons is m and competition layer consists
of q2 neurons. They form a two-dimensional plane array. The competition layer
of the two-dimensional matrix is called the output layer. The input layer node and
the competition layer node are fully interconnected. Sometimes the neurons in the
competition layer are connected by lateral inhibition.

Fig. 12.5 Schematic
diagram of Kohonen network
structure
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The learning process of Kohonen network is divided into two steps: competition
learning process and the lateral interaction process of the neurons in the output layer.
For each input vector, by comparing the input vector with the weight vector, there
are competitions between the neurons. The neuron whose weight vector is closest
to the input vector is considered as the strongest response of the input vector. The
neuron is winning. The neuron is called the image of the input vector. Obviously, the
same input vector produces the same image in competition layer. Lateral feedback
process of neurons in the output layer for each input vector can cause the nearby
neurons to generate lateral feedback according to the following rules. On the one
hand, with the winning neuron as the center of the circle, excitatory lateral feedback
was shown to the nearby neurons. On the other hand, with the winning neuron
as the center of the circle, inhibitory lateral feedback is shown to the neurons of
distant neighbors. The result of the lateral feedback is the formation of a clustering
near each winning neuron. The result of studying makes the weight vectors of each
neuron in the clustering area keep the trend of approaching to the input vector. Thus,
the input vector with similar characteristics is gathered together and this process is
self-organizing. Kohonen network realizes clustering by using the lateral feedback
process of neurons in the output layer.

It can be seen that the working principle of Kohonen network is tomap any dimen-
sional input patterns into a one-dimensional or two-dimensional discrete graph at the
output layer and keeps its topological structure unchanged. For example, samples
that are closing in the high-dimensional space are still closing in the two-dimensional
space. An advantage of this approach is that the result of the mapping is easy to visu-
alize. In addition, the network can make the probability distribution of the weight
vector space and the input pattern consistent through repeated learning of the input
pattern. The weight vector space can reflect the statistical characteristics of the input
pattern.

The self-organizing learning process of Kohonen networks can be summarized as
follows.

(1) All neurons in the competition layer are given an initial weight matrix W,
whose element Wi j represents the weight between the ith feature variable of
the input vector x and the neuron j in the competition layer.

(2) The Euclidean distances d j between the input sample vector x and the owner-
shipweight vectorwj are calculated and then thewinning neuron is determined
with the shortest corresponding distance and it is marked as j∗.

(3) The winning neuron is adjusted according to the following Eq. 12.17.

wj*(t + 1) = wj*(t) + η
[
x − wj*(t)

]
(12.17)

where wj∗(t) is the weight vector of the tth iteration number of the winning
neuron j∗. η is the learning rate. In general, the initial value η0 of η is rela-
tively selected to be larger and generally 0.2 ~ 0.5, which is used to accelerate
the calibration speed of the connection weight. As the number of iterations
increases, η gradually decreases and coarse tuning is replaced by fine tuning
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to avoid the possible oscillation phenomenon in the network learning process.
The typical functional form of η is

η(t) = η0(1 − t/T ) (12.18)

where t is the current number of iterations andT is the total number of iterations.
(4) The neurons in the nearby field with the winning neuron j∗ as the center and

the radius of r(t) are also adjusted. The adjusted area is generally uniform and
symmetrical. The most typical area is a square or circular area.

w j (t + 1) = w j (t) + ηN (t)[x − w j (t)] (12.19)

where N (t) is a domain function that is presented. It is also called the neigh-
borhood or near neighborhood function. A variety of domain functions can
be chosen. The general choosing principle is that neurons close to the winning
neuron j∗ are adjusted to a great extent. Generally, in the initial stage of
learning, the value of r is large. The range of the adjusted domain is large,
which is generally 1/3 to 1/2 of the range of the matrix of the competition
layer and can even cover the whole competition layer. With the deepening of
learning, this range gradually decreases and finally only includes the neuron
j∗. The commonly used neighborhood function is

N (t) = int[N0(t)(1 − t/T )] (12.20)

where int(x) represents the integer symbol and N0(t) is the initial value of N(t).
(5) Set t = t + 1 and return to Step (2) until the weight vector has no significant

change or t = T.

There are several other parameters that are very important in practical applications.
The first is the determination of the number of neurons q in the competition layer.
The node m of the input layer is determined by known input feature variable, but the
neuron q of the competition layer is self-determined according to the actual problem.
It represents the number of class that the input samples may be classified. If the value
is selected too small, some input samples may not be classified as bad results. If the
value is selected too big, many nodes may be idle after competition, resulting in
wasting to some degree. The second is the determination of the initial value of the
weight vector. Generally, the initial weight vector Wi j is assigned to a random value
in the interval of [0, 1]. In practical application, this initial method takes much time
to learn and even fail to converge. Since the ideal distribution of the initial state of the
connection weight is consistent with the direction of each input sample. Therefore,
during weight initialization, the initial state and the input sample should be as close
as possible in mutually accessible. The commonmethod is to assign the ownership to
the same initial value or make it within a small range, such as [0.5–0.05, 0.5+ 0.05].
In this way, the selection of weights in the initial stage of the total input samples can
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be reduced and the chance of each connection weight being selected can be increased
so as to correct the direction deviation between the connection weight and the input
sample as soon as possible.

The network model established after learning and training is the classification
model. When the spectral data of the unknown sample are input into the network
model, the class is represented by the neurons in the output layer that finally win the
competition is the class of the sample.

12.3 Supervised Pattern Recognition Methods

The general idea of supervised pattern recognition methods is to use a group of
samples with known classes as training set, and then let the computer “learn” from
these known samples. Thus, this pattern recognition method for obtaining classifier
is called “supervised learning”. The training set is the manager, and the discriminant
model for unknown samples is obtained by the training set.

Common methods include minimum distance discriminate (MDD), Bayes linear
discriminate (BLD), Fisher linear discriminate (FLD), linear learning machine
(LLM), K-nearest neighbor method (KNN), classification with potential function
(CPF), soft independent modeling of class analogy (SIMCA), artificial neural
network (ANN), support vector machine (SVM), etc.

12.3.1 Minimum Distance Discriminant Method

The MDD is one of the simplest classifiers. If the covariance matrix of each class
is similar and the prior probabilities of each class are equal, for the discriminant
analysis of unknown samples xun, we only need to calculate the square value of
Euclidean distance between xun and the mean of the given class x j :

d2
un, j =

∥
∥
∥xun − −

x j

∥
∥
∥
2
, j = 1, . . . , k, (12.21)

In Eq. 12.21, k is the number of classes and then xun is judged to class with the
smallest distance.

If the covariance matrix of various classes differs greatly (Fig. 12.6), for unknown

sample xun, we need to calculate the square
−
x j of the Mahalanobis distance between

xun and the mean of the given class:

md2
un, j =

(
xun − −

x j

)
H−1

j

(
xun − −

x j

)T
, j = 1, . . . , k, (12.22)

In Eq. 12.22, k is the number of classes. Hj is the covariance matrix of class jth,
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Fig. 12.6 Schematic diagram of multi-classes with different covariances

Hj = 1

g j − 1

(
X j − x j

)T (
X j − x j

)
(12.23)

In Eq. 12.23, gj is the sample number of class jth.
If the prior probabilities of various classes are different, the Bayes discriminant

analysis method is needed. In this case, the discriminant function from the unknown
sample xun to class jth is:

d j (xun) =
(
xun − −

x j

)
H−1

j

(
xun − −

x j

)T + ln
∣
∣H j

∣
∣− 2 ln P( j) (12.24)

P(j) is the prior probability of class jth,

P( j) ≈ g j

n
(12.25)

where n is the total number of samples of all classes; g j is the sample number of
class jth,

∣
∣Hj

∣
∣ is the determinant of the matrix. This method is also called quadratic

discriminant analysis (QDA) in some literature.

12.3.2 Canonical Variate Analysis

The correlation coefficient is used to measure the correlation between two variables.
However, if the correlation between two groups of variables (twomatrices) is studied,
it is necessary to transform the correlation between two groups of variables into the
correlation between two variables for consideration. To investigate the correlation
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between the linear combination of the first group of variables and the linear combi-
nation of the second group of variables, the linear coefficient is selected to make
the linearization variables have the maximum correlation coefficient and to form the
first pair of canonical variables. Then the second pair and the third pair of canonical
variables can be formed and each pair of canonical variables is uncorrelated. In this
way, the correlation between the two groups of variables is transformed into the
correlation between several pairs of canonical variables.

Because a group of variables can have a number of linear combinations (the
linear combinations are determined by the correlation coefficient), it is necessary to
find the linear combinations that are both meaningful and determinable. Canonical
correlation analysis (CCA) is also called canonical variate analysis (CVA) [11, 12]. In
order to find coefficient of linear combination of the twogroups of variables so that the
correlation coefficient between the two variables generated by the linear combination
(compared with other linear combinations) is the largest. CVA is a statistical analysis
method of studying the correlation between two groups of variables and it is also a
common data dimensionality reduction technique.

CVA can offer feature variable for multi-class discriminant analysis. The Fisher
linear discriminant analysis (LDA) is often mentioned in literature. The spectral
matrix X (n × m) of the training set contains k classes of samples and there are gi
samples in each class.

n =
k∑

i=1

gi (12.26)

The inter-class and intra-class covariance matrices are calculated according to
Fig. 12.7.

Intra-class covariance matrix

SW = 1

n − k

k∑

i=1

gi∑

j=1

(

xi j − −
x
i

)(

xi j − −
x
i

)T

(12.27)

Fig. 12.7 Schematic diagram of inter-class and intra-class covariances
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Inter-class covariance matrix

SB = 1

k − 1

k∑

i=1

gi

(
−
x
i
− −
x
)(

−
x
i
− −
x
)T

(12.28)

where xij is the spectral vector of the jth sample of class ith.

−
x
i

= 1

gi

gi∑

j=1

xi j (12.29)

The average spectra of class ith are calculated by Eq. 12.30.

−
x = 1

n

k∑

i=1

−
x
i

(12.30)

where
−
x is the average spectra of n samples. SW and SB are both m × m matrices.

CVA aims to get the maximum of the objective function J(w):

J(w) = wTSBw
wTSWw

(12.31)

The solution can be transformed into the eigenvalue and eigenvector problem of
the matrix.

SBw = λSWw (12.32)

i.e.

S−1
W SBw = λw (12.33)

In fact, CVA is to calculate the eigenvalue and eigenvector of SW−1SB. It can
simplify the multivariable data to each other into a few uncorrelated new variables
data and the simplified date can keepmost of the information of the original data. The
discriminant function can be obtained by taking the first several canonical variables
with high contribution rates as features.

The first linear discriminant function (the first score of CVA) can be given by the
eigenvector w1 based on the maximum eigenvalue λ1: S1i = xiw1

T. The second linear
discriminant function (the second score of CVA) can be given by the eigenvector w2

based on the second eigenvalue λ2: S2i = xiw2
T. This calculation can be continued
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Fig. 12.8 Schematic diagram of sample distribution by using CAV transformation

until all the discriminant functions need to solve the identification problem that is
found.The space distribution of all samples can be observed bydrawingwith different
discriminant functions as the coordinate axis after CAV transformation (Fig. 12.8).

As shown in Fig. 12.9, in some cases, the principal component direction of PCA
and the direction of CAV discriminant functions are basically the same. However,
in some cases, the directions of the two methods are different. This is because PCA
transforms by selecting the direction with the maximum variance of variable, while

Fig. 12.9 The case for PCA and CVA basically the same (a) and significant differences (b)
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CAV transforms by selecting the direction that can separate all known classes in the
greatest degree.

For the discriminant analysis of unknown samples spectra xun, only the discrimi-
nant function is needed to substitute to classify it as class of the smallest Euclidean
distance from the center of the class:

min
J

∥
∥
∥
(
xun − −

x j

)
wT
∥
∥
∥ (12.34)

12.3.3 K-Nearest Neighbor

Different from other distance discriminant methods, the nearest neighbor method
does not compare the distance between the samples to be measured and all kinds of
mean values. Instead, the distance between it and all training samples is calculated.
As long as the distance is the closest, it is classified into the class. In fact, the nearest
neighbor method stores all the samples in training set and calculates the distance
between the unknown samples and the training set samples one by one. In order
to overcome the high error rate of the nearest neighbor method, k nearest neighbor
samples (Fig. 12.10) is selected instead of only one nearest neighbor for classification.
Then samples are classified into couples of classes with the largest proportion.

The final class is determined by using discriminant functionmethod. For example,
the discriminant function S can be calculated according to the following equation
for the discriminant problem of two classes:

Fig. 12.10 Schematic
diagram of K-nearest
neighbor

1NN

3NN
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S =
k∑

i=1

(Si/Di ) (12.35)

In Eq. 12.35, Si is the value of the ith sample in the k samples of training set. If
it belongs to the first class, the Si takes “+1”. If it belongs to the second class, the Si
takes “−1”. Di is the distance between the unknown samples and the ith sample. Di

can be understood as the weight. The training set sample with a smaller distance is
given a larger weight, while the training set sample with a larger distance is given
a smaller weight. Obviously, in the same number of samples, the larger Di is, the
smaller contribution to the total S value is. In the case of the same distance, the more
samples of class 1, the more positive the total S value is. Therefore, if the calculation
S value is positive, the unknown sample belongs to class 1. Instead, it belongs to
class 2.

The advantage ofKNNmethod is that it does not require several classes of samples
of the training set to be linearly separable, nor does it require a separate training
process. It is also easy to add samples of known classes into the training set and it can
deal with multi-classes of problems. So it is convenient to apply. The main problem
of this method is the selection of k value. Because the number and distribution of
samples in each class are different, if different k values are selected, the discriminant
results of unknown samples may be different. There is no certain rule to follow in
the selection of k value, which can only be determined by specific circumstances or
experience. It is usually inappropriate to choose a smaller k value.

The KNN method is simple and effective. If an appropriate calculation method is
defined to characterize the similarity between samples. It can achieve good perfor-
mance. Therefore, the key to the application of KNN is to construct spectral feature
variables and determine an appropriate distance function. In fact, spectral searching
method is an extension of KNN.

12.3.4 Soft Independent Modeling of Class Analogy

Soft independent modeling of class analogy (SIMCA) is also called similarity anal-
ysis. It was proposed by Swedish chemist Wold in 1976. It has been widely used in
chemical pattern recognition. SIMCA classification method is a supervised pattern
recognition method, which is based on PCA. The basic idea of the algorithm is to use
PCA on the spectral matrix of each class of samples in the training set, respectively.
The PCA mathematical model is built for each class. Then the unknown samples are
classified based on the models. The unknown samples are tried to fit each model to
determine which class it belongs to or not.

The SIMCA method has two main steps to carry out discrimination and classifi-
cation. The first step is to establish the PCA model for each class. The second step
is to fit each class of PCA models of unknown samples one by one.
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Fig. 12.11 Schematic
diagram of SIMCA model
with different PC numbers

NIPALS method can be adopted for PCA required in SIMCA method. The prin-
ciple and algorithm of PCA have been introduced in detail in Chap. 6 and are not
repeated here. For each class in the training set, the following PCA models are
established, respectively.

Xk = TkPt
k + Ek (12.36)

Xk is the spectral matrix (n × m) of all samples for kth class in the training set. n is
the number of samples for kth class. m is the number of wavelength variables. Tk is
the score matrix (n × f ). f is the optimal principal component (PC) number. Pk is
the loading matrix (m × f ). Ek is spectral residual matrix (n × m).

The optimal number of PC f in each class model can be determined by cross
validation. Each independent model can select different PC number. Thus, different
classes ofmodelsmay be expressed as line, plane, box, and superbox shape, as shown
in Fig. 12.11.

If the spectral residual matrix Ek conforms to normal distribution, the spectral
residual variance s2 can be calculated according to Eq. 12.37.

s2 =
n∑

i=1

m∑

j=1

e2i j
(n − f − 1)(m − f )

(12.37)

where eij is the spectral residual matrix of sample i at wavelength j.
For the unknown sample xnew, the score vector tnew and the residual spectrum enew

are first calculated by Eqs. 12.38 and 12.39.

tnew = xnewPk (12.38)

enew = xnew − tnewPkT (12.39)
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Then the variance of spectral residual is calculated.

s2new =
m∑

i=1

e2i j
m − f

(12.40)

If the variance snew2 and the total residual variance sK2 of class k have similar
number of magnitude, the sample can be classified into class k. If snew2 is larger than
sK2 significantly, the sample does not belong to class k.

F-significance test can also be adapted to conduct class analysis of unknown
samples. F-statistic is defined as Eq. 12.41.

F = s2new
s2k

(12.41)

Comparing the calculation F statistic with the one-sided critical value F0 [α, (m
− f ), (n – f – 1)(m − f )], the confidence level α is generally 0.05 or 0.01. If F < F0,
the unknown samples belong to kth class. Otherwise, the samples are fitted to other
classes until the class is determined. If the sample does not belong to any class in the
training set, it can be classified into a new class.

The SIMCAmethod is based onPC spectral residual to identify unknown samples.
There is a phenomenon in practical application that although the unknown samples
conform to a certain class of PCA model, the samples may be far away from the
training set samples of this class. Therefore, it is common to add a step in the SIMCA
method that limits it by the PC score:

tmax = max(tk) + 0.5st (12.42)

tmin = min(tk) − 0.5st (12.43)

where max (tk) and min (tk) are the maximum and minimum element values of
the score vectors and are obtained from the PCA of the kth sample in training set,
respectively. Here st is the standard deviation of the corresponding PC score vectors.
If the score vector tnew of the unknown sample is not in the range of [tmax, tmin], the
sample shall not be judged to belong to the kth class.

For discriminant analysis of one-class classification (normal or abnormal samples)
[13] such as original identification of traditional Chinese medicine, food adulter-
ation, drug authenticity, data-driven soft independent modeling of class analogy
(DD-SIMCA) is commonly used [14–16]. As shown in Fig. 12.12, this method can
provide the Chi-square acceptance area of normal samples. It can also provide the
distribution area of extreme samples and abnormal samples through probabilistic
statistical analysis [17, 18].
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Fig. 12.12 Schematic diagram of chi-square acceptance area obtained by DD-SIMCA method

12.3.5 Logistic Regression

Although logistic regression (LR) is called the regression, it is actually a kind of clas-
sifier. It can handle with binary classification problems well [13]. Sigmoid function
is used in the LR model of binary variables. It has good mathematical properties,
which is a convex function. It can be differentiated in any order. The equation of
sigmoid function is as follows.

g(z) = 1

1 + e−z
(12.44)

For a binary classification problem, it is specified that one class is positive and
the other is negative. The corresponding class values y are 1 and 0, respectively. The
spectral input vector is x and the dimension is 1 × m. The augmented vector is x =
[1 x] and its dimension is 1 × (m + 1). Then the LR model is:

hθ (x) = P(y = 1|x; θ) = 1

1 + e−(θT x)
(12.45)

where P(y = 1|x) represents the probability that x is a positive class (y= 1). θ is the
model parameter and the dimension of θ is 1× (m+ 1). The task of LR is to learn the
θ value of the above model. Once θ value is determined, the prediction probability
value is calculated for x of an unknown sample. If hθ (x) > 0.5, x is classified as
positive class (y = 1). If hθ (x) < 0.5, x is classified as negative class (y = 0).

The learning algorithm of LR can adopt the maximum likelihood method and the
probability function can be written as:
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P(y = 1|x; θ) = hθ (x)

P(y = 0|x; θ) = 1 − hθ (x)
(12.46)

The 0 or 1 can be taken as the value and the above equation can be written in the
form of conditional probability distribution:

P(y|x; θ) = hθ (x)
y(1 − hθ (x))

(1−y) (12.47)

where the superscript i represents the number of the sample. Suppose there are n
independent samples

(
x (i), y(i)

)
in training set, the likelihood function of n samples

is:

L(θ) =
n∏

i=1

P(y(i)|x (i); θ)

=
n∏

i=1

hθ (x
(i))y

(i)
(1 − hθ (x

(i)))(1−y(i)) (12.48)

To achieve themaximumvalue of the above equation θ = (θ0, θ1, ..., θm+1), which
is also the solution of model parameters. m is the number of spectral wavelength
points.

For calculation convenience, logarithm of L(θ) is acquired. The maximum L(θ)

is equivalent to maximizing the following logarithmic likelihood function:

l(θ) = ln L(θ)

=
n∑

i=1

(y(i) ln hθ (x
(i))+(1 − y(i)) ln(1 − hθ (x

(i))))
(12.49)

The solution of dl(θ)

dθ
= 0 is the value of θ, which can be solved by gradient descent

method. The steps of iteration calculation are as follows.

(1) For known n independent training samples, the initial value of θ is assigned.
(2) Calculate

hθ (x
(i))= 1

1 + e−(θT x (i))
(12.50)

(3) Update θ j

θ j := θ j + α(y(i) − hθ (x
(i)))x (i)

j (12.51)

where j = 0, 1, ...,m, α is the iteration step size.
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(4) Determine whether the convergence condition is met. If not, return to (2). If
so, terminate the iteration. The convergence condition can be reached a certain
number of iterations, or the difference of value is less than specified ε before
and after the θ update.

12.3.6 Soft-Max Classifier

Soft-max classifier is a multi-classification method. It uses nonlinear functions to
calculate the probability that the input variable X belongs to each class by comparing
the probability value to determine the classification. It has strong classification ability
for the class data of nonlinear structure. Soft-max classifier is a multi-class extension
of LR. Sigmoid function is used LR. It is different from LR classification which only
two-class labels can be taken. Soft-max classifier is suitable formulti-class problems.
Soft-max classifier maps the input vector x from the n-dimensional space to the class,
and the results are given in the form of probability. The equation is as follows:

p j = eθ t
j X

∑K
k=1 e

θ t
kX

(12.52)

where θ t
k = [θ1

k θ
2
k θ

3
k · · · θ N

k ]T is weights, which is the corresponding classifier
parameter of class k.

The total model parameter θ is trained by Soft-max classifier, which is used to
calculate all possible class probabilities of the item to be classified. Then the class
is determined. A data set is given that containing m training samples. {(x(1),y(1)),
(x(2),y(2)), …, (x(m),y(m)), x represents the input vector and y represents the class label
of each x. For a test sample x(i) is given, the probability of belonging to each class is
calculated by Soft-max classifier. The function equation is as follows:
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In Eq. 12.53, hθ (x
(i)) is a vector. The element p(y(i) = K |x(i); θ) represents the

probability that x(i) belongs to class k. The sum of the elements in the vector is equal
to 1. For x(i), The maximum probability value of k is selected as the classification
result.

The value of parameter θ can be obtained by minimizing the cost function, which
is defined as:
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Fig. 12.13 Schematic diagram of Softmax classifier combined with deep learning algorithm for
multi-class discriminant analysis

J(θ) = − 1
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where 1{.} is an indicative function, with a value of true equal to 1 and a value of
false equal to 0. Soft-max classifier can be regarded as a neural network without
hidden layer. In the training process, the parameter θ can be adjusted continuously
by gradient descent method, so that it can minimize the cost function J (θ) until it
converges to the global optimal solution.

As shown in Fig. 12.13, Logistic and Soft-max classifiers are mostly combined
with deep learning algorithms (such as auto-encoder network and convolutional
neural network), which is used for discriminant analysis of two or more classes
of problems, respectively.

Gan et al. [14] used stacked contractive auto-encoding to extract the NIR spec-
tral features of drugs . Moreover, they used Logistic classifier and Soft-max classi-
fier to carry out two-class and multi-class for drugs identification, respectively. The
results are superior to BP network and SVM methods. Wang et al. [15] aimed at
the near infrared hyperspectral imaging of Lycium barbarum from different habi-
tats, zero-phase component analysis whitening preprocessing was used to remove
the correlation of input features firstly, and then PLS-DA algorithm to extract the PC
with the greatest correlation between input features and classes of PC to reduce the
model complexity. Finally, Soft-max classifier is used to classify the input data from
the perspective of probability, which can effectively identify the origin of Lycium
barbarum in Ningxia. Liu et al. [16] compared the effects of logistic classifier, BP
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network and K-means method on the classification of visible-near infrared spectra
of soil, and the result of Logistic classifier was the best.

12.3.7 Random Forest

Random forest (RF) is a fusion classification algorithm that includes many deci-
sion trees and voting strategies. It belongs to the ensemble algorithm. As shown in
Fig. 12.14, the essence of RF is to randomly select samples from the original training
data set to form a new data set of the same size, and repeatedly replace the new data
set with the samples from the original data set to continuously form a new data set
of the same size. This process is called bootstrap aggregating. Several groups of new
training data sets can be obtained through the bootstrap resampling process, which is
classified by the decision trees algorithm, respectively. In this way, the number of
new classifiers equal to the number of new data sets can be obtained. When span-
ning the tree, the variables for each node are generated only from a few randomly
selected variables. Namely, the use of variables and samples is both randomized, and
a large number of trees generated in this random way are used for classification or
regression analysis, so it is called RF. The samples that out-of-bag samples (OOB)
are not selected, which are used as validation set to test each tree model to get the
OOB error rate, it is used to optimize the model parameters and evaluate the quality
of the model.

When the unknown samples are classified and predicted, the RF obtains the
multiple groups classifiers in the training process to make the prediction, respec-
tively, and selects the class with the most votes from the classifier as the final result.
Since RF combines the results of multiple binary decision trees, the number of deci-
sion trees, and the number of features used in each decision tree, they are important
parameters that affect the output of RF. The number of decision trees refers to the total
number of decision trees in the RF. The performance of the model can be improved
by increasing the number of decision trees. However, at the cost of computation, it
is necessary to consider the calculation efficiency to determine the most appropriate
number of decision trees. The number of features refers to the maximum number of
features used in each decision tree, which can select any integer value between 0 and
all feature numbers. In general, it is most appropriate for the number of features of
each decision tree to take the arithmetic square root of the total number of features.
A large number of theoretical and experimental studies have proved that RF has high
prediction accuracy with good tolerance for outliers and noise. Moreover, it is not
easy to fall in overfitting problem.

RF can also measure the importance of features. Its basic principle is that if a
certain feature variable is very important, the prediction result of the sample leads
to large deviation if the feature variable of the sample is changed, that is, the feature
variable is very sensitive to the prediction result. On the contrary, if a feature variable
is not important, arbitrarily changing does not have much effect on the prediction
results. Therefore, RF process can be used to select feature variables [17, 18].
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Fig. 12.14 Schematic diagram of modeling framework for random forest

The feature importance is usually measured by the prediction accuracy of OOB.
OOB refers to the training samples that are not sampled during the training of each
decision tree, and they do not participate in the establishment of the decision tree.
Therefore, they can be used to evaluate the performance of the decision tree. The
basic principle is to measure the importance of the features by rearranging the value
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of features in OOB (i.e. the value of the feature exchanged between the OOB data)
and uses the difference in the prediction accuracy of the OOB before and after
rearrangement to measure the feature importance. The specific steps for calculating
the importance of some features areas follows. Firstly, theOOBprediction is obtained
for each decision tree. Then all values of the features on all OOB are sorted, and the
OOB are predicted again. Finally, the importance values of the features are obtained
by averaging the prediction accuracy difference before and after sorting in each
decision tree.

RF is a natural nonlinear modeling tool that can be used for classification or
regression analysis. Lai et al. adopted wavelet transform and RF to establish the
recognition model of NIR spectroscopy for different mildewed tobacco leaves and
achieved satisfactory results in the discrimination of the mildew degree of tobacco
samples [19]. Li et al. used RF to identify the Raman spectra of precursor chemicals
and flammable and explosive chemicals. The result of RF was equivalent to adaboost
algorithm and superior to decision tree, SVM, and ANN algorithm [20]. Wang et al.
used terahertz time domain spectroscopy (THz-TDS) and RF to classify and recog-
nize five species of rosewood, and the classification accuracy reachedmore than 95%
[21]. Zhou et al. fused mid-infrared spectroscopy with NIR spectroscopy and used
RF method to identify Panax notoginseng in five areas, and the recognition accuracy
was 95.6% [22]. Amjad et al. used Raman spectroscopy and RF to conduct discrimi-
nant analysis on four kinds of milk powder, and the average accuracy was about 94%
[23].

Ma et al. used RF to construct a Vis–NIR spectra model for estimating soil salt,
which could effectively extract themain ion information of soil salt in arid areas [24].
Li et al. used RF to establish a hyperspectral model for estimating soil organic matter
content, and the results were superior than PLS method [25]. Zheng et al. classified
the price grades of dendrobium based on laser-induced breakdown spectroscopy
(LIBS) and RF and realized the rapid identification of the grades of dendrobium
[26]. Li et al. used wavelet transform-random forest (WT-RF) to establish a model
for predicting methanol content in gasoline by NIR spectroscopy, and the result was
superior than WT-PLS and WT-LSSVM [27] Santana et al. used Vis–NIR spectra
combined with RF method to rapidly predict and analyze soil quality parameters and
achieved superior prediction accuracy than PLS [28]. Teixeira et al. used portable
X-ray fluorescence spectroscopy (XRF) combined with RF method to predict and
analyze soil pH, base saturation percentage, cation exchange capacity, and aluminum
saturation, etc., and then obtained satisfactory results [29]. Zhang et al. used NIR
combined with RF to predict the content of food dye indigotine in cream, the results
are superior than MLR and PLS methods [30].
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12.3.8 Application of Regression Methods for Discriminant
Analysis

ANN method has been introduced in detail in quantitative calibration method
(Chap. 8) and clustering analysis above, and it can also be used in supervised pattern
recognition, which classifies and predicts unknown samples by establishing recog-
nition model based on the training set of known classes. The only difference with
quantitative calibration is the difference in the output layer. For quantitative calibra-
tion, the output layer is usually a single node. For pattern recognition, multi-node
output is generally used. If there are four classes, they can be represented by (1,0,0,0),
(0,1,0,0), (0,0,1,0) and (0,0,0,1), respectively.

Similarly, PLS also can be used for discriminant analysis. PLSmethod is essential
a regression method based on feature variables. However, if the concentration matrix
of samples of known classes is set as 0, 1 (PLS1 method is used for two classes),
−1, 0, +1 (PLS1 method is used for three classes), respectively. Or 0 1, 1 0 (PLS2
method is used for two classes), 0 0 1, 0 1 0, 0 0 0 (PLS2 method is used for three
classes, as shown in Fig. 12.15, PLS method can be used for supervised discriminant
analysis. It is often called Dummy partial least squares regression (D-PLS) or PLS
discriminant analysis (PLS-DA).

Figure 12.16 shows the result regression of PLS for two-class samples. If the
predicted PLS value of an unknown sample is between −0.5 and 0.5, it belongs to
the first class, if it is between 0.5 and 1.5, it belongs to the second class. Similar to
the quantitative calibration, since PLS method can decompose both spectral matrix
and classes matrix at the same time, it strengthens the role of class information in
spectral decomposition, so as to extract the most relevant spectral information to

Fig. 12.15 Schematic diagram of regression method used for discriminant analysis of three classes
of samples
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Fig. 12.16 Schematic
diagram of the results for
classification of two-class
samples by using PLS-DA
method

sample class, namely maximizing the different among different classes. Therefore,
PLSmethod can usually get better classification and discrimination results than PCA
method. At present, the application of PLS in pattern recognition receives more and
more attention and applications. Many studies also have proved that the discriminant
results of PLS are superior to the pattern recognition method based on PCA.

12.4 Spectral Searching Methods

12.4.1 Introduction

In recent years, with the continuous improvement of instrument manufacturing level
and the popularization of chemometrics method, modern spectral analysis technolo-
gies, especially MIR, NIR, and Raman spectroscopy have been widely used in qual-
itative analysis in many fields because of its convenient test, fast speed, abundant
information, and on-site application. Using pattern recognition methods, spectra can
be used to cluster or identify samples of complex systems (such as oil, grain, fruit,
and drugs). In chemometrics, as shown in Fig. 12.17, pattern recognition methods
for spectral analysis include three classes [31–33]:

(1) Unsupervisedmethods, such as PCA, hierarchical clusteringmethod, K-means
clustering, and self-organizing neural networks.

(2) Supervised methods, such as LDA, SIMCA, KNN, PLS-DA, and SVM. Both
of the above two methods are based on the class of samples for qualitative
analysis, and each class must contain many representative samples. When new
samples are added to the database, the recognitionmodel needs to be calibrated
again.
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Fig. 12.17 Schematic diagram of classification for pattern recognition methods

(3) Spectral searching methods, such as correlation coefficient, angle cosine,
Euclidean distance, and spectral information divergence. According to the
spectrum of the sample to be tested, this kind of algorithm retrieves one or
more samples closest to the sample to be tested from the established spectral
library, so as to achieve qualitative or even quantitative analysis. In fact, the
spectral searching method can also be regarded as KNN method. The basic
idea of the two methods is completely consistent, but the final display results
are different.

Previously, spectral searching methods are mostly used for spectral recognition of
pure compounds, such as infrared spectroscopy databases of Sadtler and Aldrich. In
the past two decades, spectral databases of modern complex mixed systems are grad-
ually established inmany fields (such as soil, feed, minerals, drugs, and oils) [34–36].
For example, the drug product administration (DPA) of the food and drug admin-
istration (FDA) is developing the spectral databases of pharmaceutical excipients
based on different Raman and NIR spectroscopy instruments such as laboratories,
portable, and hand-held, so as to monitor possible problems such as contamina-
tion, adulteration, and tampering in pharmaceutical production and supply chain.
Relevant departments in different fields in China are also gradually establishing and
improving the corresponding spectral database. For another example, the Vis–NIR
spectral database of soil has been established internationally, as shown in Fig. 12.18,
More than 20,000 samples have been collected from more than 10,000 sites around
the world. The database can be used for remote sensing and rapid analysis of soil
physical properties on site (Fig. 12.19) [37].

The spectral searching method is one of the core technologies to make full use
of these spectral databases. Therefore, spectral searching algorithms attracted more
andmore attention [38–40]. Some new searching algorithms and searching strategies
have emerged, and the accuracy and reliability of spectral searching are significantly
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Fig. 12.18 Schematic diagram of more than 10,000 sampling points for building a global near
infrared spectroscopic database of soil

Fig. 12.19 Schematic diagram of variety acquisition ways for Vis–NIR spectra of soils (remote
sensing and short-distance remote sensing)

improved. Comparedwith unsupervised and supervised pattern recognitionmethods,
spectral searching method has many advantages such as simple operation, intuitive
information, and convenient library maintenance, which plays an important role in
practical applications.
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12.4.2 Spectral Searching Algorithms

The goal of spectral searching is to find one or more samples closest to x from the
spectral library R based on certain algorithms and rules for the spectrum x of the
sample to be measured. If there is a known property value Y in the spectral library,
the property value of the sample to be measured can be quantitatively predicted and
analyzed. Where x represents the spectrum of the sample to be tested, which is 1 ×
m vector, and m is the number of wavelength points. R represents all spectra in the
spectral library, which is n × m matrix, n is the number of samples spectra in the
library. rj represents the spectrum of the jth sample in the spectral library, which is
1 × m vector, j = 1, 2, …n. Y represents the property value corresponding to all
samples in the spectral library, which is the n × p matrix, and p is the number of
properties. yj represents the property value of the jth sample in the spectral library,
which is 1 × p vector.

In order to obtain satisfactory searching results, it is often necessary to carry out
the necessary preprocessing and band selection of the spectrumbefore searching. The
preprocessingmethods include derivative, vector normalization, standardization, and
wavelet transform. The band selection can find one or more spectral intervals with
strong features, high signal-to-noise ratio, and small external influence according
to chemical knowledge and mathematical methods. The commonly used spectral
preprocessing and band selection methods can be referred to Chaps. 4 and 5, and
other relevant literature [41].

(1) Distance-based algorithm

The basic principle of this algorithm is that the closer the spectral of the two samples
are, the shorter the distance between them is [42]. There are many forms of distance
between spectra, in which the simplest is absolute distance (L1 norm). The absolute
distance between the spectrum x of the sample to be measured and the spectrum ri
of the ith sample in the spectral library can be expressed as,

d
(
x, r j

) = �
∣
∣x, r j

∣
∣ (12.55)

The most commonly used one is Euclidean distance, also called as least squares
distance,

d
(
x, r j

) =
√(

x − r j
)(
x − r j

)t
(12.56)

Many calculation methods for distance are based on L1 norm and L2 norm and
some weighted distance calculation methods are derived. Normalized Euclidean
distance (NED) is often used, that is, the spectrum is normalized before calculating
the spectral distance, and NED usually has stronger robustness.

(2) Similarity-based algorithm

There are two main parameters to evaluate similarity: angle cosine and correlation
coefficient.
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The cosine of the angle between x and rj is expressed as
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) = xr j
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r j r j

t
(12.57)

The smaller the angle is, the closer the two samples are in the model space, and
the greater the similarity is. If the two spectra are exactly the same, then cos

(
x,r j

)=
1, which means the two samples are a point in the mode space. If the two spectra are
completely different, cos

(
x,r j

) = 0.
Sometimes, angle cosine is replaced by the spectral angle,
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The closer the angle S
(
x,r j

)
is to 0, the more similar the two spectra are. S

(
x,r j

)

is also called spectral angle metric (SAM), and one of the features of SAMmethod is
the invariance of multiplicative factor. Since the amplitude and shape of the spectral
curve correspond to the length and direction of the vector in Euclidean space, the
multiplicative factor only causes the change of the length of the vector and does not
change the direction of the vector. Therefore, SAM method is sensitive to spectral
shape difference. However, it is not sensitive to spectral amplitude difference.

The correlation coefficient between x and rj is expressed as the following equation.

R
(
x,r j

) = (x − x)(r j − r j )
t

√
(x − x)(x − x)t

√
(r j − r j )(r j − r j )

t
(12.59)

where xand r j are the average values of x and rj, respectively. The closer R is to 1,
themore similar the two spectra are, and the closer R is to 0, the greater the difference
between the two spectra is.

Hit quality index (HQI) is also commonly used in spectral searching:

HQI = 1 − R
(
x,r j

)2
(12.60)

(3) Algorithm based on information theory

Spectral information divergence (SID) [43, 44] transforms the spectral similarity
evaluation problem into the redundancy evaluation problem for probabilities of the
two spectral vectors. In addition, the relative entropy of spectral information is used
to evaluate the similarity of the two spectra.

SID(x,r i ) = D
(
x||r j

)+ D
(
r j ||x

)
(12.61)
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where D
(
x||r j

)
is the relative entropy of rj with respect to x, D

(
r j ||x

)
is the relative

entropy of x with respect to rj.
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where q and p j are the probability vectors of spectral x and spectral rj, respectively,
q = x∑m

i=1 xi
, p j = r j∑m

i=1 r j,i
.

SID method determines the similarity between the two spectra by measuring the
mutual information between the two spectra. The smaller the SID value is, the higher
the similarity between spectra is. On the contrary, the spectral similarity is low.

(4) Degree similarity algorithm

The degree similarity algorithm is evolved and simplified based on similar of system
theory [45, 46], and the degree similarity Q can reflect the average relative difference
between the two spectra,

Q = 1 − 1

m

m∑

i=1

(1 − min(xi , r j,i )

max(xi , r j,i )
) (12.64)

The algorithm compares the spectral intensity at each wavelength point one by
one, so it is sensitive to relative difference of wavelength position. The closer Q is to
1, the more similar the two spectra x and rj are, and the closer Q is to 0, the greater
the difference between the two spectra are.

(5) Jaccard similarity algorithm

Jaccard similarity is a spectral matching algorithm based on characteristic peaks.
It is necessary to binarize the spectrum [47, 48] and calculate the proportion of
intersection of two spectra characteristic peaks in the union set:

J = x ∩ r j

x ∪ r j
= p

p + q + r
(12.65)

where p is the number of corresponding wavelength points that are 1 after the bina-
rization of x and rj. The wavelength point after q is x binarization is 1, and the
number of wavelength point after rj binarization is 0. r is the number of wavelength
points 0 after x binarization and 1 after rj binarization.
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12.4.3 Improvements of Spectral Searching Algorithms

On the basis of absolute distance (spectral difference), Meng et al. established a
method to calculate the ultraviolet spectrum similarity S by taking the effect of
absorption intensity on the difference into account.

S = 1 − 1

m

m∑

i=1

| xi − r j,i
xi + r j,i

| (12.66)

where m is the number of wavelength points of the spectra, and the closer the S
value is to 1, the more similar the two spectra are. The closer to 0, the more different
the two spectra are. Compared with the angle cosine and correlation coefficient
method, this method is sensitive to the difference between spectra. It overcomes the
disadvantage of ultraviolet spectrum of broadband absorption to a certain degree. In
addition, it can quickly and sensitively reflect the similarities and differences in the
quality of traditional Chinese medicine, so as to quickly monitor the differences in
the components in the production process of traditional Chinese medicine injection
[49]. Li and Tang et al. improved the calculation method of similarity S by increasing
the weight, and the sensitivity of similarity S was further improved by highlighting
the spectral changes in the key wavelength range. They were used to investigate the
stability of Danshen injection by ultraviolet spectroscopy and identify NIR abnormal
spectroscopy, respectively [50, 51]. Khan et al. improved the Euclidean distance by
weighting rules [52] in order to search the spectra of mixture by using the Raman
spectral library of pure compounds, and the recognition results are superior to the
traditional Euclidean distance and angle cosine.

Considering the repeatability of the samples in the spectra collection process,
Plugge et al. proposed the conformity index (CI) method based on absolute distance.
The essence of this method is a weighted absolute distance method. The library
spectrum rj is replaced by the average spectrum r j of a set of repetitive spectra. The
weight of each wavelength point is the reciprocal of the standard deviation σ j of the
repetitive spectrum.

CI = MAX(
xi − r j,i

σ j,i
) (12.67)

CI actually refers to the allowable spectral repeatability (or reproducibility) range,
which is usually 3–5 times of the standard deviation [53]. Plugge et al. used it to detect
the changes in physicochemical properties of ampicillin trihydrate, which could be
used to control the production process and ensure the consistency of product quality.
Ritchie et al. investigated the accuracy, precision, robustness, and consistency of this
method, and the results showed that this method could meet the current verification
standard and could be accepted by modern strict guiding principles [54]. Feng et al.
used the CI method to quickly determine the authenticity of drug quality [55] by NIR
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spectroscopy and established a NIR library for the CI of hundreds of drugs [56, 57],
which are widely used in China.

For repetitive measurements or library spectra of a class of multiple samples,
Thermo Company used PCA decomposition to calculate the spectral difference e
between the spectra of the sample to be measured and the library spectra. Similarity
match value (SMV) is defined by the improved Euclidean distance.

SMV =
(

1 − ||e||
||x||

)

× 100 (12.68)

For the NIR spectra of complex mixtures, if the main components of the mixture
are the same, it is difficult to identify the differences between samples by traditional
spectral searching. Nie et al. used SMV method and NIR spectroscopy to quickly
and conveniently identify the differences between Tongren Wuji Baifeng pills and
other Wuji Baifeng pills [58]. Tao et al. used the SMV method to detect the stability
of the quality of cut tobacco by taking the NIR diffuse reflectance spectrum as the
feature [59], which can be used for rapid detection of tobacco filament in production,
providing a new technical means for the quality control of cigarette processing. Lu
et al. adopted the attenuated total reflection (ATR) measurement method to establish
an infrared spectral library of textile fibers based on more than 1000 samples and
realized the rapid detection of fiber types by using the spectral library searching
method [60]. Wang et al. established an infrared spectral library of plastic resins
containing 513 samples for 18 common classes of plastic resins, which can be used
to quickly identify the classes of plastics [61].

Correlation coefficient and angle cosine are the most commonly used methods
for database searching [62, 63]. For example, Chen et al. obtained 940 paint infrared
spectra from 287 car body paint samples. The infrared spectral comparison database
of car body paint was established by using the feature peak number method and
the correlation coefficient method. The rapid investigation of vehicle paint left in
the accident scene, the vehicle type of hit and run vehicles can be determined. [64].
He et al. established a terahertz spectrum database containing of 38 drugs with
purity above 90%, which was expected to be a powerful supplement to the existing
drug detection methods [65]. Guedes et al. established a database for identifying
airborne pollen species by micro-Raman spectroscopy using correlation coefficient
method [66]. In addition, in the ground object recognition of hyperspectral remote
sensing image database, correlation coefficient and angle cosine are also the two
most commonly used methods [67].

The correlation coefficient and angle cosine emphasize the overall similarity
between the spectra. In order to improve the expression of the differences in the
details of the spectra between the two algorithms, many methods have been tried
for applications. It is a common strategy to build a secondary searching library
(sub-library). Blanco et al. proposed to improve the accuracy of traditional correla-
tion coefficient searching by establishing a sub-spectral library for the recognition
of NIR of pharmaceutical raw materials [68]. Selecting feature intervals to calculate
correlation coefficient is also an effective method to highlight the difference between
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spectra. Wang et al. used the correlation coefficient method combined with charac-
teristic spectral band for rapid identification of illegal addition of sildenafil citrate
into capsules of traditional Chinese medicine. The overall accuracy rate of screening
results was about 95.0% [69, 70]. Xu et al. [71] divided the whole spectral range
into several regions and calculated the correlation coefficient or angle cosine of each
region, respectively. This piecewise correlation coefficient method (called matrix
correlation coefficient) improved the difference between spectra to some extent. The
results showed that it was superior to the traditional correlation coefficient method.
Park et al. also divided the Raman spectrum region into four sections according to
the Hann window method and calculated the angle cosine value of each section. The
final similarity was obtained by the weighted angle cosine of these four sections [72].
Griffiths et al. proposed a spectral matching algorithm based on self-weighted corre-
lation coefficient, which can effectively overcome the interference signal in IR [73],
and obtain good recognition results in the application of IR in open-path monitoring
of atmospheric pollutants.

Chu et al. [74] proposed amethod ofmovingwindow correlation coefficient based
on the concept of moving window. The basic idea is to select a spectral window with
width of w (w is odd) and move backward from the second wavelength point of the
whole spectrum, each time moving a wavelength sampling interval until the final
wavelengths. In each sub-wavelength region of the window, the correlation coeffi-
cient value is calculated by the traditional correlation coefficient equation, and then
the moving window correlation coefficient value is plotted with the starting posi-
tion of the corresponding window. This moving correlation coefficient method can
distinguish the subtle differences between the two spectra and improve the accuracy
of spectral recognition, and facilitate the extraction of hidden information. There are
two threshold parameters in the moving window correlation coefficient method, one
is the correlation coefficient of all windows, and the other is the sum of the correla-
tion coefficients of all windows. According to different application objects, different
window width and threshold should be set. For the spectra of two samples to be
identified, only if the two parameters are greater than the corresponding threshold
can be determined as the same sample.

Chu andLi et al. used the correlation coefficient ofmovingwindow to establish the
NIR spectrum recognition library and the mid-infrared spectrum recognition library
for crude oil, respectively [75, 76], which can accurately identify the classes of crude
oil. On this basis, Li et al. also used the moving window correlation coefficient to
identify the two-dimensional infrared spectra of crude oil and proposed the moving
matrix window correlation coefficient method (Fig. 12.20), which can accurately
identify the low proportion of mixed crude oil [77]. Guo et al. used the moving
window correlation coefficient method to determine the end point of the extraction
process of traditional Chinese medicine by NIR. Compared with the original moving
standard deviation method, this method can greatly reduce the influence of baseline
drift to a large degree and has better anti-interference ability [78]. Ramirez-Lopez
et al. improved the traditional spectral difference and proposed a surface difference
spectrum (SDS) based on the different order differential spectra of the difference
spectrum. The SDS distance between the two spectra was calculated by the weight of
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Fig. 12.20 Schematic diagram of correlation coefficients of two-dimensional correlation spectra
moving window for two crude oils

the moving window correlation coefficient, which was used for the sample searching
of the global soil Vis–NIR spectroscopy library [79].

Liu et al. introduced nonlinear kernel function into spectral angle mapper (SAM),
which is called kernel spectral angle mapper (KSAM). The purpose of KSAM is to
evaluate the similarity between spectra by using the high-order statistical character-
istics of vectors [80, 81]. The KSAM method not only maintains the characteristics
of the spectral vector in the original feature space but also extracts the nonlinear
features between spectra. In addition, the KSAM method can set a variety of kernel
functions and has high adaptability.

Cross-correlogram spectral matching (CCSM) was proposed by Meer et al. This
method introduces the concept of relative sliding between spectra. The wavelength
points of the spectra to be measured move one wavelength point to the left and
one wavelength point to the right at a time, respectively. The correlation coefficient
between the overlap regions of the library spectrum and the spectrum to be measured
is calculated, and the cross-correlation characteristic curve between the matching
position and the correlation coefficient is obtained (Fig. 12.21) [82]. By calculating
the skewness of the cross-correlation characteristic curve, the similarity between the
two spectra can be evaluated. The smaller the skewness is, the higher the similarity is.
This method is not sensitive to spectral amplitude variation and has good anti-noise
performance.
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Fig. 12.21 Library and test spectrum (left) and corresponding cross correlogram (right) for
kaolinite versus kaolinite, alunite, and buddingtonite [82]

12.4.4 Spectral Searching Strategies and Applications

In order to obtain accurate and fast spectra searching results, many new algorithms
and searching strategies are proposed based on the above basic searching algorithms
and improved algorithms for specific application objects.

Library searching method may sometimes lead to non-robust recognition results.
The ensemble or consensus strategy is an effective means to solve this problem. The
basic idea is to use a variety of searching algorithms to establish recognition rules,
and at the same time to conduct discriminant analysis of the spectrum of the sample
to be tested. The final hit rate or weighted value is taken as the recognition result. This
searching strategy reduces the dependence of searching results on a certain algorithm,
which can improve the stability of searching results. Himmelsbach et al. established
an ATR mid-infrared spectroscopy library for recognition of foreign materials in
cotton, which was used for the rapid recognition and analyzed of cotton pollutants.
The library contains 601 samples of spectra, involving plant impurities (such as
leaves, stems, shells, skins), compounds (plastic bags, films, and rubber), organic
substance (other fibers, yarns, paper, feathers, cowhide, etc.), and inorganic substance
(sand and rust) [83]. When the spectral library was used for the spectra of cotton in
different regions, different picking periods, different spectrometers, or measurement
accessories, the recognition accuracy was significantly reduced. Loudermilk et al.
adopted the consensus or ensemble strategy to integrate the results of six common
library spectral searching methods and achieved very satisfactory results [84].

Kong et al. integrated three algorithms of Euclidean clustering, correlation coeffi-
cient, and spectral information divergence and carried out experiments about airborne
hyperspectral remote sensing images obtained by USGSmineral spectral library and
operational modular imaging spectrometer system (OMIS) in China. The results
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showed that it has the stronger spectral discrimination ability and the smaller spec-
tral recognition uncertainty [85]. Zhao et al. fused the spectral information diver-
gence with angle cosine to identify the classes of oil spills on the sea surface (light
oil, medium oil, lubricating oil, and other oils) by airborne laser fluorescence radar,
while heavy fuel oil and crude oil need a secondary recognition library for identifi-
cation [85]. Feng et al. combined similarity algorithm, angle cosine algorithm, and
correlation coefficient algorithm to identify pathogenic bacteria in water by ultravi-
olet–visible spectroscopy, which effectively improved the reliability and stability of
the recognition results [86].

For the spectra of mixtures, how to use the spectra of pure compounds to resolve
the qualitative and quantitative composition information of mixtures has attracted
much attention. The commonly used methods include spectral peak fitting and non-
negative least squares fitting, etc. [87]. Liu et al. proposed a spectral integration
matching method by using the mathematical model of logistic regression to fuse the
spectral peak matching coefficient, non-negative least squares matching coefficient,
and angle cosinematching coefficient,which have a lower-misjudgment rate [88, 89].

Local calibration strategy, which combines spectral searching with multivariate
calibrationmethod, has beenwidely concerned and applied in recent years, especially
with the expansion of large-scale near infrared spectral databases, such as soil, feed,
and oil. The nonlinear relationship between spectra and concentration is aggravated
by the sharp increase of samples from different sources, different years, and different
classes. Local calibration strategy solves this problem by selecting the most similar
set of samples from the spectral database to form the training set [90]. Aiming at how
to select local samples and how to get the final prediction results, a variety of local
modeling analysis strategies are proposed, such as CARNAC (comparative analysis
using restructured near infrared and constituent data)method, LWR(locallyweighted
regression) method, LOCALmethod [91], etc. The NIR spectroscopy libraries based
on more than 3000 red grape samples by Dambergs et al., NIR libraries based on
more than 20,000 feed samples by Fernandez-Ahumada, and Vis–NIR spectroscopy
libraries based on more than 1000 soil samples by Genot, have been used to build
the local calibrations for predicting the key physical, physicochemical properties,
respectively, and more accurate results were obtained than traditional calibration
methods [92–94]. Li et al. also selected representative samples from large gasoline
NIR database based on spectral automatic searching algorithm to establish local
models for different refineries, which improved the prediction accuracy of the model
[95]. This modeling strategy is not only suitable for the calibration of nonlinear
systems but also can make full use of the advantages of spectral database to avoid
the disadvantages of traditional multivariate calibration methods that need to update
the model frequently due to change in sample composition, etc. It is especially suit-
able for the qualitative and quantitative analysis of large network spectral database.
In addition, Lee et al. applied the spectral searching algorithm to the discriminant
analysis of classes (as shown in Fig. 12.22). The basic idea is similar to KNNmethod
but used the HQI combined with voting strategy to discriminate classes [96].

It is also a common spectral searching strategy to reduce the dimension of spec-
trum and search in low-dimensional and more characteristic space. PCA, isometric
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Fig. 12.22 Schematic diagram of class discrimination method based on spectral searching
algorithm

mapping, local linear embedding (LLE), local preserving projection (LPP), neigh-
borhood preserving projection (NPP), and other dimensionality reduction methods
are mostly used in supervised and unsupervised pattern recognition, Fractal theory
has attracted more attention in spectral searching [97–99]. For example, Lei et al.
used the method of wavelet transform combined with fractal theory in NIR spectral
recognition of lubricating oil [100]. In this method, the spectrumwas transformed by
wavelet transform firstly, and then the fractal dimension of wavelet approximation
and detail spectrum was calculated. The fractal dimension was used as the feature
for searching the spectrum, and good results were obtained. Xu et al. proposed a NIR
spectral similarity measurement method based on grid division local linear embed-
ding algorithm [101]. In this method, the high-dimensional spectral data are divided
into multiple grid subspace, and the improved LLE algorithm is used to realize the
feature mapping of each subspace from high-dimensional space to low-dimensional
space, and the similarity matrix of the generated subspace is calculated. Finally, the
subspace similarity matrix is normalized, and the similarity matrix of the accumu-
lated and generated spectral sample set is solved to realize the spectral similarity
measurement.

The combination of pattern recognition method and spectral searching algorithm
can improve the speed and accuracy of spectral searching. The international forensic
vehicle paint data query (PDQ) system is developed by the Royal Canadian mounted
police forensic laboratory based on the original chemical and color information for
searching information database. It can compare the paint data of crime scenes or
suspect vehicleswith the knownpaint samples in the database, and search for vehicles
with similar information, thus quickly narrow the scope of investigation. Thedatabase
contains more than 20,000 vehicle information, involving thousands of automobile
manufacturers, withmore than 80,000 painting layer information, and each yearmore
than 500 samples are used to expand the PDQ database [102–104]. The database
includes two text information, one is the vehicle model, manufacturer, year, and
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other vehicle information, the other is the level of order, quantity, color, and chemical
composition information, including each layer of paint infrared spectrum. Based on
PDQ infrared spectroscopy database, Lavine et al. carried out systematic research
work [105–107]. For example, they first transformed the infrared spectra of car paint
by wavelet, and then selected the feature variables of wavelet coefficients by GA,
and clustered the car paint by PCA. For the samples to be analyzed, they first quickly
judged their classes, and then obtained accurate results through the spectral searching
algorithm. They also carried out segmented autocorrelation transform and cross-
correlation transform of the spectra to eliminate the influence of the spectral subtle
differences between different classes of instruments on the spectral searching results.
In the field of criminal investigation, spectral searching methods are increasingly
combined with expert knowledge and experience, further evaluation and fusion are
carried out through probability theory methods, such as likelihood ratio [108, 109].

The spectral searching algorithm has also made great progress in quantitative
analysis of NIR. For example, Li et al. combined moving correlation coefficient with
Monte Carlo (MC) method for quantitative analysis of NIR, and directly predicted
the octane number and chemical composition of gasoline by spectral searching algo-
rithm [110]. As shown in Fig. 12.23, this method firstly selects a group of samples
with the closest spectra to the sample to be measured from the training set based
on the moving correlation coefficient method, and uses the MC method to generate
thousands of virtual spectra by using this group of the closest spectra. Then, it uses
the moving correlation coefficient method to search all the virtual spectra that are
completely consistent with the spectra of the sample to be measured. According to
the basic principle of “the same sample, the same spectrum and the same property”,
the quantitative analysis results are finally given by weighted average method. When

Fig. 12.23 Schematic diagram of spectral searching algorithm combined with virtual spectrum for
quantitative analysis
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encountering outliers in the spectral database, different from the traditional quanti-
tative multivariate calibration method, the quantitative method of spectral searching
method only needs to add outliers into the spectral database according to certain
rules, which is extremely convenient to operate and does not require professional
modeling personnel. Therefore, this strategy of applying spectral searching method
for quantitative analysis is expected to become a common method. Bi et al. also
proposed similar ideas and applied the spectral searching algorithm to the evaluation
of tobacco quality, tobacco leaf substitution, and cigarette formulation maintenance
[111, 112].

Differences between instruments inmultivariate quantitative calibration are called
calibration transfer, which still exist in spectral searching technology. There are not
only certain differences between spectral instruments of different brands but also
slight differences between instruments of the same type. The essence of the model
transfer algorithm is the mathematical transformation between spectra. With the
continuous expansion of the applications of spectral library, although this problem
has received more and more attention in spectral searching [113–118], compared
with quantitative multivariate calibration, the research is not systematic, and there
are few reported cases of practical application in the spectral searching field, which
need to be further studied.

Finally, it is worth mentioning that while paying attention to spectral retrieval
algorithms and strategies, we should pay more attention to the experimental tech-
nology of establishing spectral database, that is, how to obtain high-quality standard
library spectra (large amount of information, strong characteristics, high signal-to-
noise ratio, excellent reproducibility, etc.), which involves many technical details,
such as the instruments, sample preprocessing methods, measurement and acces-
sories, optimization of measurement parameters, standardization of library construc-
tion process, etc. High-quality spectra is the basis of all searchingmethods, therefore,
to some extent, the experimental technology of establishing spectral library is more
important than the searching method.
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Chapter 13
Model Evaluation

13.1 Evaluation of Quantitative Calibration Model

13.1.1 Evaluation Parameters

Some statistical parameters, such as standard error of calibration (SEC), standard
error of prediction (SEP), determination coefficient (R2), or correlation coefficient
(R), are often used in the process of model establishment and validation [1, 2].

(1) Bias or residual (d) and range (e)

The formula of bias or residual (d) is as follows:

di = yi,predicted − yi,actual (13.1)

where yi,actual is the measured value of ith sample by the reference method; yi,predicted
is the predicted value of the ith sample of the calibration set or the validation set.
It is generally required that the deviation di should be less than the reproducibility
specified in the reference measurement method. The mean bias is the mean value of
di of all samples in the calibration set or validation set. Range e is the maximum bias
of all samples in the calibration set or validation set, that is:

e = max (di ) (13.2)

(2) Standard error of calibration (SEC)

The formula of SEC is as follows:

SEC =

√
√
√
√
√

n∑

i=1
(yi,actual − yi,predicted)

2

n − 1
(13.3)
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where yi,actual is the measured value of the ith sample by the reference method;
yi,predicted is the predicted value of the ith sample in the calibration set using the built
model; n is the number of samples in the calibration set. In some literature, SEC is
also called as RMSEC (root mean square error of calibration).

(3) Standard error of cross validation (SECV)

The formula of SECV is as follows:

SECV =

√
√
√
√
√

n∑

i=1
(yi,actual − yi,predicted)

2

n − 1
(13.4)

where yi,actual is the measured value of the ith sample by the reference method;
yi,predicted is the predicted value of the ith sample in the cross-validation process of
the calibration set; n is the number of samples in the calibration set. In some literature,
SECV is also called as RMSECV (root mean square error of cross validation).

(4) Standard error of prediction (SEP)

The formula of SEP is as follows:

SEP =

√
√
√
√
√

n∑

i=1
(yi,actual − yi,predicted)

2

m − 1
(13.5)

where yi,actual is the measured value of the ith sample by the reference method;
yi,predicted is the predicted value of the ith sample in the process of the prediction in
the validation set;m is the number of samples in the validation set. In some literature,
SEP is also called as RMSEP (root mean square error of prediction). The smaller the
SEP is, the stronger the predictive power of the model is. In general, SEP is bigger
than SEC and SECV.

The calculation formulas of SEC and SEP in different literature are also slightly
different. For example, the number of PLS factors f is considered in SEC, while SEP
is corrected by average bias as follows:

SEC =

√
√
√
√
√

n∑

i=1
(yi,actual − yi,predicted)

2

n − f − 1
(13.6)

SEP−b =
√

∑n
i=1 (yi,actual − yi,predicted − bias)2

m − 1
(13.7)

SEP2 = SEP2−b + bias2 (13.8)
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(5) Ratio of standard deviation of the validation set to SEP (RPD)

The formula of RPD is as follows:

RPD = SDv

SEP
(13.9)

where SDv is the standard deviation of the concentration values of all samples in
the validation set. The wider and the more uniform the property distribution of the
samples in the validation set is, and the smaller the SEP is, then the larger the RPD
value will be.

(6) Ratio of the SEP to the range (RER)

The formula of RER is as follows:

RER = Rn/SEP (13.10)

where Rn is the property distribution range of samples in the validation set, that is,
the range of concentration. If the concentration of samples in the validation set is
normally distributed, there is a relationship of RER = 2 × RPD.

(7) Ratio of performance to interquartile range (RPIQ)

For a set of data with a normal distribution, the SD value can be used to express
its distribution, that is, about 67% of the samples are distributed within ±SD range.
However, for some data sets, such as the content of organic carbon in soil, the
distribution is approximately lognormal, and about 93% of the samples are within
the ±SD range. Then interquartile range (IQR) is used to replace the SD to calculate
new evaluation parameters (ratio of performance to interquartile range, RPIQ) [3].

Quartile is a kind of quantile in statistics, that is, all the values are arranged from
the smallest to the largest and divided into four equal parts. The values at the position
of the three dividing points are the quartile (Fig. 13.1). The first quartile (Q1), also
known as the “smaller quartile”, is equal to 25% of all the values in the data sets in
order from smallest to largest; The second quartile (Q2), also known as the “median”,
is equal to the 50% number of values in the data sets from smallest to largest; The
third quartile (Q3), also known as the “higher fourth quartile”, is equal to the 75% of
all values in the data sets in order from smallest to largest. The difference between
the third and first quartile is called interquartile range (IQR).

The calculation formula of RPIQ is as follows:

RPIQ = (Q3 − Q1)/ SEP (13.11)
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Fig. 13.1 Schematic
diagram of quarter
segmentation

(8) Determination coefficient (R2) or correlation coefficient (R)

The calculation formula of R2 is as follows:

R2 = 1 −
∑n

i=1 (yi,actual − yi,predicted)2

∑n
i=1 (yi,actual −

−
y

actual
)2

(13.12)

where yi,actual is the measured value of the ith sample by the reference method;
−
y

actual
is the average value of all the measured values of the calibration set or the validation
set by the reference method; yi,predicted is the predicted value of the ith sample in
the prediction process of the calibration set or the validation set; n is the number of
samples of the calibration set or the validation set. Under the premise of the same
concentration range, the closer the R is to 1, the better the regression or prediction
result should be.

For R2 < 0.9, only one significant digit is required to represent R2, for example,
R2 = 0.8; For R2 < 0.99, reserve two significant digits to represent R2, for example,
R2 = 0.96; For R2 < 0.999, three significant digits are required to represent R2,
for example, R2 = 0.994; For R2 < 0.9999, four significant digits are required to
represent R2, for example, R2 = 0.9998.
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(9) Paired t test

Assuming that there is no systematic error between the spectroscopic method and
the reference method, there should be no significant difference between the mean

value
−
d and 0.

−
d is the difference between the measured results of the two methods,

namely,
−
d = 0. The paired t-test statistic is as follows:

t =
−
d

Sd/
√
m

(13.13)

where
−
d is the mean deviation between the two results of the spectroscopic method

and the reference method; Sd is the standard deviation of the deviation between the
two analysis methods, and m is the number of measured samples.

For a given level of significance of α, if |t| < t(α,m−1), indicating that there was no
significant difference between the predicted value by the calibration model and the
average value determined by the reference method.

13.1.2 Model Evaluation

In general, in the method of combining spectra with chemometrics, the modeling
parameters and results that need to be reported should include: the size of cali-
bration samples, the distribution range and standard deviation, reference methods
and their repeatabilities and reproducibilities’ requirements, spectral preprocessing
methods and their parameters, wavelength selection methods and wavelength range,
multivariate calibration methods for quantitive or qualitive analysis, the number of
the outlier samples that are eliminated, regression and validation and its statistical
parameters (such as the best number of principal component, SEC, SEP, and SECV.

For the establishment and validation of the spectral quantitative model, it is
suggested that the following model parameters should be reported [4]:

(1) Source of samples;
(2) Sample preparation and storage methods;
(3) Selection method of dividing samples into calibration set and validation set;
(4) The number of samples in calibration set, the number of samples in test set,

and the number of samples in validation set;
(5) Reference method and its standard error of the test;
(6) Mean and standard deviation of the reference values;
(7) Modeling method and its parameters (such as the number of principal

components of PLS method);
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(8) Data preprocessing method and its parameters;
(9) Spectral wavelength interval or wavelength selection method and results;
(10) Cross-validation method (such as leave one out cross validation, LOOCV);
(11) Identification method of outlier samples and the results;
(12) SECV (or RMSECV);
(13) Regression coefficient, slope, and intercept;
(14) RPD, R, or R2;
(15) Standard error of spectral method;
(16) Software and its version used.

13.1.2.1 Number and Representativeness of Calibration Sets

Basically, there are two requirements for calibration samples: (1) the sample should
be representative, and its composition should be included all of the chemical compo-
sition of the sample to be tested. The variation range of composition should be
greater than the corresponding range of samples to be tested. Usually, the range of
composition should be greater than five times of reproducibility of the reference
measurement, and the composition is evenly distributed over the whole range. For
example, the reproducibility of octane number of the gasoline determined by the
standard method is 0.7 units, and the range of the calibration samples is at least 3.5
units; (2) the quantity should be large enough to effectively extract the quantitative
mathematical relationship between the spectra and the components to be measured.
For a simple analytical system, at least 60 representative samples are required, and
for a complex measurement system, at least hundreds of representative samples are
required.

As shown in Fig. 13.2, sometimes test set is used in the process of model estab-
lishment, also known as control set or optimization set in some literature. In fact, it
should be a part of calibration set (or training set) andmainly used for determining and

Fig. 13.2 Relationship between original sample set, calibration set, test set, and validation set
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optimizing model parameters. For example, preprocessing methods and the number
of PLS principal components can be determined through test set. In addition, “early
stop” strategy in ANN is also based on the test set.

In general, 20% of the collected samples are used as test set, and 20% of them are
used as independent validation set, and the remaining 60% are used for establishing
the cross-validation model. After the model parameters have been optimized, the
samples of test set and calibration set are combined to establish the final model. The
representativeness of samples in calibration set, test set, and validation set should be
considered simultaneously.

13.1.2.2 Evaluation of Model Establishment Process

In the process of model establishment, metrics such as SEC, SECV, and R2 are used
to evaluate the quality of the model to select the optimal modeling parameters.

The smaller the SEC, the better the regression of themodel. Generally, the repeata-
bility of SEC is equivalent to that specified by the reference method. If SEC is too
small, it indicates that the calibration model may be overfitting, and SECV is usually
greater than SEC.

The determination coefficient (R2) of the calibration result can be also expressed

as follows : R2= 1 − SEC2

SD2
c

(13.14)

where SEC is the standard error of calibration, and SDc is the standard deviation
of concentration value of calibration samples. It can be seen that the size of R2 is
related to the concentration distribution range. For the same SEC, the wider the
concentration distribution range (the larger the SDc), the larger the R2.

The maximum R2 value can be estimated as the following formula:

R2
max= 1 − SEL2

SD2
c

(13.15)

where SEL is the repeatability of the reference method. If R2 exceeds this maximum
value, it is highly likely that the model is overfitting.

13.1.2.3 Model Validation

After the establishment of the model, it is necessary to use the validation set to
verify the accuracy, repeatability, robustness, and transitivity of the model. The vali-
dation set is composed of a set of samples, which are completely independent of the
calibration set. Only the validated model can be applied in practice.
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The samples in validation set should contain all the chemical components
contained in the samples to be tested, and the concentration or property range of
the validation samples should cover at least 95% of the concentration or property
range of the calibration samples, and the distribution should be uniform. In addition,
the number of the validation samples should be large enough to conduct statistical
test, usually requiring no less than 28 samples.

Accuracy: the spectra of the validation samples should be measured in the same
way as that of the calibration samples, and the reference values should be determined
in the same way as that of the calibration samples. The following parameters are
usually used to evaluate the accuracy of the model:

➀ Standard error of prediction (SEP): the smaller the SEP, the more accurate the
results. Some literature requires that the ratio of SEP to SEC should be less
than 1.2, that is, SEP should not be greater than 1.2 times of SEC. According to
probability statistics, the deviation between the predicted value and the actual
value of the reference method can be estimated by SEP. If the predicted value

of the spectral method is
∧
y, the probability that the actual value of the reference

method falls within the range of [
∧
y ± SEP] is about 67% and that of [

∧
y ± 2

× SEP] is about 95%. For example, the SEP of wheat moisture determined by
NIR spectroscopy is 0.5%, and if the predicted value of the sample is 20.0%,
the probability that the actual value of the reference method falls between 19.0
and 21.0% is about 95%.

➁ The correlation coefficient R, or the determination coefficient R2: under the
premise of the same standard deviation (SDv) of the validation set, the greater
the R, the higher the accuracy. The value of R2 is greatly related to the distribu-
tion range (SDv) of the properties to be measured. For properties with a wide
distribution range, the value of R may be close to 1, but its accuracy may be
poor.

As shown in Fig. 13.3, for the same RMSEP, the determination coefficient R2

varies greatly in different concentration ranges. When the concentration range of
validation set increases from 13.17% to 10–20%, its determination coefficient R2

increases from 0.625 to 0.911 [5].

➂ RPD value: under the premise of the same concentration range, the greater the
RPD, the higher the accuracy. It is generally believed that if RPD> 5, it indicates
that the prediction result of the model is acceptable. If RPD > 8, the prediction
accuracy of the model is very high. If RPD < 2, it indicates that the prediction
result is unacceptable.

RPD classification of models for predicting grain chemical composition content
(Table 13.1) and for predicting forage, feed, soils, and functionality factors (Table
13.2) [6, 7] have been given in some literature.

In fact, RPD and R2 are the same evaluation metric (Fig. 13.4), and their
relationship is as follows:
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Fig. 13.3 Influence of concentration range on determination coefficient under the same RMSEP
a: concentration range 12–18%, R2 = 0.786; b: concentration range 13.17%, R2 = 0.625); c:
concentration range 10–20%, R2 = 0.911 [5]

Table 13.1 The RPD
statistic for predicting grain
chemical composition content

RPD value Classification Application

0.0–2.3 Very poor Not recommended

2.4–3.0 Poor Rough screening

3.1–4.9 Fair Screening

5.0–6.4 Good Quality control

6.5–8.0 Very good Process control

8.1+ Excellent Any application

RPD =
1

√

1 − R2
(13.16)

For example, if R2 of the validation set is 0.90, its RPD is 2.29; If R2 = 0.98, then
RPD is 5.0. Therefore, the concentration range also has a significant effect on RPD.
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Table 13.2 The RPD statistic
for predicting forages, feeds,
soils, and functionality factors

RPD value Classification Application

0.0–1.9 Very poor Not recommended

2.0–2.4 Poor Rough screening

2.5–2.9 Fair Screening

3.0–3.4 Good Quality control

3.5–4.0 Very good Process control

4.1+ Excellent Any application to this type of
material

Fig. 13.4 Relationship
between RPD and R2

It should be noted that in some literature, when calculating RPD, the SD of
calibration set is used to replace the SD of validation set. In this case, the above
relationship between RPD and R2 is not valid.

➃ The t test is used to test whether there is a significant difference between the
measured values by the spectral method and the reference method. If the t-test
is passed, it can only show that there is no systematic error between the spectral
method and the reference method, but it cannot completely explain the accuracy
of its prediction results.

The above five parameters are all based on the evaluation results of statistical
test. Another type of accuracy method is the validation method based on a single
sample, which investigates whether the absolute deviation between the predicted
value of the spectral method and the actual value of the reference method is less
than the reproducibility required by the reference method. If 95% of samples in
the validation set meet this requirement, the test passes. This validation method of
accuracy ismore suitablewhen the precision of the referencemethod is not uniformly
distributed in the concentration or property range of the whole calibration set.



13.1 Evaluation of Quantitative Calibration Model 391

Repeatability: More than five samples are selected from the validation set to
verify the repeatability of the spectral method. The concentrations of these samples
must cover 95% of the calibration concentration range and be uniformly distributed.
At least six times of continuous spectral measurements need to be carried out for
each sample, and the samples should be reassembled during spectral collection. The
results are calculated with the established calibration model, and the repeatability of
the spectral method was evaluated by means of average value, range, and standard
deviation. It is generally required that the standard deviation of repeatability of the
measured results by the spectral method is not greater than 0.33 times of SEP, that
is, the standard deviation of repeatability of the NIR spectral method accounts for
about one third of SEP.

Robustness: The robustness of the model refers to its resistance to external inter-
ference factors. These factors mainly include the same type of the replacement of test
sample device (such as color plate, optical fiber probe, and integral ball), the change
of fiber bending degree, the replacement of light and reference material (such as
ceramic chip or barium sulfate powder), the change of sample loading condition and
temperature (environment temperature and sample temperature), and the physical
state of particle (such as moisture content of grain, the polymer particle size, and
residual solvent). The robustness of the model can be evaluated by examining the
repeatability of samples. For example, when examining the influence of the color
plate, you can choose more than one color plate of the same specification (mate-
rial and optical path), such as the color plate of different manufacturers, as well
as the same batch and different batches of the same manufacturer. The robustness
can be evaluated by the average value, range, and standard deviation. It is generally
required that the standard deviation of robustness of the measured results by the
spectral method be no more than 0.5 times that of the SEP.

Transmissibility: the transmissibility of the analysis model mainly depends on the
hardware differences between the instrument systems. Its essence is to examine the
replaceability of the spectrometer and its key parts (optical systems such as interfer-
ometers). The transferability of the analysis model directly affects the generalization
ability of the spectral method. If the spectrometer from the same manufacturer does
not have the model transferability, it is difficult for users to share the rich model
resources. It is possible to use the sample for the investigation of the repeatability
to evaluate the transmissibility of the model. For example, multiple spectrometers
of the same type are selected and used to collect the spectra of above samples.
Prediction analysis of the spectrum of the same sample in a different spectrometer is
carried out by the model built on one instrument. The average, range, and standard
deviation values are employed to evaluate transmissibility. Typically, there are signif-
icant system errors that require spectral calibration, known as calibration transfer,
to produce consistent results. However, there are a few instrumental manufacturers
whose calibration models can be directly used for the same type of spectrometers
without any modification, that is, model data can be directly transmitted, known as
calibration transfer. It is usually required that the standard deviation of the transmis-
sibility of the measured results of the spectral method is not greater than 0.7 times
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of SEP, that is, the spectrum of the same sample is measured on different instru-
ments, and the same model is used for prediction (before prediction, the spectrum of
the secondary instrument can be transformed by calibration transfer). The standard
deviation of the predicted results is not greater than 0.7 times of SEP.

13.2 Evaluation of Performance of Pattern Recognition
Model

The following parameters are usually used to evaluate the performance of pattern
recognition (mainly the supervisedmethod).Theseparameters canbeused to evaluate
the performance of the discriminant analysis on both the calibration set (including
the cross-validation process) and the validation set samples.

Confusion matrix is commonly used in the evaluation of classification results,
which gives the corresponding relationship between the predicted category and the
actual category of the sample [8]. For a classification problem of G classes, the
confusionmatrix is aG×Gmatrix as shown in Table 13.3. The rows of the confusion
matrix represent the real classes and the columns represent the predicted classes. The
element ngk in the matrix means that there are ngk samples of real class g that are
predicted to be class k, and the element on the diagonal of the matrix represents the
correct number of samples of predicted class. If the prediction class of each sample
is correct, the confusion matrix is a diagonal matrix.

Based on the confusion matrix, the following parameters can be calculated:
Correct classification rate can be calculated in the formula (13.17):

NER =

G∑

g=1
ngg

n
(13.17)

where n is the number of all samples in the calibration set or validation set.
The misclassification rate ER can be calculated as follows:

Table 13.3 Confusion matrix

Predicted class

Real class 1 2 3 … G

1 n11 n12 n13 … n1G

2 n21 n22 n23 … n2G

3 n31 n32 n33 … n3G

… … … … … …

G nG1 nG2 nG3 … nGG
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ER = 1 − NER (13.18)

The classification error rate ER can be compared with the NOMER value which
can be calculated as follows:

NOMER = n − nM

n
(13.19)

where nM is the number of samples in the class with the largest number of samples in
the calibration set, and NOMER represents the error rate of directly classifying the
samples into class M without discriminant analysis, which obviously requires that
NER < NOMER.

Themisclassification rate ER can also be comparedwith the random classification
rate (RER), which means the error rate of randomly assigning a sample to a certain
class without discriminant analysis. The formula for calculating RER is as follows:

RER =

G∑

g=1

(
n−ng
n

)

ng

n
(13.20)

where ng is the number of samples in class g of the calibration set.
For each class of discriminant results, the following parameters can be used to

evaluate. The sensitivity or recall rate can be calculated as follows:

Sng = ngg
ng

(13.21)

where Sng represents the ability of the discriminant model to correctly assign g
samples to class g.

The precision parameter can be calculated as follows:

Prg = ngg
n ′
g

(13.22)

where n
′
g represents the number of samples predicted for class g. Prg represents the

ability of the discriminant model to assign only g samples to class g.
The specificity parameter can be calculated as follows:

Spg =
∑G

i=1 (n
′
k − ngk)

n − ng
(k �= g) (13.23)
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Table 13.4 Confusion matrix of the discrimination results based on three classes and 30 samples

Predicted class

Real class A B C

A 9 1 0 10

B 2 8 2 12

C 1 2 5 8

12 11 7 n = 30

where n
′
k represents the number of samples predicted for class k. Spg represents

the ability of the discriminant model to classify non-g class samples as non-g class
samples.

Table 13.4 is the confusion matrix of three classes’ discriminant results with 30
samples, and Table 13.5 is the statistical parameter value obtained by the evaluation
of the discriminant results.

Kappa coefficient can be used to measure the classification effect. The calculation
of Kappa coefficient is based on confusion matrix, and the calculation result of
Kappa is between −1 and 1, but usually the Kappa falls between 0 and 1. It can be
divided into five grades to represent the consistency of different classes: extremely
low consistency from 0.0 to 0.2 (slight), general consistency from 0.2 to 0.4 (fair),
moderate consistency from 0.4 to 0.6 (moderate), high consistency from 0.6 to 0.8
(substantial), almost complete consistency from 0.8 to 1.0 (almost perfect).

The Kappa coefficient (k) is calculated by the following formula:

k = po − pe
1 − pe

(13.24)

Table 13.5 Statistical
parameters obtained by
evaluating the discriminant
results

Parameter Value

NER 0.73

ER 0.27

NOMER 0.60

RER 0.66

Sn (A) 0.90

Sn (B) 0.67

Sn (C) 0.63

Sp (A) 0.85

Sp (B) 0.83

Sp (C) 0.91

Pr (A) 0.75

Pr (B) 0.73

Pr (C) 0.71
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where po is the summary of the number of samples in each class divided by the total
number of samples, that is, the overall classification accuracy.

The number of real samples for each class is a1, a2, …, aC, respectively, and the
predicted number of samples for each class is b1, b2, …, bC, respectively. The total
number of samples is n, then we have a following value.

pe = a1 × b1 + a2 × b2 + · · · + aC × bC
n × n

(13.25)

For the confusion matrix in Table 2.10, the calculation process of its Kappa
coefficient is as follows:

po = 9 + 8 + 5

30
= 0.7333

pe = 10 × 12 + 12 × 11 + 8 × 7

30 × 30
= 0.3422

k = po − pe
1 − pe

= 0.7333 − 0.3422

1 − 0.3422
= 0.5946

The Kappa coefficient (k) can also be calculated by the following formula:

k = n
∑r

i=1 (xii ) − ∑r
i=1 (xi + x+i )

n2 − ∑r
i=1 (xi + x+i )

(13.26)

where n is the total number of samples, r is the number of rows or columns of the
confusion matrix, xi+andx+i represent the sum of all rows and columns respectively,
and xii is the value of the diagonal of the confusion matrix, namely the number of
samples correctly classified.

For true and false recognition problems, the confusion matrix can be simplified
to a contingency table, as illustrated in Table 13.6.

If a true sample is identified as true, it is defined as TP (True positive); if a true
sample is identified as false, it is defined as FN (False positive); if a false sample is
identified as false, it is defined as TN (True negative); if a false sample is identified as
true, it is defined as FP (false negative). Then the above parameters can be calculated
according to the following formula:

Table 13.6 Confusion matrix of discriminant analysis based on two types (contingency table)

Predicted class

Real class True (P) False (N) Total samples of real class

True (P) TP FN TP+FN

False (N) FP TN FP+TN

Total samples of predicted
class

TP+FP FN+TN TP+FP+FN+TN
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Precision, NER = TP + TN

n
(13.27)

Misclassification rate, ER = FP + FN

n
(13.28)

True positive rate (TPR), also known as sensitivity, can be calculated as follows:

TPR = Sn = TP

TP + FN
(13.29)

False negative rate (FNR), also known as missed diagnosis rate, can be calculated
as follows:

FNR = 1 − TPR (13.30)

True negative rate (TNR), also known as specificity, can be calculated as follows:

TNR = Sp = TN

FP + TN
(13.31)

Classification efficiency (EFF), also known as G Score in some literature, can be
calculated as follows:

EFF = √
TPR × TNR (13.32)

According to the above parameters, when TPR = 0 and FPR = 0, it indicates that
all samples are predicted to be false class (negative class); when TPR = 1 and FPR
= 1, it indicates that all samples are predicted to be true class (positive class); when
TPR = 1 and FPR = 0, it indicates that all samples are correctly classified.

TheF1 score is an indicator used in statistics tomeasure the accuracy of the binary
classification (or multitasking binary classification) model. It takes both precision
and sensitivity of the classification model into account. F1 score can be regarded as
a weighted average value of model accuracy and sensitivity, with a maximum value
of 1 and a minimum value of 0. The greater the value, the better the model. It can be
calculated as follows:

F1 = 2 × NER × TPR

NER + TPR
(13.33)

As shown in Fig. 13.5, ROC (receiver operating characteristic) curve can be
obtained by drawing FPR (1-Specificity, X-axis) and TPR (Sensitivity, Y-axis). The
ROC can be used to evaluate the quality of the classification model. A good classifi-
cation model should be close to the upper left corner of the graph as possible, while a
randomly guessed model should be located on its main diagonal. The closer the area
under the ROC curve is to 1, the better the classification model is. If it is between
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Fig. 13.5 Receiver
operating characteristic
(ROC) curve and different
quality of the classification
model based on the area
under the ROC curve

0.9 and 1.0, the classification model is excellent. If it is between 0.8 and 0.9, the
classification model is good. At 0.7–0.8, the classification model is acceptable; At
0.6–0.7, the classification model is very poor; At 0.5–0.6, the classification model is
invalid.

Matthews correlation coefficient (MCC), also known as Phi coefficient, can be
used to evaluate the advantages and disadvantages of the two types of discriminant
results:

MCC = ϕ = TP × TN − FP × FN√
(TP + FN) × (TN + FP) × (TP + FP)(TN + FN)

(13.34)

When ϕ is equal to 1, it indicates that the classification is completely correct.
When ϕ is less than 0, it indicates that the classification effect is not as good as a
random guess.
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Chapter 14
Methods for Improving Prediction
Ability of Model

Model prediction ability mainly refers to the performance of robustness and accu-
racy. They are unified in some cases but contradictory in others. For example, for
liquid samples, the conditions of spectroscopic acquisition (such as temperature and
pressure) can be strictly controlled. A quantitative calibration model can be estab-
lished accordingly. The model has high prediction accuracy for samples within the
bounds under the same conditions. However, if the spectral acquisition conditions
change moderately, the prediction accuracy of the model will become significantly
worse. A hybrid calibration model can be established on the spectra collected under
different conditions to improve the robustness (or adaptability) of the model. Yet, the
model accuracy would be decreased in this case. In practice, it is often necessary to
seek a balance between robustness and accuracy [1].

14.1 Modeling Strategies for Improving the Robustness

There are two ways to improve the robustness of the model. One is to preprocess and
select the spectral variables. The other is to establish a hybrid model.

Spectral preprocessing methods, such as derivative, multiplicative scatter correc-
tion (MSC), orthogonal signal correction (OSC), andwavelet transform (WT), would
be used to eliminate the interference of external conditions on the spectra as much
as possible. Wavelength variable selection methods such as genetic algorithm (GA)
can select wavelength with strong information and insensitive to external influence
factors, so as to establish a robust calibration model.

Another way to achieve the robustness of the analytical model is to establish a
hybrid calibration model, also known as the global calibration model, incorporating
expected intrinsic changes and external impacts into calibration set. For example, it
can realize the robustness of the model to temperature by building a global temper-
ature model with a temperature hybrid calibration set involved samples measured
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with different temperature. The method is simple and feasible. Other robust anal-
ysis models can also be established by adding spiked samples for other influencing
factors such as sample types and measurement conditions. For example, Fig. 14.1
shows a hybrid calibration model with strong fitness and robustness is established
by forming a calibration set with a wide range of laboratory synthesized samples
and narrow distribution samples from the online process [3–6]. Mehdizadeh et al.
[7, 8] monitored the cell culture process using online Raman spectra, the samples
in calibration set were collected from cultures of different cell strains and cultures,
and additional samples prepared from glucose and lactic acid were added to blank
cultures to enhance the model robustness. In practice, in order to obtain robust cali-
bration models, hundreds of batches of independently running samples need to be
collected for many years [9].

However, in practical operation, nonlinear problems should be paid attention to.
For example, wide temperature range or quite different sample types would have
nonlinear influences on the spectra. It is difficult to establish a model to meet the
accuracy requirements only by linear calibration methods such as PLS, which can
be solved by nonlinear calibration methods such as ANN [10].

14.2 Modeling Strategies Based on Local Samples

The modeling strategy based on local samples was proposed in 1988, which is a
method to improve the accuracy of modeling. However, due to the instrument hard-
ware platform and other reasons, it has not attracted too much attention, until in
recent years. With the continuous standardization of instrument manufacturing, this
database and library search-based method is really practical. Contrary to the idea of
establishing a global calibration model, the basic idea of the local modeling strategy
is to select a group of samplesmost similar to the unknown samples from the database
(i.e., samples in calibration set) based on the spectra (or its derived feature variables),

Fig. 14.1 The first two
principal component
distributions of the spectra of
laboratory synthetic samples
and field process samples by
PCA
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and then obtain the final results from these samples (i.e., the local samples) through
statistical analysis or classical calibration methods (Fig. 14.2) [11].

How to select local samples and how to get the final prediction result inmany local
modeling methods, such as comparison analysis using restructured near infrared and
constituent data (CARNAC), locally weighted regression (LWR), and LOCAL.

The CARNAC method processes the spectra using the Fourier coefficient as the
characteristic variable for searching for local samples. To ensure the accurate deter-
mination of low content components, this method needs to select local samples for
different analytical parameters, i.e., select the characteristic Fourier coefficient by
gradual multivariate linear regression, and then select local samples according to the
similar index s (s = 1/(1–R2), R is the correlation coefficient between the unknown
sample and a sample in the database). The final predictions are given by the under-
lying data corresponding to the local samples via a similar exponential weighted
average method. Davies et al. [12] improved the CARNAC method by replacing
Fourier transform with the wavelet transform.

LWR method uses principal component analysis to compress the spectra of
database samples and takes the principal component score as the characteristic vari-
able combined with Euclidean or Mahalanobis distance to select local samples, and
establishes a calibration model using principal component regression to predict the
unknown samples [13]. Subsequently, several improvements are made on the selec-
tion and regression method of local samples, such as the calculation and selection of
principal components and the calculation of distance [14].

The LOCAL method [15] uses the correlation coefficient between the unknown
sample spectra and the database sample spectra to select the local samples and estab-
lishes the local calibration model (different principal factor weighting) by partial
least squares to predict the unknown samples. The LOCAL has become a method
in FOSS WINISI software and has been reported in several applications [16, 17].
TOPNIR method, which has certain applications in the petrochemical field, is also
based on local samples. The method has been used for NIR spectral analysis of oil
refining products. It selects local samples through neighboring indices of different
properties constructed by absorbance of characteristic peaks of different chemical
groups, and a weighted average method is adopted to calculate the final results.

Fig. 14.2 Schematic diagram of the local modeling strategy
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Based on the above methods, a variety of methods have emerged for modeling
strategies based on local samples. Fearn et al. [18] proposed to select local samples
with the predicted concentration values obtained by global regression and the scores
obtained by OSC algorithm as characteristic variables. Chung et al. [19] used Fourier
moment of the spectra as characteristic variables to select local samples, then estab-
lished local partial least squares calibration models by using the differential spectra
method to identify subtle differences between sample spectra.

He et al. [20] fused wavelength screening with local modeling strategies for the
establishment of gasoline blending online NIR spectral models, and local samples
were selected by supervised local preserving projection (SLPP) after dimension
reduction of the spectra. Zhang and Yan et al. [21, 22] proposed local sample selec-
tionmethods based on the net signal analysis and the spectral information divergence,
respectively, in order to overcome the problems of large difference between calibra-
tion samples and nonlinearity between the properties to be measured and the spectra
in quantitative analysis.

Based on the idea of just-in-time learning (JITL), Tulsyan et al. [23] selected 100
samples with the smallest sample Euclidean distance from the samples to be tested
from 3800 samples for PLS modeling, showing a significant improvement in model
performance compared to the use of full samples for modeling. Then, with the help
of JITL modeling ideas and Gaussian process regression method, they put forward
the automatic real-time modeling strategy to realize the “intelligent” of the model
maintenance.

The modeling strategy based on local samples is suitable for the calibration of the
nonlinear system. At the same time, it can take full advantage of the database to avoid
the disadvantages of the traditional factor analysis methods that need to frequently
update the model due to changes such as the sample compositions. However, for
specific analysis projects, how to select the local samplesmost similar to the unknown
samples, howmany local samples to choose, and how to get the final prediction results
still need to be further researched.

A similar idea for establishing the local calibration model is to establish a quan-
titative calibration model by classification. This method first conducts the samples
into cluster analysis (as shown in Fig. 14.3) and divides the calibration set samples
into multiple classifications, and then establishes the quantitative calibration model
on each classification [24–26]. For the samples to be predicted, the classification is
first judged based on the spectra, and then a quantitative calibration model of the
corresponding classification is selected to predict the results.

14.3 Ensemble Modeling Strategies

Traditional multivariate calibration techniques such as PLS and ANN generally
employ a single model, namely, establishing an optimal model by using estab-
lished training sets for predictive analysis. However, when the number of samples
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Fig. 14.3 Schematic
diagram of cluster analysis
for the samples in calibration
set

Feature variable 1

Feature variable 2
in training set is limited or the calibration method is unstable, the prediction accu-
racy and stability of the model are often not satisfactory. The basic idea of ensemble
or consensus strategy is to build multiple models (member models) in a random or
combined manner with the simultaneous prediction of the different subsets of the
same training set, making multiple predictions by simple or weighted average. It is
characterized by reducing the dependence of the prediction results on a certain (or
some) sample by repeatedly using the information in the training set, thus improving
the prediction stability of the model.

Ensemble strategies were first applied to pattern recognition classification prob-
lems, especially some relatively unstable algorithms such as ANN, which have grad-
ually attracted the attention in spectral analysis in recent years. It is combined with
multiple algorithms such as PLS, SVM, andANN to establish quantitative calibration
models. The selection of member model samples in ensemble modeling is crucial.
Bootstrap Aggregating (bagging) and boosting are the two main methods [27, 28].

14.3.1 Bagging Ensemble Strategy

In the classical bagging method, the sample selection adopts the bootstrap method.
The sample size of the randomly selected member training set is the same as that of
the original training set, but the sampling method is taken back. Thus, some samples
in the original training set may occur multiple times in the member training set,
while others may not appear once. The bagging method increases the divergence
of model integration by re-selecting the training set to improve the generalization
abilities. Stability is the key factor in whether bagging can play a role. Bagging
can improve the prediction accuracy of the unstable calibration algorithm, but it
does not work significantly on the stable calibration algorithm, and sometimes even
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reduces the prediction accuracy. The stability of the calibration algorithm is that
the calibration results will not change greatly if the training set has small changes.
For the final predictions, the classical bagging method takes a simple averaging
approach. Figure 14.4 shows the modeling strategy schematic of bagging combined
with PLS.

Galvao et al. [29–31] improved the classical bagging method, such as using
subbagging for sample selection, evaluation selection ofmembermodels, and predic-
tion with weights. The composition or properties of soil, tobacco, and corn deter-
mined by near infrared (NIR) spectroscopy were modeled and verified using this
method, and satisfactory results were obtained.

14.3.2 Boosting Ensemble Strategy

Boosting was first proposed by Schapire in 1990. In 1995, Freund and Schapire
[32] improved the boosting algorithm and proposed boosting (adaptive boosting,
AdaBoost) algorithm that can be very easily applied to practical problems. Therefore,
the algorithm has become the most popular boosting algorithm at present.

The difference between boosting and bagging is that the selection of member
training set for bagging is random, and each member training set is independent of
each other. For boosting, the selection of member training set is not independent,
which relates to the learning results of the previous iteration. Therefore, the predictive
functions of bagging can be generated in parallel, while the prediction functions of
boosting can only be generated sequentially and weighted.

The basic idea of the AdaBoost algorithm applied to classification is to gradu-
ally construct a set of classifiers. Each new classifier focuses on compensating the
defects of the previous classifier, and finally integrates the classification results of all
classifiers to achieve more ideal classification results. Zhang and Drucker et al. [33,
34] modified the boosting algorithm to solve the regression problem. The boosting
regression algorithm proposed by Drucker which is commonly used in the literature
is described below.

The boosting regression algorithm proposed by Drucker et al. was to produce
a set of basic member models through an iterative process as shown in Fig. 14.5.
Given the training set and the learning algorithm, first gave equal weights to each
training sample, normalized to get the first sampling probability distributionP1 of the
training set. The sampling generated member training set 1. The learning algorithm
was used to establish member regression model h1 for member training set 1. Then,
the weight of the sample was corrected according to the error generated by the
member regression model h1 on each sample, the weight of the sample with large
error was increased, thus increasing its sampling probability. After normalization,
the sampling probability distribution P2 of the training set was obtained. Member
training set 2 was generated by sampling, and member regression model h2 was
trained by learning algorithm onmember training set 2. After that, the sample weight
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Fig. 14.4 Schematic diagram of modeling strategy for bagging combined with PLS method

was further adjusted according to the error, which was repeated to obtain a set of
gradually modified member regression models h1, h2, h3, …, hg.

The implementation steps of the boosting regression algorithm are as follows.
For the original training set {(xi, yi), i = 1,…, n} (n is the number of samples

of the original training set), first given the basic learning algorithm (e.g., PLS, SVR
or ANN, etc.) [35]. The maximum iteration number of boosting is g. and sample
weights are initialized by Eq. 14.1.

ω
(1)
i = 1/nνi = 1ν2ν...νn (14.1)

Take the number of iteration t = 1,…, g, repeat the following steps (1)–(7).

(1) The samplingprobability of each sample of the original training set is calculated
using Eq. 14.2.

p(t)
i = ω

(t)
i /

n∑

j=1

ω
(t)
j (14.2)

Then part of the samples from the calibration set for member training set of
the t iteration are picked up by roulette (allowing the repeated sampling).

(2) Build the member regression model ht by basic learning algorithm based on n
samples in member training set of t iteration.

(3) (3) Predict each sample in the original training set by using the member regres-
sion model ht . The predictive values for each sample ŷ(t)

i , i= 1 ,..n, can be
obtained.
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Fig. 14.5 Schematic diagram of modeling strategy for boosting combined with PLS method

(4) Calculate the errors for each sample in the original training set by using
Eq. 14.3.

L(t)
i =

∣∣∣ŷ(t)
i − yi

∣∣∣

max
∣∣∣ŷ(t)

i − yi
∣∣∣
, i = 1, 2, ..., n (14.3)

(5) Calculate the sum of weighted error for t iteration.

L̄ t =
n∑

i=1

Lip
(t)
i (14.4)

(6) Calculate the confidence indicator βt

βt = L̄ t

1 − L̄ t
(14.5)

(7) Calculate the new sampling weights for the sample i in t + 1 iteration.
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ω
(t+1)
i = ω

(t)
i β

(1−L(t)
i )

i (14.6)

For an unknown sample, g predictive values are calculated by using the gmember
model, respectively. The final results are obtained by fusion calculations.

Drucker et al. calculated the final result by weighted median. First, g predictive
values were sorted in ascending order.

y(k1) ≤ y(k2) ≤ ... ≤ y(kg)
, kg is 1, 2, …, g to rearrange. Then the predictive value

of the kr member model corresponding to the following minimum r was the final
predictive value. Then, the rth prediction that satisfies Eq. 14.7 is taken as the final
result of the sample.

r∑

t=1

log(1/βkt ) ≥ 1

2

g∑

t=1

log(1/βkt ) (14.7)

In order to prevent over-fitting during the boosting PLS iteration, Wu et al. [36]
proposed a new iterative stop criterion and was used to model the rapid prediction
of total organic carbon (TOC) in water quality by the UV–visible spectroscopy. To
reduce the influence of outliers in calibration set, Shao et al. [37] improved boosting
PLS algorithm by adjusting sampling weight and defined a new loss function, which
could obtain robust prediction results. Chen et al. [38] combined the variables with
boosting PLS to further improve the NIR spectral quantitative prediction ability for
ethanol precipitation process of Lonicera japonica.

14.3.3 Stacked Ensemble Strategy

Both boosting and bagging ensemble modeling strategies are based on sample selec-
tion from calibration set. Ensemble modeling strategies can also be based on wave-
length selection. The wavelength-based ensemble modeling strategy is to select
multiple different wavelength ranges (sub-feature) from the spectral matrix of the
training set according to some rules for establishingmembermodels. The sub-feature
matrix used by different member models can be overlying or completely independent
[39].

The stacked interval partial least squares (SPLS) method is a PLS model built by
weight fusion on different spectral intervals [40–42]. The method divides the spectra
into k intervals and establishes a PLS model for each spectral interval. The standard
error of cross validation (SECV) obtained during the modeling process is used for
calculating the fusion weight ω. The i spectral interval weight ωi is calculated as
follows:

ωi = S2i∑k
i=1 S

2
i

(14.8)
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In Eq. 14.8, Si is the reciprocal of SECVi for the model built by the i spectral
interval, where i = 1, 2,…, k, k is the number of divided spectral intervals.

The concentration value y of the predicted sample spectrum x, is calculated by
the following equation.

y =
k∑

i=1

xiωi bi,PLS (14.9)

where xi is the spectrum of the i spectral interval and bi,PLS is the PLS regression
coefficient of the i spectral interval.

Using this idea, the strategy of the moving window can replace the interval spec-
trum. On the spectrum of a certain window width, a series of PLS models can be
established through the movement of the window, and then the final integrated PLS
model can be obtained by weighted fusion [43, 44].

Based on the stackmodeling strategy, the dual stacked interval partial least squares
(DSPLS) method was proposed by Bi et al. [45] As shown in Fig. 14.6, the method
includes two steps, i.e., inner-stack step and outer-stack step. In the inner-stack
process, the spectrum is divided into n intervals, establish PLS model in interval 1,
interval 1–2, interval 1–3, … and 1-n, respectively, and then stack into n sub-model.
In the outer-stack process, the n sub-model is weighted and fused to obtain the final
model.

The stack modeling strategy can be used in other quantitative calibration methods
such as stack extreme learning machine algorithms [46–48]. Figure 14.7 shows the
basic framework of stacked ensemble extreme learning machine (SE-ELM) model.
It is actually an application of ELM in the frame of stacked generalization [47].

In quantitative multivariate calibration, in addition to the above ensemble
modeling strategy, there is also an ensemblemodeling strategy for adding noise based

Fig. 14.6 Schematic diagram of ensemble strategy for dual stacked PLS
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Fig. 14.7 Schematic diagram of stacked ensemble extreme learning machine [47]

on variables, which artificially adds noise to the spectral matrix X or concentration
vector y in the training set to form multiple member training sets containing noise,
so as to enhance the robustness of the member model [49–51]. In addition, there
are ensemble modeling methods based on different data preprocessing (Fig. 14.8)
and calibration algorithms [52–55], as well as ensemble methods combined with
concentration classification and wavelength selection [56, 57].

14.3.4 Stacked Generalization Strategy

Similar to quantitative calibration, the strategy of ensemble modeling is also adopted
in the field of pattern recognition, that is, the multiple classifier systems (MSC). The
classification performance can be better than any single classifier by the selection
and combination of base classifiers.

The construction of multi-classification systems mainly adopts parallel structure,
parallel training with multiple classifiers, and then combines the results with some
selections and weight strategies. For example, random forest is based on bagging
generating multiple different sub-sample sets from the original sample set. It trains
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Fig. 14.8 Schematic diagram of ensemble modeling strategy based on different preprocessing
methods

the binary decision tree to build classifiers using classification and regression trees
(CART) algorithm. Then the classification results of each classifier adopt the method
of majority voting to get the final results. Adaptive boosting (Adaboost) is the more
representative algorithm in the boosting. It is achieved by changing the data distri-
bution. The weight of each sample is determined according to whether the classi-
fication of each sample in each training set is correct and the accuracy of the last
overall classification. The new data set with modified weights is sent to the lower
classifier for training. Finally, integrate the classifier obtained from each training
as the final decision classifier. In addition, there are other boosting algorithms such
as gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost),
and light gradient boosting machine (LightGBM). Adaboost, GBDT, XGBoost, and
LightGBM can also be used for the integration of regression models [58–62].

Unlike bagging and boosting, stacked generalization, also known as stacking
learning, is a multi-level integrated learning system with serial structures. To better
describe the multi-level processing process of stack generalization, stack generaliza-
tion introduces the base classifier and meta classifier concepts where base classifiers
are trained using the original features with their output as secondary new features,
while the meta classifier will retrain the secondary features and form the final judg-
ment classifier [62–64]. As shown in Fig. 14.9, the stacked generalization structure
framework is mainly divided into two levels: Level-0 and Level-1.
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Fig. 14.9 Framework of stacked generalization algorithm

Using each basic classifier at the Level-0, the training set samples are trained
and predicted by multiple-fold interactive verification to obtain various posterior
probabilities of each training sample. If the training sample has N classifications,
then each basic classifier will produce N new feature dimensions pkj composed of
posterior probabilities. K classifiers will constitute K × N new dimensions. These
new feature dimensions will serve as training data in Level-1, called metadata. In the
Level-0 stage, metadata is determined by the prediction and judgment of the base
classifier on the original training set. Compared with the original spectral feature set,
it belongs to strong features and also achieves the function of dimension reduction.
In fact, this process can be considered as an efficient “dimensionality reduction”
operation, which involves feature transformation of the original spectra to obtain
new features composed of posterior-like probabilities. In the Level-1 stage, the meta
classifier is trained by using new features, and any classifiers can be used as the
meta classifier. Finally, a meta classifier model is obtained for the final classification
judgment of the samples [63, 65].

14.4 Virtual Sample Modeling Strategy

Sufficient training samples are an important guarantee for improving the predic-
tion accuracy and robustness of multivariate quantitative and qualitative models.
The limited number and loosely distributed samples cannot fully describe the whole
feature space, and there is an obvious information gap between the samples, which
deteriorates the representation of the overall characteristics of small samples. There-
fore, the conclusion of modeling directly using small sample data is one-sided and
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biased. However, obtaining sufficient training samples usually consumes a lot of
manpower and material resources. Therefore, how to improve the prediction ability
of the model under a small amount of training data has become a topic worthy of
research.

In order to improve the learning ability of small sample problems, semi-supervised
learning strategies have been proposed in recent years. A common feature of these
methods is that a large number of unlabeled samples are needed as auxiliary samples
for learning, and this requirement is also difficult to meet in many cases. Therefore,
in 1992, Poggio and Vetter [66] proposed the idea of virtual samples. Virtual samples
can also be named by synthetic sample or artificial sample. It refers to the production
of some reasonable samples in the sample space to be studied by using the prior
knowledge of the research field and combining the existing training samples under
the condition of unknown sample probability distribution function. Thus, they can
be added to the original training sample set to expand the training sample set and
improve the prediction ability of the model (Fig. 14.10).

So far, virtual sample generation (VSG) can be divided into the following three
categories [67]

(1) Construct virtual samples based on specific prior knowledge in the research
field.

(2) Construct virtual samples based on the idea of perturbation.
(3) Construct virtual samples based on the distribution function in the research

field.

Li et al. [68] proposed the mega-trend-diffusion (MTD) method. The
method defined the global boundary of information diffusion, calculated the left
boundary and right boundary of the corresponding virtual sample information by
membership function, so as to generate the virtual sample information in this range.
The sample information is expanded more evenly in the global boundary field,
thus improving the prediction performance of the model. Zhu et al. [69] proposed
multi-distribution mega-trend-diffusion (MD-MTD) method for further optimizing

Fig. 14.10 Relationship
among population, small
sample set and virtual
sample set
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the problems of virtual sample boundary establishment and sample screening.
It improved the quality of generating virtual samples by multi-segmentation of
the sample distribution areas.

Based on MTD, Gao et al. [70] proposed an improved multi-distribution mega-
trend-diffusion method advanced-MTD (AD-MTD) to improve the balance of infor-
mation distribution in diffusion regions. On this basis, the hybrid-MTD was further
applied to virtual samples generated by MD-MTD and AD-MTD to improve the
balance of information diffusion distribution near the boundary point of the informa-
tion diffusion area and the center point of the original information area. This method
effectively improved the prediction accuracy of PLS regression model for predicting
total cholesterol and triglyceride content in blood by infrared spectroscopy. Gong
et al. [71] proposed a new method for virtual sample generation based on Monte
Carlo method and particle swarm algorithm, which could improve the prediction
performance of extreme learning machine.

Aiming at the problem of insufficient NMR spectral data in the regression predic-
tion of total hydrogen physical properties of crude oil, Yi et al. [72] generated virtual
samples by adding random noise to the original spectra and established a model for
predicting total hydrogen content of crude oil by using convolution neural network. It
can not only solve the over-fitting problem in original data training, but also has more
stability and accuracy than traditional PLS method. Ye et al. [73] produced virtual
samples according to the specified proportion and proposed an automatic densifica-
tion modeling method for spectral analysis. Li et al. [74] used Monte Carlo method
to generate virtual spectra to densify the local database and predicted the chemical
composition of oil according to the virtual spectra consistent with the sample to be
predicted. The accuracy was higher than that of PLS method. Aiming at the problem
of large classification error of heavy metal pollution caused by the high variability of
soil heavymetal content and unbalanced samples inmining area, Qian et al. [75] used
synthetic minority oversampling technique (SMOTE) to generate virtual samples to
balance each pollution level sample, and then used random forest to regress and clas-
sify Cd and Pb, the classification accuracy of soil heavy metal Cd and Pb pollution
was greatly improved compared with the original sample.

In recent years, with the research and application of deep learning in the field of
data driven, generative adversarial networks (GAN) and transfer learning (TL) are
increasingly used to generate virtual samples [76–78].

14.5 Semi-supervised Learning Methods

It is usually difficult, expensive, and time-consuming to obtain the label value of
the samples. To solve this problem, semi-supervised learning (SSL) algorithms were
developed. It uses a largenumber of unlabeleddata and labeleddata to train together to
construct a better classifier or regressionmodel (Fig. 14.11) [79, 80]. Semi-supervised
learning can be used not only for classification and regression, but also for clustering
and dimensionality reduction. Semi-supervised learning is a new research hot spot in
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Fig. 14.11 Schematic diagram of semi-supervised learning

the field ofmachine learning. It is a learningmethod between supervised learning and
unsupervised learning. The learning samples include both labeled and unlabeled clas-
sification samples.Under the guidance of supervised information provided by labeled
classification samples, unlabeled samples are handled. Semi-supervised learning is
based on the assumption that the unlabeled data and the labeled data of the same
kind have a certain distance in the feature space. It only needs to provide a small
number of labeled samples, and through the learning of all samples can obtain better
learning effect than unsupervised learning.

The fundamental reason why unlabeled samples play a role in learner modeling
is that they and labeled samples are independently and uniformly sampled from
the same data source. In semi-supervised learning, using the gain information of
unlabeled samples is mainly based on smoothing assumption, clustering assumption
and manifold assumption. The essence of these assumptions is that similar samples
have similar outputs. In recent years, semi-supervised learning has been increasingly
combinedwith ensemble learning (consensus learning) to improve the generalization
performance of classifiers [81].

Semi-supervised learning algorithms include [59] the following five types.

(1) Generate semi-supervised models algorithm is used to cluster both labeled and
unlabeled data sets, and then determines the labels of the whole cluster by any
labeled data contained in each classification in the clustering results.

(2) Self-training algorithm. Firstly, the labeled data is trained to obtain a classifier,
which is used to classify the unlabeled data. According to the classification
results, the unlabeled data with high credibility and their predictive markers
are added to the training set, the scope of the training set is expanded, and the
new classifier is obtained by relearning.

(3) Joint (or collaborative) training algorithm (co-training). This kind of algo-
rithm implicitly uses clustering assumption or manifold assumption. Firstly,
the labeled data is divided into two different data sets, and then two classifiers
are trained according to these two different data sets. Each classifier is used
to classify unlabeled data sets. The samples with high confidence are selected
and added to the training set of another model to continue training (Fig. 14.12).
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Fig. 14.12 Schematic diagram of co-training

(4) Semi-supervised support vector machines (S3VM) is evolved from transduc-
tive support vector machines (TSVM). The S3VM algorithm uses both labeled
and unlabeled data to find a classification surface with the largest class spacing.
The algorithm uses the assumption of low-density segmentation, that is, the
sample of the boundary region between two different classes is sparse. The
classification boundary is located in the low-density region of the sample space.

(5) Graph-based algorithm is a semi-supervised learning algorithm based on the
graph regularization framework. This kind of algorithms directly or indirectly
uses the manifold assumption. They usually first establish a graph according
to the training example and a certain similarity measure. The vertex of the
graph is a labeled or unlabeled sample, and the weight of the edge is the
similarity among the samples. Then, the required optimization target function
is defined, and the smoothness of the decision function on the graph is used
as the regularization term to obtain the optimal model parameters. The core
idea of this algorithm is that two samples are similar in the manifold, and their
predicted label values are similar.

Most semi-supervised algorithms are used for classification problems, while co-
training regressors (COREG) achieve semi-supervised regression in a relatively
simple way [82]. The basic idea of the COREG algorithm is: in the training process,
the regressor h1 and h2 select the data from the labeled data according to the nearest
neighbor of K, and then select the samples with the highest confidence for labeling,
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and add the labeled data to the regressor of the other party for learning, so as to achieve
the purpose of collaborative training. The final predictive value is the average value
of the updated regressor h1 and h2.

Li et al. [83] proposed a semi-supervised least squares support vector regression
machine which could simultaneously use chemical and non-chemical sample data.
Its prediction accuracy was better than the traditional least squares support vector
regression. Lv et al. [84] proposed an incremental semi-supervised support vector
regression algorithm. Firstly, the incremental semi-supervised support vector regres-
sion model was established. The nearest neighbor algorithm was used to select the
datawith high confidence for collaborative labeling, and the support vector regression
model was updated according to whether the labeled data could become a potential
support vector [85]. Based on semi-supervised self-training algorithm, Liang et al.
[86] proposed semi-supervised partial least squares (SS-PLS) method to optimize
the sensory evaluation model of tobacco leaves predicted by NIR spectroscopy. The
performance of the model was significantly improved compared with the original
model. Guo et al. [87] proposed a method for updating the NIR prediction model
of apple soluble solid content based on distance measurement and semi-supervised
learning, which significantly improved the prediction ability of the model. Jing et al.
[88] applied semi-supervised learning to extreme learning machine and proposed
a semi-supervised extreme learning machine classification model for NIR spec-
troscopy classification of drugs and hybrid seeds. This method showed excellent
performance in dealing with unbalanced data sets.

14.6 Multi-target Regression Strategy

Multi-target regression (MTR) is a regression analysis method for the simultaneous
prediction of multiple interconnected continuous target variables, which is similar to
themulti-label classification problem in pattern recognition. It improves the accuracy
of prediction bymining and utilizing the correlation betweenmultiple target variables
[89].

In spectral quantitative analysis, themulti-target regression strategy uses the corre-
lation between the variables of the target (concentration or physical property Y) to
improve the prediction ability of the model. The most commonly used method is the
stacked single-target (SST), also known as the multi-target regressor stack (MTRS)
[90]. As shown in Fig. 14.13, this method is divided into two steps. Firstly, the
single-target prediction model is established by using the traditional method. Then,
the sample input variable space (X) is expanded by using the concentration predic-
tion value, and the prediction model of each target is established. With the addition
of multiple target prediction values, the predictive values of each target variable are
dependent on the predictive values of other target variables, which makes it possible
to improve the prediction ability of the model by using the correlation between target
variables.
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Fig. 14.13 Schematic diagram of modeling strategy for multi-target regressor stack (MTRA)

The ensemble of regressor chains (ERC)method is anothermulti-target regression
strategy, which considers not only the dependence between target variables, but also
the order between target variables. In addition, multi-target regression strategies also
include multi-target SVR with max-correlation chain (SVRCC) and multi-target
regression via target specific features (MTR-TSF) [91], etc.

Santana et al. [92] proposed a multi-target regressor stack (MTRA) method to
predict multiple attributes of poultry breast muscle by NIR spectroscopy, including
color attributes, pH value, chemical composition, water holding capacity, cooking
loss, and tenderness, which improved the prediction ability of the model. Junior
et al. [93] used multi-target regression strategy to establish a model for predicting
Hectolitre weight, falling number, protein content, alveographic indexes and Farino-
graph stability of flour by NIR spectroscopy, and the prediction accuracy was
improved by 7%.
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Chapter 15
Multi-spectral Fusion Technology

15.1 Fusion Strategies and Methods

Spectral fusion technology is used to optimize and integrate different types of spectra
to achieve complementary advantages of single spectrum, in order to obtain more
comprehensive, more reliable and richer characteristic data, and then combine with
chemometrics method to build regression or classification model for quantitative and
qualitative analysis of samples. As shown in Fig. 15.1, methcathinone and ephedrine
in Raman spectra have higher overlaps on score plot of principal component analysis
(PCA) (Fig. 15.1a), and the ion mobility spectral analysis on score plot of PCA has
a certain tendency of clustering (Fig. 15.1b). But it can be seen from the score plot
of PCA in Fig. 15.1c, the fusion of Raman spectra and ion mobility spectra can well
realize classification discrimination [1]. As shown in Figs. 15.2 and 15.3, according
to different data fusion strategies, the fusion of multi-spectral can be divided into
low-level, middle-level, and high-level fusion [2–4].

As shown in Fig. 15.4, low-level fusion refers to spectral data level fusion, and
data from different spectral sources are arranged into a matrix in a certain order,
that is, the concatenation of spectral matrix [3]. The number of rows of the matrix
is the same as the number of samples, and the number of columns is the same as
the sum number of columns of the signals (spectral variables) measured by different
instruments. Then, the chemometrics method is used to build the final single model.
This method is often called concatenation method, such as concatenated PLS [5].
In the low-level fusion, the spectral interval can be selected and essential spectral
preprocessing, such as spectral normalization, can be carried out.

As shown in Fig. 15.5, middle-level fusion, also known as feature level fusion,
is to extract spectral data from different sources through feature extraction (such
as principal component, wavelength ratio, wavelet coefficient), and vectorize the
selected variables in a certain order to achievedata fusion. In addition to the traditional
spectral feature extraction methods, the deep learning method can also be used to
extract spectral features by extracting the NIR wavelength. As shown in Fig. 15.6,
the two-channel convolutional neural network is used to extract the depth features of
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Fig. 15.1 a PCA diagram of the Raman spectra of methcathinone and ephedrine. b PCA diagram
of ion mobility spectra of methcathinone and ephedrine. c PCA diagram of Raman and ion mobility
spectral fusion of methcathinone and ephedrine [1]

Fig. 15.2 Data fusion scheme at low-, mid-, and high levels [2]

hyperspectral and Lidar data, respectively, and then the extracted features are jointed,
The features are trained by regressors or classifiers to obtain the final classification
results.

High-level fusion, also known as decision-level fusion, establishes a classification
or regression model from each spectral data source, respectively, and combines the
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Fig. 15.3 Data fusion approaches. Each path, which corresponds to a different data fusion level, is
identified by the arrow style: solid/low level; dotted/mid level; dashed/high level [4]

Fig. 15.4 Framework of low-level spectral data fusion

Fig. 15.5 Schematic diagram of mid-level spectral data fusion framework
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Fig. 15.6 Schematic diagram of feature-level fusion framework based on convolutional neural
network [6]

prediction results of each individual model to get the final decision result. In fact,
low-level andmiddle-level fusions of spectral data are often included in the high-level
fusion. As shown in Fig. 15.7, using NIR, NMR, and Raman spectral information as
well as the feature fusion information of the NIR spectrum and NMR spectrum build
SVR model, respectively. The four predicted results can be used to conduct decision
fusion in the way of a weighted fusion or voting mechanism, and the final prediction
results are obtained.

For the low fusion of the spectral data, in addition to the concatenation of spectral
vectors, there are the coaddition, outer sum, and outer product of spectral vectors [7].

Before the vectors coaddition of the spectral data, interpolation operation should
be carried out for the fused multi-spectra to obtain vectors with the same dimension.
The corresponding elements should be added to obtain the fused spectrum with the
same dimension of vector. For example, spectrumA is the vector x of size 1×m, and

Fig. 15.7 Schematic diagram of high-level fusion
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spectrum B is the vector r of size 1 × n. When the spectra A and B are accumulated
and fused, the vector r of spectrum B is firstly interpolated to obtain the vector rd

of size 1 × m. The accumulated fusion spectrum of spectrum A and B is the sum of
vector x and vector rd, and its dimension is 1 × m. During the accumulation fusion,
the vector x of spectrum A can also be interpolated to obtain the vector xd of size
1 × n, or the two vectors of size 1 × n can be interpolated simultaneously between
spectrum A and spectrum B, and then the vector sum can be carried out.

The spectral vector outer product is actually to find the outer product of two
vectors. For a vector x of size 1 × m in spectrum A and a vector r of size 1
× n in spectrum B, the outer product x ⊗r = xT × r is a matrix with m ×
n dimension. For k samples in calibration set, a k × m × n three-dimensional
matrix can be obtained. As shown in Fig. 15.8, the three-dimensional matrix obtained
by outer product of X-ray fluorescence (XRF) and Vis–NIR spectral vectors can
be quantitatively or qualitatively analyzed by multi-dimensional chemometrics [8].
Moreover, the obtained matrix with m × n dimension can be unfolded into 1 ×
mn dimension vectors, and then data processing can be carried out by traditional
chemometrics methods.

The outer sum of spectral vectors is similar to finding the outer product of two
vectors. For the vector x of spectrumAwith a dimension of 1×m, and for the vector
r of spectrum B is with a dimension of 1 × n, the outer sum x ⊕ r is as follows:

x = (x1, x2, · · · , xm), r = (r1, r2, · · · , rn) (15.1)

Fig. 15.8 Process of data fusion by outer product (a) and the unfolding process for modeling and
refolding of the model results (b). c is the number of variables for X-ray fluorescence (XRF) and r
is the number of wavelengths for Vis–NIR, n is the number of soil samples [8]
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x ⊕ r=
⎡
⎢⎣

x1
...

xm

⎤
⎥⎦ ⊕ [r1 · · · rn] =

⎡
⎢⎣
x1 + r1 · · · xm + r1

...
. . .

...

x1 + rn · · · xm + rn

⎤
⎥⎦ (15.2)

Similar to the outer product of vectors, the three-dimensional matrix of the
outer sum vectors can be processed by multi-dimensional chemometrics method
or unfolded by traditional chemometrics method.

The outer product operation and the outer sum operation of the spectra are usually
used for the fusion calculation of two kinds of spectra. For the fusion of multiple
kinds of spectra, the pair-to-pair operation can be carried out, respectively, or the
concatenation of spectral vectors can be conducted first, and then the outer product
operation or the outer sum operation can be implemented.

15.2 Multi-block Partial Least Squares Method

Formulti-spectral fusion technology,multi-blockpartial least squaresmethod (Multi-
block PLS) can be used to establish the calibration model. For example, for Raman
spectral matrix (block X1) and NIR spectral matrix (block X2), the modeling strategy
of Multi-block PLS method is shown in Fig. 15.9. Firstly, the PLS model of each

Fig. 15.9 Diagram of the iterative process of multi-block partial least squares [9]
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block and concentration Y is established respectively, and the corresponding PLS
principal components (called the lower-layer model) are extracted. Then the PLS
components and concentrations obtained from each block were used to establish
the whole PLS model (called the upper layer model) [9]. In the above process, the
results obtained by the multi-block PLS method have a stronger ability of compre-
hensive generalization of information, interpretation, and application value. Because
the number of variables of each block is far less than the number of whole variables,
and each block has a specific connotation meaning, Multi-block PLS method is also
known as the hierarchical PLS regression [10].

The specific steps of multi-block PLS algorithm are as follows:

(1) w1 and w2 are calculated by taking a column of concentration matrix Y as
the initial iteration value of u, w1, and w2 were calculated as the following
formula:

WT
1=UTX1/UTU,WT

2=UTX2/UTU (15.3)

(2) Normalize w as the following formula:

W1 = W1/||W1||,W2 = W2/||W2|| (15.4)

(3) Calculate t1 and t2:

t1=X1W1/WT
1W1,t2=X2W2/WT

2W2 (15.5)

(4) Construct the joint matrix Tc, Tc = [ t1 t2]
(5) Using the standard PLS algorithm, the regression model of Tc and concentra-

tion Y was established, and the vectors w, t, u and q were obtained.
(6) Return to step (1) until u converges.
(7) Calculate p1 and p2:

pT1 = tT1Y/t
T
1 t1,p

T
2 = tT2Y/t

T
2 t2 (15.6)

(8) Calculate the residual matrix:

E1=X1−t1pT1 ,E2=X2−t2pT2 ,F=Y−tpT (15.7)

(9) Replace X1, X2, and Y with E1, E2, and F, respectively, and return to step
(1) until the PLS principal components of the number of all major factors are
calculated.
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15.3 Sequential and Orthogonal Partial Least Squares
Method

Multi-block PLS uses a parallel-type calibrationmode, but sequential and orthogonal
partial least squares (SO-PLS) is a tandem-type calibration method. For example,
for the Raman spectral matrix (Block X1) and NIR spectral matrix (Block X2),
the modeling strategy of SO-PLS is as follows: firstly, the PLS model of block
X1 and concentration Y was established to obtain the corresponding PLS principal
components (such as fracted matrix TX1 and concentration residual matrix yR). The
orthogonal spectralmatrixX2orth was obtained by orthogonalization of TX1 and block
X2, and then thePLSmodel of the orthogonalmatrixX2orth and concentration residual
matrix yR was established. The final prediction results were given by the combination
of the above two calibration models [11, 12]. Since the SO-PLS method adopts
orthogonalization processing, the additional complementary spectral information of
block X2 relative to block X1 can be effectively extracted [13].

Specific steps of the SO-PLS algorithm are as follows:

(1) The standard PLS algorithm is adopted to establish the regression model of X1

and concentration y, and the score matrix TX1, weight matrix WX1, loading
matrix PX1, load matrix QX1 of y, and residual matrix yR of y are obtained as
the following formula:

yR = y − TX1QT
X1 (15.8)

(2) OrthogonalizeTX1 and blockX2 to obtain the orthogonal spectralmatrixX2orth:

X2orth = X2 − TX1
(
TT
X1TX1

)−1
TT
X1TX2 (15.9)

(3) Based on the standard PLS algorithm, the regression model of X2orth and
concentration residual yR is established, and the score matrix TX2orth of X2orth,
the weight matrix WX2orth of X2orth, the loading matrix PX2orth of X2orth, and
the loading matrix QX2orth of yR are obtained.

(4) The predicted value of concentration ypre is given by the following formula:

ypre=TX1QT
X1+Tx2orthQT

x2orth (15.10)

The above equation can also be expressed as the following formula:

ypre = X1VX1QT
X1+X2orthVX2orthQT

X2orth (15.11)

where VX1 = WX1(PX1
TWX1)

−1, and VX2orth = WX2orth(PX2orth
TWX2orth)

−1.
As shown in Fig. 15.10, the combination of multi-block PLS and SO-PLS and

multi-point spectra or fusion technology of multi-spectra can be used in the produc-
tion process control. It can be used in the process of system to predictively analyze
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Fig. 15.10 An example of fusion of process sensors and NIR spectral data in a continuous process
line. The top figure represents a schematic view of the process, indicating the location of the process
sensors (represented by different shapes and colors) on the process line and the location of the two
online NIR instruments [4]

key quality on each unit, deeply understand the causal relationship between various
factors, identified the key quality control points, and improve the quality of the
product stably.

In addition to multi-block PLS and SO-PLS methods introduced above, there are
also some other methods such as common components and specific weights anal-
ysis (CCSWA) in the multi-spectral fusion technology, called ComDim (Common
Dimension), a collective name for a series of algorithms [14–16] and parallel and
orthogonalized PLS (PO-PLS) and so on [17–20].

15.4 Research on Application of Multi-Spectral Fusion

Dearing et al. performed low-level fusion ofMIR, Raman, andNMR spectra to estab-
lish a quantitativemodel for predicting active pharmaceutical ingredient (API) degree
of crude oil with PLS, and its prediction accuracy (RMSEP) was improved by more
than 50% compared with using a single spectral technique [21]. Chen et al. used the
multi-scale characteristics of the discrete wavelet transform (DWT) and competitive
adaptive reweighted sampling-PLS discriminant analysis (CARS-PLSDA), to extract
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the feature of Raman and IR spectra. The discriminant model of milk adulteration is
established in the feature-level fusion, which could effectively combine the collab-
orative information and complementary characteristics of Raman and IR spectra
and significantly improve the sensitivity and accuracy of adulteration detection of
milk powder [22]. Marquez et al. used FT-Raman and NIR spectra to detect hazelnut
kernel adulteration by using twodata fusion strategies ofmiddle-level fusion (feature-
level) and high-level (decision-level) fusion. The results showed that the sensitivity
and specificity of single spectral technique were between 75 and 100%, respectively,
and the sensitivity and specificity of high-level fusion and middle-level fusion were
between 96 and 100% and between 88 and 100%, respectively, indicating that its
performance parameters were superior to that of single spectral technique [23]. Tao
et al. employed MIR and NIR multi-spectral fusion technology combined with SO-
PLS algorithm to predict and analyze various active components in the liquid extrac-
tion process of Lonicera japonica and Artemisia annua, and obtained satisfactory
results [13].

For the adulterated sesame oil, Zhang et al. first used the two-dimensional corre-
lation spectra technology to obtain the synchronous-asynchronous two-dimensional
NIR correlation and MIR correlation spectra of the samples, respectively. Multi-
way principal component analysis (MPCA) was carried out on the two-dimensional
correlation spectra, and the score matrix was fused to identify the adulterated sesame
oil through the PLS-DA model, the discrimination accuracy reaches 100%, which
is higher than that of prediction model of single spectral technique [24]. Shen et al.
used the middle-level data fusion based on wavelength selection and the high-level
fusion based on stack generalization strategy to identify Gentiana plants by using
MIR and NIR multi-spectral fusion technology. The results show that the strategy
based on wavelength selection and stack generalization can improve the accuracy of
discrimination and can prevent the occurrence of overfitting [25].

Rios-Reina et al. applied IR, NIR, three-dimensional fluorescence excitation-
emission matrix (EEM), and 1HNMR spectra to identify wine-protected designa-
tions of origin (PDO). As shown in Fig. 15.11, after low-level fusion of NIR and
MIR spectra, PCAwas conducted, and eight score variables of principal components
were obtained as characteristic variable I; PARAFAC decomposition was performed
on the EEM spectra, and five PARAFAC score variables were gained as character-
istic variable II; multivariate curve resolution (MCR) was implemented on 1HNMR
spectra, and the 62 peak areas were differentiated and obtained as the characteristic
variable III. Then data fusion of the above three characteristic variables was carried
out to establish the PDO discriminant model with PLS-DA, and better discriminant
results than single spectral method were obtained [26].

Yao et al. used UV spectra combined with IR spectra to distinguish the origin of
the species of Boletus tonientipes Earle, extracted characteristic variables through
wavelength selection method and performed data fusion, and the prediction accu-
racy of the discriminant model established by SVM reached 96.88% [27]. Comino
et al. applied NIR and X-ray fluorescence spectra to conduct data fusion for the
rapid analysis of nutrient elements in olive leaves. The feature-level fusion strategy
based on PCA obtained good prediction results, and the deficiency of important
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Fig. 15.11 Graphical representation of the datasets, data analysis flow, and data fusion process for
identifying wine protected designations of origin [26]

elements such as nitrogen and potassium could be quickly detected [28]. They used
the adaptive wavelet transform algorithm and CARS algorithm to remove the back-
ground noise and select the variables of LIBS and Raman spectra, respectively. Then,
the characteristic variables were fused to establish the calibration model with PLS,
which improved the precision and reliability of quantitative analysis of flour doping.
Gibbons et al. also adopted the fusion technology of LIBS and Raman spectroscopy
to classify and identify clay minerals by using the molecular structure information
of Raman spectra and the element information of LIBS spectra [29].

After essential preprocessing of hyperspectral images for beef, Wang et al.
extracted 22 characteristic wavelengths by using CARS, and then fused themwith 48
features of image texture to establish a PLS-DA classification model. The prediction
accuracy was 93.55%, which is higher than the classification rate of characteristic
spectral data model. It shows that the fusion of texture features can make the expres-
sion of sample classification information more comprehensive [30]. They also used a
similar technical route to establish a model for predicting saturated fatty acid content
in mutton by the fusion of images and spectra and then obtained good results [31].
Zou et al. established the SVM identificationmodel ofwheat origin and drying degree
after the fusion of the screened characteristic intervals of NIR and MIR spectra, and
the discriminant result was better than that of the single spectral technique [32].

Casian et al. predicted the content of API in drugs with NIR spectroscopy, Raman
spectroscopy, colorimetry and image analysis techniques. The prediction accuracy of
the single technique was between 0.654 and 2.292%. After dimensionality reduction,
the four types of data were used to conduct feature extraction and data fusion, and
ANN is adopted to establish the quantitative calibration model, with the prediction
accuracy of 0.153% [33]. Assis et al. used NIR spectroscopy and total reflection
XRF spectroscopy to predict the component content of the two coffee mixtures and
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Fig. 15.12 Schematic diagram of wavelength dispersive X-ray fluorescence (WDXRF) and laser-
induced breakdown spectroscopy (LIBS) for fused models [35]

fused the selected 75 characteristic variables of NIR spectra with the contents of 14
elements measured by total reflection XRF spectroscopy to establish a PLS quan-
titative analysis model. This model can be used to explain the differences between
different coffee species from the atomic and molecular spectra [34]. As shown in
Fig. 15.12, Gamela et al. extracted the characteristic variables of LIBS and wave-
length dispersive XRF (WDXRF) spectra, respectively, and used MLR to establish
the predictive model of the contents of potassium, magnesium, and phosphorus in
soybean seeds. The prediction results were better than those based on the single
spectral calibration model [35]. Oliveira et al. performed a low-level fusion of NIR
and LIBS spectra for rapid analysis of trace elements and major elements in forage
and obtained satisfactory results [36].

As shown in Fig. 15.13, Moro et al. employed MIR, 1HNMR, and 13CNMR
spectra to make quantitative prediction analysis of seven kinds of physical properties
of crude oil.When the scores extracted from the PLSmodelwere used for data fusion,
the best prediction results were obtained by PLS method [37]. Liu et al. fused IR and
Raman spectra for feature-level fusion to predict oil peroxide and acid values in the
process of thermal oxidation. The results showed that a highly correlated quantitative
relationship existed between the C = O functional groups information and C = C
functional information offered by IR and Raman spectra, respectively, and measured
physical properties. The prediction results of fusion data from two kinds of spectra
are better than that of the single spectra method [38]. Wang et al. established the
PLS prediction model of puerarin content in the root of pueraria DC. by fusion
of NIR and UV spectra and proved that the fusion of NIR and UV spectra had
synergistic effect [39]. As shown in Fig. 15.14, Germany’s art photonics company
combined Raman, MIR, NIR, and molecular fluorescence spectra to monitor the
chemical reaction process and used ComDim and SO-PLS algorithms to carry out
fusion, discrimination, and modeling of multi-spectral data [40].
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Fig. 15.13 Schematic diagram of various data fusion strategies based on MIR, 1HNMR, and
13CNMR spectroscopy [37]

Fig. 15.14 Multi-spectral fusion for monitoring chemical reaction processes [40]. (Left panel) 1:
Raman spectroscopy system; 2: Fourier transform mid-infrared spectroscopy (FTIR) system; 3:
near-infrared (NIR) spectral reflection system; 4: molecular fluorescence spectroscopy system; 5:
chemical reactor; 6: optical fiber probe
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15.5 Future Prospect

Multi-spectral fusion technology can realize the synergistic information and comple-
mentary characteristics of each spectroscopy technology,whichmakes the qualitative
or quantitative prediction results more accurate and reliable. The data processing of
multi-spectral fusion technology requires appropriate chemometrics methods. Accu-
rate algorithms and the improvement of modeling are conducive to improving the
efficiency of data processing in the later period, which is helpful to develop corre-
sponding software and provide a more convenient and effective platform for data
processing. At present, multi-spectral fusion technology is developing vigorously,
especially the development of multi-spectral all-in-one machine has received more
and more attention [41, 42]. Currently, commercial or under development multi-
spectral instruments include the combination of Raman andMIR spectrometer, LIBS
and Raman spectrometer, XRF and Raman spectrometer, XRF and LIBS instrument,
MIR and NIR spectrometer, Raman and terahertz instruments, deep UV-Raman and
molecular fluorescence spectrometer, as well as a variety of spectroscopic imaging
instruments. In this way, a miniature or small instrument can obtain more and richer
information about the composition of substances [43, 44].

On this basis of this, the combination of multi-spectral instrument and hard-
ware and multi-spectral data fusion algorithms is a development trend in the future.
Through the cloud platform,multi-spectral data collection and data fusion processing
can be integrated, which can further save manpower and material resources and
improve the efficiency of analysis. Multi-spectral fusion technology is expected to
be widely used in the fields of environment, biomedicine, pharmacy, geology, food,
agriculture, and identification of physical evidence.
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Chapter 16
Multi-way Resolution and Calibration
Methods

16.1 Introduction

In the field of chemometrics, tensor algebra is usually used to classify the data
generated by the instrument into zeroth order, first order, second order, and
higher order. As shown in Fig. 16.1, the instrument responses correspondingly
to each sample may be zeroth-order (scalar), first-order (vector), second-order
(matrix), third-order (three-dimensional array), or higher-order tensor. Analyzing
a series of such samples, one-dimensional, two-dimensional, three-dimensional,
four-dimensional, and N-dimensional data will be generated [1, 2]. The method to
predict unknown samples by zeroth-order tensor data prediction system is called
univariate calibration method, and all the analysis methods using non-scalar data
are called multivariate calibration methods. Second-order and higher-order tensor
data is called multi-way data, and the method of processing these data is called the
multi-way calibration method.

With the rapid development of modern hyphenated analytical instrument
technology, more and more instruments produce two-dimensional or higher-
dimensional response data, such as excitation-emission fluorescence spectrometer,
chromatography-mass spectrometry and gas chromatography-infrared spectrometer,
etc.When these instruments are used tomeasure a set of samples, a three-dimensional
matrix will be obtained. Therefore, multi-way chemometrics analysis and calibra-
tion methods have emerged, such as the Tucker3 method, parallel factor analysis
(PARAFAC), and alternating trilinear decomposition (ALTD). These methods have
strong resolution and analysis abilities. It can distinguish the response signals of
multiple analytes with similar properties at the same time when the presence of
interfering substances is unknown, and directly determine the analyte components
of interest quantitatively [3–6].

The multi-way data matrix is usually generated in spectral analysis. For example,
as shown in Fig. 16.2, for a group of samples, their spectra are measured under
different measurement conditions (such as pH or temperature, etc.), and a three-
dimensional datamatrixX (I× J ×K) is obtained. I is the number of samples, J is the
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Fig. 16.1 Schematic diagram of expression “order” and “way” for analytical data

Fig. 16.2 Three-way spectra matrix obtained from a group of samples at six different pH values
and its unfolded matrix

number of wavelength points, and K is the number of measurement conditions (such
as six different pH values). Each element of X can be expressed as xijk , which repre-
sents the absorbance of the ith sample at jwavelength under k condition. Likewise, the
excitation-emission matrix fluorescence spectrometer (EEM) and spectral chemical
imaging (infrared, near-infrared, Raman imaging, etc.) also obtain multi-way data
matrices. The easiest way to deal with these data is to use unfolding strategy, that is,
paving the cubic matrix X (I × J × K) into an I × JK or I × KJ two-dimensional
matrix, and then conduct PCA or PLS for analysis. However these methods tend to
lose much information about a three-dimensional data structure.

In order to obtain more valuable results, people have improved the classical
method for two-dimensional matrix resolution and calibration. For example, the
multivariate curve resolution-alternating least squares (MCR-ALS) method is used
to expand the three-dimensional data matrix into a two-dimensional data matrix that
conforms to the bilinear structure and then analyzes it. It has a certain ability to over-
come nonlinearity. However, in the iterative solution process, it is necessary to add
non-negative constraints, unimodal constraints, and other constraints to obtain the
analytical results with chemical significance. Unfolded partial least squares/residual
bilinearization (U-PLS/RBL) expands the three-dimensional matrix into vector data,
and then uses U-PLS and other methods to model the calibration sample to obtain
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Fig. 16.3 Schematic
diagram for decomposition
of three-way data matrix by
Tucker3 algorithm

the model parameters of each analyte. Finally the obtained model parameters are
combined with residual bilinearity for the final quantitative analysis.

Tucker method is a classical three-dimensional data analysis method, which is
an extension of traditional PCA. It was proposed by psychologist L. R. Tucker in
1963. Tucker3 decomposes the three-dimensional data matrix X (I × J × K) into
the product of three matricesA (I × L),B (J ×N), andC (K ×M) and a core matrix
G (L × N × M) (Fig. 16.3). L, N, and M are the number of factors, respectively.

xijk =
L∑

f =1

N∑

g=1

M∑

h=1

aifbjgckhgfgh + eijk (16.1)

Three load matrices A (I × L), B (J × N), and C (K × M) obtained by decom-
position represent the number of rows, columns, and layers of X, and the number of
factors is L, N, and M, respectively. They are generally different, but they are less
than the corresponding dimension of X, which meets the purpose of data dimension-
ality reduction. In analytical chemistry, this algorithm does not have many practical
application, so it is not often recommended.

The followingmainly introduces threemethods that are commonlyused in trilinear
decomposition. They are the PARAFACmethod, alternating trilinear decomposition
(ALTD), and multi-way partial least squares (N-PLS).

16.2 Parallel Factor Analysis

The parallel factor analysis (PARAFAC) method is a trilinear model, which was
proposed by Harshman in 1970 and then used in psychology earlier [7]. The
PARAFAC algorithm decomposes the three-dimensional data matrix X (I × J ×
K) into the product of three two-dimensional matrices A (I × N), B (J × N), and
C (K × N) (Fig. 16.4), and N is the factor number. For EEM data matrix, I repre-
sents the number of excitation wavelengths, J represents the number of emission
wavelengths, K represents the number of samples, and N represents the component
number of groups with response signals in the model, which includes the target
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Fig. 16.4 Schematic diagram for decomposition of three-way data matrix by PARAFAC algorithm

analytes, the changing background, and other interferences. Matrix A is normalized
excitation spectra, matrix B is normalized emission spectra, and matrix C is relative
concentration matrix.

Comparing with the Tucker3 method, although the PARAFAC model is a special
case of the Tucker3 model when G = I and L = N = M. However, the essence of
the Tucker model is the principal component model of a three-dimensional matrix,
which is the result of calculating eigenvalues and principal components of the three-
dimensional matrix, and its principal component have only mathematical signif-
icance. The PARAFAC model is a trilinear model, and the trilinear component
model is the response summation model of the main components in the three-
dimensional matrix. The simplest case conforms to the mathematical expression of
Lambert-Beer’s law, and the main components obtained have physical or chemical
significance.

The trilinear decomposition model is very popular in analytical chemistry. One
of the important reasons is that it is consistent with Beer’s law in analytical chem-
istry. Thus the trilinear decomposition model has its corresponding chemical back-
ground. Another important reason is that the trilinear decomposition model of three-
dimensional data generated under general analytical conditions is unique, and its
decomposition results directly correspond to the qualitative (chromatographic or
spectral) and quantitative information (concentration) of chemical components in the
system. Thismethod has a strong resolution ability. It has the so-called “second-order
advantage”, that is, it can simultaneously resolve the response signals of multiple
analytes with similar properties in the presence of unknown interferents, and can
directly determine the components of analytes of interest.

PARAFAC operation is realized by alternative least squares (ALS) algorithm,
whose goal is to minimize the sum of squares of residuals (SSR):
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SSR =
I∑

i=1

J∑

j=1

K∑

k=1

e2ijk (16.2)

The specific iterative process of the PARAFAC algorithm is as follows:
(1) Give the number of principal factors N, initialize B and C.
(2) Obtain dk:

dk = {
(BT B) ∗ (AT A)

}−1{
(AT X ..k B) ∗ I

}
l (16.3)

(3) Obtain matrix A:

A = (

K∑

k=1

X ..k BDk){(CTC) ∗ (BTB)}−1 (16.4)

(4) Obtain matrix B:

B = (

K∑

k=1

X ..k ADk){(CTC) ∗ (ATA)}−1 (16.5)

(5) Repeat steps (2)–(4) until convergence.
The convergence criterion is

∣∣∣∣
SSR(m) − SSR(m−1)

SSR(m−1)

∣∣∣∣ ≤ ε (16.6)

where m is the number of iterations and ε is the threshold (usually 1 × 10−6).
The matrix C obtained by PARAFAC decomposition can be correlated with the

concentration vector y to establish a quantitative correction model: y = Cb, and the
regression coefficient b can be obtained by the least square method. For unknown
samples, matrix C is first obtained from the loading matrices A and B, and the final
result is calculated from the regression coefficient b. The PARAFAC method is also
used for the spectral analysis of the reaction process and the determination of the
chemical reaction rate constant.

PARAFAC is based on the strict sense of the least square principle to optimize
the fitting of trilinear data. In theory, the least and most stable model error should
be obtained. However there are also some unsatisfactory places. For example, the
estimation of the number of principle components that are too sensitive, vulnerable
to the impact of random initialization values, and the convergence speed is slow.
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16.3 Alternating Trilinear Decomposition

Alternating trilinear decomposition (ALTD) is an improvement of the PARAFAC
method proposed by Wu et al. This method uses an iterative strategy based on
improved tailed singular value decomposition to calculate Moore-Penrose gener-
alized inverse and extract diagonal elements. In addition, ATLD uses the trilinear
component model of slice matrix to calculate, which reduces the memory required
for calculation, improves the efficiency of operation, and has the advantage of fast
convergence.

The three objective functions of ATLD are as follows:

σ
(
a(i)

) =
I∑

i=1

‖Xi.. − Bdiag
(
a(i)

)
CT ‖2F (16.7)

σ
(
b( j)

) =
J∑

j=1

‖X . j. − Cdiag
(
b( j)

)
AT ‖2F (16.8)

σ
(
c(k)

) =
K∑

k=1

‖X ..k − Adiag
(
c(k)

)
BT ‖2F (16.9)

Based on the principle of the least square method, the following solutions of A,
B, and C can be obtained by alternately minimizing the above objective function.
The specific steps of the ATLD algorithm are as follows:

(1) Determine the factors of the system.
(2) Randomly initialize matrices A and B.
(3) Calculate the matrix C by the following equation:

cT(k) = diagm(A+X ..k
(
BT

)+
(k = 1, 2, . . . , K ) (16.10)

where diag (·) represents the construction of a diagonal matrix, whose
elements are 0 except for the diagonal elements. diagm (·) means that the
elements on the diagonal of the matrix are extracted into a column vector.

(4) Calculate A by the following formula and normalize A by column:

aT
(i) = diagm(B+Xi..

(
CT

)+
(i = 1, 2, . . . , I ) (16.11)

(5) B is calculated by the following formula, and normalize B by column:

bT( j) = diagm(C+X . j.
(
AT

)+
( j = 1, 2, . . . , J ) (16.12)

(6) Calculate C by matrices A and B according to the following equation:
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cT(k) = diagm(A+X ..k
(
BT

)+
(k = 1, 2, . . . , K ) (16.13)

(7) Repeat steps (4–6) until the convergence standard.

The convergence criterion is

|SSR
(m) − SSR(m−1)

SSR(m−1)
| ≤ ε (16.14)

where m is the number of iterations and ε is the threshold (usually 1 × 10−6). To
avoid the slow convergence caused by falling into an exception, set the maximum
number of iterations to 3000.

In each iteration, matrices A and B are normalized by column. By resolving
the corresponding matrix, the concentration of analyte can be obtained by linear
regression between the relative concentration and the real concentration of each
analyte corresponding to the column in matrix C.

Due to the advantages of being insensitive to the over-estimated factors and fast
convergence, the ATLD algorithm has been applied in many fields such as spec-
troscopy, chromatography, and electrochemistry to solve the problems of overlap-
ping peaks and uncalibrated interferences. However, ATLD is sensitive to noise, it
should be used carefully in the analysis system with low signal-to-noise ratio (SNR).

On the basis of the ATLD method, a series of derivative methods have been
developed [9]. Among them, a representative method is self-weighted alternating
trilinear decomposition (SWATLD) proposed by Chen et al. This algorithm designs a
unique objective function by introducing the idea ofweight, which not onlymaintains
the advantages of ATLD but also has better stability, stronger ability to resist noise,
and collinearity. The alternating penalty trilinear decomposition (APTLD) algorithm
proposed by Charalin uses penalty factors to combine PARAFAC and SWATLD. It
has the advantages of both methods and is more flexible.

16.4 Multi-way Partial Least Squares

Multi-way partial least squares (N-PLS) is a three-dimensional matrix calibration
algorithm based on trilinear decomposition and classical PLS proposed by Bro et al.
[10]. It has been applied to establish quantitative calibrationmodels forEEM,GC-MS
and QSAR with satisfactory results [11-13]. The principle of the N-PLS algorithm
is to decompose three-dimensional matrix X (I × J × K) into a trilinear model:

Xi jk =
F∑

f =1

ti fWi fWkk f + ei jk (16.15)
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where t is the score vector, wJ and wK are the corresponding two loading vectors,
F is the number of principal components, and eijk is the residual matrix. Similar
to the traditional PLS, N-PLS not only decomposes the spectral matrix X but also
decomposes the concentration vector y, and the two decomposition processes of X
and y are combined into one by iteration. The specific algorithm of the N-PLS is as
follows:

(1) Calibration section.

X (I × J × K) is the calibration set spectral matrix, I is the number of calibration set
samples, J is the number of wavelength points, and K is the number of conditions
for spectral measurement (such as pH or temperature). y (I × 1) is the concentration
vector of the calibration set.

➀UnfoldX into two-dimensional matrixX0 (I × JK), and determine the number
of factors F, f = 1, …, F.

➁ Calculate Z matrix, Zf = X f –1
Ty;

➂ Perform SVD on Z matrix, [wK , s, wJ ] = svd(Zf ).
➃ Calculate w, wf = wK ⊗ wJ .
Symbol×© represents the Kronecker product of matrix, and the Kronecker product

of matrix A (I × J) and matrix C (M × N) is expressed as

A ⊗ C =
⎡

⎢⎣
a11C · · · a1JC

...
. . .

...

aI1C · · · aI JC

⎤

⎥⎦ (16.16)

➄ Calculate t

t f = X f −1W f (16.17)

➅ Calculate q

q f = yTf −1ti (16.18)

➆ Calculate u

u f = y f −1qi (16.19)

➇ Calculate b

b f = (TT
f T f )

−1TT
f u f . (16.20)

where Tf = [t1, …, tf ].
➈ Update X and y
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X f = X f −1 − t f w f (16.21)

y f = y f −1 − T f b f q
T
f (16.22)

➉ Let f = f + 1, and return 3, to get the F scores and loadings of X and y in turn.

(2) Prediction section

For an unknown sample spectral matrix Xun(1 × J × K), the prediction results are
calculated by the following steps:

➀ Unfold the Xun into a two-dimensional matrix Xun (1 × JK);
➁ Calculate tf = Xun

fwf , Xun
f = Xun

f –1 − tfwf , f = 1,…,F;

➂ Calculate ypred =
F∑
f =1

Tf bf qf
T, where Tf = [t1,…, tf ].

Chu et al. combined wavelet transform (WT) with multi-way partial least squares
(N-PLS) method and proposed a new method for establishing the quantitative cali-
bration model of near-infrared spectroscopy [14]. The basic idea of the method is as
follows: firstly, the spectrum of each sample in the calibration set is transformed by
wavelet transform, and then a set of wavelet detail coefficients is selected according
to the specific application. The three-dimensional spectral matrix X is as shown in
Fig. 16.5 (I × J ×K, where I was the number of samples in the calibration set, J was
the number of selected wavelet details, and K was the number of wavelength points).
Finally, the calibration model was established by the N-PLS method. For unknown
samples, the three-dimensional spectralmatrixwasfirst formedbywavelet transform,
and then the established calibration model for prediction analysis. For example, in
order to establish a robust temperature calibration model of near-infrared spectra, a
set of wavelet detail coefficients with small temperature influence and strong infor-
mation can be selected to form a three-dimensional matrix, and the quantitative
calibration model can be established by the N-PLS method. The results show that

Fig. 16.5 Schematic
diagram of three-way NIR
spectral matrix decomposed
by wavelet transform
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the calibration model established by this method has a better prediction ability and
robustness than the ordinary WT-PLS method.

For vibrational molecular spectroscopy, such as mid-infrared and near-infrared
spectroscopy (Fig. 16.6), the fundamental frequency and different overtone absorp-

Fig. 16.6 Schematic diagram for multi-way calibration of vibrational overtone combination
spectroscopy
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tion bands can be stacked to form a three-dimensional spectral matrix, and then
quantitative and qualitative analyses can be carried out by multi-way data resolution
and calibration methods [15].
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Chapter 17
Calibration Transfer Methods

17.1 Introduction

A situation is often encountered in the process of spectral analysis that when the
model established on one spectrometer (master, primary, parent instrument) is used
on another spectrometer (slave, child instrument), the model cannot give correct
prediction results due to the difference in spectra measured by different instruments
[1, 2]. The first thing to solve this problem is to improve the standardization of instru-
ment hardware processing, improve the level of processing technology, and reduce
the differences between the master and the slaves in terms of devices. Instrument
standardization makes the spectra from the same samples measured by different
instruments as consistent as possible. There have been many reports on the stan-
dardization of spectroscopic instrument hardware such as calibrating the wavelength
accuracy, absorbance accuracy, resolution, spectral response line type, and symmetry
of the spectrometer through sharp-line emission light source, standard materials, etc.
[3–9]. As well, there have been developments on instruments by optimizing optical
components, assembly processes, and control strategies with performance indicators
within the allowable range of variation [10, 11]. This is called the First Principle of
instrument calibration, which is the most fundamental basis of modern spectroscopic
analysis technology [12, 13].

For Fourier instruments of the same or even different types, it is basically possible
to directly transfer the spectra through the instrument calibration method [14–19]. In
recent years, some portable instruments can also transfer spectra between the same
type [20, 21]. Surely, different applications have various requirements for the consis-
tency of instruments [22–24]. Calibration models established by different methods
and different systems also have different tolerances for divergence between instru-
ments [25–29]. Due to the sharp peaks of the spectrum, Raman spectrometers can
better solve the problem of consistency between instruments via hardware [30–33].
Besides spectroscopic instruments, other instruments like mass spectrometers have
also encountered similar problems, but most of which can be solved by simple peak
calibration [34, 35].
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Fig. 17.1 Near-infrared spectra of barley samples on dispersive and Fourier transform instruments

Although there has been a development for decades, differences between different
brands of instruments still exist, e.g., the difference between a grating-type and a
Fourier transform-type spectrometers. Due to these differences, the inapplicability
of the multivariate models would produce unacceptable systematic prediction bias
[36–38]. Thus, the solution to this prediction bias is called calibration transfer or
instrument transfer [39–42]. In the area of machine learning, the relevant keywords
are transfer learning, domain adaptation, multi-task learning, etc. [43] (Fig. 17.1).

Calibration transfer mainly includes the following three categories of solutions
[43–46]:

(1) Transfer in spectra

Transfer between the spectra establishes the functional relationship between the
spectra measured by the master and slave through a mathematical method. There are
two ways of spectral transfer. One is to convert the master’s calibration spectra and
then re-establish a calibration model suitable for the slave spectra, which is called
reverse standardization in the literatures [47–49]. The other is to convert the slave
spectra, and directly use the master model to predict the result. The algorithm of
two ways is essentially the same and needs to be selected according to different
applications.

(2) Regression coefficient conversion

Regression coefficient conversion is conducted to the master model so as to make it
suitable for the slave spectra [50]. Also, prediction results of the master model can
be corrected, such as the slope/bias correction (SBC) method, etc., to eliminate the
systematic deviation of the prediction results [51, 52].
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(3) Robust calibration

Robust calibration is established through preprocessing, wavelength variable
screening algorithms, etc. Or themaster calibration set is expanded by adding spectra
under different test conditions, spectra from the slave, etc., to establish a global cali-
bration, or hybrid calibration [53, 54]. In some cases, this method is also calledmodel
updating or calibration maintenance. For instance, with the aging of the electronic
components, detectors, and optical components of the instrument, as well as changes
in the instrument hardware caused by the environment, these inevitable changes in the
instrument will lead to changes in the spectra [55]. In practice, the most commonly
used methods are the first and third ones [56, 57], the second is rarely used. This
chapter mainly introduces the first and third types of calibration transfer methods.

17.2 Traditional Algorithms

Commonly used methods for converting spectra among different instruments (or
under different conditions) include spectral subtraction correction (SSC), Shenk’s
algorithm, direct standardization (DS), piecewise direct standardization (PDS), etc.
These methods usually require a representative set of standard samples (15–30
samples), which are called calibration transfer methods with standard samples.

17.2.1 Spectral Subtraction Correction

Calculate the average spectrum xms and xss of the master standard sample spectral
matrix Xms and slave matrix Xss, respectively, and then calculate the difference
between the average spectra of them �x = xms − xss .

For the unknown spectrum xs,un from the slave spectroscopy, convert with formula
x p
s,um = xs,um + �x, acquire the spectrum x p

s,um consistent with xm,un, and the final
result is calculated by the calibration model established by the master [58].

17.2.2 Shenk’s Algorithm

Shenk’s algorithm consists of twomain steps: wavelength correction and absorbance
correction [59–61]. The following introduces this algorithm by taking the transfer of
spectrum from the slave to master (slave → master) as an example.
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(1) Wavelength correction

a. Corresponding to Xms,i, choose the spectral part Xss,j+k+1 with window
size of (k + j + 1) from the matrix Xss in the slave instrument, and calcu-
late the correlation coefficients of Xms,i and Xss,i-j, Rss,i−j+1,…,Xss,i+k−1,
Xss,i+k , respectively. If the coefficient rl of Xms,l (i−j ≤ l ≤ i + k) and
Xms,i is max, it is indicated that the l wavelength from the slave instrument
corresponds to the i wavelength from the master. To obtain more accurate
results, wavelengths l−1, l, and l + 1 and their corresponding correla-
tion coefficients rl−1, rl , and rl+1 are selected to establish a univariate
quadratic parabola model as r = ai + bii + cii2. The slave wavelength
i* corresponding to the master wavelength i would be obtained from this
fitted parabola.

b. Loop i to find all corresponding i*.
c. Establish the one-dimensional quadratic parabola wavelength calibration

model i* = A + Bi + Ci2 using the obtained i* and i.

(2) Absorbance correction
After wavelength correction, calculate the absorbancematrixXss,i* of the slave
wavelength i* by the interpolationmethod, then find the regression coefficients
sai and sbi using the linear equation Xms,i = sai + sbiXss,i*.

For the unknown spectrum xs,un from the slave instrument, wavelength fitting
calibration curve i* = A + Bi + Ci2 is used to calibrate the wavelength, calculate
xs,un* by the interpolation method, and finally, the spectral transfer result consistent
with the master is obtained by xs,unp = sai + sbixs,un*.

17.2.3 Direct Standardization

DS algorithm uses the transfer matrix F to convert the unknown sample spectrum
xs,un measured from the slave machine to xs,unp. Transfer matrix F is calculated by
Xms = XssF through the least square as F = Xss

+Xms [62, 63], where Xss
+ is the

generalized inversematrix of Xss,F is anm×m-dimensionalmatrix (m is the number
of wavelength variables).

For the spectrum xs,un measured from the slave machine, the transfer is conducted
byxs,unp =xs,unF, and thefinal result is calculatedby the calibrationmodel established
by the master.

17.2.4 Piecewise Direct Standardization

In the PDS algorithm, as shown in Fig. 17.2, standard sample spectral matrixXss,j+k+1

with the window width (j+ k+ 1) on both sides of the ith wavelength point from the
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Fig. 17.2 PDS algorithm scheme

slave instrument ((i−j)th to (i+ k)th points) and standard sample spectralmatrixXms,i

from the master ith wavelength point are used to calculate the transfer coefficient Fi

of the ith wavelength point. Then, the transfer matrixF of all wavelengths is obtained
by moving i point by point [64–67].

When calculating the transfer matrix F, besides the PLS method, as shown in
Fig. 17.3, methods such as artificial neural networks can also be used [68, 69].
Moreover, spectra can also be transferred and transmitted in the Fourier transform
domain or the wavelet domain, etc. [70, 71].

Fig. 17.3 Schematic diagram of PDS algorithm based on artificial neural network
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17.2.5 Procrustes Analysis

Statistically, Procrustes analysis is used to compare two matrices X1(m × p1) and
X2(m× p2), and to find the transfer matrix F between the matricesX1 and X2, where
m is the samples number, and p1 and p2 are the variables number.

A detailed algorithm is as follows [72, 73]:

(1) Perform singular value decomposition on the matricesX1 and X2, respectively,
X1 = U1S1V1

t, X2 = U2S2V2
t, where X1 and X2 represent the spectral matrix

measured by the master and slave (after averaging or standardization pretreat-
ment), U is score matrix, V is loading matrix, and U and V matrices contain
the rotation information between the spectral matrices. S matrix contains the
stretching information between the spectral matrices.

(2) Calculate Z1 = U1gS1g and Z2 = U2hS2h, separately, where g and h represent
the number of PCs used to find Z1 and Z2, respectively.

(3) Calculate transfer matrix F between Z1 and Z2 by F = Z2
+Z1, where Z2

+ is
the generalized inverse matrix calculated by Z2

+ = S2g−1U2g
t.

(4) A spectrum xun measured from a slave can be transferred into spectrum xunp

consistent with the master through the transfer matrix F and the loading
matrix V.

17.2.6 Target Transformation Factor Analysis

Target transformation factor analysis (TTFA) is also a transfermethod based on PCA.
Its core concept is to use the target transfer method to make the principal component
score (virtual component concentration) of the slave equal to that of the master. The
main steps are as follows [74]:

(1) Perform PCA on the standard sample spectral matrix of the master to obtain
the load and score matrix Xm = Tm P t

m
(2) Perform PCA on the standard sample spectral matrix of the slave to obtain the

load and score matrix X s = T s P t
s

(3) Establish the mathematical relationship between master and slave Tm = TT s

T = TmT t
s

(
T sT t

s

)−1

Solve the transformation matrix by generalized inverse operation

T = TmT t
s

(
T sT t

s

)−1

(4) Transfer of spectrum from master to slave can be expressed as XP
S =

Xm PmT+Pt
s

where the transfer matrix F = PmT+P t
s .
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17.2.7 Maximum Likelihood Principal Component Analysis

Maximum likelihood principal component analysis (MLPCA) treats calibration
transfer as an issue of missing data [75].

Combine the standard sample spectra of master and slave: xi,comb = [xi,m, xi,s],
i = 1,2,…,n, where n is the number of standard samples.

Besides, other samples of the calibration set on the master that has no corre-
sponding spectra on the slave can be expressed as x#i,comb = [xi,m, x#i,s], i= 1,2,…,m,
where m denotes the number of calibration set samples minus standard set samples,
and x#i,s denotes the missing spectra from the slave.

xi,comb and x#i,comb can be expressed as a matrix Xcomb =
[
X∗

X#

]
, where X∗

represents combined spectral matrix without missing data in the standard sample set.
X# represents combined spectral matrix of other samples in the calibration set with
missing data in the slave.

Perform MLPCA on Xcomb:

[
X∗

X#

]
=

[
U∗

U#

]
DP t .

Then, the spectrum xi,m collected on the master can be transferred into the
spectrum on the slave according to the following formula:

x
∧

i,s = U#(U∗tU∗)−1
U∗txi,m (17.1)

Afterward, based on the MLPCA algorithm, Folch-Fortuny et al. [76] used the
trimmed scores regression (TSR) method to deal with the issue of missing data and
proposed the TSR method for calibration transfer.

17.2.8 Slope/Bias Correction

Different from the above methods that are based on the transfer between spectra,
there is a method based on the transfer between the prediction results, that is, the
functional relationship between the prediction results obtained by the master and the
slave is established, which is named slope/bias correction (SBC) algorithm [77–79].

The calibration model established on the master is used to predict the analysis
results ymp and ysp of the master and slave standard sample spectral arrays Xms and
Xss, respectively. Assume that ymp and ysp have a relationship of ymp = a × ysp + b.
The least squares method can be used to obtain a and b.

As for the unknown spectrum xs,un measured by the slave, firstly, the calibration
model established by the master is used to calculate ysp, un, and then formula ysp,unp

= b + a × yp,un is used to calculate the corrected analysis result ysp, unp.
Normally, the SBC algorithm is not recommended. Because if the spectral differ-

ence between instruments is significant, it would be difficult or even impossible to
identify the outlier samples of the model.
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17.3 Improvement of Traditional Algorithms

In the process of calibration transfer, the selection of standard samples is particularly
important [80]. For the model update problem, Capron et al. [81] compared the
effects of the weighting of calibration samples and the selection of representative
samples, and the results showed that the selection effect of representative samples is
better. Siano et al. [82] and Clark [83] compared the influence of different transfer
standard selection methods on the spectrum transfer effect of PDS, etc., and the
results showed that the optimal K-dissimilarity selection (OptiSim) method is better
than the K-S method. Li et al. [84] replaced the Euclidean distance in the K-S
algorithm with the Mahalanobis distance and selected the transfer standard sample
through the improved K-S algorithm. In the PDS algorithm, the samples selected
by the Mahalanobis distance are more representative, because the combination of
concentration differences and spectral differences can better represent the differences
between samples. Zhou et al. [85] proposed a transfer standard set selection method
based on the Markov chain, and the result is better than the K-S method.

From the perspective of optimizing the selection method of the transfer stan-
dard set, Liang et al. [86] optimized the transfer matrix of the PDS algorithm and
proposed the Rank-KS-PDS calibration transfer algorithm. When Rank-KS selects
the transfer standard sample set, it comprehensively considers the influence of sample
spectral space and sample concentration space, overcomes the shortcomings of the
K-S algorithm insensitive to low concentration areas, and improves the accuracy of
calibration transfer. Based on the idea of backward selection variables, Zheng et al.
[87] proposed a backward selection iterative method to transfer the selection of the
standard sample set. Through this method, the transfer effect of the standard sample
set is better than the standard sample set selected by the KS algorithm. Aiming at
the problem of difficulty in obtaining and storing standard samples of natural plant
models, Ni et al. [88] proposed a method for preparing standard samples, and this
kind of standard sample is stable under normal temperature and pressure, similar
to the color of various natural plants, with the constant spectrum and good repro-
ducibility, and can be used for a long time in the transfer process of the near-infrared
model of a variety of natural plants.

Aiming at the limitations of the SBC algorithm in solving nonlinear problems, Xin
et al. [89] established a linear function relationship between the prediction results
of the master and the slave by introducing high powers, both Lagrange interpolation
and Newton interpolation are used to find the parameters, and the nonlinear fitting of
the two sets of data is realized. Cao et al. [90] proposed a method for selecting PDS
algorithm parameters (number of standard samples, number of PLS main factors,
and window width) based on the angle of the spectral space. Zhang et al. [91] used
sampling error profile analysis (SEPA) to optimize the PDS algorithm’s window
width and PLS main factor number and other parameters, and proposed the SEPA-
PDS method.

Blanco et al. [92, 93] used the spectral difference of a set of standard sample sets
under different conditions combined with weighting to calculate a mutation matrix,
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and randomly added it to the calibration set spectrum,which solved the problemof the
laboratory-prepared drug calibration samples used for production process analysis.
On this basis, Wang et al. [94] improved the SSC algorithm, the spectrum compen-
sation between the master and the slave does not use the average spectral difference
of the standard sample set spectrum array uniformly, but for each sample in the cali-
bration set, select the most similar standard sample set to compensate for the spectral
difference between the master and slave, and the compensation spectrum is weighted
by the concentration ratio between the calibration set samples and the standard set
samples. On the basis of the SSC algorithm, Li et al. [95] respectively compensated
different correction vectors for different types of correction sets, and then through
continuous model updates, the influence of different measurement environments on
the identification of corn haploid grains by NIRS can be eliminated. Based on the
traditional SBC algorithm, Wang et al. [96] proposed a dual-domain model delivery
strategy. In this method, the master model is used to predict the spectra of the master
and slave standard sample sets respectively, and the transfer model is established by
using the ratio of the predicted value and the spectrum of the slave standard sample
set. For the spectra collected by the slave, the initial value is calculated first using the
master model, and then the ratio is calculated by the transfer model, and finally the
final prediction result is obtained through the ratio. Li et al. [97] established a PLS
model between the spectral difference and the predicted concentration difference
between two NIRS instruments to achieve the correction of the predicted concentra-
tion from the slave machine. Tan et al. [98], Sum and Brown [99] improved the finite
impulse response (FIR) transfer algorithm without standard samples, which elimi-
nated the peak problem caused by the FIR algorithm and improved the transfer effect
of the FIRmethod. Bouveresse et al. [100] used the local weight regression algorithm
for the correction between spectral absorbance and improved Shenk’s algorithm.

Before performing DS and PDS operations, Wang et al. [101] used additive back-
ground correction to improve the effect of spectral transmission. In response to the
nonlinear transfer between spectra in the traditional PDS algorithm and the appear-
ance of discontinuities and even abnormal peaks [102],Wang et al. [103] replaced the
PLS regression in the PDS algorithm with a radial basis function neural network and
obtained better results. Chen et al. [104] believe that the appearance of the peak in the
PDS algorithm originates from the coefficient of the larger norm in the PLS model,
and its essence is an over-fitting problem. They used a linear regression method with
coefficient norm penalty to establish a spectral transfer model, and the transferred
spectra were smoother and more robust.

Univariate correction is a special case where the PDS method takes a window
width of 1. Yang et al. [105] proposed the simple linear regression direct standard-
ization (SLRDS) method, and this univariate correction method is more suitable for
the case where the spectrum has a small linear difference. Norgaard [106] also used
this method in fluorescence spectroscopy, which is called the single wavelength stan-
dardization (SWS). Galvao et al. [107] calculated the covariance matrix based on the
univariate spectral correction using the spectral residuals transferred from the master
and slave of the standard sample set and then established the model through a robust
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regression method. This method has certain advantages in the case of fewer wave-
length variables. Lu et al. [108] used the minimum angle regression to first select the
characteristic wavelength variable and then used the unary linear direct correction
method to transfer the spectrum, which further improved the transfer effect. Wang
et al. [109] used the dynamic time warping algorithm (DTW) in speech analysis to
correct the spectral wavelengths on the two instruments, and then used the unary
regression or multiple regression algorithm to correct the absorbance and obtain
satisfactory results. In order to prevent excessive warping, Zou et al. [110] proposed
a variable penalty dynamic time warping (VPdtw), which has a better transfer effect
on the NIRS than the PDS algorithm.

Yan and Zhang [111] gave different weights to the wavelength variables in the
moving window of the PDS algorithm and proposed a windowed PDS algorithm
(WPDS) based on ridge regression and penalty terms. The PDS, a special case of
the WPDS algorithm, can be regarded as all wavelength variables assigned the same
weight. The double window PDS algorithm (DWPDS) is an extension of the tradi-
tional PDS algorithm, that is, a window of a certain width is taken from the master
and slave spectra, and the spectrum transfermatrix is establishedwindow bywindow.
Oliveri et al. [112] used the idea of the dual-window PDS algorithm to calculate the
transfer coefficient between the average spectrum of the standard sample spectral
matrix transferred from the master and the slave, and the transfer coefficient was
calculated using the least square method (Fig. 17.4). Greensill et al. [70, 113] also
used the dual-windowPDS algorithm to transfer different array types of near-infrared
spectra, but the best result is the wavelet transform combined with the DS algo-
rithm. Ottaway and Kalivas [114] improved the DS and PDS algorithms by adding
higher-order terms and derivative terms, which can solve the problem of nonlinear
differences between different spectroscopic instruments to a certain extent.

On the basis of the DS algorithm, Chen et al. [115] used an extreme learning
machine auto-encoder to establish the relationship between the master and slave
standard sample spectralmatrices andobtained stable spectral transfer results through
an integrated strategy. Laref et al. [116] used SVM for the DS algorithm to obtain the
signal transfer of different electronic nose instruments, and the standard set samples
were obtained by the SPXY method. The stacked partial least squares (VIP-SPLS)
method improved by the variable importance in the projection proposed by Li et al.
[117] rearranges the wavelengths and divides them into a series of non-overlapping
spectral intervals, and then transfers them through the DS algorithm.

Tan et al. [118] used wavelet transform spectroscopy to denoise and compress
the signal, then reconstructed spectral signals of different scales through inverse
wavelet transform, and then carried out transfer operations on the spectral signals
of different scales, and proposed a wavelet hybrid direct standardization (WHDS).
Chen et al. [119] also proposed a similar calibration transfermethod.Yoon et al. [120]
performed wavelet transform on the spectrum to obtain wavelet coefficients first and
then used the DS algorithm to transfer. For large spectral matrices, this method can
reduce the time for spectral transfer and modeling, which is called wavelet transform
direct standardization (WTDS). Tan et al. [121] used wavelet packets to decompose
the spectrum and realized the transfer of spectrum between different instruments
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Fig. 17.4 Spectral transfer method based on the concept of double-window PDS

through wavelet packet coefficient transformation, which is called wavelet packet
transform standardization (WPTS).

After Ni et al. [122] divided the spectrum by wavelet, used the PDS algorithm
to transfer each sub-spectrum, and then used the consensus modeling strategy to
establish a PLS model for each transferred sub-spectrum one by one, which is
called stacked dual-domain piecewise direct standardization (SDDPDS), Poerio et al.
[123] combined the dual-domain wavelet transform with orthogonal projection, and
proposed the dual-domain transfer using orthogonal projection (DDTOP).

Based on the direct orthogonal signal correction (DOSC) algorithm, Lin et al.
[124] andWasng et al. [125] used the regression of the virtual standard average spec-
trum to eliminate the background differences between sample batches and proposed
the orthogonal space regression (OSR) calibration transfermethod,which can correct
the systematic errors between the spectra of multiple batches of preparations, and
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realize the calibration transfer of the chlorogenic acid quantitative model between
batches during the water extraction process of the honeysuckle pilot-scale test. On
this basis, Yang et al. [126] and Wang et al. 127] proposed a guided orthogonal
projection technology combined with a calibration transfer method of SBC, which
realized the transfer of the near-infrared quantitative moisture model of the small-
scale test to the pilot-scale test. Wang et al. [128] used the random forest to select
the wavelength of the NIRS and then used the DOSC algorithm to preprocess the
spectrum to realize the sharing of calibration models between different instruments.

For the spectra collected at different temperature points, the transfer can be real-
ized through the PDS algorithm. However, the traditional PDS algorithm cannot
transfer the spectrum at any temperature between different temperature points [129].
Based on the PDS algorithm, Wulfert et al. [130] and Barring et al. [131] proposed a
continuous piecewise direct standardization (CPDS) algorithm. The transfer matrix
F�T between two different temperatures and the temperature difference �T were
subjected to polynomial regression to obtain two transfer matrix FT at any tempera-
ture between two temperature points. In order to eliminate the influence of temper-
ature on the online determination of electroplating bath composition content by AC
voltammetry analyzer, Jaworski et al. [132] proposed continuous direct standardiza-
tion (CDS) and used temperature as a variable to participate in the calibration model
to eliminate the influence of temperature on the prediction results.

17.4 New Algorithms

17.4.1 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a multivariate analytical method to study the
correlation between two sets of variables, which can reveal the linear dependence of
them. CCA algorithm considers that the information of the measured object between
two sets of spectra from the master and slave is consistent, and should be linearly
related to each other, while the noise and interference information is random and
independent. This method performs canonical correlation analysis on the master and
slave spectral matrix and then converts the obtained canonical correlation variables.
Transfer of canonical correlation variables can extract spectral transfer informa-
tion from the overall spectra and can filter out noise and interference. The specific
calculation is as follows [133]:

(1) Execute CCA on the standard sample spectral matrix of the master and the
slave, respectively.

Lm = XmWm (17.2)

Ls = X sW s (17.3)
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Lm and Ls are the score matrix of the master standard sample spectral matrix Xm and
the slave standard sample spectral array Xs, respectively,Wm andWs are the loading
matrix of Xm and Xs, respectively.

(2) Calculate the transfer matrix F.

F1 = L+
s Lm (17.4)

F2 = L+
mXm (17.5)

F = W sF1F2 (17.6)

(3) Transfer of the slave spectrum xun to the master spectrum can be expressed as
xunP = xunF.

CCA algorithm only considers extraction of the maximum correlation of typical
variables, whichmay introduce redundant information that has nothing to dowith the
target, thereby complicating the calibration transfer function. On this basis, Zheng
et al. [135] proposed to use PLS to extract the factors that are related to the target
value with the largest variance and then used CCA to perform the spectral transfer,
which improves the pertinence of spectral transfer to a certain extent.

Before CCA transfer, Bin et al. [136] used wavelet transform to preprocess
the original spectra and performed CCA by wavelet coefficients (WTCCA), which
achieved a better transfer effect. Fan et al. [137] calculated the principal components
of the master’s standard sample spectral matrix Xm by the latent variables of the
master PLS model, and then performed spectral transfer (PC-CCA). The validation
results were better than the single CCA method.

Similar to CCA, based on spectral regression (SR), Peng et al. [138] decom-
posed on Xm and Xs, and proposed the spectral regression transfer algorithm. It puts
the issue of solving the characteristic function in the regression model, avoids the
frequent eigenvalue decomposition process of the dense matrix, and improves the
calculation efficiency. Zhang et al. [139] decomposed the spectra based on multi-
level simultaneous component analysis (MSCA) and proposed a two-level strategy
for spectral transfer algorithm.

17.4.2 Spectral Space Transformation

Spectral space transformation (SST) obtained the combined spectrum matrix
Xcomb = [Xm, X s] by combining the standard set spectra Xm and Xs measured
by the master and slave, respectively. The loading vectors of the combined spectrum
matrix are obtained using PCA, and then the spectrum transfer matrix is calculated
[140]. The calculation is as follows:
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(1) Combine the standard set spectra Xm and Xs measured by the master and slave
to obtain a combined spectrum matrix.

Xcomb = [Xm, X s] (17.7)

(2) PCA on the combined spectral matrix Xcomb.

Xcomb = T
[
P t

m, P t
s

] + E (17.8)

where Pm
t and P s

t are loading of the master and slave matrices.
(3) Calculate the transfer matrix F.

F = I + (
P s

t
)+

(Pm
t − P s

t) (17.9)

where I is the identity matrix.
(4) Transfer of the slave spectrum xun to the master spectrum can be expressed as

xPun = xunF (17.10)

The structure of the SST algorithm is relatively simple to be calibrated, and it can
still maintain good prediction results under a low standard sample number. Similarly,
Liu et al. [141] used ICA to decompose the combined spectral matrix obtained from
multiple instruments, and the expression of the transfer matrix is consistent with the
SST algorithm.

17.4.3 Alternating Trilinear Decomposition

Alternating trilinear decomposition (ATLD) is an algorithm commonly used to
decompose three-dimensional data. For a group of standard samples with collected
spectra from different instruments, a three-dimensional matrix X can be obtained,
the dimension of which is I× J × K, where I is the number of standard samples, J is
the number of spectral points, and K is the number of instruments. ATLD algorithm
can decompose X into three matrices as A(I × N), B(J × N), and C(K × N), where N
is the number of contributing factors, A represents the relative concentration matrix
of the standard sample, B represents the relative spectral intensity matrix of the stan-
dard sample, and C represents the instrument information matrix. The algorithm is
as follows [142]:

(1) Decompose X by ATLD.

xi jk =
N∑

n=1

ainb jnckn + ei jk , (i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2, . . . , K )

(17.11)
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(2) Calculate the transfer matrix F.

Fk = diag(ck)Bt (17.12)

where ck is the kth row of matrix C.

xk2,trans = xk1,newF (17.13)

where F = I + Fk1
+(Fk2−Fk1).

ATLD and SST algorithms have the same spectral transfer matrix formula, except
that before the factor analysis, the SST algorithm expresses the standard sample
spectral matrix collected frommultiple instruments in an unfolded manner, while the
ATLD algorithm is a cube matrix. As for cube data decomposition, besides ATLD,
there are also PARAFAC and Tucker3 that can also be used. Kompany-Zareh et al.
[143] used the Tucker3 algorithm to conduct the spectral transfer between different
instruments as the missing data filling problem of the tensor array and realized the
calibration transfer from the FT-Raman instrument to the CCD-Raman spectrometer.

17.4.4 Multi-task Learning

Multi-task learning (MTL) calculating the transfer matrix can be summarized as
solving a convex optimization problem with a regular trace norm. This regular opti-
mization method can extend the linear transfer between the spectra of different
instruments to the nonlinear spectral transfer relationship. Compared with other
transfer methods like neural networks, this method solves the final transfer matrix
through a convex optimization problem. So it can efficiently and quickly obtain the
global optimal solution while requiring fewer preset parameters. The calculation is
as follows [144]:

(1) Calculate the Gram matrix of the spectral matrix Xs of the slave standard
samples.

K = X sX t
s (17.14)

(2) Perform eigenvalue decomposition on n× n order K matrix:K =UDUt, where
D is a diagonal matrix containing all eigenvalues, and each column of U is a
corresponding eigenvector.

(3) Solve a regular problem about the trace norm of matrix B of order n × p (n is
the number of standard samples, and p is the number of wavelengths).

min
B

∥∥∥Xm − UD
1
2 B

∥∥∥
2

F
+ ρ‖B‖tr (17.15)
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where ||·||F represents the Frobenius norm of the matrix, ||·||tr represents the
trace norm of the matrix, and ρ is the regular term coefficient. Method of the
accelerated proximal gradient can be used to solve the convex optimization
problem of trace norm regularization.

(4) Calculate the transfer matrix F.

F = X t
SUD− 1

2 B (17.16)

(5) Transfer of the slave spectrum xun to the master spectrum can be expressed as

xPun = Ftxun (17.17)

Boucher et al. [145] also proposed the proximal methods for spectral transfer
between different instruments based on the regularization framework, which used
the alternating directionmethodofmultipliers (ADMM) to solve convexoptimization
problems. It has a good result on the transfer from a narrowband range spectrum to
a wideband range spectrum.

As for the transfer of multiple qualitative models, Hu et al. [146] proposed an
optimization framework using the maximum margin criterion (MMC).

argmin||Xm − X sF||2F + ρ||Ft(Sw − Sb)F||tr (17.18)

where Sw is the intra-class scatter matrix, Sb is the inter-class scatter matrix, and F
is the spectral transfer matrix. MMC algorithm has certain advantages in transferring
spectra for qualitative analysis.

17.4.5 Generalized Least Squares

Generalized least squares (GLS) takes the difference matrix of the master and slave
standard samples as a reference to establish a weighted filtering model to eliminate
the influence of the difference between the instruments on the spectra. The main
steps of the algorithm are as follows [147, 148]:

(1) Calculate the mean-centered difference matrix of the master and slave standard
sample spectra.

Xd = (
Xm − Xm

) − (
X s − X s

)
(17.19)

(2) Calculate the covariance matrix of Xd .

Cd = X t
dXd

n − 1
+ α I (17.20)
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where n is the number of standard samples, α is the coefficient (usually 1 ×
e−6), and I is the identity matrix.

(3) Perform singular value decomposition on the covariance matrix Cd .

Cd = USV t (17.21)

(4) Calculate the weighted filter matrix W.

W = V S+
ad jV

t (17.22)

where Sad j = sqrt
(

S×m
trace(S)

)
, and m is the number of wavelength variables.

(5) Transform the spectral matrix of the master calibration set and that of the slave
prediction set separately.

X trans = (
X − X

)
W (17.23)

17.4.6 Other Algorithms

Based on the principle of orthogonal projection,Andrew andFearn [149] obtained the
average spectrum of a set of standard samples onmultiple instruments and performed
PCA on the average spectra. The first few representative projection spaces formed
by the different spectral loadings between the instruments can perform transfer by
orthogonal projection (TOP)on the spectra onmultiple instruments. From the concept
of TOP, Zhu et al. [150] replaced the average spectral matrix with a change matrix of
a set of sample repetitive spectra, performed PCA to obtain the projection space, and
proposed an error removal by orthogonal subtraction (EROS). Subsequently, in view
of EROS, Zeaiter et al. [151] calculated the virtual spectrum of the slave through
the kernel function. According to the difference matrix between the measured and
virtual spectrum, the PCA was performed to obtain the projection space, and the
dynamic orthogonal projection (DOP) was proposed. Dabros et al. [152] used the
DOP algorithm for the maintenance of the online infrared calibration model and
achieved good application results. Igne et al. [153] reviewed and compared the effects
of the above-mentioned orthogonal projection algorithms for the transfer of NIRS
models. Siska and Hurburgh [154] used the wiener filter method to process the
spectra for the transfer of fixed filter-type NIRS instruments and proposed a method
of optimizing the master instrument.

Chen et al. [155] proposed a loading space standardization (LSS) algorithm for
the influence of temperature on the spectrum. PCA was performed on the spectra
collected from the standard set samples at different temperatures, and then the
quadratic function relationship between the spectral loading and the temperature
at each temperature was established. Spectrum measured at a certain temperature
can be standardized in the loading space to obtain the corresponding spectrum at



468 17 Calibration Transfer Methods

standard temperature. Afterward, Chen and Morris [156] combined the LSS algo-
rithm with the optical path length estimation and correction (OPLEC) and proposed
the extended loading space standardization (ELSS), which was used to correct the
effects of temperature and composition changes on the spectra. Similarly, Shi et al.
[157] effectively eliminated the influence of temperature changes on theNIRS during
the production of sugar and flavoring based on the LSS algorithm.

Zhang et al. [158] regarded calibration transfer as a global affine transformation
problem:

x̂i,n = ai xi,n + bi , i = 1, . . . , k, n = 1, . . . , N

where xi,n represents the spectrum of the nth standard sample on the ith slave instru-
ment, k represents the number of slave instruments, N represents the number of
standard samples, and x

∧

i,n represents the spectrum of the nth standard sample on the
ith slave instrument transferred to the master. The transfer coefficients ai and bi are
calculated by the robust weighted least square algorithm (RWLSA). Deshmukh et al.
[159] also used a robust regression method to achieve inter-station signal transfer
among the electronic nose systems for emission detection in paper mills.

Zhao et al. [160] proposed an algorithm of calibration transfer based on affine
invariance (CTAI) for calibration transfer based on affine invariance. This method
first establishes the PLS model to obtain the score matrix and prediction vector of
the master spectra, as well as the pseudo-score matrix and pseudo-prediction vector
of the slave spectra. Secondly, the regression coefficients of master and slave are
obtained by least squares, respectively, and then the angle and deviation between
master and slave are calculated by the regression coefficients. Finally, the prediction
result of the slave spectra is obtained based on the affine transformation.

Folch-Fortuny et al. [76] and Munoz et al. [161] proposed a new spectral transfer
method using Joint-Y partial least squares regression (JYPLS).

Y J =
[
Ym

Y s

]
=

[
Tm

T s

]
Qt

J + E

Xm = Tm P t
m + E

X s = T s P t
s + E

Tm = XmWm

T s = X sW s

where Ym and Y s are the concentration matrices of the calibration set and standard
set samples of the master; Tm and T s are score matrices of Xm and Xs; Pm and P s
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are loading matrices of Xm and Xs; Wm and W s are weighting matrices of Xm and
Xs, respectively. Q J is the loading matrix of the combined Y concentration matrix.

Spectrum xi,m in the master calibration set can be transferred into the spectrum
x
∧

i,s of the slave by the following formula:

x
∧

i,s = (
Q J Q

t
J

)−1
Q J xi,m (17.24)

Shan et al. [162] proposed a joint spectral subspace transfer method (JPCA)
based on principal component analysis and kernel principal component analysis.
The method combines the spectral matrices of the master and slave standard sample
sets for PCA or kernel PCA so as to obtain the transfer matrix through least squares
in the low-dimensional feature space.

Khaydukova et al. [163] proposed a standardization method with regularization
coefficients (SRC) based on Tikhonov regularization (TR), which uses the following
formula to obtain the transfer matrix:

F = (
X t

sX s + a
)−1

(X sXm) (17.25)

In the formula, a is the regularization coefficient, usually from 1 to 30,000.
Spectrum xi,m in the master calibration set can be transferred into the spectrum

x
∧

i,s of the slave by the following formula:

x̂i,m = xi,sF (17.26)

Zhao et al. [164] used the PLSmodel of the master to project the spectra of master
and slave standard sample sets, respectively, and then established the transfer between
two instruments in the PLS projection space. For the spectrum collected from the
slave, the projection vector on the master was obtained by transfer relationship in the
projection space, and then the PLS model of the master produced the final prediction
result. Zhang et al. [165] used X weight matrix of the PLS model built by the master
to project the master standard sample spectrum to further obtain the matrix L, and
then to obtain the transfer matrix F between L and the slave standard sample spectral
matrix. It was a PLS-based weight matrix transfer method. Chen et al. [166] used the
master model to predict the deviation of the concentration value of the slave standard
sample set from the actual concentration and established a deviation predictionmodel
for systematic prediction error correction (SPEC).

Mou et al. [167] aimed the minimization of the robust Cauchy estimator function
of subspace learning and proposed a robust spectral transfer method. It calculated
the shared base matrix of the master and slave spectra and its corresponding expres-
sion coefficients in an iterative manner and then established a transfer matrix based
on the expression coefficients, which can reduce the impact of outlier samples and
spectral noise on the spectral transfer. Seichte et al. [168] proposed a Bayesian cali-
bration transfer method based on the Lagrangian multiplier method and hierarchical
model, which used the Markov chain Monte Carlo method to estimate the error
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bounds. It was successfully performed in calibration transfer of oxygen sensors.
Subsequently, they used similar methods to eliminate the influence of oxygen on the
determination of carbon dioxide content by mid-infrared spectroscopy [169]. Based
on the multiple block orthogonal projections to latent structures (OnPLS), Skotare
et al. [170] proposed a joint and unique multiblock analysis (JUMBA) for spectral
transfer of multiple instruments.

Andries used the penalty matrix decomposition algorithm of domain adaptation
in the transfer learning method such as transfer component analysis (TCA) and
scatter component analysis (SCA) for spectral matrix transfer and model mainte-
nance [171]. Similarly, Liu et al. [172] used the TCA to realize the NIRS transfer of
edible oil on different instruments. In terms of soil research, TCA was successfully
applied to transferring the NIRS among arsenic and available phosphorus models
[173, 174]. Especially, TCA addresses the problem of different data distribution in
the source domain and the target domain and maps the data from two domains to a
high-dimensional regenerative kernel Hilbert space, where the data distance between
the source and target are minimized, while their respective internal attributes to the
greatest extent are retained.

Shi et al. [175] transferred the NIRS of the two types of wood by adaptive compo-
nent analysis (ACA) and established a deep transfer learning model of oak wood
defect classification with the color wood data as the source domain and oak wood
data as the target domain. Shan et al. [176] proposed a joint spectral subspace
method for calibration transfer based on PCA and KPCA. Based on the principle
of domain adaptation, Nikzad-Langerodi et al. [177], Mishra and Nikzad-Langerodi
[178] proposed a domain-invariant PLS (di-PLS) method, which can be used for
unsupervised, semi-supervised, and supervised spectral model maintenance and cali-
bration transfer. Huang et al. [179] also proposed a partial least squares method for
domain adaptation. A transfer sample-based coupled task learning (TCTL) method
was proposed based on transfer learning andmulti-task learning, which could be used
for transfer between electronic nose instruments and compensation for drift over time
[180]. Based on the active learning algorithm from machine learning, Hu et al. [181]
solved the problem of multivariate quantitative correction for hyperspectral imaging
of different types of blueberries through iterative screening of standard samples.

Li et al. [182] proposed a double digital projection slit algorithm for Raman
spectrometers with different resolutions to solve the problem of spectral consistency.
The gradient descent method was adopted to obtain the optimal solution of the
transfer matrix, and a better transfer result was achieved. In the study of Liu et al.,
the deep autoencoder (DAE) method was employed to establish a nonlinear mapping
between spectra of differentNIR instruments.Anerror functionpenalty termbasedon
conditional probability and parameter maximum likelihood method was designed,
and the network parameters of deep auto-encoding were optimized by combining
with a gradient back propagation algorithm [183].

In addition to the transfer of the calibration spectramatrix, somenewmethods have
also been applied in order to realize the transfer of the master calibration model. Liu
et al. [184] proposed a linear model correction (LMC) that can realize the transfer of
PLS model regression coefficients. Subsequently, the method was further improved
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to obtain the globally optimized regression coefficients [185]. Kauppinen et al. [186]
realized the transfer of the online NIR model of the moisture content of the drug
freeze-drying process by converting the PLS regression coefficients. With regard to
the evaluation issue of the transferred model, Eskildsen et al. [187] proposed to use
the prediction results of the model instead of original reference data to evaluate the
effect of the calibration transfer.

17.5 Global Calibration, Robust Calibration, and Model
Update

Three keywords of global calibration, robust calibration, andmodel update (or model
maintenance) are often referred to confusingly in spectral multivariate calibration
analysis, and actually they have a lot in common. The global model calibration, also
known as the augmented hybrid calibration, hybrid calibration, spikingmethod in the
literature, usually refers to the expansion of the calibration set of themaster by adding
spectra under different test conditions, spectra measured from different instruments,
etc. to build a model so as to achieve model sharing under different instruments,
different measurement environments, or different sample types. Robust calibration
often refers to the establishment of a model that is not sensitive to external influence
factors through spectral preprocessing algorithms, wavelength variable screening
algorithms, etc. [188, 189]. Therefore, it can be considered that the establishment of
a global calibration is a means to achieve a robust model, and both two methods can
also be combined to establish a robust global model. However, the model updating
or calibration maintenance covers a broader range. In the traditional concept, when
encountering samples outside of the model (chemical composition or physical state
of the sample changes) or the instrument is aging over time, what we need is model
update ormodel maintenance. In general concept, the process of establishing a global
model or a robust calibration actually also belongs to the category of model update
or model maintenance [190, 191]. Thus, global calibration, robust calibration, and
model updates (or model maintenance) are usually employed to solve calibration
transfer problems [192].

Koehler et al. [193, 194] introduced a self-designed FIR matrix to filter the
MIR interference data, combined with the model update, accurately classifying the
data obtained by two MIR remote sensing spectrometers based on piecewise linear
discriminant analysis (PLDA). The FIR algorithm was used by Song et al. to elimi-
nate the changes in the spectra from the same instrument at different times and under
different environmental conditions, and amore robust NIRSmodel for predicting soil
organic matter content was established [195, 196]. By means of spectral error anal-
ysis,Wang et al. [197] proved that the combination of the first derivative and SNVcan
significantly improve the calibration transfer results between FT-NIR spectrometers
with integrating sphere diffuse reflectance measurement.
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Milanez et al. [198] involved successive projections algorithm (SPA) to select
characteristic wavelength variables for establishing NIRS and UV-vis models. The
discriminant models can be used among different instruments, and their recognition
accuracy was equivalent to DS and PDS methods. A similar study was reported
that SPA and competitive adaptive reweighted sampling (CARS) were combined
to select special wavelengths, and together with the SBC algorithm, the established
NIRSmodel predicted the soluble solid content of apple spiked for consecutive years
[197]. A double CARS strategy was proposed by Zheng et al. [200] for NIRS global
modeling. Based on the concept of standard deviation, Ni et al. [201–203] proposed a
stable and consistent wavelength variable selection method between spectrometers,
which can establish a robust calibration model and realize the sharing of models on
multiple instruments. Hong et al. [204] used the scale-invariant features transform
(SIFT) algorithm to screen the stable characteristic wavelengths for establishing the
NIRS model of the total alkaloids of tobacco leaves, which can realize the standard-
free transfer of the model. Xu et al. [205] proposed a correlation-analysis-based
wavelength selection (CAWS)basedon the correlation coefficient between themaster
and slave spectra, whichwas used to establish a robust calibrationmodel and obtained
good results. Based on the multi-model consensus strategy, Zhang et al. [206, 207]
proposed the guided model reoptimization (GMR) method to solve the problem of
model update and calibration transfer, which selected wavelength variables to filter
and weight by PLS regression coefficients, and screened calibration set samples
through a method similar to stepwise multiple linear regression to select variables.

When establishing the global model between master and slave, it is necessary
to collect the spectra of a certain number of representative samples from the slave,
and the corresponding concentration value is granted to get better results [208]. To
address this problem, Kalivas et al. [209, 210] proposed a strategy of models update
and transfer based on the weighting method of slave samples and the Tikhonov
regularization framework.

The common weighting modeling can be expressed as

(
y

λ yL

)
=

(
X
λL

)
b (17.27)

where y is the concentration vector of themaster calibration set,X is the spectramatrix
of the master calibration set, yL is the concentration vector of the slave calibration,
L is the spectra matrix of the slave calibration, λ is the weighted value, and b is the
regression coefficient.

Under Tikhonov regularization (L2 regularization), the optimization framework is

min
(
‖Xb − y‖22 + λ2

∥∥Lb − yL
∥∥2
2

)
(17.28)

The solution of this equation is
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b
∧

= (
X tX + λ2LtL

)−1(
X t y + λ2Lt yL

)
(17.29)

If L represents the difference spectra matrix of a set of standard sample sets
measured on the master and slave, respectively, or a set of spectral baseline back-
ground matrix under different test conditions, or a set of spectra matrix of blank
samples, etc., its corresponding yL becomes a zero concentration vector. Then the
optimization framework can be simplified as

min
(‖Xb − y‖22 + λ2‖Lb‖22

)
(17.30)

The solution of this equation is

b
∧

= (
X tX + λ2LtL

)−1
X t y (17.31)

In order to obtain more stable regression coefficients, based on the idea of ridge
regression, the weighting method modeling can be improved as
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Among which, τ is the penalty coefficient and I is the identity matrix.
The optimization framework is

min
(
‖Xb − y‖22 + τ‖b‖22 + λ2

∥∥Lb − yL
∥∥2
2

)
(17.33)

The solution of this equation is

b
∧

= (
X tX + τ 2 I + λ2LtL

)−1(
X t y + λ2Lt yL

)
(17.34)

Regarding the model update and transfer strategy of Tikhonov’s regularization,
Kunz et al. [211, 212] discussed the influence of standard design selection. Shah-
bazikhah and Kalivas [213] proposed a consensus modeling strategy to optimize the
selection of regularization parameters. While Tencate et al. [214] brought forward a
method for selecting model update parameters based on the fusion strategy. Farrell
et al. [215] used Tikhonov’s regularization strategy to update the drug NIRS model
under different conditions and obtained satisfactory results. A similar study was
done for sharing the model on different NIRS instruments based on Tikhonov’s
regularization strategy [216].

Except for sample augmentation, the model update can also take samples and
features to augment at the same time, which can be expressed as [217]



474 17 Calibration Transfer Methods

⎛

⎝
y
0

λ yL

⎞

⎠ =
⎛

⎝
X 0

0X
λL λL

⎞

⎠
(
bm
bs

)
(17.35)

Rudnitskaya et al. [218] compared the results of DS algorithm, Tikhonov regular-
ization, and Joint-Y PLS on calibration transfer and update for the potential sensor
array instrument, proving that Tikhonov regularization and Joint-Y PLS can get
better results. On the basis of the least absolute shrinkage and selection operator
(LASSO), Kunz and She [219] proposed a robust fused LASSO algorithm (RFL)
for the maintenance and transfer of the calibration model. The genetic algorithm
was performed by Guo et al. [220] to correct the wavelength variables from multiple
Raman spectra, and the updated model by Tikhonov regularization obtained satis-
factory results. Based on the ridge regression updating, Zhang et al. [221] combined
the prediction optimization and the 2-norm constraint of model coefficients, realized
the update of model coefficients, and solved the problem of deterioration of model
prediction ability and reliability caused by instrument drift or sample changes.

Based on Lambert-Beer’s law, Sulub and Small [222] proposed a spectral simu-
lation calculation method. Spectra of the mixture can be generated by the absorption
signal of the pure substance and the background signal of the instrument. In this way,
whether for master or slave instrument, the calibration set can be quickly established
by measuring the spectra of the pure substance in the mixture. Haaland [223] synthe-
sized spectra by adding the temperature-affected background signal to the calibration
spectra so as to solve the problem of the model’s adaptability to temperature. The
temperature-affected background signal was obtained by the least square expansion
of the temperature spectra. By PDS, Sulub et al. [224] realized the spectral transfer
of multiple NIRS instruments (including grating scan and FT instruments) to deter-
mine the content of active ingredients in medicines and updated the slave model by
preparing a placebo. This method can analyze 30 medicines in 12 min, instead of 5 h
by the HPLC method. Saiz-Abajo et al. [225] established a robust calibration model
by adding different types of noise and interference to the calibration spectra, as well
as the ensemble modeling strategy. Pierna et al. [226] added the spectral changes of
different instruments and samples with different states (water content and particle
size, etc.) to the spectra of 10 calibration samples, generating hundreds of virtual
modeling spectra, and obtaining a robust prediction model.

Cooper et al. [227] took the spectra of several calibration samples from the master
as the target and obtained the same number of virtual spectra through mathematical
mixing calculation to form a virtual spectral matrix. The master model predicted
the virtual spectral matrix of master and slave and established the SBC calibration
curve based on the predicted value of master and slave. In the further study, they also
used the spectra of 13 pure compounds to transfer the NIRS of jet fuel by the above
method, which can accurately predict the properties and composition of aromatics,
hydrogen content, density, viscosity, etc. [228]. Rauscher et al. [229] also referred
to this method to transfer the spectra of the non-dispersive infrared spectrometer to
monitor the quality of the oil. Similarly, Abdelkader et al. [230] used the spectra of
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15 pure compounds and calculated the virtual spectra in segments, improving the
transfer results of the method. Da Silva et al. [231] established the spectral transfer
coefficient on the virtual spectral matrix using the DS algorithm and realized the
transfer of oil from the desktop NIR spectrometer to the handheld instrument.

Ni et al. [232] combined the stackedPLSmethodwith amodel update to establish a
robust calibrationmodel for the sharing ofmultipleNIRS instruments.Honorato et al.
[233] selected wavelength variables by the continuous projection algorithm (SPA)
to establish a robust MLR model shared by multiple instruments, and the results
were slightly better than PDS-PLS. With the establishment of a local calibration
model, Igne andHurburgh [234] realized themodel sharing of four NIRS instruments
from two brands. Liu et al. [235] first constructed the 3D spectral cube collected
from multiple instruments and employed Tchebichef discrete orthogonal moments
to extract chemical features. Finally, a stepwise regression method was conducted to
establish a universal model on multiple instruments.

Moving windowMSCwas employed by Kramer et al. [236] for the preprocessing
of jet fuel spectra on two NIRS instruments, and a better result was obtained by
optimizing the size of the moving window. Also, Liu et al. [237] mainly used the
MSC algorithm to standardize the line-scan NIR imaging system. Sahni et al. [238]
compared the effects of MSC, OSC, FIR, PDS, and global models on the correction
of optical path changes of optical fiber probes, and the results revealed that PDS and
globalmodels proved to be the better solutions. Extendedmultiplicative signal correc-
tion (EMSC) was used for the preprocessing of bacterial Raman spectra on multiple
instruments. The PLS-DA algorithm can successfully establish a discriminant model
for different bacterial species [239]. Preys et al. [240] combined orthogonal signal
correction (OSC) with external parameter orthogonalization (EPO) to establish a
robust calibration model, which solved the problem that OSC cannot consider the
influence of external interference and the predictive performance degradation of EPO
when the influence of external factors on the target value is too high.

Wijewardane et al. [241, 242] modeled the air-dried ground soil to predict the
organic and inorganic carbon content at different moisture levels by EPO, DS, and a
global model. Ackerson and Roudier et al. [243, 244] also solved similar problems
throughEPOandDS algorithms.Amat-Tosello et al. [245] used the EPOalgorithm to
simultaneously realize the sharing of gasoline short-wave NIRS on four instruments.
EPOwas employed by Hans and Allison [246] to reduce the influence of temperature
and humidity on the NIRS to predict the calorific value of biomass, and to establish a
model that was not sensitive to temperature and humidity. Similarly, the temperature
mixingmodel strategy can eliminate the influence of temperature onNIRS prediction
of reducing sugar and moisture content in longan honey. Thamasopinkul et al. [247],
Thygesen and Lundqvist [248] successfully built a temperature mixing model for
predicting moisture content in wood using NIRS, which was more effective than a
single PDS algorithm.

Luoma et al. [249] attempted to use additive partial least squaresmodeling strategy
for model maintenance. According to different measurement conditions, the residual
PLSmodel was established to solve the problem ofmodel inapplicability by addition.
Elizalde et al. [250] also adopted a similar strategy to solve the problem of model
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inapplicability causedbychanges in theonlineRaman spectrometer.Nouri et al. [251]
established a hybrid model of soil NIRS from lab and airborne hyperspectral images
and updated the model with the difference spectra and zero concentration of the
standard spectra. This model can be used for the prediction of airborne hyperspectral
imaging.

A local model that is based on the local kernel function is often established in the
SVR method, which may not work when the new spectrum from the new instrument
is added to the calibration set. Based on the transfer learning idea, Yu and Ji [252]
used regularizedmulti-task learning (RMTL) to estimate the relationship between the
SVR model in the new condition and the original model and successfully improved
SVMregression.A highlight of thismethod is that themost important support vectors
of the SVR model can be selected as the sample for a model update.

17.6 Progress of Applications

17.6.1 SBC Method

Brito et al. [253] used the SBC algorithm to correct themodel prediction values of the
total suspended solids (TSS) and chemical oxygen demand (COD) of wastewater by
UV spectroscopy, and the result was better than the SSC algorithm and the SLRDS
algorithm.Brouckaert et al. [254] also used theSBCalgorithm to correct the predicted
values of the Raman spectroscopy established in the laboratory for the determination
of the content of the two components of the liquid detergent, and used it for industrial-
level online analysis, and obtained satisfactory results. Dambergs et al. [255] used
the SBC algorithm to quickly analyze the predicted value of the tannin content in
red wine by ultraviolet spectroscopy and corrected it on multiple instruments, and
obtained relatively consistent prediction results.

According to the PCA classification model of different types of coffee beans in
the NIR spectroscopy, Myles et al. [256] used the SBC algorithm to transfer the
PCA scores on the two instruments and obtained a better result. Wang et al. [257]
conducted a similar study on the hyperspectral prediction models of lamb protein
from different origins, and the result is that the SBC algorithm has a better effect. Li
et al. [258] used the SBC algorithm to correct the acid value and peroxide value of
edible oil predicted on two NIRS instruments.

17.6.2 SSC Method

Pierna et al. [259] used the spectral difference correction algorithm (SSC) to transfer
the spectrum of more than 9000 feed samples on the dispersive desktop NIR spec-
trometer to the MEMS handheld spectrometer using 25 transfer standard samples
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to establish the determination of feed fat, fiber, and protein, and starch PLS model.
Zamora-Rojas et al. [260] used the SSC algorithm to transfer the pork spectrum
collection on the desktop NIR spectrometer to the handheld instrument to realize
the routine quality analysis beside the pork processing line. Daikos et al. [261] used
a method similar to the SSC algorithm to subtract the background of the substrate,
and transferred the near-infrared imaging spectrum of the coating on one substrate
material to another substrate material, realizing the sharing of PLS models. Smith
et al. [262, 263] used the SSC algorithm to realize the spectral transfer of different
near-infrared spectroscopy instruments to predict the content of active ingredients in
the whole paracetamol tablets. This article also tried to use six standard materials to
establish a spectral response correction model through the SLRDS algorithm, which
was slightly inferior to the SSC algorithm.

Hayes et al. [264] calibrated the wavelength of the array detector-type short-wave
near-infrared spectrometer and then used the SSC algorithm to update the model.
In predicting the soluble solid content of apples, the results are equivalent to PDS,
but the implementation process is simple and easy. Xu et al. [265] aimed at the
lack of universality in the multi-channel grading detection model for fruit quality,
and adopted the DS algorithm (MSSC-DS) for correction of the average spectral
difference to transfer the online detection spectrum of the crown pear sugar content
between the two spectrometers, and the prediction accuracy of the model can meet
the actual requirements of production (<0.5° Brix). Roggo et al. [266] used the SSC
algorithm to transfer the near-infrared reflectance spectrum of sugar beet, and good
results can be obtained no matter whether the actual sample or the general sample
is used as the transfer standard sample. Saranwong and Kawano [267] used the SSC
algorithm for the NIRS transfer of the online fruit screening machine, which greatly
improved theMLR and PLS correction models, and the compensation of the average
spectral difference of the standard sample set was better than the result of linear
fitting or polynomial fitting.

Soldado et al. [268] combined the SSC algorithm with the transfer by orthog-
onal projection (TOP) method to transfer the silage spectrum from the desktop NIR
spectrometer to a portable instrument. The built model can accurately predict the
content of dry matter, neutral detergent fiber, and crude protein. Sun et al. [269] first
screened the characteristic variables through regression coefficients, then compen-
sated the absorbance through the SSC algorithm, and established a universal NIR
analysis model for the quality of fresh jujubes between different instruments.

17.6.3 Shenk’s Method

Qin and Gong [270] compared the transfer results of PDS, DWPDS, and Shenk’s
algorithms on the NIRS of tobacco leaf and smoke powder. Shenk’s algorithm is
superior to other methods. It is also a feasible way to establish a NIRS mixed model
of tobacco leaf and powder. Based on Shenk’s algorithm, Garcia-Olmo et al. [271]
investigated the transfer results of four standard sample components on fatty acid
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liquid near-infrared spectroscopy, and the results showed that the closer the composi-
tionof the sample to the test sample, the better the transfer result.DeLaRoza-Delgado
et al. [272] used Shenk’s algorithm to transfer the milk spectrum between desktop
and portable near-infrared spectrometers and established a model that can quickly
detect milk composition on site. Masahiro and Yukihiro [273] used a similar Shenk’s
algorithm to calibrate the wavelength and absorbance of the NIRS, respectively, to
solve the problem of spectrum changes before and after the online instrumentmainte-
nance, and to achieve the correction and maintenance of the vinyl content prediction
model in molten polypropylene. Perezmarin et al. [274] used Shenk’s algorithm to
successfully transfer the NIRS of feed on different scanning instruments.

17.6.4 DS Method

Milanez et al. [275] used the DS algorithm to transfer the NIRS of the adulterated
ethanol-gasoline on two instruments, and a 100% recognition success rate can be
obtained for PLS-DA discriminant analysis. Da Silva et al. [276] used the DS algo-
rithm to transfer the FT-NIRS of drugs tomultiple handheld spectrometers and estab-
lished an analysis model for predicting the content of different crystal forms. Brito
et al. [277] used the DS algorithm to transfer the NIRS of the flour from the desktop
instrument to the handheld instrument, and then re-established the PLS model on
the handheld instrument, which can obtain better results. Ji and Han [278] used the
UVE-SPA wavelength screening method combined with the DS algorithm to realize
the transfer of the NIRS of the apple on the same model and different models of fruit
portable instruments. Hu and Xia [279] realized calibration transfer of navel orange
total sugar prediction by near-infrared spectroscopy using the DS algorithm.

Chen et al. [280] used the DS algorithm to transfer the NIR hyperspectral spectra
of soil under different humidity and realized that themodel based on the air-dried soil
spectrum could be used for soil samples with different moisture content. Wang et al.
[281] used the DS algorithm to convert the NIRS of soil under different humidity
to eliminate the interference of moisture on the prediction of soil organic matter
content. Ji et al. [282] used the DS algorithm to transfer the NIRS of the water-
bearing untreated soil and made predictions through a quantitative calibration model
established by dry and ground soils. Silva et al. [283] used the DS algorithm to
transfer the gasoline spectrameasuredby threemid-infrared spectrometers, andbased
on the global modeling strategy, the PLS-DA or SIMCA method can be used to
distinguish gasoline from different origins. Liu et al. [284] used the DS algorithm
to transfer two edible oil spectra above the NIRS and established an analysis model
for predicting an acid value and peroxide value. Lopez-Moreno et al. [285] used the
DS algorithm to transfer the LIBS spectrum at room temperature to the spectrum
at high temperature and established a model for predicting the metal content in a
high-temperature environment.

Khaydukova et al. [286] used the DS algorithm to transfer the volt-ampere signal
and the potential signal in the electronic tongue sensor so that the regression model
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based on the potential data can be used for the prediction of the volt-ampere signal.
Weng et al. [287] used the DS algorithm to transfer citrus spectra between different
models of hyperspectral imaging, and the extreme learning machine discriminant
model of citrus canker has an accuracy of 86.2% on the slave spectra. Fonollosa et al.
[288, 289] usedDS, PDS, andother algorithms to transfer the signal of themetal oxide
gas sensormatrix onmultiple sensors and obtained satisfactory results. Panchuk et al.
[290] used the DS algorithm to convert different types of spectra, such as the transfer
between energy-dispersive XFS and vis-UV, and the transfer between different NIRS
wavelength ranges.Vaughan et al. [291] used theDS combinedwith PLS algorithm to
convert the spectra of two LC-MS, and initially solved the problem of metabolomics
data fusion. De Morais et al. [292] realized the transfer of digital imaging on two
devices using the DS algorithm for predictive analysis of serum creatinine content.
Khoshkam et al. [293, 294] embedded theDS algorithm in themultivariate resolution
analysis of the extended matrix for the study of reaction kinetics and obtained good
results. Surkova et al. [295] successfully transferred the spectrum from the UV-vis
spectrometer to the optical multi-sensor system composed of four LEDS by using
DS algorithm and realized the transfer between optical multi-sensor systems.

17.6.5 PDS Method

Barreiro et al. [296] used the PDS algorithm to transfer the spectrum from the desktop
NIR spectrometer to the portable spectrometer and established an analytical model
that can detect the olive breeding process in the field. Alamar et al. [297] used the PDS
algorithm to transfer the FT-NIRS of 447 Jonagold apples to the array spectrometer,
and before the spectrum transfer, the wavelength of the FT spectrum was normalized
by the segmented cubic Hermite interpolation, and then the analytical model of the
soluble solid content was established. Sulub et al. [298] used the PDS algorithm and
the wavelet hybrid direct correction algorithm (WHDS) to achieve spectral transfer
on fiveNIR spectrometers for rapid analysis of the uniformity of the active ingredient
content of the tablet. Luo et al. [299, 300] combined wavelength selection and PDS
algorithm for the transfer of bovine blood near-infrared spectroscopy, which can
achieve a rapid diagnosis of bovine anemia on multiple instruments. Cen et al. [301]
used PDS to transfer the hyperspectral spectrum of citrus canker and then established
the least squares support vector machine discriminant model. The recognition rate
of the model for the prediction set increased from 26% before transfer to 97%.

Pereira et al. [302] used the dual-window PDS algorithm (DWPDS) to transfer the
NIRS of the drug powder to the spectrum of the tablet, which provides a feasible way
to quickly obtain a sample of the drug spectrum calibration set. Sohn et al. [303] also
used the DWPDS algorithm to transfer the NIRS for analyzing the cellulose content
of flax between different instruments and achieved good results. Galvan et al. [304]
used the DWPDS algorithm to transfer the low-field nuclear magnetic resonance
spectrum of gasoline between different instruments, among which the resolution of
low-field nuclear magnetic instruments is different.
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Yang et al. [305] used DS and PDS algorithms to effectively transfer the surface-
enhanced Raman prediction model of potassium sorbate in sweet-scented osmanthus
wine to bayberry wine to realize the transfer of the same analyte prediction model
among different species. Similar examples of transferring models between different
sample types include the application of quality analysis of chilled pork and eggs
[306–308]. Boiret et al. [309] used the PDS algorithm to transfer the transmission
NIRS of the coated tablets between two Fourier transform spectrometers of the
same model, and the predicted standard deviations of the active ingredient content
before and after the transfer were 4.0% and 2.4%, respectively. Sales et al. [310]
used the PDS algorithm to transfer the signal of the potential sensor under the two
test conditions, selected the transfer standard sample based on the K-S algorithm,
and obtained satisfactory results. Marchesini et al. [311] used the PDS algorithm to
transfer the NIRS from the desktop instrument of the undried whole maize plant to
two portable instruments.

Ge et al. [312] used the PDS algorithm to convert the diffuse reflectance spectra of
the soil measured on multiple NIRS instruments of different types and established a
model to predict the organic carbon content in the soil. Rodrigues et al. [313] used the
PDS algorithm to transfer the MIRS of crude oil on two instruments, and then used
the orthogonal projections to latent structures (OPLS) to establish a crude oil density
prediction model, and got better results. Li et al. [314] used the PDS algorithm
to transfer the spectrum of propylene glycol-water solution measured on multiple
handheld NIR spectrometers and realized the rapid identification of ethylene glycol
adulteration. Gryniewicz-Ruzicka et al. [315] used the PDS algorithm to transfer
the spectra of multiple Raman spectrometers measuring the content of propylene
glycol in glycerol. Thygesen et al. [316] used algorithms such as DS and PDS to
transfer excitation-emission three-dimensional fluorescence spectra, and then took
advantage of PARAFAC to obtain satisfactory results. Sanllorente [317] also used
a similar method to transfer the three-dimensional fluorescence spectrum between
the portable fluorescence spectrometer of the LED light source and the fluorescence
spectrometer of the xenon light source. Sun et al. [318] used the PDS algorithm to
transfer the three-dimensional fluorescence spectra on the two instruments, and then
used the self-weighted alternating normalized residual fitting algorithm (SWANRF)
to establish a three-linear decomposition multi-dimensional quantitative model. The
results show that PDS canmaintain the “second-order advantage” of the second-order
tensor calibration methods.

Wang et al. [319] used PDS to realize the transfer of NIRS of leaves picked from
different tree species and different periods and solved the problem of standard spectra
based on chlorophyll content through linear interpolation. Watari and Ozaki [320]
also used a similar method to transfer the NIRS of random polypropylene and block
polypropylene in the molten state so that the model of ethylene content in one type
of polypropylene can predict another type of polypropylene. Li et al. [321] discussed
the influence of the number of PLS latent variables on the transfer performance of
the model when the PLS model is established by the NIRS after PDS. The results
show that too high number of latent variables can easily cause over-fitting, affect the
robustness of the model, and make the error of calibration transfer larger.
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Sun et al. [322] used the PDS algorithm to transfer the NIRS of the plasma alcohol
precipitation process between two different types of instruments and established an
analytical model for predicting the content of total protein, albumin, and globulin.
Xiao et al. [323] combined linear interpolation with the PDS algorithm to transfer
the FT-NIRS of a single grape to a portable grating spectroscopic spectrum and
established a model for predicting the content of soluble solids. Fernandez [324]
compared DS, PDS, OSC, GLSW, and other methods to transfer the signal of the
gas sensor matrix at different temperatures, and the results of the PDS algorithm are
better. Hoffmann et al. [325] used the PDS algorithm to transfer the FT-NIRS to the
linear variable filter handheld instrument, and the quantitative and qualitative models
obtained good results. Di Anibal et al. [326] used the PDS algorithm to transfer the
UV spectrumused to determinewhether illegal substances are added to the fragrance,
and combined with the PLS-DA method to obtain satisfactory results. Zheng et al.
[327] used the PDS method to transfer the NIRS of fish meal on the grating-type
instrument to the Fourier-type instrument, and there was no significant difference
in predicting the content of crude protein, crude fat, methionine, lysine, and other
components.

Pu et al. [328] used the PDS algorithm to successfully transfer the banana spec-
trum from the handheld NIR spectrometer to the hyperspectral imaging instrument
and established a model for predicting the soluble solid content. Xi et al. [329]
used the PDS algorithm to transfer the NIRS of amoxicillin capsules and the NIRS
of its contents so that the amoxicillin capsule quantitative model can accurately
predict and analyze the powder spectrum of the content, and proposed an index to
judge whether the spectrum is successfully transferred. Gislason et al. [330] used
the PDS algorithm to realize the transfer of process nuclear magnetic resonance
spectrum on different instruments, and compared the result of DS combined with
the SSC algorithm. Monakhova et al. [331] used the PDS algorithm to transfer the
spectrum of the sunflower lecithin and soybean lecithin mixture obtained by three
high-resolution NMR instruments, and the result was better than the DS algorithm
and the establishment of a hybrid model.

Chen et al. [332] used the PDS algorithm to transfer the UV-visible spectrum of
the cuvette with a 10 mm optical path to a fiber optic probe with a 2 mm optical path.
Before using the PDS algorithm for transfer, the spectrum was subjected to Fourier
transform processing. Lin et al. [333] used the PDS algorithm to transfer the spectrum
from the scanning NIRS instrument (cuvette) to the Fourier transform (fiber probe)
instrument. Shi et al. [334] used the PDS algorithm to better solve the transfer of the
NIRS of the mixture of fish meal and soybean meal on two different spectroscopic
types of instruments. Tortajada-Genaro et al. [335] used the PDS algorithm for the
transfer of chemiluminescence signals on two instruments and established a model
for the rapid determination of Cr(III), Cr(VI), and total Cr content in water through
the PLS method. Griffiths et al. [336] used the PDS algorithm combined with the
variable selection method to solve the problem of the failure of the multivariate
calibration model caused by the drift of the ICP-AES instrument over time.

Wang et al. [337] used the PDS to transfer the NIRS of Poriacocos samples
measured on two different brands of NIR spectrometers and established a model to
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predict alkali-soluble polysaccharides in Poriacocos. Morais et al. [338] used the DS
and the PDS to standardize theMIR spectrochemical database of complex biological
tissues and established a complete spectrum standardization process. Grelet et al.
[339, 340] used the PDS algorithm to standardize the instruments in the European
dairy MIR spectroscopy network, which can convert spectra on spectrometers of
different brands into spectra on the master computer to realize the sharing of quanti-
tative calibrationmodels. Ji et al. [341] used the PDS algorithm to eliminate the influ-
ence of moisture and environment on the NIRS of the field soil, and the transferred
spectrum can be accurately predicted by the model established in the laboratory.
Pierna et al. [342] designed and produced a standard sample pool for the transfer of
NIRS microscopic imaging instruments. Different parts of the standard sample pool
are equipped with meat and bone meal of different animals, and the spectral transfer
of multiple imaging instruments is realized through the PDS algorithm.

17.6.6 CCA Method

Zheng et al. [343] used the CCA algorithm to convert the NIRS between different
times and different brands of milk, and the content of dimethyl fumarate in milk can
be predicted by the sample enrichment-NIRS measurement method. Liu et al. [344,
345] used the DS algorithm and the CCA algorithm to realize the transfer of the
near-infrared spectroscopy analysis model of wood lignin content between different
types of portable spectrometers. Yang et al. [346] compared the transfer effects of
algorithms such as CCA, SST, CTWM, ICA, and PDS on the transfer of tobacco
NIRS on desktop, portable, and handheld instruments, and the results showed that
the CCA algorithm is superior to other methods. Luo et al. [347] used the CCA
algorithm to transfer the NIRS that predicts the content of polyester in textiles, and
the results are better than the PDS method. Fan et al. [348] used the CCA or PDS
algorithm combined with linear interpolation method for the transfer of soil near-
infrared spectroscopy. A soil nutrient content model can be used to accurately predict
soil nutrient content in different regions.

17.6.7 Establishment of Global Model

Eliaerts et al. [349] used the S/B algorithm, the PDS algorithm, and the method of
establishing a hybrid global model to transfer the cocaine classification and quan-
titative SVM models on desktop and portable infrared spectrometers. The results
showed that the method of establishing the hybrid model has better results. Yang
et al. [350] transferred the model established in the laboratory to feed production
enterprises for online application by using the method of hybrid modeling of near-
infrared spectroscopy and online spectroscopy, and the predicted values of moisture
content and crude protein content were in good agreement with the actual measured
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values, which can meet the requirements of online analysis. Chen et al. [351] used
the TrAdaBoost algorithm based on principal component analysis and weighted
extreme learningmachine to establish a global model to realize the sharing of models
on multiple instruments. Ni et al. [352] used the establishment of a global hybrid
model of multiple instruments to realize the sharing of tobacco models on different
near-infrared spectroscopy instruments.

Pereira et al. [353] compared the transfer effects of DS, PDS, OSC, and model
update methods based on the NIRS of gasoline on different instruments. The results
show that DS combined withmodel update strategy can get better results. Fernandez-
Ahumada et al. [354] used Shenk’s algorithm and PDS algorithm to transfer the feed
spectrummeasured on the laboratory grating near-infrared spectrometer to the online
array instrument, and then through the model update, the transfer of the model can
be better realized. Debus et al. [355] used the method of establishing a hybrid model
to solve the problem of sharing the multi-element calibration model of mid-infrared
spectroscopy evaluation environment carbon-containing particulate matter among
multiple instruments of the same type.

Krapf et al. [356] used the PDS algorithm to transfer the laboratory NIRS of the
samples during the anaerobic digestion process of energy crops to the online analysis
instrument, and the problemof online analysismodel establishmentwas better solved
through a model update. Li et al. [357] used the combination of Shenk’s, PDS, and
CCA algorithms and hybrid modeling technology to establish a hybrid model based
on a homogeneous tobacco powder model, which was successfully applied to the
prediction of nicotine content in heterogeneous cut tobacco samples and tobaccoflake
samples. Clavaud et al. [358] constructed a global calibration set of more than 3000
spectra of various types of freeze-dried drugs and their moisture content on twoNIRS
of the same model and established a global model by PLS, SVR, Bayesian Ridge
regression, KNN, and other methods. The results show that the predictive ability of
SVR was better. Ozdemir et al. [359] used a hybrid global model combined with
genetic regression to establish a model of four vis-UV spectrometers, one of which
is an array spectrometer, and the other three are dual-beam scanning instruments.

Kupyna et al. [360] used a global model to solve the problem of the application
of acoustic multivariate quantitative correction models under different test condi-
tions (temperature, flow rate, etc.). Igne and Hurburgh [361] compared the effects of
multiple transfer methods on the same type and different types of NIRS instruments,
and the results proved that establishing a stable and sound local model is a better
strategy. On the basis of Shenk’s algorithm, Fontaine et al. [362] can accurately
predict and analyze the model of amino acid content in feed ingredients on dozens of
instruments in the NIR network through the model update strategy. Steinbach et al.
[363] established a hybrid calibrationmodel for the drug transmission Raman spectra
measured on the two instruments, and the model built can be accurately applied to
the spectra obtained on the two instruments.
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17.6.8 Other Methods

Xu et al. [364] realized the transfer between NIR spectra of rice single grains and
rice flours of different varieties by spectral space transformation. Online monitoring
of tobacco nicotine and total sugar was realized through the SST from the offline
model [365]. In addition, calibration transfer by SST algorithm has also been applied
to edible oil acid value and peroxide value [366], rice [367], the hyperspectral image
on plant phenotype [368], and Terahertz spectral instruments [369].

Yang et al. [370] successfully transferred the apple spectra on two portable NIR
spectrometers using simple linear regression direct standardization (SLRDS) algo-
rithm. Salguero-Chaparro et al. [371] used the transfer by orthogonal projection
(TOP) algorithm to transfer the olive spectra from the grating NIR spectrometer to
the array portable spectrometer and established an analytical model to predict fat,
free acid, and moisture content. Liu et al. [372] compared the transfer results of
SBC, OSC, DS, PDS, and local centralization to the silage NIR spectra on the same
and different types of spectrometers. They further studied the influence of different
temperatures and measuring accessories on the NIRS of rice straw and found local
centralization method can eliminate the influences on the spectra to a certain extent
[373]. A similar study on pharmaceutical samples was done byBergman et al. and the
result revealed local centralization can be realizedwith fewer standard samples [374].

Li et al. [375] combined the wavelet multi-scale piecewise direct standardization
(WMPDS) with the SBC algorithm to realize the transfer of NIR spectra of different
types of soils and the correction of prediction for total nitrogen and total carbon
content. Greensill et al. [376] and Walczak et al. [377] compared the effects of DS,
PDS, DWPDS, OSC, FIR, and WT on the transfer of citrus spectra between micro-
array detector NIR spectrometers, and the results showed WT and model update is
better than others.

Martins et al. [378] combined the SPA wavelength selection algorithm with the
multi-model consensus strategy to establish a calibration model byMLR, which was
proved to be more effective than the PDS-PLS model. Yoon et al. [379] performed
first-order derivative and OSC preprocessing on NIRS of gasoline and then trans-
ferred the spectra on the two instruments through the PDS algorithm, eventually
establishing the model for predicting the benzene content in gasoline. Yahaya et al.
[380] established an analytical method for rapid prediction of mango acidity by
the variable screening coupled with MLR, realizing the application to multiple
instruments by optimization of variable selection.
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Chapter 18
Deep Learning Methods

Deep learning (DL) is a specific type of machine learning. It has strong ability and
flexibility by learning features from complicated data. The core of DL is feature
learning, starting from the original input data, the features of each layer are trans-
formed into a higher-level and more abstract representation layer by layer. Useful
information in data is extracted during classification and prediction process. It has
the potential ability of automatic learning features. The term “deep” usually refers
to hidden layers in neural networks. The network will be deeper with more layers.
Traditional neural networks only contain two or three layers, while deep networks
may contain dozens or even hundreds of hidden layers.

For the traditional neural network, it is difficult to train the entire network if
the number of hidden layers in the network is simply increased. Back Propagation
(BP) algorithm, which adjusts weights reversely using gradient descent algorithm
according to the output error, plays an extremely crucial role in artificial neural
network (ANN). However, in the back propagation of BP algorithm, the gradient
becomes more and more diffused with the increase of hidden layer numbers, which
leads to the relatively small weights closing to the input layer. Thus, only the weights
close to the output layer play the real decision role, which leads to over-fitting of
the model. This is often referred to “gradient dispersion (GD)”. Two strategies are
usually used to address this problem, i.e., improving the training mechanism and
improving the network structure. From the above two strategies, two typical DL
models, auto-encoder (AE) and convolution neural networks (CNN), are developed.
AE adopts a layer-by-layer pre-training method to alleviate the problems of gradient
dispersion and local minima. CNN introduces the concepts of “weight sharing” and
“local connection” from the structure to effectively reduce the parameter space and
model training difficulty.

DL is different from traditional shallow network learning in two aspects. First, DL
emphasizes the depth of the model structure, which usually has many hidden layer
nodes. Second, the importance of feature learning is clearly highlighted. It transforms
feature representation of samples in the original space into a new feature space
by layer-by-layer feature transformation, which makes classification or regression
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easier. The essence of DL is to learn more useful features by constructing machine
learning models with many hidden layers and massive training data, so as to improve
the accuracy of classification or regression. DL is a framework that contains several
important algorithms, such as AE, CNN, restricted Boltzmannmachine (RBM), deep
belief network (DBN), etc. [1]. This chapter mainly introduces AE and CNN and
their applications in spectral classification and regression.

18.1 Stacked Auto-encoder

Auto-encoder (AE) is an algorithm for data compression. As shown in Fig. 18.1, AE
is composed of two parts as encoder and decoder. The former encodes the input signal
to obtain the encoded signal, and the latter decodes the encoded signal to obtain the
output signal. AE belongs to self-supervised learning algorithm, which realizes the
reproduction of input data by expecting output equal to input. For the AE, what is
concerned is the representation after coding, i.e., mapping from the input layer to the
coding layer, which carries the main drivers and implicit relationships in the original
information.

It is called auto-encoder network (DAE) when the compression and decompres-
sion of AE are realized by neural network. DAE is an unsupervised learning algo-
rithm, which can easily code richer and higher-order network structures. As shown
in Fig. 18.2, in the DAE, the input of the hidden layer is the encoding of the input
layer. In fact, the output of the upper layer is nonlinear transformation, named “non-
linear mapping”. The output of the hidden layer is actually the feature representation
learned after mapping the input, reflecting the implicit correlation in the input. In
the auto-encoder neural network, AE uses the encoding and decoding operations to
achieve the reconstruction of the original information. The process of AE informa-
tion reconstruction seems meaningless. In fact, a set of basis vectors can be obtained
by hiding the sparse limitation of neuron links, and the intrinsic structure of input
vectors can be reflected by the set of basis vectors.

The number of neurons in the auto-encoder hidden layer can be more than that in
the input layer. In order to achieve the effective compression of the input variables, the

Fig. 18.1 Schematic diagram of stacked auto-encoder
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Fig. 18.2 Schematic diagram of self-encoder neural network structure

L1 regularization constraint term is added to the construction of the loss function of
the neural network for sparse constraint, which evolves into a sparse auto-encoder.
It is obtained by adding some sparsity constraints on the basis of the traditional
auto-encoder (including two parameters of the regularization term and the weight
coefficient of the sparse penalty term). This sparsely is aimed at the hidden layer
neurons of AE. Suppressing most of the output of the hidden layer neurons (i.e.,
most of the nodes in the constraint hidden layer are 0, only a few are not 0), makes
the network sparse.

In addition to sparse auto-encoder, there is also de-noising auto-encoder. Its main
improvement is to add random noise to the spectra of training samples, and the target
of reconstruction is the spectrum without noise. That is, the data reconstructed from
the model learned by the AE can remove the noise, indicating that the AE can learn
the characteristics from the noisy data.

Stacked auto-encoder (SAE) is an unsupervised learning network composed of
multiple automatic encoders stacked layer by layer, and it is one of the DL networks.
Compared with the shallow neural network, the expression of data features is more
powerful, and has various advantages of traditional neural network. The program-
ming method of stacked auto-encoder neural network is to perform the AE of each
layer in order from the beginning to the end, and the output of the former AE is the
output of the latter AE. Similarly, the decoding process of SAE is to perform each
automatic encoder in reverse order. The trainingmode of SAE is unsupervised greedy
training, and only one hidden layer is trained each time. This layer begins to train the
next layer after the encoder is optimized until the last hidden layer is trained. Finally,
the weight and deviation of each layer of the parameters are fine-tuned. Fine-tuning
is that the parameters in the model are corrected by error back propagation, which is
suitable for any multi-layer stack DAE.
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Stacked sparse auto-encoder (SSAE) is stacked by multiple sparse auto-encoder
networks. The feature expression of the original data obtained by learning is more
abstract with the increase of the number of sparse AE layers.

Auto-encoder neural network is a kind of unsupervised learning field. It can auto-
matically learn the corresponding features from unlabeled data. It is a neural network
with the goal of reconstructing input signal. It can reconstruct better data features
than the raw data to describe the categories represented by the raw data. The ability
of learning features is strong. In DL, the data features generated by auto-encoder
neural network training are often used to replace raw data in order to have better
results in the subsequent regression, recognition, and classification.

Zhang et al. [2] combined stack auto-encoder with extreme learning machine
(ELM) to identify cefixime tablets produced by different manufacturers by near
infrared (NIR) spectroscopy, which has high classification accuracy and stability. Lu
et al. fused stacked demising auto-encoders (SDAE)with random forest (RF) for NIR
spectroscopy detection of Citrus yellow shoot. Firstly, SDAE was used to extract the
deep features form NIR of Citrus, and then RF voting ensemble strategy was used to
realize classification and identification. This method has an excellent performance
in calibration training time, accuracy and stability [3]. Liu et al. [4] applied the five-
layer DAE for NIR spectral feature extraction of tobacco samples, which reduced the
2760-dimensional spectra to 3-dimensional spectra. The classification effect of DAE
on tobacco was significantly better than that of PCA method (Fig. 18.3). Combining
stack auto-encoder with Softmax classifier, Hang et al. [5] established a method for
nondestructive identification of radish seed varieties by visible-near-infrared (Vis-
NIR) spectroscopy.

Wang et al. [6] used stack noise reduction auto-encoding to carry out further
features from the NIR spectra of ethanol solid-state fermentation process. PLS algo-
rithm was used as the final regressor of the depth framework to establish a model
for predicting the content of alcohol and glucose in fermentation substrate, which
improved the prediction accuracy of the model. Yu et al. [7] combined SAEwith full-
connected neural network (FNN) to predict the hardness and soluble solid content
of Korla fragrant pear by Vis-NIR spectroscopy imaging. As shown in Fig. 18.4, the

Fig. 18.3 Three-dimensional neurons and PCs of near infrared spectral feature extraction by DAE
(a) and PCA (b) for tobacco samples
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Fig. 18.4 Schematic
diagram of SAE-FNN
network topology structure

SAE network is pre-trained first, and the output is used as the initial input value of
FNN. Then, the weight of the whole SAE-FNN is fine-tuned through back propa-
gation, and the final prediction model is obtained. Yu et al. [8, 9] also used similar
methods to predict nitrogen content in rape leaves and TVB-N content in Penaeus
vannamei. Ran et al. [10] used SAE to extract the features of Vis-NIR spectra of soil,
and constructed a prediction model of soil organic matter (SOM) combined with
back propagation artificial neural network (BP-ANN). The results showed that the
feature extraction effect of SAE was better than that of successive projections algo-
rithm (SPA) and principal component analysis (PCA). Ni et al. [11] used the variable
weighted stacked auto-encoder to extract the NIR spectral features of masson pine
seedling roots, and then combined with support vector regression (SVR) to establish
the NIR spectral prediction model of water content in masson’s pine seedling root,
and the prediction results were more accurate than PLS and SVR methods.

18.2 Convolution Neural Network

18.2.1 Basic Structure of CNN

Convolution neural network (CNN) is a multi-layer feed forward neural network,
which is one of the mainstreamDL algorithms. It is composed of multi-layer neurons
such as the input layer, the hidden layer and the output layer. As shown in Fig. 18.5,
the hidden layer is usually composed of alternating convolution layers, activation
functions, pooling layers, and fully connected layers. According to actual needs,
batch normalization and dropout can also be added to optimize the model. In order
to prevent the model from over-fitting of the training set, regularization items can
be added to the model. Conventional regularization operations include L1 norm and
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Fig. 18.5 Topological structure of spectral analysis model for CNN

L2 norm. The convolution layer can extract a variety of local features in the input
information layer by layer. The pooling layer merges multiple adjacent feature points
to simplify the data volume, improving the computational efficiency and robustness.
The full connection layer can complete nonlinear regression or classification tasks.
The activation function in DL is used to add nonlinear factors to themodel to improve
the ability of the model to express more advanced features.

(1)Convolution layer: Convolution layer is the core algorithmmodule ofCNN,which
is usually located behind the input layer and before the pooling operation layer; it
is the most important part of CNN. The convolution layer is composed of a set of
filters with parameters that can be trained. These filters usually have small perceptual
regions which are also called convolution kernels. In the process of network forward
propagation, each convolution kernelwill slide in a certain direction on the input data,
and perform convolution operation on the covered area. The values (weights) in the
convolution kernel are initially set randomly. The essence of convolution operation is
the weighted sum of the values in the convolution kernel and the local receptive field.
After multiple operations, the parameters in the convolution kernel are continuously
optimized and updated, and finally tend to converge. The convolution layer is mainly
used to extract features and mine useful information. The convolution operation can
extract the local relationship between adjacent pixels, and has certain robustness to
translation, rotation, and scale transformation on the image.

Figure 18.6 is a simple example of convolution operation. I denotes the original
image, K is a 3 × 3 convolution kernel, * denotes convolution operation, and the
sliding step length (stride) of the convolution kernel is 1. The feature map is obtained
by convolution operation. The convolution result of each convolution kernel on the
original data form a feature map with a specific meaning, corresponding to a certain
type of features in the original data. Themore convolution layers are, themore overall
and representative feature data can be extracted. Figure 18.7 shows the process of
convolution operation of one-dimensional spectral data.

The larger the kernel size, the less features are extracted by the convolution kernel,
because the wider the convolution kernel window, the fewer times the convolution
kernel moves across the spectral interval. Conversely, the smaller the size of the
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Fig. 18.6 Process of convolution calculation for two-dimensional data

Fig. 18.7 Process of convolution calculation for one-dimensional spectral data

convolution, the more features will be extracted by the convolution kernel. The
greater the step length (Stride) of the convolution kernel moves, the less features the
convolution kernel extracts. On the contrary, if the moving step of convolution kernel
is reduced, the features extracted by convolution kernel will increase. Usually, in the
same convolution layer, there will be multiple different convolution kernels. Each
convolution kernel will extract features of interest from a specific perspective.

(2) Pooling layer: The pooling layer is usually located behind the convolution layer,
and its function is to sample the feature map generated by the convolution layer
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operation, so it can also be called the lower sampling layer. The operation of pooling
layer does not reduce the number of feature maps, but reduces the dimension of each
feature map and the amount of data, improves the operation speed, and enhances
the robustness of neural network model. The common pooling sampling methods
are max-pooling and average-pooling. In the sampling window, the maximum value
of all values is extracted as the eigenvalue by maximum pooling, and the average
value of all values is calculated as the eigenvalue by mean pooling. The size of the
sampling window area and the moving step size can be adjusted according to the
actual applications. Figure 18.8 is an example of pooling operation. The sampling
window size is 2× 2 and the sliding window step size is 2. The pooling layer mainly
compresses and simplifies the results after convolution, and expands the perception
field and simplifies the complexity of network computing by reducing the dimension
of feature expression.

(3) Activation layer: The main function of activation function in neural network
is to provide nonlinear modeling ability of the network. Assuming that there is no
active layer before the convolution layer and the full connection layer in the neural
network, the network can only express the linear mapping between input and output.
Even by increasing the depth of the network, it is still linear mapping, and it is
difficult to express the nonlinear relationship between input and output. Therefore,
the activation layer is often added to the DL network to make the network have
hierarchical nonlinear mapping learning ability.

Fig. 18.8 Schematic diagram of max-pooling and average-pooling process
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(4) Flatten layer: The Flatten layer is used to “flattening” the input data, that is,
make the multidimensional input to one-dimensional data, which commonly used
in the transition from convolution to dense. For example, M spectral matrix X with
N wavelength points is convoluted by K convolution kernels with S size, and the
dimension of output Z isM × (N−S + 1)×K. The data Z after the convolution layer
cannot be directly connected to the full connection layer, and the full connection layer
needs to be connected after flattening. The data after flattening is two-dimensional
data, and the dimension is M × ((N−S + 1) × K). The function of flattening is
equivalent to extending the features extracted by different convolution kernels for
the next layer of calculation. Figure 18.9 shows the schematic diagram of flattening
3D data into 1D data.

(5) Full connection layer: After the operation of convolution layer and pooling layer,
the neural network extracts local and global features that cannot be directly obtained
at first in the input data. Full connection layer, also known as dense layer, is composed
of one or more layers of neurons, such as BP network or Softmax network, where
neurons are usually connected with all neurons in the adjacent layer. Its role is to
receive the output results of convolution and pooling layer, classify or regress local
and global features, which plays the role of “classifier” or “regressor”.

As long as the network structure design is reasonable and the training data is suffi-
cient and effective, the ideal network model can be obtained. The trained network
can learn the features in the training data, abstract, and filter the features automati-
cally, so as to obtain the ideal feature extraction model. Compared with the artificial
feature extraction, the CNN eliminates the subjective factors of human beings and
makes the feature extraction more accurate and reasonable.

Fig. 18.9 Schematic diagram of flatten layer process
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Traditional ANNs are usually fully connected neural networks, that is, all neurons
between adjacent neural network layers are connected to each other. The connec-
tions among multiple levels of the fully connected neural network are numerous and
complicated,which determines that it needs to train a large number of parameters, and
it is easy to produce gradient diffusion and dimension disaster during training. CNN
uses local connection and weight sharing to alleviate this problem. Local connection
and weight sharing are the twomost important features of CNN so that CNN can deal
with more complex problems. Compared with the traditional full-connected neural
network, its training and learning efficiency is higher.

(1) Local connection: Local connection is a typical structural feature of CNN. When
the network level increases, local connection can greatly reduce the number of
connections among network levels and reduce the complexity of network structure. It
refers to that when the CNN learns large target data; it follows the cognitive process
from the local to the whole. First, it establishes local small-scale connection, and then
gradually enhances the understanding of the whole data from the training process.
Figure 18.10a is the connection structure of CNN. The neurons in the convolution
layer are only connected with some data in the region of interest in the previous
layer, rather than to all input data. This local connection makes the neurons in the
hidden layer only perform convolution operations on their local connection regions,
without calculating other regions. Through local connection, the convolution kernel
can fully extract the local features of the data, and the features of each local region
are characterized as an element in the output feature graph.

Multiple convolution kernels can be used to extract a variety of local features (i.e.,
multi-core convolution) and output multiple feature maps. These local feature maps
will be perceived by neurons at higher level of the network to extract global features.
For example, for 18 convolution cores with different 10 × 10 dimensions, 18 feature
maps can be obtained, which can be regarded as different channels of the original
image. The convolution layer contains 10 × 10 × 18 = 1800 parameters.

(2)Weight sharing:Weight sharing is another feature of CNNwhich is different from
traditional neural network. It effectively reduces the number of parameters that need
to be trained in the neural network model and improves the learning efficiency of

Fig. 18.10 Schematic diagram of local connection (a) and weight sharing (b) for CNN
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the model. As shown in Fig. 18.10b, the main performance of weight sharing is that
the parameter values of convolution kernel in the convolution layer are trained at
the same time, and the convolution kernel with the same parameters act on the input
data, which is equivalent to the process of extracting certain local characteristics
from the input data. Each feature map generated represents the extraction results of
a specific feature extraction method on the input data. The two neurons in the same
sampling layer have the same parameters, and the weight parameters used in the
feature extraction process of the same feature map are the same. It can be regarded
as the translation of the same convolution kernel on the feature plane of the input
layer. The method of extracting features from the convolution kernel in a certain
region is also applied to other regions.

Theweight sharing principle greatly reduces the number and complexity of neural
network model parameters. When extracting each feature map, the hidden layer only
needs to train a convolution kernel and a set of parameters, which significantly
reduces the difficulty of network training and improves the training speed. Each
different convolution kernel will convolute with all the input data, rather than only
act locally, which can make the neural network more robust.

18.2.2 Optimistic Algorithm

Weight update is one of the most important processes in neural networks. At present,
the most commonly used updating algorithm is random gradient descent method.
In addition to random gradient descent method, momentum method, Adagrad,
RMSProp, Adadelta, Adam, and other optimization methods are all used to solve
various problems in the optimization process, so as to accelerate the training of
network model and improve the performance of the model.

(1) Stochastic gradient descent (SGD): The advantage of this optimization algo-
rithm is that it can disperse the amount of training data, reduce computer load,
and improve computational efficiency. Especially when the training data is
repeated, the efficiency of SGDwill not reduce due to the block training mode.
The learning rate is generally selected through experience and error. Excessive
learning rate will cause severe oscillation of the target curve, resulting in the
failure of the neural network to update the parameters normally, making the
training model unable to converge normally. Too small learning rate is easy
to limit the system to local minimum and cannot jump out. This minimum
value often makes the loss value of the system larger and cannot complete
the optimization of neural network. The Mini-batch Gradient Descent (Mini-
batch SGD) method randomly selects a part of the sample (Mini-batch) for
gradient calculation and updates the parameters each time, which ensures the
fast calculation speed and converge quickly.

(2) Momentum: On the one hand, the momentum method is introduced to solve
the “canyon” and “saddle point” problems. It can also be used to accelerate
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the convergence of SGD, especially for high curvature, small amplitude but
consistent direction gradient. The introduction of momentum into SGD can
solve the instability of its random update to a certain extent and reduce the
oscillation, because it retains the direction of the previous gradient to a certain
extent during the update, and uses the current block to fine-tune the update
direction.

(3) Adagrad: The idea of the algorithm is to adapt to each parameter of the model
independently, that is, the parameter with large deviation has a larger learning
rate, and the parameter with small deviation corresponds to a small learning
rate. Specifically, the learning rate of each parameter will scale the square root
of each parameter inversely proportional to the sum of its historical gradient
square values. The disadvantage is that the learning rate is monotonically
decreasing. If the learning rate in the later stage of training is too small, the
training will be difficult and even early termination. In addition, a global initial
learning rate needs to be set.

(4) Root mean square prop (RMSProp): RMSProp is mainly to solve the problem
of excessive attenuation of learning rate inAdagradmethod, that is, the learning
rate becomes too small to continue training before reaching the localminimum.
RMSProp uses exponential decay averaging to enable it to converge quickly
after finding a “convex” structure. In addition, a hyper parameter is added to
RMSProp to control the attenuation rate. RMSProp has been proved to be an
effective and practical deep neural network optimization algorithm. RMSProp
still needs to set a global learning rate.

(5) Adaptive moment estimation (Adam): Adam algorithm is an algorithm that
combines Momentum algorithm and RMSProp algorithm. It can dynamically
regulate the learning rate and make it change in a stable direction. In the
process of optimizing network parameters, it can efficiently find the global
optimal solution according to the input data.

In practical training and application, no optimization algorithm can solve all prob-
lems perfectly. Therefore, according to the actual application requirements, it is very
important to select the appropriate optimization algorithm and parameters on the
basis of understanding the principle of the algorithm.

18.2.3 Loss Function

The loss function is the reflection of the neural network model on the degree of
data fitting. The worse the fitting is, the greater the value of the loss function is. At
the same time, when the loss function is relatively large, its corresponding gradient
should be relatively large, so that the variables can be updated faster. Therefore,
there are two requirements for the loss function. Firstly, the real error of solving the
problem should be reflected. Secondly, the loss function should have a reasonable
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gradient, which is conducive to solving the gradient and updating the weights and
parameters.

Loss function is an important factor in the design of neural network. In the face of
specific problems, different loss functions need to be selected or designed. Common
loss functions include:

(1) Mean square error (MSE)

Themean square deviation is a commonlyused loss function to evaluate the difference
between the test data and the target data, that is, the mean of the square sum of the
errors of the corresponding points between the predicted data and the original data.
MSE performs well in linear regression and can effectively calculate the reverse
gradient propagation. When the activation function is sigmoid function, it is easy to
cause the loss of the gradient, which leads to the weight of the shallow layer is not
updated, there is a problem of gradient vanishing. Therefore, the selection of MSE
in logical regression needs to consider the loss of gradient.

(2) Cross-entropy

Cross entropy is a concept in information entropy theory, which is originally used to
estimate the average coding length. InDL, it can be seen as the degree of difficulty that
the probability distribution p (x) (the distribution of real markers) is represented by
the probability distribution q (x) (the distribution of prediction markers of the trained
model). Cross entropy depicts the distance (or similarity) between two probability
distributions, that is, the smaller the cross entropy is (the smaller the relative entropy
is), the closer the two probability distributions are. One advantage of cross-entropy
as a loss function is that the sigmoid function can avoid the problem of decreasing
the learning rate of the mean square error loss function when the gradient decreases,
because the learning rate can be controlled by the output error.

(3) Log-likelihood cost

The essence of the log-likelihood loss function is that the likelihood value of a set of
parameters under a pile of data is equal to the product of the conditional probability
of each data under this set of parameters, and the loss function is generally the sum of
the losses of each data. In order to change the product into sum, logarithm is taken and
a negative sign is added to make the maximum likelihood value corresponding to the
minimum loss. Log-likelihood loss function is generally used for multi-classification
problems. Softmax activation is added to the output layer, and then the log-likelihood
loss is calculated.

18.2.4 Activation Function

Activation function activates a part of neurons in the neural network and transmits
the activation information back to the next layer neural network at running time, the
reason why the neural network can solve the nonlinear problems is essentially that
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nonlinear factors are added by activation function. They not only make up expres-
sive ability of the linear model but also save and map the characteristics of acti-
vated neurons to the next layer through the function. The commonly used activation
functions include sigmoid, tanh, and ReLU.

(1) Sigmoid function

The shape of sigmoid function is S-shaped, which is the most commonly used
activation function, and its function form is

f (x) = sigmoid(x) = 1

1 + e−x
(18.1)

The image of sigmoid function is shown in Fig. 18.11. It is a strictly increasing
function. It shows linearity near the value of 0 for x and nonlinearity far away from
the value of 0. Therefore, this function can better balance the linear and nonlinear
characteristics, and the function is differentiable. The trend of the gradient can be
seen from the figure. When the input is very large or very small, the gradient of the
neurons is close to 0, which makes the back propagation approach to 0 in the back
propagation algorithm, resulting in little update of the final weight.

(2) Tanh function

Tanh is hyperbolic tangent function, the curves of tanh function and sigmod function
are relatively close. The difference between them is the output interval. As shown in
Fig. 18.12, the output interval of tanh is between (−1, 1), and the entire function is
centered on 0. Its function form is

f (x) = tanh(x) = sinh x

cosh x
= ex − e−x

ex + e−x
(18.2)

Fig. 18.11 Sigmoid
activation function
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Fig. 18.12 Tanh activation function

Tanh function is an odd function whose function image is a strictly monotonic
increasing curve passing through the origin. It allows the activation function to take
negative value which can sometimes produce better practical results, but it still has
the problem of gradient saturation.

(3) Rectified Linear Unit (ReLU) Function

The ReLU activation function, namely the rectified linear unit, is also known as
the rectifier linear unit. It is the default activation function most used in CNN at
present. Its form is as follows:

f (x) = max(0, x) (18.3)

The function and its derivative are shown in Fig. 18.13.
The output of the ReLU function is nonlinear. At x = 0, the function is no differ-

entiable, but it usually has little effect on the gradient descent algorithm, because the
numerical calculation hardly reaches the point which the gradient is 0, and the left
derivative and the right derivative are usually defined in the network training. In the
region x > 0, the function is a linear function with 1 at the first derivative. ReLU is
in an active state, so it retains the good characteristics of linear model and is easy to
use the optimization method based on gradient descent. The gradient values in this

Fig. 18.13 ReLU activation function (a) and its derivative (b)
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region are consistent, and it is not too large or too small, which is conducive to avoid
the gradient vanishing or gradient explosion problems of the neural network due to
the increase of depth, and its convergence rate is much faster than the sigmoid and
tanh activation functions. The form of the ReLU function is relatively simple, and
the memory consumption is less in the gradient calculation process. In addition, the
ReLU function changes the output of some neurons into 0, which makes the network
sparse and alleviates the over fitting problem to some extent.

One drawback of ReLU is that when x < 0, the function is in an inactive state,
and the gradient is 0, that is to say, it cannot learn the samples that make them
active to 0 by the gradient based method. In order to ensure that the gradient can
be received everywhere in x, a variety of extended ReLU functions appear, such as
leaky ReLU activation function, which does not set 0 when the input is less than 0,
instead replaced by multiplying a small constant value. The function expression is
f(x) = max (ax, x), and a is a small constant, such as 0.01. For example, Parametric
ReLU activation function which approximates the leaky ReLU function, but a is
not a preset constant which obtained by data learning. In addition, there are also
Randomized ReLU activation functions.

The loss function is often selected by combining the activation function, because
the activation function is inevitable in the process of chain derivation of the back
propagation algorithm. Activation function is one of the most important designs in
the forward propagation, which increases the complexity of the model and provides
more nonlinear operations.

In the actual training process, MSE loss function is generally combined with
sigmoid function for linear regression problems. The greater the difference between
the real results is, the greater the difference is, and the higher the regression accuracy
is. MSE is prone to gradient vanishing in classification problems, and cross-entropy
function can solve the problem of gradient vanishing in classification models. The
cross-entropy function only cares about whether the classification results are correct,
while theMSE function focuses on the size of each category, which is unnecessary in
the actual classification problems. Therefore, cross-entropy function is more suitable
for logistic regression problems.

In addition, when the input data features are significantly different, the effect of
using tanh will be very good, and the feature effect will continue to expand and show
in the cycle. If the feature difference is not obvious, sigmoid works well. At the same
time, when sigmoid and tanh are used as activation functions, the input needs to be
standardized. Otherwise, all the activated values enter the flat area, and the output of
the hidden layer will all converge and lose the original feature expression. ReLU is
much better, and sometimes input normalization is not required to avoid the above
situation. Therefore, most convolution neural networks now use ReLU as activation
function.
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18.2.5 Methods to Avoid Over-Fitting

In the deep neural network, when the difference among the parameters of the model
and the number of training samples is too large, the over-fitting problem often occurs.
It is also one of themain difficulties in network training. Over-fittingmeans that good
fitting results can be obtained on the training data, but the data set outside the training
data cannot be well predicted. To avoid over-fitting of CNN model, the following
methods can be used.

(1) Norm Regularization Methods

Norm regularization is a way to reduce the complexity of the model by adding a
penalty term to the loss function. The most common techniques are L1 and L2
regularization.

L2 regularization is the most norm regularization method, which is also called
ridge regression or Tikhonov regularization in multiple linear regression. It adds a
penalty term directly to the loss function. That is, the L2 norm of each weight w
in the neural network is calculated, and then added it to the loss function, which is
expressed as 0.5*λ*w2. λ is the regularization intensity. The greater the value is, the
stronger the regularization is, and the more over-fitting can be prevented. However,
if the value is too large, under-fitting will occur. Generally, the verification set is used
to determine the hyper-parameters.

L1 regularization is another common regularization method, which is also called
Lasso regularization in multiple linear regressions. The L1 norm is calculated for
each weight w in the neural network, and then add it to the loss function, expressed
as λ*|w|. The L1 regularization method will make the weight sparse, that is, the
maximum value of the weight is close to 0, which is equivalent to part of the input
data to participate in the network calculation, and it is robust to noise or redundant
part of the input. This property can be used for feature selection.

(2) Ensemble Methods

Some ensemble learning strategies can prevent over-fitting. Common ensemble
learning strategies include bagging, boosting, and RF and so on, which can reduce
the generalization error by combiningmultiple models. This method can also be used
in deep learning, but it increases the cost of computing and storage.

(3) Dropout Method

As shown in Fig. 18.14, the Dropout method randomly sets the weights of some
neurons to 0 in each network training process, that is, to let some neurons fail which
is equivalent to training different neural networks, so that the diversity of models can
be enhanced, and the effect of similar multiple model ensembles can be obtained,
so as to avoid over-fitting. In addition, Dropout leads to scarcity and reduces the
complexity of network structure, which makes the difference of local data clusters
more obvious, which is also the reason that it can prevent over-fitting.

Dropout generally appears in the full connection layer, commonly used to opti-
mize the training network. During the training of network, each iteration randomly
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Fig. 18.14 Schematic diagram of Dropout method

suppresses some neurons in the hidden layer with probability p, and the remaining
neurons connect to the next layer of neurons. After back propagation, the uninhibited
neuronal parameters are updated. The next iteration restores the parameters of the
inhibited neurons, while the other neurons maintain the parameters updated after the
last iteration, and then continue to randomly inhibit some neurons. Repeating the
above process can generate different neural networks. Finally, the comprehensive
averaging strategy is used to combine these different neural networks as the final
output model. The hyper parameter p is called the discard rate, which is usually set
to 50%.

(4) Batch normalization (BN) Method

The traditional deep neural network, with the deepening of the number of layers, the
model will become difficult to train and fit, because the deep neural network between
different layers will be nonlinear transformation. The purpose is to make the network
more representatives through nonlinear transformation, multi-layer linear superpo-
sition is meaningless. The result of multi-layer nonlinear transformation makes the
distribution of training data offset or change, which is called internal covariate shift.
The reason why the training convergence is slow is that the overall distribution of
the data gradually approaches the upper and lower bounds of the range of nonlinear
function, where the gradient is very small, which can be said to be close to 0.

The essential idea of batch standardization (BN)method is to force the input distri-
bution of the gradient vanishing interval that is gradually mapped to the nonlinear
function back to the normal distribution with approximate mean value of 0 and vari-
ance of 1, so that the input value of the nonlinear transformation function falls into the
region sensitive to the input. The learning rate can be increased many times to avoid
the problems of gradient vanishing and difficult fitting, and delay the occurrence of
over-fitting to a certain extent. BN forcibly changes the distribution of input data,
avoiding the diffusion of input data distribution to the nonlinear activation function
to the gradient vanishing region, and offsetting the nonlinear expression ability of
the nonlinear activation function. Therefore, BN adds two parameters of scale and
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Fig. 18.15 Schematic
diagram of early stop
training

shift after pulling the input data distribution back to the normal distribution with an
approximate mean value of 0 and variance of 1, so as to scale and shift the data to
maintain the nonlinear learning ability of the network at the same time.

(5) Data Augmentation Method

Most of the reasons for over-fitting are the lack of training samples and the increase
of training parameters. If the training samples lack diversity, more amount of training
parameters is meaningless, because it will cause over-fitting. One way to make the
generalization ability of the model better is to use more training data for training.
Feature diversity brought by large amounts of data helps tomake full use of all training
parameters. For image data, the commonly used methods of data enhancement
include flipping transform, random pruning, color dithering, translation transform,
scale transform, contrast transform, noise disturbance, rotation transform, and reflec-
tion transform. Data enhancement can also be obtained by generative adversarial
networks (GAN).

(6) Early Stopping Method

Early Stopping is applicablewhen the expression ability of themodel is strong. In this
case, the general training error will gradually decrease with the increase of training
times, and the test error will first decrease and then increase again. In order to avoid
over-fitting of the training set, a good solution is to stop in advance and interrupt
training when its performance on validation set begins to decline (Fig. 18.15).

18.2.6 Classical Convolution Neural Network Architecture

The first successful application of CNN is the LeNet-5 architecture developed byCun
et al. in 1998, which was used for the identification of handwritten numerals in postal
code. The great development of deep convolution network started from the AlexNet
network in 2012, which was proposed by Krizhevsky et al. in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). AlexNet has a similar architecture
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to LeNet-5, but its network is deeper and implemented by using multiple convolution
layers. In the 2014 ILSVRC competition, GoogLeNet and VGGNet are two excel-
lent architectures.GoogLeNet creatively proposed the Inception structure to solve the
problem of gradient dissipation. The main contribution of VGGNet is that the depth
of the network is the key reason for good performance. In 2015, ResNet developed
by He et al. [12] solved the problem of network degradation through residual struc-
ture, greatly improved the depth of the network. Several classical convolution neural
network models are introduced, including LeNet-5, AlexNet, VGGNet, GoogLenet,
and ResNet.

(1) Lenet-5 Network

LeNet-5 is the cornerstone of modern CNN. Its network structure is shown in
Fig. 18.16, including three convolution layers, one full connection layer, and one
Gaussian connection layer.

Layer 1: input layer is batch size 32 × 32 black and white resolution image;
Layer 2: C1, convolution layer, there are six feature maps, convolution kernel size
is 5 × 5, depth is 6, without full 0 filling and step size is 1, a total of 28 × 28 × 6
neurons(32–5 + 1 = 28), the number of parameters is 156 (5 × 5 × 6 + 6 = 156, 6
is the bias parameter), each unit is connected with 25 units in the input layer; Third
layer: S2, pooled subsampling layer, there are six feature maps, each feature map
size is 14 × 14, pooled kernel size is 2 × 2, long and wide step sizes are 2; Layer 4:
C3, convolution layer, convolution kernel size is 5× 5, 16 feature maps, each feature
map size is 10× 10(14–5+ 1= 10), with a fixed connection to the third layer; Layer
5: S4, pooled subsampling layer, with 16 feature maps, each feature map size is 5 ×
5 (10/2), pooled kernel size is 2 × 2, long and wide step sizes are 2; Layer 6: C5,
convolution layer, batchsize × 120 feature maps; Layer 7: F6, full connection layer,
batch size × 84 feature maps; Layer 8: output layer, with batch size × 10 feature
maps.

Fig. 18.16 LeNet-5 model of CNN
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(2) AlexNet networN

As shown in Fig. 18.17, AlexNet has five convolution layers, three of which are
connected to the maximum pooling layer. The last three layers of AlexNet are full
connection layers. The method established the dominant position of deep learning
(deep convolution network) in computer vision, and also promoted the expansion
of deep learning in speech recognition, natural language processing, reinforcement
learning, and other fields.

AlexNet uses ReLU as the activation function of CNN, and verifies that its effect
exceeds Sigmoid in deeper networks, which solves the gradient diffusion problem
of Sigmoid in deep networks. Dropout is used during training to randomly ignore
some neurons to avoid over-fitting themodel. AlexNet all uses overlappingmaximum
pooling. Previously, CNN generally uses mean pooling to avoid the blurring effect
of mean pooling. The step size in AlexNet is smaller than the size of the pooling
kernel so that the outputs of the pooling layer will be overlap and coverage, which
improves the richness of features.

AlexNet randomly intercepts 224 × 224 size regions (and horizontal flip mirrors)
from256× 256 original images using data enhancement, which increases the amount
of data by 2048 times, significantly reduces over-fitting and improves generalization
ability. In addition, AlexNet uses the powerful parallel computing ability of GPU to
deal with a large number of matrix operations in neural network training.

(3) VGGNet Network

VGGNet divides the network into five segments. Each segment connects several 3
× 3 convolution networks in series. Each segment is followed by a 2 × 2 maximum
pooling layer and the last are three full connection layers and a softmax layer.
VGGNet uses multiple convolution layers with smaller convolution kernels (3 ×
3) to replace a convolution layer with larger convolution kernels (e.g., 5 × 5). On
the one hand, it can reduce parameters; on the other hand, it is equivalent to more
nonlinear mapping, which can increase the fitting/expression ability of the network.

VGGNet has different architectures such as VGG-11, VGG-16, and VGG-19,
and constructs a CNN with 16–19 layers. All the small convolution kernels of 3 × 3
and the maximum pooling kernel of 2 × 2 are used to improve the performance by

Fig. 18.17 AlexNet model of CNN
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deepening the network structure, so as to achieve a larger receptive field (such as 5
× 5) similar effect to extract more complex features.

(4) GoogLenet Network

GoogLeNet (also known as Inception) is a new deep learning structure. Previous
structures such as AlexNet and VGGNet have achieved better training results by
increasing the depth (number of layers) of the network, but the increase of the number
of layers will bring many negative effects, such as too many parameters, and if the
training data set is limited, it is easy to over-fitting. The larger the network, the
greater the computational complexity, it is difficult to apply. The deeper the network
is, the easier the gradient passes, and it is difficult to optimize the model. Inception
is proposed to improve the training results from another perspective: more efficient
use of computing resources, more features can be extracted under the same amount
of calculation thereby enhancing the training results.

As shown in Fig. 18.18, the basic structure of Inception has four branches: the first
branch carries out 1× 1 convolution on the input, and 1× 1 convolution is a excellent
structure, which can realize cross-channel interaction and information integration,
improving the expression ability of the network. Furthermore, the dimension of the
output channel can be increased and reduced simultaneously. The second branch first
uses 1 × 1 convolution and then connects 3 × 3 convolution, which is equivalent to
two feature transformations. The third branch is similar, first 1 × 1 convolution, and
then connect 5 × 5 convolution. The last branch is directly using 1 × 1 convolution
after 3 × 3 maximum pooling. Four branches of Inception are merged at the end by
an aggregation operation (aggregate on the dimension of output channels).

The Inception structure uses 1 × 1 convolution to carry out the lifting dimension,
which reduces the computational complexity and obtains a more compact network
structure. Although GoogLeNet has 22 layers in total, the number of parameters

Fig. 18.18 Schematic diagram for basic structure of inception
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is only one twelfth of the eight-layer AlexNet. The Inception structure performs
convolution and re polymerization on multiple dimensions at the same time, and
convolution on multiple scales at the same time. The characteristics of different
scales can be extracted. The principle of sparse matrix decomposition into dense
matrix calculation is used to accelerate the convergence speed.

GoogLeNet has a deeper network structure and less parameters and computation,
which is mainly due to the extensive use of 1 × 1 convolution in the convolution
network and the replacement of the full connection layer in the traditional network
architecture with the AveragePool. This requires careful design of the Inception
architecture to achieve excellent results.

(5) ResNet Network

For traditional deep learning networks, a simple increase in depth can lead to gradient
diffusion or gradient explosion. The solution to this problem is regularization initial-
ization and batch normalization in the middle (Batch Normalization), which can
train dozens of layers of networks. Although the above method can be trained, but
there is another problem, which is degradation, that is, as the number of network
layers increasing, the accuracy rate on the training set is saturated or even decreased.
Deep residual network (ResNet) solves the degradation problem of deep network by
residual learning.

For an accumulation layer structure (stacked by several layers), when the input is
x, the learned feature is denoted as H(x). Now we hope it can learn the residual F(x)
= H(x) − x, so the original learning feature is F(x) + x. This is because residual
learning is easier than direct learning of original features. When the residual is 0, the
accumulation layer only makes identity mapping at this time, at least the network
performance will not decline, and in fact the residual will not to be 0, which will
also make the accumulation layer learn new features based on input features, so as to
have better performance. This can solve the problem gradient vanishing of the deep
network, so that the network can be done very deep.

The structure of residual learning is shown in Fig. 18.19. It’s kind of like a “short
circuit” in the circuit, so it is a shortcut connection. In the ResNet, the input and

Fig. 18.19 Schematic diagram for structure of residual learning
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output are added to a corresponding element-wise by Shortcut. This simple addition
does not add additional parameters or computation to the network, but can greatly
increase the training speed and improve the training effect of the model, and when
the number of layers of the model deepened, this simple structure can well solve the
problem of gradient vanishing.

(6) DenseNet Network

In deep learning networks, with the deepening of network depth, the problem of
gradient vanishing will become more obvious. DenseNet network is separated from
the thinking of deepening network layers number (ResNet) and widening network
structure (Inception) to improve network performance. From the perspective of
features, it is set through feature reuse and bypass set. It not only greatly reduces the
number of network parameters but also alleviates the problem of gradient vanishing
to a certain extent. The basic idea is to directly connect all layers on the premise of
ensuring the maximum information transmission among layers of the network.

DenseNet is composed of Dense blocks, using the structure of Batch Normal-
ization (BN) + ReLU + 3 × 3 Conk (Fig. 18.20). In these blocks, each layer is
closely connected, and each layer obtains input from the output feature map of the
previous layer. DenseNet architecture maximizes the use of residual mechanism so
that each layer is closely connected to its subsequent layers. The compactness of the
model makes the learned features non-redundant, because they are shared through
collective knowledge. In addition, due to the short connection, the gradient is easier

Fig. 18.20 Schematic diagram for structure of DenseNet network
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to reverse flow. This high reusability of residuals creates deep oversight, since each
layer receives more oversight from the previous layer, so the loss function responds
accordingly.

The core idea of DenseNet is to establish the connection between different
layers, make full use of the characteristics, and further reduce the gradient vanishing
problem.With the deepening of the network, the training effect is gradually improved.
In addition, the bottleneck layer, the translation layer and the smaller growth rate
are used to narrow the network and reduce the parameters, which inhibit the
over-fitting effectively and reduce the amount of calculation.

18.2.7 Popular Deep Learning Software Framework

The software framework of deep learning provides the necessary basis for the realiza-
tion of deep learning architecture. These software frameworks can realize the rapid
construction of training, testing, and tuning models by modularizing and encapsu-
lating deep learning algorithms, and provide strong support for the prediction of
technical applications and the decision-making of landing. There are many frame-
works available for deep learning projects. The current popular deep learning frame-
works mainly include TensorFlow, PytorchKeras, Caffe, Caffe2, MXNet, CNTK,
Deeplearning4J, etc. These frameworks have their own advantages and disadvan-
tages. It is very important to choose a suitable deep learning software framework for
achieving the goal.

(1) TensorFlow

TensorFlow is an open source machine learning library of Google in 2015. It is
one of the most popular deep learning frameworks. It supports distributed training,
extensible production deployment options andAndroid andother devices. Tensorflow
has a multi-level structure, which can be deployed on various servers, PC terminals
and web pages, and supports GPU and TPU high-performance numerical computing.
It is widely used in Google’s internal product development and scientific research in
various fields. TensorFlow is relatively mature, stable, and focuses on the industrial
field as a whole, which is suitable for the development of large and medium-sized
projects.

(2) PyTorch

In 2017, Facebook launched thePyTorch platform.Because of its dynamic computing
diagram and efficient memory, it is suitable for rapid prototyping or small-scale
projects, so it has become the preferred framework for a large number of academic
researchers. It has the advantages of simple and transparent modeling process, many
pre training models, easy combination of modular components, and support for
distributed training.
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(3) Keras

Francoi Chollet who worked in Google developed Keras. As the top wrapper of
Theano, Keras is mainly used for rapid prototyping. Although it is once one of the
most popular deep learning libraries, Theano is now out of service. Later, several
frameworks, such as TensorFlow, MXNet, CNTK, were extended from Keras and
used as the back end. It supports various neural network layers, such as convo-
lution layer, circulation layer or dense layer, which can be applied in translation,
image recognition, speech recognition, and other fields. Keras is one of the fastest
growing deep learning libraries at present. Characterized by simple prototype design,
simple, and intuitive interface, Keras supports multi-GPU training, and is suitable
for beginners to get started quickly.

(4) Caffe and Caffe2

Caffe is a Python deep learning library developed by Yangqing Jia from the Univer-
sity of Berkeley to monitor computer vision problems. It is suitable for CNN, image
processing, and fine-tuning pre training networks. It can fine-tune the network with
little or no code. On the basis of Caffe, Caffe2 introduced in 2017 is a lightweight
modular framework designed for mobile and large-scale deployment in the produc-
tion environment. Caffe2 is more scalable and lightweight. In 2018, Caffe2 project
has been merged with PyTorch.

(5) MXNet

MXNet is a deep learning framework created by Apache Software Foundation,
supported by Microsoft, Intel, and Amazon. MXNet supports multiple languages
such as Python, C++, Julia, R, and JavaScript. For large-scale industrial projects,
MXNet is a good software framework, which is very fast, flexible, and efficient,
and can run on any device, providing rich support for a variety of programming
languages.

(6) CNTK

CNTK is an open source deep learning framework developed byMicrosoft to process
big data sets and supports Python, C++, C# and Java. It is applicable to almost all
types of tasks from voice, text to vision. Its characteristics are good performance and
scalability, with more highly optimized components, in terms of resource use is also
very effective.

(7) DeepLearning4J

Deep Learning4J is a commercial open source framework, which is an open source
deep learning library for Java and Java virtual machines. It is a computing framework
that widely supports various deep learning algorithms. The deep learning frame-
work has great potential in image recognition, natural language processing, and
text mining. It is flexible, efficient, and can process large amounts of data without
sacrificing speed.
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(8) MatConvNet

MatConvNet is a MATLAB toolbox for implementing CNN launched by Cambridge
University. Because of its pure MATLAB development environment, it may be the
most easily available software framework. MatConvNet provides a friendly and effi-
cient environment for researchers, including many CNN computing blocks, such as
convolution, normalization, and pooling. Most of them are written in C++ or CUDA,
which means that it allows users to write new blocks to improve computational
efficiency.

In addition, MathWorks has launched MATLAB and Simulink of 2018b version,
which contains important deep learning enhancement functions, as well as new func-
tions and bug fixes in each product series. The new Deep Learning Toolbox replaces
the Neural Network Toolbox and provides a framework for engineers and scien-
tists to design and implement deep neural networks. Image processing, computer
vision, signal processing, and system engineers can useMATLAB to design complex
network architecture more easily and improve the performance of its deep learning
model. Using theONNXconverter in 2018b, themodel can be imported and exported
from the supporting frameworks (such as PyTorch, MXNet, and TensorFlow). With
this interoperability, themodel trained inMATLAB can be used in other frameworks.
Similarly, models trained in other frameworks can be imported into MATLAB to
perform debugging, validation, and embedded deployment tasks.

Currently, platforms such as MATLAB, Python, C++ , Java, and Go are usually
used for the specific implementation of convolutional neural network. In order to
facilitate the use of algorithms, frameworks such as Tensorflow, Theano, Caffe,
and Pytorch are generally used to build classification or regression models. These
open source development languages and learning frameworks provide very conve-
nient conditions for researchers. For example, the TensorFlow programming inter-
faces are based on the graphical interfaces, which can easily run on the Python
platform. The algorithm structure is simple and clear, and Python can use GPU
for parallel computing, combined with the high-performance library unit of deep
learning provided by Nvidia, cuDNN, etc. It greatly improves the training speed and
model performance of deep learning. In addition, there is Sickest-Learn based on the
commonly used machine learning algorithm.

18.2.8 Design of Convolution Neural Networks

In the design process of CNN, more parameters need to be selected, as shown in
Fig. 18.21, the main parameters include [13, 14] as follows.

(1) The layer structure of the network (the number of convolution layers, the
number of full connection layers.)

(2) Convolution kernel size, number of convolution kernels,moving steps (Stride)
in convolution layers

(3) The type of activation function



530 18 Deep Learning Methods

Fig. 18.21 Schematic diagram of training parameters for CNN

(4) Types of pooling methods
(5) With batch normalization or not
(6) The probability of Dropout
(7) The size of mini-Batch size
(8) The type of loss function and its parameters (regularization coefficient, etc.)
(9) The type of optimization algorithms and its parameters (learning rate,

momentum, etc.)
(10) Number of iterations.

In the CNN structure, the deeper the depth and the more number of feature
faces, the greater the feature space that the network can represent and the stronger
the network learning ability. However, it also makes the network calculation more
complex, and is easy to over-fitting. Therefore, in practice, the network depth, the
number of feature surfaces, the size of the convolution kernel, and the steps of sliding
should be appropriately selected so that a goodmodel can be obtained and the training
time can be reduced.

In the field of spectral analysis, the relationship between the size of convolution
kernel and the moving step of convolution kernel has clear physical significance. As
shown in Fig. 18.22, when the moving step of convolution kernel is less than the
size of convolution kernel, the convolution kernel will overlap during the movement
which means that more features can be extracted. Dimensions are similar to uniform
interval division in the interval partial least squares (iPLS), when convolution kernel
moves faster than convolution dimensions, convolution kernelwill skip some spectral
sub-intervals and do not extract features.
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Fig. 18.22 Relationship between convolutional kernel size and moving steps

The size of convolution kernel, the number of convolution kernel, moving steps
are not completely independent. There is a coupling relationship between them. Chen
et al. [15] summed up the general design principles of CNN parameters in the field
of NIR spectral analysis.

(1) The size of convolution kernel should not be too small. When convolution
kernel is small (10, 25), the convolution extracts features on sub-intervals
that are not near the absorption peak, and using these features to model, the
generalization performance of the model is usually poor. Conversely, when
the size of the convolution kernel is large (50, 100), basically each feature
extracted by the convolution kernel will contain the spectral information near
the absorption peak. Using these features for modeling, the generalization
performance of the model is usually better.

(2) The number of convolution kernel does not need to be too many. When the
size of convolution kernel is small, the number of features extracted by a single
convolution is relatively large. In this case, continuing to increase the number
of convolution kernels will double the total number of features extracted by
all convolution kernels It correspondingly results in “the number of features
much more than the number of samples”, that is, the phenomenon of “over-
fitting” will occur. The prediction performance of the model will be gradually
reduced. Conversely, when the size of the convolution is large, the predic-
tion performance of the model shows an upward trend, and when the number
of convolution kernel reaches a certain value, and continues to increase, the
prediction performance of the model will not continue to rise, but will decline
slightly. Therefore, the number of convolution kernel is not the more the better.
Given the appropriate size of convolution kernel, the number of convolution
kernels does not need to be too large, as it is sufficient if it is not greater than 5.

(3) Convolution kernelmoving step should be less than convolutionwindowwidth.
When convolution moves at smaller steps, more features can be extracted to
help to improve the generalization performance of the model.
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For the selection of parameters, the ideal state is to select the optimal combination
from these combinations of parameters for training. But the number of combina-
tions is too large, when setting parameters, only the experience and more trials can
constantly exploremore optimized combinations. For example,when the background
of input variables is complex in context, the number of convolutions can be increased
so that the network can extract more features. While the number of input samples is
large, the convolution and pooling layers need to be appropriately increased to form
a deep convolution neural network. In addition, batch normalization is often added
between the convolution layer and the activation layer, and dropout algorithms are
introduced into the full connection layer to increase the robustness and convergence
of the CNN model to a certain extent.

18.2.9 Training of Convolution Neural Networks

Similar to traditional neural networks, the training process of CNN is divided into
two stages. The first stage is the stage of data propagation from low level to high
level, the input data through the convolution and pooling of multi-layer convolution
layer processing, proposed feature vectors, the feature vector into the full connection
layer, to obtain classification or regression results, that is, forward propagation stage.
Another stage is that when the results of the current propagation do not match the
expectations, the error is calculated from the high level to the lower level of the
propagation training stage, calculated the error of each layer, and then carried out
the weight update, that is, the back propagation algorithm in the convolution neural
network in the back propagation stage, like the shallow neural network, its essence
is a chain-based process of guidance. In practice, mini-Batch-based training is often
used, i.e., a fixed number of training samples are entered as amini-Batch at a time, and
each iteration calculation begins with the bias of each sample inmini-Batch, and then
the average of the bias is calculated as a gradient to update the network weights [16].

The training process, as shown in Fig. 18.23, consists of the following steps.

1. The weights of the network are initialized first. Tthe common method for
initialization is random approach;

2. The output is obtained by forward propagation the input data through the
convolution layer, down sampling layer and full connected layer.

3. The errors between the output value of the network and the target value are calcu-
lated, which is called loss function. The purpose of training is to minimize the
loss function.

4. When the error is greater than expected, the error is transmitted back to the
network by derivative, and the errors of the full connected layer, down sampling
layer and convolution layer are obtained in turn. The trainingwill be endedwhen
the error is equal to or less than expected.

5. The weights are updated based on to the calculated error, and then goes to step
2 and repeat until convergence.

The training process for CNN is divided into two stages.
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Fig. 18.23 Training flowcharts for CNN

(1) Forward propagation

The process of propagation the input from the previous layer to the next layer,
progressing layer by layer, and finally outputting the result is called forward prop-
agation. Forward propagation requires initialization of weights and offsets. Since
initialization to zero causes the output to be the same for iteration that cannot be
learned, parameters are generally initialized to random numbers in 0–1. The common
output equation for a network is

ai = f i
(
wi × ai−1 + bi

)
(18.4)

where ai-1, b,w, and f represent input, offset, weight, activation function, respectively.
The output ai is passed as input to the next layer, and the final output is y. In order
to train deep neural network reasonably, it is necessary to quantify the difference
between output y and real value using loss function to find the best parameters and
reduce the loss function, which needs to be achieved by back propagation.

(2) Back propagation and gradient descent method

Back propagation refers to the process of transmitting the output error layer by layer
to the input layer through the network, updating theweight and bias using the gradient
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descent method, and iterating many times to minimize the loss function. The loss
function quantifies the error between the actual value and the predicted value of the
network.Assuming that there arem samples in the training sample set, the calculation
formula of the loss function of a single sample is as follows:

J (W, b; x, y) = 1

2
‖hw, b(x) − y‖2 (18.5)

where x, y, b, w, and hw,b(x) represent input, actual value, bias, weight, and prediction,
respectively.

The loss function for m samples is

J (W, b) = 1

m
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(18.6)

The first item in Eq. 18.6 represents the mean variance, and the second indicates
regularization. Wherein, nl represents the number of network layers, sl represents
the number of neurons, Wl

ij represents the connection parameter of the i neuron of
the l layer with the j neuron of the l + 1 layer, and the λ is the weight attenuation
parameter (regularization parameter).

The gradient is calculated from the back forward, the gradient of the last layer
is calculated first, and then the gradient of the previous layer is calculated, and the
calculation uses a partial calculation from the gradient of the previous layer, and
the information flows backward. The update formula for parameters w and b is as
follows:

W ij(l) = W ij(l) − α
∂

∂wij(l)
J (W, b)

bi(l) = bi(l) − α
∂

∂bi(l)
J (W, b)

(18.7)

where α represents the learning rate and bi(l) represents the bias of the i neuron in
the l + 1 layer.
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18.2.10 Advantages and Disadvantages of Convolution
Neural Network

CNN has the characteristics of low requirements for spectral preprocessing methods
and wavelength variable selection methods, strong learning ability, and the ability to
train and model multiple components at the same time, and the model performance
is better when processing nonlinear and large sample data. However, CNN also has
the following disadvantages.

(1) CNN relies heavily on a large number of training samples, the larger the amount
of data is, and the better the quality and performance it is. If there are not enough
training samples, the training process will not converge and over fitting will
occur.

(2) The design of CNN is very complex, with a large number of hyper parameters,
and the process of artificial parameter tuning is difficult and slow, and the time
cost would be evitable.

(3) The explanatory process of CNN is poor, the mechanism of action is explained
by lack of clear theory, and the algorithm analysis is relatively difficult.

(4) CNN put forward higher demand for hardware computing power, and ordinary
computing hardware equipment is difficult to meet the speed and cost of huge
computation.

18.2.11 Applications of Convolution Neural Network

Acquarelli et al. [17] have designed a CNN framework for molecular spectro-
scopic classification, consisting of a one-layer convolution layer and a one-layer
full-connection layer, without a pooling layer. The activation function of the convo-
lution layer uses ReLU, and the output layer uses the softmax activation function. Its
loss function is a double-regularized cross-entropy function as shown in Eq. 18.8.

OBJ (w) = − 1

N

N∑

n=1

[
yn log ŷn + (1 − yn) log(1 − yn)

]

︸ ︷︷ ︸

Cross−entropy Error Loss

+ λ1‖w‖2 +
proximityL2norm

︷ ︸︸ ︷
λ2 · ‖w − Shift(w)‖2

︸ ︷︷ ︸

Regularization term

(18.8)
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where yn and y
∧

n is the target classification andCNNoutput classification values of the
nth sample, respectively; w is the weight, λ1 and λ2 is the regularization parameters,
Shift(w) is the operation that moves the elements of w one position to the left. In
addition to the standard L2 norm, the loss function uses an “approximate L2 norm”,
which helps the network maintain the correlation between adjacent input variables
(the number of wavenumbers in the vibration spectra) to punish the large differences
between adjacent weights. For vibration spectra, these changes are not expected
because the value of the spectrum on a wave number depends on the adjacent wave
values.

Based on ten different vibration spectral databases (including MIR, NIR, and
Raman spectroscopy), the results of the CNN and the classification effects of PLS-
DA, logistic regression, and k-nearest neighbor (kNN) methods were compared. The
results show that the CNN has the best results whether the spectral preprocessing
method is used or not before classification. Compared with other CNN, the method
has no pooled layer, and by inverse calculation, the characteristic wavelength range
of effective spectral information can be extracted to better explain the training and
learning process of convolution.

Le et al. [18] used stacked sparse auto-encoding networks (SSAE) in deep learning
for the extraction of features of grain NIR spectra, and then use the affine transfor-
mation with extreme learning machine (AT-ELM) to establish quantitative models,
and the prediction results are better than the PLS and ELMmethods. Based on 6987
training set samples and 618 validation set samples, Cui et al. [19] studied CNN
combined with NIR spectra to predict flour ash content. The effects of different
activation functions, learning rate, random drop rate, regularization parameters, etc.,
were discussed, and the network training resultswere investigated and comparedwith
PLS results. As shown in Fig. 18.24, the quality of regression coefficient (mainly

Fig. 18.24 Comparison of the quality of CNN with PLS models



18.2 Convolution Neural Network 537

Fig. 18.25 Prediction results of nitrogen contents in the leaves of horsetail pine seedlings by SVR
(a) and VWCNN (b) models

noise level) obtained by CNN is significantly better than the results of PLS, and CNN
do not require spectral pretreatmentmethods, reducing the amount ofmodeling effort
to a certain extent. Malek et al. [20] proposed the training of CNN using PSO algo-
rithm, and established quantitative models by SVR and Gaussian process regression
(GPR) as the last layer of CNN. Results showed that the prediction performance of
the proposed method is significantly improved by analyzing three molecular spectral
data sets.

Ni et al. [21] proposed a variable-weighted convolution neural network (VW-
CNN), adding an important factor block similar to an auto-encoding network before
the input layer, making the networkmore focused on important wavelength variables,
thereby improving the generalization ability of CNN. As shown in Fig. 18.25, the
prediction ability of the NIR spectroscopic prediction model in the leaves of horse-
tail pine seedlings established by VW-CNN is significantly better than that of the
traditional PLS and SVR methods, and better than that of the classic CNN model.
Padarian et al. [22] used tens of thousands of soil Vis-NIR spectroscopic samples to
build CNN that simultaneously predicted the physical properties of the soil, and their
input was spectrogram which was obtained by using short time Fourier transform of
the original spectrum to convert the spectral one-dimensional vector of 4,200 wave-
length points into a 2Dmatrix of 51× 83. The results of this study also show that the
use of CNN to process large data set samples is more advantageous than small data
sets. On this basis, Ng et al. [23] fused the Vis-NIR spectra of soil with the infrared
(IR) spectra, and used the two-dimensional spectral map obtained by outer-product
analysis (OPA) as the input variable of CNN, obtained satisfactory quantitative anal-
ysis results, and were able to resolve the characteristic spectral interval associated
with the properties to be measured.

Bjerrum et al. [24] augmented the data of the training sample (Data Augmenta-
tion) by adding random fluctuation variables (offset, multiplication, and slope) to the
NIR spectra, combined with the extended multiplicative scatter correction (EMSC)
method,which can effectively improve the performance ofCNNmodel for predicting
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Fig. 18.26 Comparison of prediction ability of CNN model with PLS model for the external test
set

the content of active components in tablets. Moreover, as shown in Fig. 18.26, CNN
models have stronger extrapolation prediction abilities and better predictive consis-
tency in the spectra between different instruments than PLS. Jernelv et al. [25] based
on five vibration spectra, with sample numbers ranging from dozens to nearly a
thousand, including regression and classification, compared CNN with traditional
quantitative and pattern recognition methods. The results show that the influence of
spectral preprocessing and variable selection methods on traditional quantitative and
qualitative methods is much greater than that of CNNmodel, but the performance of
CNNmodel can be improved by proper spectral preprocessing and variable selection
method.

Using a GoogleNet model with a 22-layer deep network, Liu et al. [26] used hyper
spectral imaging technology to quickly and non-destructively classify different vari-
eties of peanuts, with significantly better classification results than the PLS-DA
method. Based on CNN and macadamia nut of Vis-NIR spectra, Du et al. [27] estab-
lished a macadamia nut quality identification model, and the identification accuracy
of better nuts, worse nuts, and moldy nuts reached 100%. Lu et al. [28] proposed a
convolution neural network topology for Raman spectroscopic diagnosis of hepatitis
B virus (Fig. 18.27),which contains amulti-scale convolution layer that uses different

Fig. 18.27 A topological structure of CNN for Raman spectroscopic diagnosis of hepatitis B virus
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convolution kernels to extract spectral features from multiple scales and then inte-
grates them. An independent recurrent neural network layer (IndRNN) has also been
added between the convolution and full-connection layers to avoid problems such
as gradient vanishing and gradient explosion. Erzina et al. [29] realized the accurate
detection of cancer by CNN combined with surface enhanced Raman spectroscopy.
Ho et al. [30] used the CNN architecture DenseNet to identify Raman spectra of 30
common pathogens, and even in the case of high spectral noise, accurate prediction
results can be obtained.

Lu et al. [31] improved the classical CNN architecture LeNet-5 for origin iden-
tification of tobacco based on NIR spectra, with a discrimination accuracy of 95%.
Li et al. [32] applied CNN with NIR in identification of multi-variety and multi-
manufacturer pharmaceuticals, and its classification performance is better than SVM
and ELM algorithms. Zhao et al. [33] designed three Raman spectral data augmen-
tation methods to construct Raman spectral database of three different estrogen
powders. Then a CNN classification model was established. The Results indicate
that the method is less affected by spectral measurement noise and has strong robust-
ness, which is suitable for analyzing high-noise Raman spectra with more complex
field measurements. Meng et al. [34] firstly used kernel principal component anal-
ysis (KPCA) to compress the NIR spectra of Chinese zither wood, and then estab-
lished a classification model using CNN. The grade classification accuracy of the
wood for Chinese zither panels was 95.5%. Dong et al. [35] used CNN model to
feature the hyperspectral image of bacon with cross entropy as the optimization
target. Multiplicative scattering correction (MSC) and PCA were used to preprocess
spectra and extract spectral feature, and then the two featureswere fused and classified
by SVM, the classification accuracy could reach 99.2%. Tuan et al. [36] used CNN
combined with ELM (CNN-ELM) to establish a coal classification model first, and
then used improved swarm optimization algorithm to further optimize CNN-ELM.
The results show that the model has a good classification effect for coal species, and
the recognition accuracy is more than 96%.

Zong et al. [37] established a CNNmodel for predicting total sugar, total nicotine,
and chloride ions in tobacco leaves by NIR spectra, and obtained satisfactory results.
Wang et al. [38] compressed the NIR spectra of soil by PCA, and then transformed
it into a two-dimensional matrix by outer product and used as input variables for
CNN. Compared with PLS, BP-ANN, and SVR, CNN model has more powerful
prediction ability to predict soil moisture content. Tsakiridis et al. [39] pretreated the
Vis-NIR spectra of soil samples by different preprocessing methods. Six different
spectra can be obtained for each soil sample, forming a six-channel spectral matrix
as input of CNN (Fig. 18.28). A quantitative model that can simultaneously predict
multiple physicochemical properties was established. Moreover, the model was fine-
tuned by using local spectral neighborhoods to perform an adaptive error-correction
mechanism for prediction results where it exhibited the best performance compared
with the existing methods. Based the near infrared spectra and organic carbon data of
17,272 mineral soil samples in LUCAS soil database, Shi et al. [40] used CNN with
6–7 convolution layers to extract better nonlinear features thanPCA.The results show
that the root mean square error of prediction for organic carbon content could reach
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Fig. 18.28 A schematic diagram of CNN for multi-channel inputs and multi-parameter outputs

9.69 g/kg, which is more accurate than that of commonly used modeling methods.
The proposed model is implemented by Keras toolbox in Python language. Zhang
et al. [41] designed a CNN for one-dimensional spectral quantitative analysis based
on GoogLeNet network incorporated Inception module. It can directly model the
original spectra end-to-end, with better predictive accuracy than other CNN models.

Liu et al. [42] proposed a method of classifying multi-class Raman spectral data
using CNNs (Fig. 18.29), which outputted thousands of classes and was actually a
spectral searcher. The method has achieved excellent classification results in RUFF
mineral Raman spectral database. This research also compared the influence of base-
line correction methods on traditional pattern recognition and CNN. It proved that
CNN can achieve end-to-end direct discrimination analysis without spectral prepro-
cessing. Fan et al. [43] applied CNNs for component identification in Raman spectra

Fig. 18.29 A schematic diagram of CNN for multi-class classification of Raman spectral data
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Fig. 18.30 A schematic diagram of CNN for classification of hyperspectral imaging data

of mixtures. Compared with the logistic regression (LR) with L1-regularization,
kNN, RF, and BP-ANN models, the proposed method showed better identification
accuracy for ternary mixture spectral data sets.

Ni et al. [44] designed a CNN for NIR hyperspectral imaging to identify six
kinds of hybrid okra seeds and six hybrid loofah seeds, as shown in Fig. 18.30. This
network consists of two convolution layers and five fully connected layers. Each
fully connected layer uses batch normalization and dropout strategies. The results
show that the advantage of CNN is more obvious for the data set with more classes
compared with PLS-DA and SVM methods. Zhang et al. [45] converted the one-
dimensional vector into two-dimensional spectral matrix (Fig. 18.31) by equally
dividing and folding the NIR spectra of tobacco samples. Then a prediction model
to identify the origin of tobacco using CNN was established, with an accuracy of
93%. Weng et al. [46] used a similar two-dimensional spectral matrix generation
method for quantitative and qualitative modeling of CNN with surface enhanced
Raman spectroscopy.

Tan et al. [47] constructed serial fusion spectra for the original, first deriva-
tive, second derivative spectra, which combined the advantages of original spectra
containing all the feature information and derivative spectra removing interference,
as shown in Fig. 18.32. The fusion spectra combined with one-dimensional CNN
learning algorithm were further used to predict component content in corn samples
and the satisfactory results were obtained. Shi et al. [48] proposed a hyperspectral
image classification algorithm based on manifold spectral features and CNN. The
method firstly used t-distribution stochastic neighbor embedding (t-SNE) algorithm
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Fig. 18.31 A schematic diagram of construction two-dimensional spectral matrix from one-
dimensional vector

for dimensionality reduction of hyperspectral image, and then employed CNN to
extract spatial deep features. Finally, the spatial-spectral features of hyperspectral
images mapped from hidden feature space to the sample marker space for classifica-
tion. Zhang et al. [49] used CNN Inception to quantitatively analyze and model the
chemical composition of LIBS spectra. Themethod does not only require the prepro-
cessing of the original spectra but also does not need dimensionality reduction of the
original spectra. The original spectral information is retained to the greatest extent,
and the influence of matrix effect on quantitative results can be obviously eliminated.
Lai et al. [50] established a method for quickly and accurately recognition the brand
and degree of liquors by combining CNNwith laser induced fluorescence technology
(Fig. 18.32).

Yang et al. [51] combinedCNNwith recurrent neural networks (RNN) to establish
an analytical model for predicting the physical properties of soils byVis-NIR spectra,
which has a better resistance toward noise and better transferability among different
soil types. Fang et al. [52] used CNN for NIR spectral analysis of apple chips quality.
The established model was used to predict the moisture, total sugar, and total acid

Fig. 18.32 A schematic diagram of one-dimensional CNN based on spectral fusion
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Fig. 18.33 Heuristic
selection results for feature
mapping based on genetic
algorithms

of apple chips, which had better stability and generalization ability than traditional
modeling methods such as PLS, BP-ANN, LS-SVM. Weng et al. [53] fused rice
spectra and shape feature variables, using CNN to establish a model to identify the
high-quality rice species, with classification accuracy of 95%. Assadzadeh et al. [54]
used CNN to establish a global NIR spectral calibration model that could simultane-
ously predict protein and moisture content in grains such as wheat, barley, field pea,
and lentil, which can improve modeling efficiency and reduce model maintenance.
Yang et al. [55] used CNN combined with NIR for classifying softwood species,
with an accuracy of 100%. Hu et al. [56] used NIR fractional derivative spectra and
CNN to model the nitrogen content level of rubber tree foliage.

Chen et al. [57] used genetic algorithms (GA) for optimized heuristic selection of
CNN parameters, as shown in Fig. 18.33. In the region near the absorption peak of
the original spectrum, the selection of relatively more convolution kernels, smaller
convolutionwindowwidth andmoving step sizewill bemore conducive to extract the
key information contained in the original spectrum. However, in the non-absorption
peak area of the original spectra, the model parameters can be effectively reduced
and model generalization performance can be improved by using less convolution
kernels, larger convolution window size and moving step size. Chen et al. [58, 59]
also used ensemble modeling strategy to CNN, as shown in Fig. 18.34. Compared
to a single CNN model, the generalization performance and robustness of ensemble
CNNwas improved. The disadvantage of ensemble CNN is that the computation and
complexity of modeling will increase significantly.

18.3 Deep Belief Network

Deep belief network (DBN) is also a major framework of deep learning algorithms.
It can be used for unsupervised learning, similar to an auto-coder. It also can be used
for supervised learning, as a regressor or classifier.
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Fig. 18.34 Process of ensemble CNN model

In terms of unsupervised learning, the purpose of DBN is to retain the character-
istics of the original features as much as possible and reduce the dimension of the
features. In terms of supervised learning, the purpose of DBN is to make the clas-
sification or regression error as small as possible. Regardless of supervised learning
or unsupervised learning, the essence of DBN is the process of feature learning, that
is, how to get a better feature expression.

Restricted Boltzmannmachines (RBM) are the components of DBN. As shown in
Fig. 18.35, RBM has only two layers of neurons. The first layer is called visible layer
and consists of visible units, which is used for the input of training data. The other
layer is called the hidden layer, made up of hidden units, which is used as feature
detectors. In fact, the essence of RBM is an unsupervised learning method, which
can be used for dimensionality reduction, feature extraction, auto-encoders, etc. The
specific algorithm of RBM can be found from relevant literature.

From the perspective of structure, DBN is composed of multi-layer unsuper-
vised RBM and one layer supervised BP network or softmax classifier. As shown in
Fig. 18.36, v is the node value of the visible layer, h is the node value of the hidden
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Fig. 18.35 Schematic diagram of deep belief network structure

Fig. 18.36 Process of deep belief network

layer, and W represents the weight between the visible layer and the hidden layer.
The original data is used as the input data of the lowest layer of RBM, which is
transmitted from the bottom to the top. The feature vectors are transformed gradu-
ally from concrete to abstract. The neural network at the top forms a combination
feature vector which is easier for classification. DBN is a neural network composed
of multi-layer RBM.

The training process of DBN model mainly contents two stages.

(1) Pre-training stage

The DBN network parameters are initialized firstly, and then each layer of RBM
network is trained unsupervised and individually layer by layer. The training result
of the former layer is used as input of the next layer. The weight and offset of each
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layer are retained, ensuring when the feature vector map to different feature space,
feature information can be kept as much as possible.

(2) Fine-tuning stage

Firstly, forward propagation is carried out. The pre-trained parameters are assigned to
each layer of neural network. The training is carried out according to the set network
structure, and training values are output. Then back propagation is carried out. The
actual output result of BP algorithm is compared with the expected label and then
the error value is obtained. The error is back propagated layer by layer from output
end to input end. The optimized parameters are constantly adjusted to minimize the
error.

Thus, it can be seen that the training process of RBM network model can be
regarded as the initialization of weight parameters of a deep BP network, which
makes DBN overcome the shortcoming of BP network, which is easy to fall into
local optimum and needs long training time due to random initialization of weight
parameters.

Fu et al. [60] used the DBN as the feature extractor and random forest as the
classifier to solve the problem of the high feature dimension of spectra and the lack
of learning ability of the traditional shallow feature extraction method in NIR drug
identification. Zhang et al. [61] proposed a DBN quantitative model construction
method based on Dropout for the problems of small sample, high dimension, and
non-linearity of NIR spectra. Wu et al. [62] proposed an age identification method of
ancient ceramics based on DBN and Vis-NIR spectroscopy, which realized the clas-
sification of ancient ceramics of different dynasties and avoided the local optimum
caused by random initialization of weight parameters by BP neural network. Huang
[63] used DBN to extract features from ultraviolet (UV) absorption spectra of SO2

gas, and then established a quantitative model by using ELM, and the problems of
overlapping absorption spectra, difficult feature information extraction and insuf-
ficient extraction accuracy are solved. Zhang et al. [64] applied PLS to the DBN
training process of NIR spectra. The DBN structure was improved and prediction
accuracy of the model was increased.

18.4 Transfer Learning

Traditional machine learning methods can only be carried out under a common
assumption: the training and test data set come from the same feature space and
the same distribution. When the distribution changes, the statistical model needs to
use newly collected training data to restart the training model. In many real-world
applications, it takes time and effort to rebuild a model. If the model can be reused
after some transformation, or knowledge transfer between the data sets, repeated
modeling can be avoided (Fig. 18.37). In the field of artificial intelligence, transfer
learning is a method to study the ability of model or data reuse and let the model
apply the learned knowledge to new fields. Transfer learning attempts to find the
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Fig. 18.37 Schematic diagram of the differences between transfer learning and traditional machine
learning

common points between data sets, the relationship between model parameters and
different tasks, and use old knowledge to deal with new problems. Generally, transfer
learning is used in the following situations. ➀ There is a lack of large available data
set in new task; ➁ There is a model trained by a large number of samples. If the
target task only has very limited samples, training a new model from the beginning
is prone to over-fitting. Using the pre-trained weights to train the new model can
speed up convergence and improve the generalization ability of the network.

In the supervised training of deep convolution networks, a large number of labeled
(or reference data) samples need to be fully trained so that the network can achieve
excellent classification or regression results. However, in actual tasks, the cost of
obtaining a large number of labeled (or reference data) samples is very high. Insuffi-
cient labeled samples will lead to over-fitting, and ultimately reduce the classification
effect of the model in the test data set. In order to use as few labeled samples as
possible and avoid over-fitting, a training strategy based on deep transfer learning
method was proposed to improve the classification or regression accuracy of deep
networks in the case of small amount of samples (Fig. 18.38). The method turned the

Fig. 18.38 Schematic diagram of application scenario of transfer learning
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problem into using a relevant data set with sufficient labeled to pre-train the network,
and then used the existing small sample data set to fine-tune the parameters of the
deep convolution layer in the network to make the network learning deep features of
target samples. The model combined the shallow features of the two data sets at the
same time, so as to achieve better classification or regression results.

In the field of deep learning, transfer learning is a learningmethod that retrains the
pre-trained model and applies it to other tasks. The pre-trained network model in a
large-scale data set can be used as a feature extractor in other tasks. These pre-trained
models usually have consumed significant time and computational resources during
development. In transfer learning, as shown in Fig. 18.39, relevant data set is called
source domain, and the existing data sets that need to be classified are called target
domain [65–68].

For deep convolution networkmodel, because the network of shallow convolution
kernels mainly captures shallow features such as edges and contours, which are
universal and existed both in source data set and target data set samples, a large
number of available source data samples can be fully pre-trained the network. After
the network parameters are well trained, shallow convolution kernels will be fixed
and no longer be optimized. However, the deep features extracted by the network
top-level convolution layer are specific to the target data set. In order to ensure the
classification or regression accuracy of the network model in the target data set, the
kernel parameters of the network deep convolution layer are fine-tuned in the target
data set. The parameters of the deeper network and the final parameters of the output
layer are randomly initialized, and these parameters are continuously trained through
a small amount of labeled data in target data set. The whole process can be regarded
as the network transfers the prior knowledge learned from the source data set to the
target data set, which avoids over-fitting to a certain extent and ensures the learning
of unique features of the target data set.

As shown in Fig. 18.40, Lian et al. [69] carried out transfer learning on the
CNN Inception-V3 model based on ImageNet data set. When the pre-trained CNN
model was transferred to a small target set, the original convolution layer structure is

Fig. 18.39 Schematic diagram for training of transfer learning strategy
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Fig. 18.40 Structure diagram of image classification for fruit based on transfer learning

retained and a new softmax classifier is built to classify data. The advantages of this
model in image classification can be applied to fruit image recognition, so that the
recognition of fruit images can be faster and more accurate. Because the traditional
method requires rich human experience in the process of feature extraction, great
uncertainty existed in feature extraction for the traditional methods. Moreover, the
traditional method also has a complex parameter adjustment process, which greatly
increases the training time. However, the Inception-V3 model based on transfer
learning could fine-tune the parameters of deep convolution kernel for an excellent
classification model, which improves the classification effect of CNN in the case of
a small number of labeled samples. The fruit recognition accuracy was significantly
improved in case of small number labeled samples compared with traditional fruit
classification algorithm.

As a feature extractor, pre-trained deep residual networkwas generalized byWang
et al. [70] from the ImageNet data set into the hyperspectral classification task.
Deep features of sample spatial features in hyperspectral image classification were
extracted. The experiment proved that these features had stronger discriminant ability
and could produce good complementarity with the original spectral features. The
results show that the adequately trained deep convolution network on the common
image data set is helpful for the hyperspectral classification task. By fine-tuning
network high-order layer convolution kernel parameters through the target data set,
the model could achieve better classification accuracy even if with small number of
labeled samples.

Liu et al. [71] established a CNN model for predicting clay content in soil by
using high-quality and large-scale soil Vis-NIR spectra obtained in the laboratory
and their corresponding reference values. On this basis, through a small number of
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field hyperspectral samples combined with the transfer learning strategy, the pre-
trained CNN was transferred and applied for the prediction analysis of field hyper
spectra, and satisfactory results were obtained. Padarian et al. [72] built a local
model based on the near-infrared spectra and convolution neural network by more
than 20,000 global soils through the transfer learning strategy, which is used for the
prediction and analysis of local soil samples. Due to full use of big data pre-trained
results, the proposed method obtained better results than individual model built by
local samples.

Kraub et al. [73] applied the pre-trained AlexNet network based on ImageNet
database to the recognition of cancer cells by confocalRamanmicroscopy through the
transfer learning strategy, which significantly saved the training time of the network
and improved the recognition accuracy. Sun et al. [74] constructed chemical images
with two-dimensional correlation spectra and transferred image recognition model
GoogLeNet through transfer learning method. The proposed method was used for
NIR spectral classification and recognition of cashmere fabrics and cashmere/wool
blended fabrics, as well as pure cotton and mercerized cotton fabrics, achieving high
precision recognition of fabrics.
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Chapter 19
Chemometrics Software and Toolkits

19.1 Introduction

So far, there are many types of chemometric methods used in spectral analysis. For
spectral analysts, it is relatively easy to master the basic principles of these methods,
but turning these algorithms into applications requires proficiency in mathematics,
statistics, and advanced programming skills. The development of chemometrics soft-
ware and toolkits plays a very crucial role in the popularization and application of
analysis techniques such as spectroscopy combined with chemometrics. Mastering
this software can solve most of the problems in practical applications. Spectrom-
eter hardware and software (mainly including spectrum acquisition software and
chemometrics software) constitute the technical platform of modern spectroscopic
analysis. The above chapters of this book have given a detailed introduction of the
common chemometrics involved in modern spectroscopy techniques and their latest
developments. The following in this chapter mainly introduces the basic structure,
functions, and commercial software and toolkits of chemometrics software.

19.2 Basic Structure and Functions of Software

The chemometric software used for spectral analysis ismainly to establish calibration
models and predict unknown samples. As shown in Fig. 19.1, in terms of structure,
this type of software usually consists of three parts: sample set managing, calibra-
tion, and blind sample prediction. Sample set managing is to stack the spectral data
and reference data into a matrix to form a sample set file that can be used for model
establishment and validation. Calibration refers to the establishment of a quantitative
or qualitative calibration model. Commonly used chemometric algorithms such as
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Fig. 19.1 Scheme of chemometrics software for spectral analysis

spectral preprocessing algorithms, multivariate calibration, and classification algo-
rithms are all concentrated in this module. Blind sample prediction is to use the built
model to calculate the concentration or property data of the unknown sample.

(1) Samples Managing

The main function of calibration set managing is to stack the spectra of a group of
samples and reference data into a matrix to form a database. Thus, the sample set
managing should be able to identify and call common spectral file formats, and input
reference data in different ways. Calibration set managing usually also has the func-
tion of selecting samples to form a representative calibration set and validation set.
Moreover, the real-time spectra and spatial distribution diagram of the sample can be
displayed on this interface to determine extremely outlier spectra, and the concen-
tration value of the sample can be statistically analyzed. Calibration set managing is
supposed to be an open interface, and be easy to add and delete samples.

(2) Calibration Establishment

The function of establishing a calibrationmodel is the core function of chemometrics
software, which is divided into two types: establishing the qualitative and quanti-
tative model. Both types include three steps: spectral preprocessing, spectral range
selection, and method selection. After establishment, the model should be evaluated
and optimized by visual operation.

Commonly used spectral preprocessing algorithms include baseline correc-
tion (first and second derivatives, subtraction), smoothing, multiplicative scatter
correction, standard normalization of vector, standardization, centralization, etc.
Commonly used quantitative calibration algorithms usually include MLR, PCR,
PLS, SVR, ANN, etc. Qualitative algorithms mainly include cluster analysis, KNN,
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SIMCA, etc. Spectral range or interval selection generally adopts a visual interactive
mode, which can be directly conducted on the spectra with the mouse or can be
automatically selected by parameters such as correlation coefficients.

View analysis after modeling is very important for judging whether the model
is acceptable or not and removing outliers, generally including PRESS diagram,
regression curve, spectral residual distribution, score and loading diagram, etc. At
the same time, the evaluation results such as SEC, SECV, and R2 should be observ-
able. According to ASTM E1655, three types of outliers in the calibration set, such
as Mahalanobis distance outliers, property residual outliers, and spectral residual
outliers, should be eliminated during modeling. Therefore, the software needs to
provide corresponding view analysis functions.

External validation is themainway to test whether themodel is reasonable.Model
validation can provide multiple statistical parameters (such as RMSEP, RPD, t-test,
etc.), as well as the comparison of measured and predicted values so as to evaluate
the pros and cons of the model.

Some software has the function of the automatic output of modeling parameters,
such as spectral preprocessing parameters, PLS main factors, spectral interval, etc.
Generally, this function is only for reference, the final model parameters still need
to be determined by the users based on the necessary chemical knowledge.

(3) Prediction

The main function of the predictive module is to perform predictive analysis on
the unknown samples. As shown in Fig. 19.2, when calculating, the spectra of the
unknown sample are first preprocessed by the saved preprocessing parameters, and

Fig. 19.2 Basic steps of predictive analysis of unknown samples
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then the calibration method and setup parameters are run for calculation. Quan-
titative models generally need to determine whether unknown samples are within
the model range, such as Mahalanobis distance, spectral residuals, and the nearest-
neighbor distances. Prediction results are usually displayed directly or output to the
corresponding file in the form of a report.

19.3 Common Software and Toolkits

Nowadays, almost all large-scale spectrometer manufacturers, especially near-
infrared spectroscopy suppliers, have developed dedicated chemometric software,
such as FOSS WinISI, Thermo TQ Analyst, Bruker OPUS, Metrohm Vision, Buchi
NIRCal, etc.

Some chemometric calculation software includes the Unscrambler of Norway
Camo, Solo of Eigenvector Research of the U.S., and the PLS_Toolbox developed
based on Matlab, Pirouette of InfoMatrix of the U.S., and the SIMCA MVDA of
Sartorius of Germany, etc. There is also chemometrics software developed by some
universities, such as the ParLeS software of the University of Sydney, Australia
[1], Caunir of China Agricultural University, RIPP software of SINOPEC Research
Institute of Petroleum Processing, etc.

Commercial chemometrics software can solve most of the problems encoun-
tered in daily analysis, and plays an important role in the popularization and appli-
cation of modern spectroscopic technology. However, the updates of commercial
software would be relatively slow. As well, the improvement of new algorithms or
classic algorithms sometimes requires users’ programming. The commercialization
ofMATLAB,R, and Python significantly provides great convenience for the program
implementation of chemometric algorithms. There have been many commercial or
open assess chemometrics software and toolkits, such as the PLS Toolbox based on
MATLAB, the mdatools based on R language [2], the scikit-learn toolkit based on
Python [3], etc.

MATLAB software comes with many toolboxes that can be directly or slightly
modified for spectral analysis, such as statistics and machine learning toolbox,
wavelet toolbox, neural network toolbox, deep learning toolbox, global optimization
toolbox, optimization toolbox, etc.

Table 19.1 is someMATLAB toolbox and open source code of certain algorithms
written by chemometrics researchers [4–13]. The emergence of these toolboxes
has greatly promoted the application research of new algorithms in chemometrics
[21, 22].
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Table 19.1 Some MATLAB toolboxes that can be used for chemometrics

Names Resources Directions

SAISIR http://www.chimiometrie.fr/
sai-sirdownload.html

Complete chemometrics
toolbox [4]

ChemoAC http://minf.vub.ac.be/~fabi/
research/chemoac

Complete chemometrics
toolbox [5]

Pre-screen https://www.cpact.com/ Data preprocessing and
multivariable process control
toolbox [6]

TOMCAT http://www.chemometria.us.
edu.pl/RobustToolbox/

Robust multivariate correction
algorithm toolbox [7]

SPA toolbox http://www.ele.ita.br/~kaw
akami/spa

Successive projection
algorithm selection feature
variable toolbox [8]

Multiblock_toolbox https://github.com/puneetmis
hra2/Multi-block

Multi-block data analysis
toolbox [9]

PO/SO-PLS https://nofimamodeling.org/
software-downloads-list/

Sequential orthogonal PLS and
parallel orthogonal PLS
toolbox for multi-block
analysis [10–12]

VSN https://www.chem.uniroma1.
it/romechemometrics/res
earch/algorithms/

Weighted normal variable
transformation toolbox

PLS-genetic algorithm toolbox http://models.life.ku.dk/alg
orithms

Genetic algorithm PLS method
toolbox

N-way Toolbox http://models.life.ku.dk/alg
orithms

Multi-dimensional data
processing method toolbox

iToolbox http://models.life.ku.dk/alg
orithms

PLS-based feature variable
selection toolbox

MCR-ALS toolbox https://mcrals.wordpress.
com/download/mcr-als-too
lbox/

Multivariate curve
resolution-alternating least
squares toolbox [13–15]

FastICA http://research.ics.aalto.fi/
ica/fastica/

Independent component
analysis (ICA) toolbox

ELM https://personal.ntu.edu.sg/
egbhuang/elm_kernel.html

Extreme learning machine
(ELM) toolbox

libPLS http://www.libpls.net/ Variable selection (CARS,
MWPLS, IRIV, etc.) toolbox
[16]

Gaussian processes http://gaussianprocess.org/
gpml/code/matlab/doc/index.
html

Gaussian process regression
toolbox

MATLAB toolbox for
dimensionality reduction

http://homepage.tudelft.nl/
19j49/Matlab_Toolbox_for_
Dimensionality_Reduction.
html

Data dimensionality reduction
method toolbox

(continued)
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Table 19.1 (continued)

Names Resources Directions

LibSVM https://www.csie.ntu.edu.tw/
~cjlin/libsvm/

Support vector machine
toolbox

Pattern recognition and
machine learning in MATLAB

https://github.com/covart
ech/PRT

Pattern recognition and
machine learning toolbox

Data-driven SIMCA tool https://github.com/yzontov/
dd-simca

Data-driven SIMCA toolbox
[17]

IRootLab toolbox http://trevisanj.github.io/iro
otlab/

Vibration biological
spectroscopy data analysis
toolbox [18]

LS-SVM https://www.esat.kuleuven.
be/sista/lssvmlab/

Least squares support vector
machine toolbox

Classification toolbox https://michem.unimib.it/
download/matlab-toolboxes/

Supervised pattern recognition
toolbox

FRUITNIR https://github.com/puneetmis
hra2/FRUITNIR

Migration component analysis
toolbox [19]

MEDA-toolbox https://github.com/josecamac
hop/MEDA-Toolbox

Big data chemometrics toolbox
[20]

Cluster toolbox https://github.com/Biospec/
cluster-toolbox-v2.0

Latent structure orthogonal
projection (OPLS), multi-level
simultaneous component
analysis (MSCA) toolbox

Sparse projection pursuit
analysis

https://github.com/S-Dri
scoll/SparseProjectionPu
rsuit

Projection pursuit analysis
toolbox

Peak fit toolbox https://github.com/herian
tolim/PeakFit

Spectral peak fitting toolbox

MVC3 graphical interface http://www.iquir-conicet.
gov.ar/descargas/mvc3.rar

Multi-dimensional data
processing method toolbox
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Chapter 20
Discussion of Some Issues

20.1 Comparison of Different Spectroscopic Analysis

In terms of chemical information, different spectra contain the same or similar infor-
mation about molecular functional groups. For example, although the NIR, MIR,
Raman, and Terahertz spectra are produced by different mechanisms, they are all
generated by the interaction of molecular vibrations with electromagnetic radiation
and mainly reflect information about the vibrational energy transition of chemical
bonds in molecules [1, 2], known as the “four sisters of vibrational spectroscopy”. At
present, these four spectroscopicmethods combinedwith chemometrics are practiced
in various fields. Each of the four analytical techniques has its own characteristics,
and if investment costs are not taken into account, they can be substituted for each
other inmany cases, but in some cases, one technique seems to be the only choice [3].

Thus, a brief summary of their technical characteristics is given below:

(1) Compared to IR andRaman spectroscopy,NIRS is less finger-printable and less
sensitive. It is weakly selective for molecular structure, and it is difficult to find
independent characteristic absorption peaks of functional groups. Therefore,
NIRS is rarely used for structural identification of molecules in the labora-
tory. However, the NIRS of different substances also differs significantly, with
strong fingerprinting, and these differences can be used in combination with
chemometric methods for rapid identification and analysis of substances, for
example, for the rapid screening of incoming raw materials for pharmaceu-
tical plants [4]. NIRS is also widely used for in situ forensic analysis due to its
strong advantages such as high signal-to-noise ratio (strong light source energy,
high detector sensitivity), low cost (common optical materials), robustness,
adaptability to the environment, and simplicity and flexibility of measurement
methods.

The current status and acceptance of NIRS for rapid laboratory and in situ online
analysis of complex substances (e.g., oils and agricultural products), especially in
large process industries such as petrochemicals, pharmaceuticals, and foodstuffs, are
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difficult to replace by the other two techniques, reflecting the strong practicality of
NIRS.

However, NIRS is not suitable for the analysis of trace substances. Further, due to
the heavy reliance on calibration models and the lack of distinctive spectral features,
NIRS is not as advantageous in areas of research such as reaction dynamics. The
exception is functional NIRS for cutting-edge research in brain science.

(2) Currently, of the three types of vibrational spectra, MIRS has the highest popu-
larity, themost complete library ofMIRS, and its fingerprint is relatively strong,
so it has been playing an important role in laboratory structural identification,
especially in the characterization of polar functional groups (e.g., carbonyl
groups). In combination with chemometric methods and ATR measurements,
MIRS has also made great progress in recent years in the rapid qualitative and
quantitative analysis of complex samples, such as the authentication of food
products, the determination of biodiesel blending ratios, and the monitoring
and analysis of the quality of in-service lubricants [5].

However, for online process analysis, the long-distance transmission of MIR light is
limited by optical fiber materials (usually <10 m) and is currently mostly used for
laboratory studies of reaction processes, and less often for actual industrial produc-
tion. However, MIRS has certain advantages over near-infrared spectroscopy for gas
detection [6].

(3) A significant advantage of Raman spectroscopy over MIRS is that it is not
afraid of water, as Raman spectroscopy measures information about the funda-
mental frequency vibrations of molecules in the ultraviolet, visible, and near-
infrared spectral regions. Among the three types of vibrational spectroscopy,
Raman spectroscopy has the strongest experimental methods, such as reso-
nance Raman, surface-enhanced Raman, confocal Raman, Raman imaging,
etc. Depending on the application object, a suitable experimental method can
be selected [7], which makes Raman spectroscopy irreplaceable for MIRS
or near-infrared spectroscopy, such as quantitative and qualitative analysis of
trace substances.

With its strong fingerprint and wide wavenumber measurement range (4000–
50 cm−1), Raman spectroscopy has a wide range of applications in many fields,
especially in the testing of inorganic materials and biological samples, etc. It is
widely used in scientific research. Due to the remarkable fingerprint nature of
Raman spectroscopy, there are applications where a wealth of qualitative or quanti-
tative information can often be obtained without the need for complex chemometric
methods.

Unfortunately, the Raman scattering signal is very weak and is obtained from
absolute measurements, which are susceptible to instrument variations and external
environments, and the signal-to-noise ratio and repeatability of the spectra are rela-
tively poor, which is a disadvantage for analytical methods combined with chemo-
metrics, especially for the quantitative analysis of complex mixtures (e.g., oils and
pharmaceuticals). In addition, satisfactory Raman spectra cannot be obtained for
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some samples (e.g., heavy oils) due to interference from fluorescence, which limits
the use of Raman spectroscopy for some applications.

The terahertz spectrum (or far-infrared spectrum), located between infrared and
microwave, is in a special region of the transition from macroscopic classical theory
to microscopic quantum theory and from electronics to photonics. Weak interac-
tions between molecules (e.g., hydrogen bonding), skeletal vibrations of macro-
molecules (configuration bending), rotational and vibrational jumps of dipoles, and
low-frequency vibrational absorption of lattices in crystals have a wealth of informa-
tion in terahertz spectroscopy, which is of great scientific significance and practical
application for detecting and understanding the structure and properties of matter
and intermolecular interactions [8].

There is an extensive literature comparing NIR, mid-IR, Raman, and terahertz
spectroscopy combined with chemometric methods for the measurement of complex
sample systems. Examples include adulteration or origin identification of edible oils
and honey, composition determination of food and feed, blending ratios of biodiesel,
quantitative analysis of physical and chemical parameters of oils and polymers,moni-
toring of reaction processes, quantitative analysis and authenticity identification of
pharmaceuticals, and diagnosis of clinical diseases [9–16]. The results obtained vary
according to the object under study, the purpose of the study, and the chemometric
methods used. However, some basic principles for the selection of spectroscopic
analysis techniques can be summarized from the above literature:

(1) The amount of spectral information should be considered first and foremost,
the spectroscopic technique chosen should contain sufficiently rich chemical
and/or physical information about the substance to be measured, which is one
of the most critical aspects and is a prerequisite and basis for all qualitative
and quantitative analysis.

(2) Simplicity, timeliness, and effectiveness of the experimental method, i.e.,
convenient sample measurement, less preparation before and after measure-
ment, fast measurement speed, good spectral repeatability, high signal-to-noise
ratio, easy standardized operation, etc.

(3) Easy to maintain and popularize, that is, comprehensively considering the
characteristics of the instrument (specifications, stability, and consistency of
spectral instrument, etc.) and cost, the difficulty of working curve or calibration
model, and the cognition of industry personnel on the technology.

These basic principles mentioned above also apply to the selection of analytical
techniques for atomic spectroscopy such as LIBS aswell as spectral imaging [17, 18].
For example, Fig. 20.1 shows a Raman spectral imaging and NIR spectral imaging of
a three-component tablet, and it can be seen that Raman spectral imaging provides
much richer information on the spatial distribution of the chemical components.
However, the measurement speed of Raman spectroscopy is still very slow (about
3.5 h), whichmakes it difficult to bewidely used in the pharmaceutical industry,while
the speed of NIRS is relatively fast (about 13 min) and the amount of information
can meet the needs of many practical applications. Therefore, the choice of spectral
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Fig. 20.1 Raman image (Left) and NIR image (Right) of ternary tablet. Blue: Microcrystalline
cellulose; Green: Saccharin; Red: Eletriptan HBr

technology should be made by combining various factors such as the amount of
spectral information, testing speed, and convenience [19].

In order to obtain more comprehensive and richer information about the samples,
there has been an increasing emphasis in recent years on spectral fusion techniques,
which include fusion betweenmolecular vibrational spectra, but also betweenmolec-
ular and atomic spectra, and between spectroscopy and imaging techniques [20, 21].
For an introduction to spectral fusion methods and their algorithms please attend to
Chap. 15 of this book.

20.2 Selection of Chemometric Methods

Chemometric methods are playing an increasingly important role in the quantitative
and qualitative analysis of spectra and therefore the selection of the appropriate
chemometric method for the problem to be solved is a very critical aspect [22,
23]. For example, Fig. 20.2 shows a framework of commonly used multivariate
calibration and pattern recognition methods. In practice, the choice should be based
on the specific problem, deciding whether to use a pattern recognition method or
a multivariate calibration method, and then deciding whether to use a supervised
pattern recognition method or an unsupervised pattern recognition method, a linear
calibration method (PLS) or a non-linear calibration method (ANN), etc.

Spectral analysis is a highly practical technique and, from a practical point of
view, not the more complex the algorithm, the better. Obtaining satisfactory results
in the most concise way is one of the main principles followed in the selection of
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Fig. 20.2 Decision tree selection for pattern recognition and multivariate calibration methods

chemometric methods, which must be based on familiarity with chemometric algo-
rithms and a good understanding of the technical problem to be solved. A typical
example is the use of the concept of spectral standard deviation to determine the
homogeneity of a powdered mixture. This application does not involve complex
chemometric methods but makes full use of the relationship between spectral varia-
tion and standard deviation during the mixing process to determine the homogeneity
of themixture.With the simplicity of computing, the requirements on the hardware of
the spectroscopy instrument are also significantly reduced, as there is no calibration
model, less demanding long-term stability of the instrument, and no cumbersome
model maintenance issues at a later stage.

20.2.1 Selection of Multivariate Calibration Methods

In the multivariate quantitative calibration of spectra, PLS can usually solve most of
the problems, which is dictated by the characteristics of the algorithm itself, as it is
based on multiple linear regression and principal component regression, overcoming
the problem of multicollinearity between variables and allowing the strongest corre-
lation between latent variables (principal components) and concentrations. However,
PLS can only be used for linear or weakly non-linear analytical systems, and if severe
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Fig. 20.3 Calibration and validation results of the NIR determination of the alcohol to alkene ratio
using different PLS (a) and SVR (b) methods respectively (●—calibration sample; ◯—validation
sample)

non-linear systems are encountered, non-linear calibration methods such as ANN or
SVR are required [24–26].

For example,whenNIRwas used to determine the alcohol to alkene ratio ofmethyl
tert-butyl ether (MTBE) feed, there was a severe non-linear relationship between
this ratio and the NIR spectrum as the alcohol to alkene ratio is the ratio of moles
of methanol to moles of isobutylene in the feed to the reactor mixture (methanol
and mixed carbon tetra fraction), which is different from the concentration of the
pure component. In this case, the PLS method will not yield accurate calibration and
prediction results (as shown in Fig. 20.3a). To directly build the calibration model for
the determination of the alcohol to alkene ratio, a non-linear calibration method such
as SVR must be used (as shown in Fig. 20.3b) [27]. Of course, the PLS method was
also used to develop separate calibration models for the determination of methanol
moles and isobutene moles, and then the alcohol-to-alkene ratio was calculated from
their PLS predictions. Linear regression methods include Lasso methods and elastic
networks in addition toPLSmethods; non-linear calibrationmethods include extreme
learning machines, Gaussian process regression, and convolutional neural networks
in addition to SVR and BP-ANN [28, 29], which are described in Chaps. 7, , 8, ,
and 18, respectively. Strategies based on local modeling can also be used to solve
non-linear calibration problems [30] and to improve the robustness of the predictions
of quantitative calibration models, an ensemble or consensus strategy can be used
[31], which can be found in Chap. 14.

20.2.2 Selection of Pattern Recognition Methods

In spectral pattern recognition, traditionally, the most applied method is principal
component analysis (PCA). In solving most problems, clustering or identification
analysis using principal component scores as features can give satisfactory results.
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However, PCA decomposes the spectral array along the direction of variance maxi-
mization, so that the resulting principal component scores are not necessarily the
most relevant to the category. In particular, PCA often does not give satisfactory
results when the feature information associated with the category is not significant
in the spectrum. In this case, supervised algorithms such as canonical variance anal-
ysis (CVA) or PLS-DA can be used. For example, Yuan H et al. classified the IR
spectra of 454 residual oils (105 atmospheric residual oils, 98 vacuum residual oils,
and 269 hydrogenated residual oils). Since hydrogenated residual oils differ signifi-
cantly in composition from atmospheric and vacuum residual oils, while atmospheric
and vacuum residual oils differ relatively little in composition, it is easy to separate
hydrogenated residual oils from atmospheric and vacuum residual oils by the PCA
score as a characteristic variable, but not from the PCA score can easily separate
hydrogenated residue from atmospheric and vacuum residual oils, but not atmo-
spheric residual oils from vacuum residual oils (see Fig. 20.4). However, using the
PLS-DA method, which assigns a value of −1 to atmospheric vacuum residual oils,
0 to vacuum residual oils, and 1 to hydrogenated residual oils, it is easy to classify
and identify these three types of residual oils (see Fig. 20.5) [32].

In pattern recognition, there is actually another class of recognitionmethod, named
by similarity analysis,which is used to determine the degree of similarity between two
samples, and the traditional spectral library search method falls into this category.
Similarity analysis mostly uses correlation coefficients or distances as evaluation
indicators and is commonly used for IR and Raman spectral library searches of
pure compounds, but it is difficult to perform library searches of samples from a
particular class of complex mixed systems (e.g., crude oil species). Because the
chemical composition of the subjects in a class of samples is extremely similar
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and the correlation coefficients between the spectra are mostly above 0.98, or even
close to 1 in some cases, but there are some differences in the composition and
properties between the samples, and it is not possible to distinguish precisely between
these samples with very similar spectra by traditional methods such as correlation
coefficients.

Various methods have been tried to improve the accuracy of similarity analysis,
and Blanco et al. proposed to improve the accuracy of traditional correlation coeffi-
cient identification by building a sub-spectral library for the identification of NIRS
of drug ingredients [33]. Loudermilk et al. used a consensus strategy to integrate
the results of multiple identification methods for the retrieval of a library of infrared
spectra of cotton contaminants [34]. Xu et al. used the segmented correlation coef-
ficient method (array correlation coefficient) for the identification and analysis of
infrared spectra of Chinese herbs, dividing the whole spectral range into several
regions and calculating the correlation coefficient for each region separately, which
can improve the difference between spectra to a certain extent [35].

To identify the fast identification of crude oil species, Chu et al. combined the
moving window concept with the correlation coefficient method to propose a new
similarity calculation method—the moving window correlation coefficient method.
For two spectra that the similarity calculations were to be performed, the correlation
coefficient values were calculated in each moving window sub-wavelength region,
and then the obtained correlation coefficient values were plotted against the starting
position of the corresponding window to obtain a moving correlation coefficient plot
[36]. As shown in Fig. 20.6, themoving correlation coefficient method yields a vector
from which the degree of similarity between the two spectra can be easily seen, and
if the two spectra are identical, the moving correlation coefficient value is 1 over the
entire spectral range. If the two spectra differ only in one interval, the value of the
moving window correlation coefficient for that interval will be significantly lower.
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Fig. 20.6 Figure of moving window correlation coefficient for two similar crude oils

This method allows small differences between spectra to be discerned, facilitating
spectral resolution and information extraction. Asemani et al. used this method for
the rapid identification of bitumen by extracting features from the absorbance ratio of
infrared spectra and obtained satisfactory results [37]. In recent years, methods such
as random forest and convolutional neural networks have been increasingly used for
pattern recognition of complex sample spectra [38, 39], please refer to Chaps. 12
and 18 for details.

20.2.3 Selection of Spectral Preprocessing Methods
and Spectral Variables

The choice of spectral pre-treatmentmethod and spectral range is also very important.
The most commonly used spectral preprocessing methods are first-order derivative,
second-order derivative, MSC, and SNV, with liquid transmission measurements
mostly using preprocessing methods such as derivative and solid diffuse reflectance
measurements mostly using preprocessing methods such as MSC. For Raman spec-
troscopy, a baseline correction method is often also required to eliminate the effect
of fluorescence on the spectrum. A number of papers have compared different
pre-treatment methods, and the optimal pre-treatment method varies for different
measurement systems [40].When comparing different preprocessing methods, espe-
cially some of the more complex ones, it is important to consider whether the method
is a substantial improvement in predictive ability or just an “improvement” within
the margin of error (so-called numbers game). If the latter is the case, it is recom-
mended that the classical conventional pre-treatment method is still used. If multiple
pre-treatment methods are chosen at the same time, attention should also be paid to
the order in which they treat the spectra.
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The most commonly used method of wavelength selection is the correlation coef-
ficient method, which intuitively gives the most informative spectral interval. Other
methods, such as genetic algorithms, often yield better calibration and prediction
results, but their parameters are more complex to choose and more computation-
ally intensive, and need to be chosen with care when building commercial calibra-
tion models. In recent years, variable selection methods based on model population
analysis, represented by the competitive adaptive re-weighting algorithm (CARS),
have received the most widespread attention and use [41]. When selecting spectral
intervals, attention should also be paid to the use of chemical knowledge, especially
spectroscopic knowledge. Some chemometric software has an automatic wavelength
screening function, but it is often necessary to adjust its screening results according
to spectroscopic knowledge, because the characteristic bands most relevant to the
component or property to bemeasuredmay not be selected in the automatic screening
process.

In addition, for some training sets, combining spectral variables and performing
mathematical operations, such as ratios of certain wavelength variables or ratios after
differences, etc., instead of the original spectral variables to build a calibration model
can improve the predictive ability of the model.

The order of precedence between spectral preprocessing and wavelength interval
selection should also be noted. For methods such as derivatives and mean-center,
whether preprocessing or selection of wavelength intervals is performed first has no
effect on the final calibration and prediction results. However, for methods such as
MSC and SNV, there is a certain influence and the wavelength interval needs to be
selected before the preprocessing operation.

The incorporation of spectral preprocessing and wavelength selection methods
into the multivariate calibration step is an important development. Examples include
the sequential preprocessing method based on orthogonal operations (SPORT)
proposed by Roger et al. [42] and the parallel preprocessingmethod based on orthog-
onal operations (PORTO) proposed byMishra et al. [43] that are detailed in Chaps. 4
and 5.

20.3 Influencing Factors of Model Prediction Ability

Spectroscopy combined with chemometrics is an indirect measurement technique,
and the establishment of robust, reliable, and accurate calibration models is key to
the successful application of such analytical methods. All aspects involved in the
modeling process affect the reproducibility and accuracy of the analytical results.
Themain influencing factors include the representativeness of the calibration sample,
the accuracy of the reference data, the method and conditions of spectral acquisition,
the chemometric methods, and the performance of the spectroscopic instrument.
The selection of chemometric methods has been discussed in the previous section,
and the following discussion focuses on the effects of calibration samples, reference
data, spectral acquisition methods and conditions, and instrument performance.
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20.3.1 Effect of Calibration Samples

The impact of calibration samples on the analytical model relates to the repre-
sentativeness, number, range, and distribution of calibration samples, the homo-
geneity of calibration samples (such as grain size, budding rate, shriveled rate, water
content, color, and impurities of agricultural product samples) and the pre-treatment
of calibration samples (grating, slicing, and extraction) among many other things.
The following section focuses on the problem of uneven distribution of calibration
samples, which is often encountered in practical applications (Fig. 20.7).

As shown in Fig. 20.8 [44], during the establishment of the NIRS for the deter-
mination of density of naphtha, the main body of calibration samples collected had
a density distribution between 0.66 and 0.72 g/cm3 but contained a class of samples
with a higher density (around 0.75 g/cm3). It is also clear from the PCA score
space that these small samples are also significantly different from those of the

Fig. 20.7 Example plots of uneven distribution of calibration set samples. a Results of PLS cross
validation;bDistribution of calibration set samples inPCAscore space; o—main calibration sample,
+—a small number of calibration samples)

Fig. 20.8 Cross-validation results for different components to be predicted in the same calibration
set samples
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Fig. 20.9 Schematic
representation of the effect of
outlier samples on the model

main distribution. If these samples are involved in the modeling, the SECV of the
constructed model becomes significantly worse, with the SECV increasing from
0.028 to 0.038 g/cm3, although the predicted trend remains. In practice, the decision
to involve this part of samples in modeling needs to be made on a case-by-case basis.
Because this type of sample is different from anomalous (out-of-bounds) samples, as
shown in Fig. 20.9, anomalous samples are necessary to be removed before building
a calibration model, otherwise the predictive ability of the model will be seriously
affected, especially when the number of calibration samples is small.

It is also important to note that a set of calibration samples may have a uniform
concentration distribution for some components to be measured, but not for others.
As shown in Fig. 20.8, a calibration set of 132 naphtha samples had an essentially
homogeneous distribution of C6 aromatics. For C10 aromatics, however, the distribu-
tion was extremely heterogeneous, with most of the calibration samples containing
<0.4% C10 aromatics and only five samples at around 1.0%. If this calibration set is
used to build a calibration model for the determination of C10 aromatics it is clearly
inappropriate and additional samples will need to be collected.

For samples with poor homogeneity, the predictive accuracy of the model can
be improved if the necessary processing is carried out prior to measurement. For
example, for NIR spectroscopic diffuse reflectance measurements, samples grated to
a fine powder are usually better than predicted for intact particles. For instance, the
protein and starch content of flour is better predicted than that of wheat seeds, and
the nicotine and total sugar content of tobacco powder are better predicted than that
of tobacco slices, but this comes at the expense of convenience and speed of analysis.
The choice of sample pre-treatment for a specific application needs to be decided
on a case-by-case basis. Other factors involved in influencing the sample are sample
temperature, water content and residual solvent, sample thickness, loading tightness,
optical properties, polymorphism, and the actual storage time of the sample [45–48].

The number of representative samples in a calibration set has an important impact
on the quality of the model, and the number of samples required for modeling is
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closely related to factors such as the object of application and the quantitative calibra-
tion algorithm used [49–54]. In general, the larger the number of calibration samples,
the more variable information they contain about themselves and the outside world,
the more significant the non-linear relationship between the spectrum and the phys-
ical properties to be measured may be, the more non-linear calibration methods such
as neural networks may be used. In contrast, for non-linear methods such as neural
networks, the greater the number of representative samples used in modeling, the
better the robustness of the model built. The number of calibration samples also
involves issues such as modeling strategy and model maintenance, which can be
found in Chaps. 11 and 14.

20.3.2 Effect of Reference Data

The accuracy of the reference data has a large impact on the predictive ability of the
calibration model. To examine the influence of the reference data, Chu et al. carried
out NIR spectral simulations. Fifty samples of a four-component mixture of benzene,
toluene, xylene, and isooctane were prepared and analyzed for benzene content. The
reference data for benzene concentration were obtained by weighing during the
preparation process and the distribution of benzene content ranged from 1.0 to 6.5%.
Thirty samples were selected by the K-S method to form the calibration set, and
the validation set consisted of the remaining 20 samples. A quantitative calibration
model was developed using PLS method, and the spectra were processed by first-
order derivatives and the chosen spectral interval was 750–1050 nm. Figure 20.10
gives the actual-predicted correlation plots for the calibration (cross validation) and
for the benzene content during validation, with a SECV of 0.06% for the cross
validation and a SEP of 0.09% for the validation set [55].

To examine the effect of the accuracy of the reference data on the model and its
predictive ability, errors were added to the benzene content of the calibration set
samples artificially, the calibration model was rebuilt, and the benzene content of
the 20 validation set samples was predicted. Increase the error in the reference data

Fig. 20.10 Actual–predicted
correlation plot for the
determination of benzene
content in a four-component
mixture of benzene, toluene,
xylene, and isooctane by
NIRS
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in three ways: (1) Add the absolute error �y to the original reference data yi of the
calibration set samples, i.e., yi ± �y, where �y takes a positive value, using a plus
sign for samples with even serial numbers and a minus sign for samples with odd
serial numbers, and the serial numbers of the calibration set samples are arranged
randomly. (2) Relative error yi × r% is added to the original reference data yi of the
calibration set samples, i.e., yi ± yi × r%, where plus signs are used for samples with
even serial numbers and minus signs are used for samples with odd serial numbers.
(3) Add a normally distributed random error �yi to the original reference data yi of
the calibration set samples, i.e., yi ±�yi where the random error�yi is automatically
generated with the standard deviation as an indicator of the error.

Absolute errors of 0.1–1.0% (w%) were sequentially added or subtracted to the
benzene content of the calibration set samples according to the reference data error
additionmethod (1) to examine the effect of variation in the accuracy of the reference
data on the model and its prediction results. The variation curves of SECV and SEP
with absolute error �y are given in Fig. 20.11, while Fig. 20.12 shows the cross-
validation results of the calibration set and the prediction results of the validation
set for an absolute error of ± 0.7 (w%). It can be seen that as the accuracy of the
reference data becomes worse, both SECV and SEP become correspondingly larger,
but the increase in SEP is much smaller than that of SECV, indicating that the NIR
calibrationmodel built with it can still obtainmore accurate prediction results despite
the large absolute errors in the reference data within a certain range. Similar results
were obtained by adding the other two types of error to the reference data of the
calibration sample, as shown in Figs. 20.13 and 20.14.

The same results are obtained for the testing of complex mixtures such as oils.
Chung et al. used two different sets of reference data of lubricant pour points with
different accuracies to build an analytical model for NIRS using PLS [56]. The accu-
racy of one reference method for determining pour points (1 °C reading interval) was
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Fig. 20.13 Effect of adding relative error to the reference data of the calibration sample on
calibration and prediction

significantly better than the other method (3 °C reading interval), and the results are
shown in Table 20.1. Under the same parameter conditions, the SECV obtained when
modeling with high accuracy pour point data was better than that of the low-accuracy
data. Figure 20.15 shows a plot of the first two principal factor scores obtained from
the PLS regression, which reveals that despite the difference in accuracy between
the two sets of reference data, their scores match almost exactly. It can be suggested
that the difference in SECV is mainly caused by the quality of the reference data.

From the above simulations, practical examples, and relevant references [57–61],
the following conclusions can be drawn.

(1) The accuracy of the reference data has an impact on both the calibration model
and its prediction results. The more accurate the reference data, the higher
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Table 20.1 Results obtained from separate PLS regressions for two sets of reference data with
different accuracies

Spectral range (nm) Low accuracy reference data High accuracy reference data

PLS factor SECV/°C PLS factor SECV/°C

1100–1580 3 1.70 3 1.17

1100–1580 and 1870–2140 3 1.66 3 1.14

Fig. 20.15 Plots of the first
two factor scores obtained
from separate PLS
regressions for two sets of
reference data with different
precision

the accuracy of the model built and the more accurate its prediction results
for unknown samples. To obtain reliable reference data, reference methods
with high accuracy and repeatability should be used, sometimes averaged over
several measurements, and where possible, the same instrument and skilled
operators should be used to measure the reference data of calibration samples.
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If necessary, the accuracy and repeatability of the conventional methods used
to obtain the reference data need to be assessed. Samples used for reference
data measurements must be the same as those used for spectral acquisition and,
where possible, the reference data and spectra must be measured in time after
sampling to avoid changes in sample composition affecting the accuracy of
the calibration model. The units of the reference data should also be consid-
ered, e.g., the linearity between volumetric concentration units and spectral
absorbance is better than that of weight concentration units [62, 63].

(2) Although the calibration model is obtained from the regression between refer-
ence data and the corresponding spectra, the spectral approach has the potential
to yield predictions that are closer to the true value. Particularly for the refer-
ence data provided by relatively poor accurate test methods, it will be possible
to obtain more accurate prediction results by processing a large number of
samples through statistical analysis. This does not mean, however, that the
accuracy and repeatability of the spectroscopic method are necessarily better
than that of the reference method.

(3) When actually building the calibration model, samples with relatively large
deviations in the cross validation can be retained in the calibration set (devi-
ations should generally not exceed 1.5–2.0 times the reproducibility require-
ments of the reference test method), which can increase the robustness and
applicability of the model without basically affecting its prediction accuracy.

20.3.3 Effect of Spectral Measurement Methods

Themeasurementmethod of the spectra is one of the important factors that determine
the quality of the spectra (signal-to-noise ratio, repeatability, spectral information,
etc.), and the quality of the spectrum will significantly affect the predictive ability
of the calibration model. Therefore, it is very important to choose an appropriate
spectrum measurement method. A suitable measurement method should meet the
following conditions: (1) the repeatability and reproducibility of the spectrum are
excellent; (2) the test is convenient and fast; (3) the signal-to-noise ratio of the spec-
trum is high; (4) the sample physicochemical information contained in the spectrum
is rich and complete.

Each spectral analysis technique has a variety of measurement methods. For
example, the commonly used measurement methods for mid-infrared spectroscopy
include transmission, ATR, and diffuse reflection; the commonly used methods for
NIRS include diffuse reflection, transmission, and diffuse transmission; Raman spec-
troscopy has more measurement methods, such as backscattering, SERS, SORS, and
transmission. Spectral measurement methods are closely related to the selection of
measurement accessories. For the same sample type (such as transparent liquids,
viscous bodies, solid particles, powders, etc.), a variety of measurement methods
and accessories can be used for spectral measurement. In the process of feasibility
study before practical application, the advantages and disadvantages of all feasible
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Fig. 20.16 Three ways to measure the near-infrared spectrum of fruit. (i) light source; (ii) fruit;
(iii) fiber optic probe; (iv) black foam holder; (v) light sealing ring; (vi) condenser lens; (vii) glass
cover; (viii) plane mirror

measurement methods and their potential accessories should be compared to select
a suitable and convenient spectral measurement method.

For example, when NIRS is used to non-destructively determine fruit quality,
a variety of measurement methods can be used. Figure 20.16 shows three common
spectralmeasurementmethods: Transmission,Reflectance, and Interactance.A study
compared the advantages and disadvantages of these three methods for determining
fruit soluble solids content, density, and flesh color [64]. The results showed that rela-
tively accurate results can be obtained by the method of interactance measurement.
The interactance method is actually a deformation of the reflectance method. Since
there is a certain distance between the incident light irradiation area and the light
collection area, this method collects not the diffuse reflection light on the surface of
the fruit, but the light that penetrates into the fruit and comes out, so it carries more
physical and chemical information of the internal components of the fruit, but avoids
the influence of the fruit kernel on the spectrum caused by the diffuse transmission
measurement method. At present, some commercialized portable near-infrared fruit
analyzers use ring optical fiber light source, which essentially adopt this internal
reflection measurement method.

When Raman spectroscopy is used to determine the content of active ingredients
in tablets, in order to obtain a spectrumwith good repeatability and can reflect the bulk
information, measurement methods such as large illumination spot, rotating sample,
and transmission can be used. Comparedwith the traditional backscatteringmeasure-
ment method, the transmission Raman can often obtain more accurate measurement
results. Using the same spectral range (700–1700 cm−1) and calibration methods,
the predictive ability of the transmission Raman is better than that of the traditional
backscattering measurement method [65, 66].

Similarly, when NIRS is used to determine the content of active ingredients in
tablets or capsules, the transmission is often better than the diffuse reflectionmeasure-
ment method, which is because the transmission usually contains more information



20.3 Influencing Factors of Model Prediction Ability 581

Fig. 20.17 Mid-infrared spectra of water measured in different ways. (A) 25μm transmission cell;
(B) 45° ZnSe horizontal ATR (12 reflections); (C) 45° Ge horizontal ATR (12 reflections)

about the chemical composition of the sample than the reflection spectrum, so the
transmission method is more conducive to the analysis of the composition or proper-
ties closely related to the composition [67–69]. Mid-infrared spectroscopy also has
transmission, ATR, diffuse reflectance, and photoacoustic measurement methods,
and Fig. 20.17 shows the infrared spectra of water obtained by different measure-
ment methods. In the actual applications, it is necessary to evaluate the convenience
of testing and the amount of spectral information to select [70–73].

As shown in Fig. 20.18, for the liquid transmission measurement method, the
selection of optical path should seek the best advantage among the factors such
as spectral range, absorbance linearity, and spectral signal-to-noise ratio [74–77].
The choice of background reference material is also very important for the diffuse
reflectance measurement of solid substances.

20.3.4 Effect of Spectral Acquisition Conditions

Spectral acquisition conditions include spectral range, resolution, number of spectral
accumulation measurements, and uniformity and consistency of sample loading.
The influence of different spectral acquisition conditions on the calibration model is
described below by taking NIR spectral analysis as an example.
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Fig. 20.18 Near-infrared spectra of water under different optical path [78]

(1) Effect of spectral range

Thewavelength range of theNIRS is usually divided into two sections, the short-wave
region of 700–1100 nm and the long-wave region of 1100–2500 nm. Among them,
1100–2500 nm can be divided into three sections, 1100–1540 nm (9090–6500 cm−1),
1540–2000nm(6500–5000 cm−1), and2000–2500nm(5000–4000 cm−1).As shown
in Fig. 20.19, the NIRS of different wavelengths and their spectral characteristics are
quite different.

Fig. 20.19 Near-infrared light and its characteristics as a function of wavelength
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The short-wave NIR spectral region is mainly the absorption of third-order and
fourth-order overtone and combination frequency, and the long-wave region ismainly
the absorption of first-order and second-order overtone and combination frequency.
The light transmittance in the short-wavelength region is strong, and the absorption
coefficient is small. Long optical paths such as 30–50 mm are often used. The repre-
sentativeness of samples and the anti-contamination ability of sample cell are rela-
tively strong. The long-wavelength NIR spectral region is richer in information than
the short-wavelength region, especially in the combination region of 2000–2500 nm,
the band overlap is not as serious as that in the short-wave region. However, the
required optical path is shorter in the long-wavelength NIR spectral region, usually
0.5 mm.

Cho et al. [79] investigated the influence of different spectral ranges on the NIRS
calibration model by using a prepared three-component (n-hexane, n-heptane, and
toluene) systemwith n-heptane as the solvent and n-hexane and toluene as the analyt-
ical objects. A total of 30 samples were prepared in which the concentrations of n-
hexane and toluene ranged from 0.05 to 3.0% (w/w). In order to obtain three spectra
with similar absorbance intensities, different optical path lengths were selected, the
optical path in the range of 9090–6500 cm−1 is 10 mm, the optical path in the range
of 6500–5000 cm−1 is 2 mm, and the optical path in the range of 5000–4000 cm−1 is
0.5 mm. The SECV obtained by PLS cross validation in different spectral ranges can
be concluded that the results in the range of 5000–4000 cm−1 are the best, and the
results of toluene are obviously better than those of n-hexane. This shows that there
are differences in the amount of information in different spectral ranges. Compared
with the other two bands, the combined frequency region of 5000–4000 cm−1 has
more information, and the overlap of the spectral bands is relatively small. Because
the spectra of n-hexane and n-heptane are very similar, the results for n-hexane are
relatively poor relative to toluene. This can also be explained from the PLS factor
score plots. As shown in Fig. 20.20, the scores of toluene in the range of 5000–
4000 cm−1 change the most, indicating that they have the most information and the
corresponding SECV is the smallest. The spectra of n-hexane in the range of 9090–
6500 cm−1 have the smallest change in scores, indicating that its information content
is the least, and the corresponding SECV is the largest.

The above experiments were obtained based on the transmission measure-
ment method. In practical applications, the problem of cross selection between
different spectral ranges and different measurement methods is often encountered.
For example, for granular samples, whether the calibration model established by
the diffuse reflection in the long wavelength region or the diffuse transmission in the
short and mediumwavelength region is better, which needs to be determined through
feasibility experiments for different measurement modes.

In addition, the choice of spectral range is also limited by many conditions such
as spectrometer type, accessory type, and measurement method. For example, when
using optical fiber measurement accessories, due to the self-absorption of optical
fiber materials, if the optical fiber distance is too long, the spectral range above
2200 nmwill be unusable. For another example, when using the diffuse transmission
method to measure the NIRS of a tablet, only the spectral region between 800 and
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Fig. 20.20 The first
two-factor scores obtained
by PLS regression of
n-hexane and toluene in the
three spectral regions

1600 nm is available due to the weakened penetrating ability of NIR light in the long
wavelength region.

(2) Effect of resolution

Spectral resolution is a measure of an instrument’s ability to distinguish two adjacent
absorption peaks and is usually characterized by spectral bandwidth, which is the
width at half the maximum intensity of the monochromatic spectral band emitted by
a monochromator. The spectral resolution mainly depends on the monochromator of
the spectroscopic instrument. The resolution of the grating spectroscopic instrument
is related to the design of the slit. The narrower the slit, the higher the resolution, but
the optical throughput will decrease, so that the signal-to-noise ratio of the spectrum
will decrease. The resolution of the array detector is also related to the pixels of the
detector. The resolution of the Fourier spectrometer is determined by the moving
distance of the moving mirror. The higher the resolution, the further the moving
distance of the moving mirror, the slower the scanning speed, and the lower the
signal-to-noise ratio per unit time. In addition, high-resolution spectral files can
also affect the speed of math operations. Therefore, in the practical application of
spectroscopy combined with chemometric methods, high resolution is generally not
pursued, usually not exceeding 4 cm−1.
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It is especially true for the NIR spectral region, because the absorption bands are
mostly broad and overlapping, and high instrument resolution is usually not required
for quantitative or qualitative analysis. A resolution of 16 cm−1 or 10 nm (at 2500 nm)
is sufficient for most analytical applications. For example, in the determination of
the octane number of gasoline by NIRS, a resolution of 40 nm can generally meet
the requirements of routine analysis accuracy. However, for complex samples with
very similar structural characteristics, if accurate analysis results are to be obtained,
certain requirements must be placed on the resolution of the instrument [80–83].

To examine the effect of resolution on the NIR calibration model, Chung et al.
[84] designed an experiment in which they prepared 55 samples of mixtures using
25 pure hydrocarbons to simulate the composition of naphtha. The NIRS of these
55 samples were measured at different resolutions (4, 8, 16, and 32 cm−1), with
a spectral range of 4000–4500 cm−1 and an optical path length of 0.5 mm. The
calibrationmodel was established by the PLSmethod. Table 20.2 shows the SECV of
group compositions (paraffins, n-paraffins, isoparaffins, naphthenes, and aromatics)
and some pure compounds. It can be seen that the 4, 8, and 16 cm−1 resolutions
have little effect on the group composition, while the 32 cm−1 resolution has a
greater impact, the number of PLS factors required increases, and the SECVbecomes
worse. For pure compounds, due to the small difference in the NIRS of n-alkanes,
the resolution has a great influence on the SECV of n-heptane and n-hexane, and
satisfactory results cannot be obtained when the resolution is 32 cm−1. However, for
benzene and toluene, due to their relatively strong characteristics, under the same
resolution, they use a small number of PLS factors, and the SECV value is small,
and the impact of the resolution on benzene and toluene is also smaller than that on
n-heptane and n-hexane.

Table 20.2 Effect of resolution on the SECV of group compositions and some pure compounds;
the numbers in the inner brackets are the number of PLS factor

Composition SECV (4 cm−1) SECV (8 cm−1) SECV (16 cm−1) SECV (32 cm−1)

Total alkanes 0.54 (12) 0.51 (12) 0.52 (13) 1.25 (12)

Total n-alkanes 0.44 (15) 0.37 (15) 0.43 (16) 0.76 (22)

Total isoparaffins 0.36 (15) 0.37 (15) 0.40 (15) 0.96 (21)

Total naphthene 0.78 (14) 0.81 (14) 0.89 (14)

Total aromatics 0.81 (12) 0.81 (12) 0.84 (12) 1.60 (10)

n-Hexane 0.29 (16) 0.29 (17) 0.30 (17) 1.64 (17)

n-Heptane 0.29 (20) 0.28 (21) 0.42 (22)

2, 2-dimethylbutane 0.24 (17) 0.23 (16) 0.23 (17) 0.78 (22)

Cyclohexane 0.16 (16) 0.17 (17) 0.17 (19) 0.37 (24)

Benzene 0.17 (6) 0.17 (6) 0.17 (9) 0.23 (20)

Toluene 0.21 (16) 0.21 (17) 0.26 (16) 0.32 (19)
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Table 20.3 The influence of measurement times on spectral noise and SECV

Times of the
measurement

RMS noise of the
spectra × 10–5

Mean standard
deviation of the
spectra × 10–5

SECV/V%

n-Hexane Cyclohexane Toluene

4 8.29 0.35 0.280(3) 0.045(3) 0.031(4)

8 5.88 0.35 0.135(3) 0.037(3) 0.039(4)

16 4.12 0.14 0.083(3) 0.025(3) 0.021(5)

32 2.98 0.10 0.073(3) 0.023(3) 0.017(4)

64 2.14 0.12 0.053(4) 0.020(3) 0.015(4)

* The numbers in parentheses in the table are the number of main factors of PLS.

(3) Impact of spectral scans

Increasing the number of spectral scans of the sample, that is, averaging through
multiple measurements, is a common method to improve the spectral signal-to-noise
ratio.

The signal-to-noise ratio of the spectrumaffects the predictive ability of themodel.
Cho and Chung [85] investigated the influence of the number of spectral scans on the
NIR calibration model based on a set of artificially prepared samples. They mixed n-
hexane,n-heptane, cyclohexane, and toluene at different concentrations, andprepared
dozens of samples with n-heptane as the solvent. The concentrations of n-hexane,
cyclohexane, and toluene ranged from 0.05 to 2.0% (v/v). The spectrum collection
range was 4000–4500 cm−1, the resolution was 4 cm−1, and the optical path was
0.5 mm. The calibration model was established by PLS method. Table 20.3 showed
the root mean square noise (RMS), the average standard deviation of the measured
spectra, and the effect on the SECV of n-hexane, cyclohexane, and toluene under
different measurement times. It could be seen that with the increase in the number
of scans, the spectral noise decreased, and the SECV of n-hexane, cyclohexane, and
toluene also decreased to varying degrees, and the influence of n-hexane was the
most significant. This was because the spectral difference between n-hexane and the
solvent n-heptane is small, and a high signal-to-noise ratio of the spectra is required
to obtain satisfactory prediction results.

In practical application, it is not that the more the number of scans, the better. The
increase in the number of scans will prolong the measurement time of the spectrum.
In addition, when the number of scans increases to a certain value, the attenuation of
the noise will no longer be obvious. Therefore, in the process of spectral acquisition,
the setting of the number of scans should be chosen as a compromise between the
spectral measurement time and the spectral signal-to-noise ratio.
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20.3.5 Effect of Instrument Performance

Spectroscopic instrument performance includes the effectivewavelength range, reso-
lution, signal-to-noise ratio, baseline stability, wavelength accuracy and repeatability,
absorbance accuracy and repeatability, temperature applicable range and resistance
to voltage fluctuations, and many other aspects. The influence of spectral range,
signal-to-noise ratio, and resolution on the calibration model has been introduced
above. The influence of long-term stability and consistency of the instrument is
briefly discussed below.

The stability and consistency of spectrometer is one of the restrictive factors for
the wide popularization of spectrum combined with chemometrics. Spectrometer
stability refers to the long-term repeatability of wavelength and absorbance, and
spectrometer consistency refers to the accuracy of wavelength and absorbance. The
calibrationmodel is based on a large number of actual samples, and the determination
of reference data requires considerable human and financial resources. Therefore,
the built model must be able to be used for a long time and can be used on multiple
instruments. This requires an instrument to have long-term stability and consistency
between different instruments.

For different spectroscopic instruments, different measurement objects, and anal-
ysis parameters, the required instrument performance is also different. There is no
unified or fixed standard, and it needs to be determined through experiments in the
feasibility study.

On the basis of the long-term stability of the instrument, the calibration transfer
methods in chemometrics can be used to solve the problem of model incompatibility
caused by differences between instruments to a certain extent. This part of the content
can refer to Chap. 17 of this book.

20.4 Outlook

Spectroscopy combined with chemometrics has been widely used in practice, espe-
cially playing an increasingly important role in on-site fast and industrial scenes. As
the subject of chemometrics gradually enters the classroom of college students, this
analysis technology will inevitably become more and more popular and common for
chemical analysts and process analysts. However, as an emerging technology, if it
wants to play its due role, there is still considerable work to be carried out, which
mainly includes the following aspects.

(1) Spectrometer hardware

Thehardware level is a key factor restricting the rapid development of this technology.
Whether it is a laboratory, portable, or online spectrometer, the overall performance
needs to be further improved, especially in the long-term stability and consistency of
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the instrument, and a higher level of technical specifications needs to be formulated
to realize the long-term effectiveness and universality of the calibration models. On
the measurement accessories, it is necessary to develop more efficient, adaptable
and targeted special accessories according to the specific application objects. On this
basis, the miniaturization of the spectrometer as well as its supporting components
is always an eternal goal.

The miniaturization of spectroscopic instruments and imaging instruments will
bring important changes in terms of cost, performance, and application scenarios.
Due to reasons such as data storage and computing speed, the application scenarios of
these spectrometers and spectral imaging instruments will benefit from the develop-
ment of technologies such as 5Gcommunication, deep learning, and cloud computing
platforms in the future, and become key components and important nodes in the
construction of the Internet of Things.

Combination and fusion of multi-spectral instruments have been other significant
research hotspots in recent years. For example, the combination of Raman andMIRS,
LIBS andRaman,MIRS andNIRS, and various imaging combination of instruments,
etc. can obtain more and richer chemical composition information [86, 87].

(2) Experimental technology

The experimental technology (spectral acquisitionmethod and sample preprocessing,
etc.) is an important link to determine the repeatability and accuracy of the anal-
ysis results. For different application objects, the experimental technology needs
to be deeply and carefully studied in order to obtain high-quality spectra. Experi-
mental techniques andmeasurement accessories are inseparable, and the two comple-
ment each other. The emergence of new experimental techniques will promote the
improvement and development of measurement accessories. The commercialization
of measurement accessories will improve the overall level of experimental tech-
nology and will also promote the development of spectroscopic instruments. SORS
and transmission experimental techniques in Raman spectroscopy are examples, and
the research and development of similar experimental techniques will remain one of
the important development directions in the future.

(3) Chemometric methods and software

Chemometricmethods and software are an important part of this analytical technique.
Although the existing methods have been able to solve most of the problems, the
research boom in this direction has not diminished. Although some of the research is
only published as a paper, “practical application-driven” is still a strong driving force
for its development. For example, the steps of establishing a quantitative analysis
model in the multivariate calibration method are cumbersome and require more
professional personnel to maintain, which limits its application scope to a large
extent. Therefore, developing new algorithms to fundamentally solve the workload
problem of modeling and its maintenance should be a key research direction.

In recent years, deep learning algorithms represented by convolutional neural
networks (CNNs) have been used in the establishment of spectral quantitative and
qualitativemodels [88]. Comparedwith traditionalmachine learningmethods, CNNs
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can gradually extract microscopic and macroscopic features hidden in spectral data
through multiple convolutional layers and pooling layers. To a certain extent, the
preprocessing of the spectrum and the selection of variables before modeling are
reduced, and the workload of modeling is significantly reduced. Application of deep
learning algorithms in spectral analysis has just begun, and issues such as network
size, optimal selection of parameters, overfitting, and model interpretability are still
worthy of further study. Strategies such as transfer learning, domain adaptation, and
multi-task learning in deep learning are expected to provide new ideas for calibration
transfer, and to a certain extent, solve the problem of the universality of quantitative
and qualitative models in different instruments.

For some specific application requirements, multivariate calibration-free model
methods based on strategies such as spectral fitting calculation are also attracting
attentions. This kind of method can avoid the traditional complicated modeling and
maintenance process and has certain advantages in oil products, drugs, and other
fields [89–91].

It is worth mentioning that although new and effective chemometrics algorithms
are constantly emerging, the functions of the computing software supporting the
instruments are often not upgraded in time. This problem is expected to be solved
through the wider application of cloud computing platforms.

(4) Maintenance of calibration models and data mining

The calibration models are built on the software and hardware platform based on
the spectra of a large number of representative samples and their reference data. On
the one hand, we need to build an official and commercial network model mainte-
nance and sharing platform through different ways, so as to continuously expand
and improve the established model database and make it play its due role in prac-
tical application. On the other hand, it is necessary to make full use of these data
resources, especially the petrochemical, tobacco, grain spectral model libraries, etc.,
to further dig more and more useful information. In addition, it is also a very mean-
ingful research work to dig out the information of process affecting product quality
and reaction mechanism from a large number of process analysis spectra obtained
in laboratories and industrial devices.

The rise of cloud computing platforms has improved the conditions for the
processing and application of spectral big data. Through cloud computing platforms,
NIR spectral data from different sources such as raw material production, online
products, and laboratory research can be managed and stored. At the same time, the
big data analysis method is used to analyze and mine the collected spectral big data,
and then output the analysis results in a visual way, which can effectively provide
data for the production process and product quality control in real time and provide a
reliable basis for the management and storage of rawmaterials, the sales of products,
and the monitoring and enforcement of relevant departments at higher levels.

Model maintenance is inseparable from calibration transfer, especially with the
continuous popularity of portable and pocket-sized spectrometers on the consumer
side, how to transfer the model on the laboratory host to the consumer-side instru-
ments, and how to maintain the model using a large amount of spectral data without
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standard reference data (or no label) on consumer instruments, new model mainte-
nance, andmodel transfer methods will becomemore andmore important, especially
the standard-free model transfer method will play an extremely important role [92].

In recent years, some semi-supervised calibration transfermethods (it is not neces-
sary to obtain the spectra of a set of standard samples on the master and the slave at
the same time, but only need to obtain the spectra of a set of samples and their refer-
ence data on the slave) have been verified and applied, such as Dynamic Orthogonal
Projection (DOP) and Semi-supervised parameter-free framework for calibration
enhancement (SS-PFCE) [93, 94]. There are even some well-performing unsuper-
vised (requiring only the spectra of a set of samples on the slave) calibration transfer
method, such as Domain Invariant Partial Least Squares (di-PLS), Transfer Compo-
nent Analysis (TCA), and Non-supervised parameter-free framework for calibration
enhancement (NS-PFCE), etc. [94, 95].

(5) Spectral imaging technology

Spectral imaging techniques (NIRS, MIRS, Raman, Terahertz, LIBS, etc.) are an
important branch of spectroscopy application combined with chemometrics [80].
Due to the inherent advantages of spectral imaging technology, the supporting hard-
ware and algorithms will be the research hotspots in the future and will become an
important supplement to traditional spectral analysis. In recent years, the miniatur-
ization and portability of spectral imaging instruments have also been developed
rapidly, and it has wide application potential in the fields of environment, geology,
food, biomedicine, medicine, archaeology, cultural relics, forensic, etc.

(6) Expansion and deepening of practical applications

At present, although the applications of this kind of analysis technology have been
studied and implemented in almost every field, their application breadth, depth, and
role are still in the process of superfast development. According to different practical
requirements, it is necessary to improve the whole set of platform technology to
obtain the best application effect. At the same time, with the extensive and in-depth
application of this type of analysis technology, it will also have a profound positive
impact on the production process and production management and will play an
important role in optimizing the production process and ensuring the quality of
finished products.

At present, the industry is in a period of transition from the traditional production
pattern to digital and intelligent pattern. Depth of information “Self-perception”,
intelligent optimization “Self-decision”, and precise control “Self-execution” are the
three key characteristics of smart factories. Among them, the depth of information
“Self-perception” is the basis of intelligent industries. Molecular composition and
physical property data of raw materials, intermediate materials and products are
an important part of information perception. Modern process analytical technology
with spectroscopy as one of the cores provides a very effective means for chemical
information perception. Application of spectroscopic technology, especially online
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technology in the fields of food, pharmacy, and chemical industry, has just begun
with the general trend of refined management and intelligent processing and will
bring changes to the process industries.
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