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Learning Goals 

1. Understand the Markov process and the basic concept of Markov chain. 
2. Understand the classification of Markov models, the connotation of continuous-

time Markov chain and hidden Markov models. 
3. Clarify the application scope and application methods of Markov model, and 

use Markov model to make predictions. 

Introduction 
Study Notes from a Project Manager 

Due to the needs of the project, I checked the literature about marketing application 
of Markov chain and made some attempts. 

Markov chain is a predictive tool. Given that the choice space faced by cus-
tomers can be divided into n mutually exclusive states, the long-term trend of 
customers can be described by their transitions between different states. Transfer-
ring has two important characteristics: randomness and being of no aftereffect (or 
being memoryless). It’s like a walk, metaphorically speaking, without a set goal. 
Each step depends only on where the previous step went, and there are several 
possibilities. This feature enables the prediction of customers’ long-term behav-
ior to be divided into several independent units, and the state of each time point 
is determined by the state of the previous moment and the transition probability 
matrix representing all possibilities, which is very flexible.
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Markov chain fits the description of many economic phenomena. The most 
typical example is the stock market. When you are buying wealth management 
products, funds for example, you will notice the company’s statement that the past 
performance is not necessarily indicative of future results, which is a live embodi-
ment of Markov chain. The stock market is irregular. Studies have proved that the 
accuracy of using historical data to predict stocks or the stock market trends is not 
better than that of flipping a coin. In the field of marketing, such as online analysis, 
we often use path analysis to find out how customers use the website. However, 
path analysis assumes that the customer’s browsing process has certain rules to fol-
low, and the browsing behavior of the customer is actually more consistent with 
the Markov process. From one page to another, it is completely stochastic, so it is 
more accurate to describe it with the Markov model. Are all problems applicable 
to Markov process? A Markov chain requires tracking an object (a customer, for 
example) as it moves between different states over time, and its behavior is repeti-
tive. The customer can only choose one state at a time: either to stay in the current 
state, or to enter another state. Some researchers use Markov models to predict the 
direction of the real estate market. However, most property purchases are one-off 
without continuity; the customers who have purchased multiple estates are more 
likely to own more than one estates, and their purchase behaviors are highly related 
with previous purchase experiences. Thus it is appropriately to describe the latter 
by other models. 

The establishment of Markov chain model itself is not complicated, with three 
steps necessarily: ➀ Set the state; ➁ Calculate the transition probability matrix; 
➂ Calculate the result of the transition. The status may be given, such as differ-
ent brands and web pages; or it needs to be divided according to the results of 
data analysis. In theory, the more states, the more accurate the prediction results. 
However, too many classifications will lose marketing significance and cause dif-
ficulties in use. RFM (Recency Frequency Monetary) is a common state division 
method to predict customer lifetime value using Markov chain. RFM can express 
customer’s transaction status and reflect the relationship between customers and 
companies. There is a problem of optimization when using RFM to distinguish 
customer status. If there are many variables, cluster analysis or decision trees can 
be considered. The transition probability matrix can be constructed by using obser-
vations directly or by assigning values based on expert opinions. It is available to 
use models such as multi-state logistic regression, decision trees, neural networks, 
or stochastic function models. The advantage of models is that the noise in the 
observed data can be eliminated, and thus the transition probability can be refined 
to the individual. Whether the transition probability is stable is a problem that 
needs special attention. Markov model assumes that the transition probability of 
customers between different states is constant and does not change with time. 
Therefore, the estimation of the customer’s state at each time point is carried out 
through the iteration of a single transition matrix. But for a longer time frame, 
especially in industries with long-term relationships with customers, such as bank-
ing and insurance, this assumption needs to be revised. Some important events,
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such as marriage, childbirth, retirement, etc., will inevitably change the transition 
probability of customers. 

Whether the application of Markov chain can properly predict the market and 
the value of customers, like other models, needs to be tested by practice. The 
performance of the model after landing is the final judgement. However, validation 
with data is a necessary step in the modeling process. 

Source http://blog.sina.com.cn/s/blog_6520908501017qv9.html (accessed 
09/01/2013). 

11.1 Markov Process 

Markov process is a kind of stochastic process. Its original model is the Markov 
chain, which was proposed by the Russian mathematician A. A. Markov in 1906. 

Markov process is a typical stochastic process. The theory studies the state of a 
system and its transfer. It determines the change trend of the state by studying the 
initial probability of different states and the transition probability between states, 
so as to predict the future. 

Markov process has two basic characteristics (Markov property). One is “no 
aftereffect”, that is, the future state of a thing and the probability of its occurrence 
only depends on the state of the thing now, and has nothing to do with the state 
of the previous time. In other words, it does not depend on its past evolution. The 
other is “ergodicity”, that is, no matter what state things are in, the Markov process 
gradually tends to be stable over a long period of time, and it has nothing to do 
with the initial state. In the practice, many processes are Markov processes, such 
as Brownian motion caused by particles in liquids, the number of people infected 
with infectious diseases, inventory problems in stores, and the queues at banks, 
etc. 

Markov processes are expressed mathematical as: 

Definition 11.1 Let X(t), t ∈ T be a stochastic process. If X(t) is observed at the 
time of t1, t2, · · ·  , tn−1, tn(t1 < t2 < · · ·  < tn−1 < tn ∈ T ), the corresponding 
observed value x1, x2, · · ·  , xn−1, xn satisfied the condition. 

P{X(tn) ≤ xn |X(tn−1) = xn−1, X(tn−2) = xn−2, . . . ,  X(t1) = x1} 
= P{X(tn) ≤ xn |X(tn−1) = xn−1} (11.1) 

or 

FX (xn; tn|xn−1, xn−2, . . . ,  x2, x1; tn−1, tn−2, . . . ,  t2, t1) = FX (xn; tn|xn−1; tn−1) 
(11.2)

http://blog.sina.com.cn/s/blog_6520908501017qv9.html
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such a process is called the process with Markov properties or Markov process. 

where 

FX (xn; tn|xn−1, xn−2, . . . ,  x2, x1; tn−1, tn−2, . . . ,  t2, t1) 

represents the conditional distribution function when the value of time X(tn) is xn 
under the condition of X(tn−1) = xn−1, X(tn−2) = xn−2, · · ·  , X(t1) = x1. 

If time tn−1 is regarded as “present”, because t1 < t2 < · · ·  < tn−1 < tn , then 
tn can be regarded as “future”, and t1, t2, · · ·  , tn−2 as “past”. Therefore, the above 
definition can be expressed as that the value of X(tn) in the future is independent 
of the value of X(t1), X(t2), · · ·  , X(tn−2) in the past, given the value of X(tn−1) 
in the present state is xn−1. 

11.2 Markov Chain 

11.2.1 Definition 

Markov chain refers to a Markov process in which time and state parameters are 
discrete. It is the simplest Markov process. 

The time studied in general Markov process is infinite, and it is a continuous 
variable with continuous numerical values. Two adjacent values can be divided 
infinitely, and the states of study are infinite. The time parameters of Markov 
chain are discrete values. In economic forecast, the general dates are days, months, 
seasons and years. At the same time, the state of the Markov chain is finite. For 
example, the market sales state can be “salable” and “unsalable”. The future state 
of the market is only related to the current state, and not to the previous state (no 
aftereffect is established). 

It is described mathematical as: 

Definition 11.2 If the stochastic process X(n), n ∈ T satisfies the following 
conditions: 

(1) The time set is taken as a non-negative integer set T = {0, 1, 2, · · ·} cor-
responding to each moment. The state space is a discrete set, denoted as 
E = {E0, E1, E2, · · ·}, that is, X(n) is a discrete time state. 

(2) For any integer n ∈ T , the conditional probability satisfies: 

P{X(n + 1) =En+1|X(n) = En, X(n − 1) = En−1, . . . ,  X(0) = E0} 
=P{X(n + 1) = En|X(n) = En} (11.3)
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then call X(n), n ∈ T a Markov chain, and denote that 

P(k) 
i j  = P{X(m + k) = E j |X(m) = Ei }, Ei , E j ∈ E (11.4) 

represent the probability that the system is in state Ei at time m and the system is 
in the state E j at time m + k. 

The conditional probability equation, that is, the probability of the state 
X(m + k) = E j of X(n) at time X(m + k) = E j is only related to the state 
X(m) = Ei at time m, and is independent of the state before m. It is one of 
the mathematical expressions of Markov property (no aftereffect). No afteref-
fect means that once the state of a certain stage is determined, the evolution of 
the subsequent process will no longer be affected by various previous states and 
decisions. 

11.2.2 Relevant Concepts 

1. State and state variables 

State: A condition in which an objective thing may appear or exist. For example, 
goods may be salable or may be unsalable; the machine may ran normally or may 
not work properly. 

Different states of the same thing must be mutually independent: two states 
cannot exist at the same time. The state of objective things is not fixed. When 
conditions change, the state often changes. For example, a product is originally 
unsalable in the market, but by reason of promotion and other factors, it may 
become a best-selling one. 

State variables are generally used to represent the state: Xt = 

i

(
i = 1, 2, · · ·  , N 
t = 1, 2, · · ·

)
, which represents a stochastic motion system, and at time 

t(t = 1, 2, · · ·  ), the state is i(i = 1, 2, · · ·  N ). 

2. State transition probability and its transition probability matrix 

(1) One-step transition probability matrix. Suppose the state space of the system 
is E = (E1, E2, . . . ,  En), and each time the system can only be in one of 
these states, so each state has n turns (including turns to itself), that is 

Ei → E1, Ei → E2, . . . ,  Ei → Ei , . . . ,  Ei → En 

Under the condition that the system is in state Ei at time m, the conditional 
probability of the system in state E j at time m + k can be expressed as: 

P(k) 
i j  = P{X(m + k) = E j |X(m) = Ei }, Ei , E j ∈ E (11.5)
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In particular, when k = 1, 

pi j  = P{X(m + 1) = E j |X(m) = Ei }, Ei , E j ∈ E 

that is, when the system is in state Ei at time m, the conditional probability that 
the system is in state E j at time m + 1 is called the transition probability from 
state Ei to state E j through one transition. The matrix formed by the set of one-
step transition probabilities of all the states of the system is called one-step state 
transition probability matrix. Its form is as follows: 

E1 E2 · · ·  En 

P = 

E1 

E2 
... 
En 

⎛ 

⎜⎜⎜⎝ 

p11 p12 · · ·  p1n 
p21 p22 · · ·  p2n 
... 

... 
... 

pn1 pn2 · · ·  pnn 

⎞ 

⎟⎟⎟⎠ (11.6) 

This matrix has the following two properties: 

Non-negative: pi j  ≥ 0, i, j = 1, 2, · · ·  , n 

The sum of row elements is 1, that is 
n∑
j=1 

pi j  = 1, i = 1, 2, · · ·  , n 

Example 11.1 There are three garment factories A, B and C producing the same 
kind of clothing, and there are 1000 customers. It is assumed that during the study 
period, no new users join and no old users quit, only some customers are transferred. 
It is known that in April, 500 are customers to factory A; 400 customers to B; 100 
customers to C. In May, A had 400 original customers left, with 50 transferring to B 
and 50 to C. B had 300 original customers left, with 20 transferring to A and 80 to 
C. C had 80 original customers left, with 10 transferring to A and 10 to B. 

Calculate its state transition probability. 

Solution: 
The customer transfer in May is shown in Table 11.1. 

Table. 11.1 Customer transfer in May 

A B C Total 

A 300 50 50 400 

B 120 300 80 500 

C 20 20 60 100 

Total 440 370 190 1000
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P11 = 400/500 = 0.8 P12 = 50/500 = 0.1 P13 = 50/500 = 0.1 
P21 = 20/400 = 0.05 P22 = 300/400 = 0.75 P23 = 80/400 = 0.2 
P31 = 10/100 = 0.1 P32 = 10/100 = 0.1 P33 = 80/100 = 0.8 

State transition probability matrix: 

P = 

⎡ 

⎣ P11 P12 P13 
P21 P22 P23 
P31 P32 P33 

⎤ 

⎦ = 

⎡ 

⎣ 
0.8 0.1 0.1 
0.05 0.75 0.2 
0.1 0.1 0.8 

⎤ 

⎦ 

(2) k-step transition probability matrix. According to the definition of one-step 
transition probability, k-step transition probability is the probability of the 
system’s transition from state Ei to state E j through k times, which can be 
expressed as 

P(k) 
i j  = P{X(m + k) = E j |X(m) = Ei }, Ei , E j ∈ E 

Therefore, the k-step transition probability matrix of the system is a matrix 
composed of the k-step transition probability sets of all states. The form is as 
follows: 

P(k) = 

E1 E2 · · ·  En 

E1 

E2 
... 
En 

⎛ 

⎜⎜⎜⎜⎝ 

p(k) 
11 p

(k) 
12 · · ·  p(k) 

1n 

p(k) 
21 p

(k) 
22 · · ·  p(k) 

2n 
... 

... 
... 

p(k) 
n1 p

(k) 
n2 · · ·  p(k) 

nn 

⎞ 

⎟⎟⎟⎟⎠ 
(11.8) 

This matrix has the following three properties: 

Non-negative: p(k) 
i j  ≥ 0, i, j = 1, 2, . . . ,  n 

The sum of row elements is 1, that is
∑n 

j=1 p
(k) 
i j  = 1, i = 1, 2, . . . ,  n 

P(n) = P(n−1) P = Pn 

Example 11.2 The market of Borui Company has three states: E1, E2 and E3 (that 
is salable, ordinary and unsalable). The market transfer of the company is shown 
in Table 11.2. Try to find the two-step state transition probability matrix of the 
company’s market.
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Table. 11.2 Company market states transition 

The current state of the company’s market The next state of the company’s market 

E1 E2 E3 

E1 21 7 14 

E2 16 8 12 

E3 10 8 2 

Solution: 
First write down the one-step transition probability matrix 

P(1) = 

⎡ 

⎣0.500 0.167 0.333 
0.444 0.222 0.334 
0.500 0.400 0.100 

⎤ 

⎦ 

The two-step state transition probability matrix can be calculated from the one-
step transition probability matrix by the formula P(n) = Pn : 

P(2) = P2 = 

⎡ 

⎢⎣ 
0.500 0.167 0.333 
0.444 0.222 0.334 
0.500 0.400 0.100 

2⎤ 

⎥⎦ = 

⎡ 

⎣ 
0.491 0.254 0.255 
0.488 0.257 0.255 
0.478 0.212 0.310 

⎤ 

⎦ 

(3) Steady-State Probability 

The state probability is the steady-state probability when the Markov chain reaches 
a steady state. Under certain conditions, the Markov chain will reach a stable state 
after k-step transfer. 

(1) Conditions of stable state. If the one-step transition probability matrix is a 
normal probability matrix, the Markov chain can reach a stable state. 

(2) Solving the steady-state probability. According to the definition of steady state 
of Markov chain, when in a stable state, there is S(k+1) = S(k), that is S(k+1) = 
S(k) P = S(k). 

Assume

{
S(k) = (x1, x2, · · ·  , xn) 
S(k+1) = S(k) · P = S(k) , and

∑n 
i=1 xi = 1 is the state vector after 

k-step transition. The one-step transition probability matrix is 

P = 

⎡ 

⎢⎣ 
P11 . . .  P1n 
... 

. . . 
... 

Pn1 . . .  Pnn 

⎤ 

⎥⎦
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According to S(k+1) = S(k) · P = S(k), it is expanded to 

(x1, x2, . . . ,  xn) 

⎡ 

⎢⎣ 
P11 . . .  P1n 
... 

. . . 
... 

Pn1 . . .  Pnn 

⎤ 

⎥⎦ = S(k) = (x1, x2, . . . ,  xn) (11.9) 

By calculation, the following equation set is obtained: 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

P11x1 + P21x2 + . . . + Pn1xn = x1 
P12x1 + P22x2 + . . . + Pn2xn = x2 

... 
P1nx1 + P2nx2 + . . .  + Pnnxn = xn 

x1 + x2 + . . . + xn = 1 

(11.10) 

The shift term is transformed into 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

(P11 − 1)x1 + P21x2 + . . . + Pn1xn = 0 
P12x1 + (P22 − 1)x2 + . . .  + Pn2xn = 0 

... 
P1nx1 + P2nx2 + . . . + (Pnn − 1)xn = 0 

x1 + x2 + . . . + xn = 1 

(11.11) 

There are n variables in Eq. (11.11), but there are n + 1 equations, indicating 
that one of the equations is not independent and the nth equation needs to be 
eliminated: 

⎡ 

⎢⎢⎢⎢⎢⎢ 

(P11 − 1) P21 . . .  Pn1 
P12 (P22 − 1) .  .  .  Pn2 
... 

... 
. . . 

... 
1 1 . . .  1 

⎤ 

⎥⎥⎥⎥⎥⎥ 

⎡ 

⎢⎢⎢⎢⎢⎢ 

x1 
x2 
... 
xn 

⎤ 

⎥⎥⎥⎥⎥⎥ 

= 

⎡ 

⎢⎢⎢⎢⎢⎢ 

0 
0 
... 
1 

⎤ 

⎥⎥⎥⎥⎥⎥ 

(11.12) 

let 

P1 = 

⎡ 

⎢⎢⎢⎢⎢⎢ 

(P11 − 1) P21 . . .  Pn1 
P12 (P22 − 1)  . . .  Pn2 
... 

... 
. . . 

... 
1 1 . . .  1 

⎤ 

⎥⎥⎥⎥⎥⎥ 

, X ((n)) = 

⎡ 

⎢⎢⎢⎢⎢⎢ 

x1 
x2 
... 
xn 

⎤ 

⎥⎥⎥⎥⎥⎥ 

, B = 

⎡ 

⎢⎢⎢⎢⎢⎢ 

0 
0 
... 
1 

⎤ 

⎥⎥⎥⎥⎥⎥ 

then 

P1X
(n) = B
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X (n) = P−1 
1 B 

that is, X (n) is the steady-state probability of the Markov chain. 

11.3 Classification of Markov Chain Models 

11.3.1 Continuous-Time Markov Chains 

Definition 11.3 Suppose the stochastic process {X(t), t � 0} , the state space I = 
{in, n � 0}, if for any and 0 � t1 < t2 < .  .  . <  tn+1 i1, i2, . . . ,  in+1 ∈ I , there is. 

P{X(tn+1) = in+1 |X(t1) = i1, X(t2) = i2, . . . ,  X(tn) = in} 
= P{X(tn+1) = in+1 |X(tn) = in} (11.13) 

then call {X(t), t � 0} as a continuous-time Markov chain. 
In the above formula, the conditional probability is expressed as 

P{X(s + t) = j |X(s) = i} = pi j  (s, t) 

Definition: If the transition probability of pi j  (s, t) is independent of s, then it 
is said that the continuous-time Markov chain has a stationary or homogeneous 
transition probability, and then the transition probability is abbreviated as 

pi j  (s, t) = pi j  (t) 

its transition probability matrix is abbreviated as 

P(t) = (
pi j  (t)

)
A continuous-time Markov chain, whenever it enters state i, has the following 

properties: 

(1) The time in state i before moving to another state follows an exponential 
distribution with parameter vi; 

(2) When the process leaves state i, it then enters state j with probability pi j ,∑
j �=i pi j  = 1. 

When vi = ∞, state i is called an instantaneous state; 
When vi = 0, state i is called the absorbed state. 
A continuous-time Markov chain transfers from one state to another according 

to a discrete time Markov chain. But before transferring to the next state, the time 
it stays in each state obeys an exponential distribution. In addition, the staying 
time in the state i process and the next arrival state must be independent stochastic 
variables.



11 Markov Chain 393

11.3.2 Hidden Markov Model 

Hidden Markov model (HMM) is a kind of Markov chain, whose states cannot be 
observed directly, but can be observed through a sequence of observation vectors. 
Each observation vector is expressed in various states through some probability 
density distributions. Each observation vector is generated by a state sequence 
with corresponding probability density distribution. Therefore, HMM is a double 
stochastic process, a hidden Markov chain with a certain number of states and 
a set of display stochastic functions. Since the twentieth century, HMM has been 
applied to speech recognition, computer character recognition, mobile communica-
tion core technology “multi-user detection”, bioinformatics science, fault diagnosis 
and other fields. 

HMM can be described by five elements, including two state sets and three 
probability matrices. 

(1) The hidden state S. These states satisfy the Markov property among them and 
are the actually implied in the Markov model. These states are usually not 
available by direct observation (such as S1, S2, S3, etc.). 

(2) The observable state O. It is associated with the hidden state in the model and 
can be obtained by direct observation. (such as O1, O2, O3, etc., the number of 
observable states is necessarily not the same as the number of hidden states.) 

(3) The initial state probability matrix π. Represents the probability matrix of the 
hidden state at the initial time t = 1. For example, when t = 1,P(S1) = 
p1, P(S1) = p2, P(S1) = p3, then the initial state probability matrix π =[
p1 p2 p3

]
. 

(4) Hidden state transition probability matrix A. It describes the transition prob-
ability between states in the hidden Markov model. Where Ai j  = P

(
S j |Si

)
, 

1 � i, j � N is the probability that the state is S j at time t + 1 under the 
condition that the state is Si at time t. 

(5) Observation state transition probability matrix B. Let N represent the number 
of hidden states and M represent the number of hidden states, then 

Bi j  = P(Oi |S j ), 1 ≤ i ≤ M, 1 ≤ j ≤ N 

represents the probability that the observation state is Oi at time t and the hidden 
condition state is S j . 

HMM can be succinctly represented by λ = (A, B, π)  triples. HMM adds the 
set of observable states and the probability relationship between these states, which 
is actually an extension of the standard Markov model.
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11.4 Application of Markov Chain Models 

Markov analysis, also known as Markov transition matrix method, refers to a pre-
diction method that predicts future changes of stochastic variables by analyzing 
the current changes of these variables under the assumption of Markov process. 

The simplest type of Markov chain prediction method is to predict the most 
likely state in the next period. Here are the steps: 

Step 1: Divide the states of the predicted object. Starting from the predic-
tion purposes, consider the decision making needs to classify the state of the 
phenomenon. 

Step 2: Calculate the initial probability. The state probability obtained by 
analyzing historical data of practical problems is called the initial probability. 

Step 3: Calculate the state transition probability. 
Step 4: Make prediction according to transition probability. 
From the state transition probability matrix P, if the prediction object is cur-

rently in state Ei , then Pi j  describes the possibility that the current state Ei will 
change to state Ej(j = 1, 2, …, N) in the future. According to the maximum pos-
sibility as the selection principle: choose the largest of Pj1, Pj2, …,  PjN as the 
prediction result. 

1. Calculate market share 

Example 11.3 Guangzhou, Shenzhen and Macau Special Administrative Region 
of the People’s Republic of China produce and sell certain food ingredients. It is 
necessary to predict the market share in the next few months. The specific steps are 
as follows: 

Step 1: Conduct market survey 

(1) Current market share (the proportion of customers purchasing food ingredients 
from Guangzhou, Shenzhen and Macau). 

Results: the customers who bought Guangzhou ingredients accounted for 40%, 
those to Shenzhen and Macau accounted for 30% respectively, and (40%, 30%, 
30%) is called the current market share distribution or the initial distribution. 

(2) Investigate the flow of customers. 

The flow condition is: 

➀ 40% of the customers who bought food ingredients from Guangzhou last month 
remain this month, and 30% of them transferred to Shenzhen and Macau 
respectively.
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Table. 11.3 The flow of 
ingredients purchased by 
customers 

Guangzhou (%) Shenzhen (%) Macau (%) 

Guangzhou 40 30 30 

Shenzhen 60 30 10 

Macau 60 10 30 

➁ 60% of the customers who bought the ingredients from Shenzhen last month 
transferred to Guangzhou this month, 30% remain, and 10% to Macau. 

➂ 60% of the customers who bought food ingredients from Macau transferred to 
Guangzhou, 10% to Shenzhen, and 30% remain. 

Step 2: Establish a mathematical model. 

For the convenience of calculation, 1, 2 and 3 represent the food ingredients in 
Guangzhou, Shenzhen and Macau respectively. According to the results of market 
survey, the flow of customers’ purchase of food ingredients is shown in Table 11.3. 

P = 

⎛ 

⎝ 
P11 P12 P13 
P21 P22 P23 
P31 P32 P33 

⎞ 

⎠ = 

⎛ 

⎝ 
0.4 0.3 0.3 
0.6 0.3 0.1 
0.6 0.1 0.3 

⎞ 

⎠ 

Step 3: Make market forecasts. 

Suppose the initial market share distribution is (P1, P2, P3) = (0.4, 0.3, 0.3), and 
the market share distribution after three months is (P1(3), P2(3), P3(3)). 

If the trend of customer flow is stable for a long time, the market share will 
reach a stable equilibrium after a period of time. 

(P1(n), P2(n), P3(n)) = (P1, P2, P3) 

⎛ 

⎝ P11(n) P12(n) P13(n) 
P21(n) P22(n) P23(n) 
P31(n) P32(n) P33(n) 

⎞ 

⎠ 

= (P1, P2, P3) 

⎛ 

⎝ P11 P12 P13 
P21 P22 P23 
P31 P32 P33 

⎞ 

⎠ 

A stable market equilibrium means that the number of customers lost to each 
product is offset by the number of new customers gained during the flow of 
customers. 

Step 4: Forecast long-term market share. 

Since the one-step transition probability matrix P is a normal probability matrix, 
the long-term market share is the market share under equilibrium state, that is, the 
stationary distribution of the Markov chain.
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Let the long-term market share be 

X = (x1, x2, x3) 

then 

⎧⎪⎪⎨ 

⎪⎪⎩ 

(x1, x2, x3) 

⎡ 

⎣ 
0.4 0.3 0.3 
0.6 0.3 0.1 
0.6 0.1 0.3 

⎤ 

⎦ 

x1 + x2 + x3 = 1 

= (x1, x2, x3) 

such that 

X = (x1, x2, x3) = (0.5, 0.25, 0.25) 

2. Human resources forecast 

Example 11.4 The employees of Borui Company are divided into five categories: 
intern, ordinary staff, director, general manager, and former staff. The current status 
(550 employees) is expressed as: 

P(0) = (135, 240, 115, 60, 0) 

The Company’s previous record is 

P = 

⎛ 

⎜⎜⎜⎜⎝ 

0.6 0.4  0 0 0  
0 0.6 0.25 0 0.15 
0 0  0.55 0.21 0.24 
0 0  0  0.8 0.2 
0 0  0  0  1  

⎞ 

⎟⎟⎟⎟⎠ 

Try to analyze the structure of employees after three years and how many new 
employees should be recruited into the workforce while keeping the distribution 
of employees unchanged (550) in three years. 

Solution: 
Distribution of employees after one year: 

(1) = P(0) · P 

= (135, 240, 115, 60, 0) 

⎛ 

⎜⎜⎜⎜⎝ 

0.6 0.4  0 0 0  
0 0.6 0.25 0 0.15 
0 0  0.55 0.21 0.24 
0 0  0  0.8 0.2 
0 0  0  0  1  

⎞ 

⎟⎟⎟⎟⎠
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= (81, 198, 123, 72, 76) 

To maintain the total number of 550, 76 have left, so 76 new employees should 
be recruited in the first year: 

P ′(1) = (81 + 76, 198, 123, 72, 0) 

Distribution of employees after the second year: 

P(2) = P ′(1) · P 

= (157, 198, 123, 72, 0) 

⎛ 

⎜⎜⎜⎜⎝ 

0.6 0.4 0  0  0  
0 0.6 0.25 0 0.15 
0 0  0.55 0.21 0.24 
0 0  0  0.8 0.2 
0 0  0  0  1  

⎞ 

⎟⎟⎟⎟⎠ 

= (94, 182, 117, 83, 74) 

To keep the total number of people unchanged, 74 employees should be added: 

P ′(2) = (94 + 74, 182, 117, 83, 0) 

Distribution of employees after the third year: 

P(3) = P ′(2) · P 

= (168, 182, 117, 83, 0) 

⎛ 

⎜⎜⎜⎜⎝ 

0.6 0.4  0 0 0  
0 0.6 0.25 0 0.15 
0 0  0.55 0.21 0.24 
0 0  0  0.8 0.2 
0 0  0  0  1  

⎞ 

⎟⎟⎟⎟⎠ 

= (101, 176, 111, 91, 72) 

72 employees should be added. At the end of the third year, the staff structure 
is 

P ′(3) = (173, 176, 111, 91, 0) 

3. Profit forecast 

The state in the nth period is represented by Xn : 

Xn =
{

1, products o f the n − th period are salable 
2, products o f the n − th period are unsalable
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Let {Xn} be a homogeneous Markov chain with a state space of S = 
{1, 2, . . . ,  N }, and its transition matrix is P = (

Pi j
)
N×N . 

Let r(i) denote the profit obtained when the system is in state i during a certain 
period. Such a Markov chain is called profitable. 

When r(i) >  0, it is called profit; when r(i) <  0, it is called expense. 

(1) Total expected profit for a limited period. Let vk(i) denote the expected total 
profit (k � 1, i ∈ S) obtained before the state transition at of the kth step 
under the condition that the initial state is: 

νk(i) = 
k−1∑
n=0 

expected profit for the nth period 

= 
k−1∑
n=0 

E{r(Xn)|X0 = i} 

= 
k−1∑
n=0 

( 
N∑
j=1 

p(n) 
i j  r( j)) (11.14) 

Example 11.5 shows that k = 4, the current month is recorded as the first month, 
and find the expected profit v4(1) obtained before the fourth step of the state (that 
is, the first four months). 

Let r(i) denote the profit obtained when the system is in state i in a certain 
period, let 1 denote “salable”, and 2 denote “unsalable”. Then 

v4(1) = r(1) + 
4−1∑
n=1

[
p(n) 
11 r(1) + p(n) 

12 r(2)
]

v4(1) = r(2) + 
4−1∑
n=1

[
p(n) 
21 r(1) + p(n) 

22 r(2)
]

v4 = (v4(1), v4(2))T 

P(n) =
[
p(n) 
11 p

(n) 
12 

p(n) 
21 p

(n) 
22

]

r = (r(1), r(2))T 

v4 =r + 
4−1∑
n=1 

p(n)r = 
4−1∑
n=0 

p(n)r 

=
(
4−1∑
n=0 

p(n)

)
r = (E + P + P2 + P3)r (11.15)
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Table. 11.4 Sales records for the past 24 months 

Month 1 2 3 4 5 6 

Sales status Salable Salable Unsalable Salable Unsalable Unsalable 

Month 7 8 9 10 11 12 

Sales status Salable Salable Unsalable Salable Salable Unsalable 

Month 13 14 15 16 17 18 

Sales status Salable Salable Unsalable Unsalable Salable Salable 

Month 19 20 21 22 23 24 

Sales status Unsalable Salable Salable Unsalable Salable Salable 

Example 11.5 The electronic products produced by Bo Rui Company have two 
kinds of monthly market conditions: salable and unsalable. If the product is salable, 
it will make a profit of 500,000 yuan; if the product is unsalable, it will result in a 
loss of 300,000 yuan. The survey recorded sales over the past 24 months as shown 
in Table 11.4. 

Question: If the products are salable in the current month, take the current month 
as the first month, and find the total expected profit before the fourth step of the state 
transition (that is, the first four months). 

Solution: 
Let 1 for “salable” and 2 for “unsalable”. Given r 

r =
[
r(1) 
r(2)

]
=
[

50 
−30

]

i = 1, V4 has three forms of formula: 

v4(1) = r(1) + 
4−1∑
n=1

[
p(n) 
11 r(1) + p(n) 

12 r(2)
]

v4 =
(
4−1∑
n=0 

p(n)

)
r = (E + P + P2 + P3)r 

v4(i) = r(i) + 
2∑
j=1 

pi j  v3( j), i = 1, 2 

v0(i) = 0, i = 1, 2, . . . ,  N 

Find the state transition probability matrix P. 
Estimate the state transition matrix P, and estimate the probability of continu-

ously salable with statistical frequency. 

p11 = 
7 

15 − 1 
= 50%
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The numerator 7 is the number of continuously “salable” occurrences in the 
Table 11.4. The denominator 15 is the number of times “salable” appears in the 
Table 11.4. Since the 24th month was “salable” and there was no subsequent 
record, so it is reduced by 1. 

p12 = 
7 

15 − 1 
= 50%, p21 = 

7 

9 
= 78%, p22 = 

2 

9 
≈ 22% 

P =
[
p11 p12 
p21 p22

]
=
[
0.5 0.5 
0.78 0.22

]

r =
[
r(1) 
r(2)

]
=
[

50 
−30

]
, P =

[
0.5 0.5 
0.78 0.22

]

v4 =
(
4−1∑
n=0 

p(n) )r = (E + P + P2 + P3

)
r 

v4 =
[

1.875 0.875 
1.86295 0.27905

][
50 

−30

]
=
[

67.5 
54.776

]

v4(1) = 67.5 

The result is: If the products are salable in the current month, the total expected 
profit obtained in the first four months is 675,000 yuan. 

(2) Average profit per unit time in unlimited period 

For i ∈ S, the average profit per unit time for an unlimited period with the initial 
state of i is defined as 

v(i) = lim 
k→∞ 

Vk(i) 
k 

(11.16) 

Denote 

v = [v(1)v(2) . . . v(N )]T , Vk = [vk(1), vk(2), . . . , vk(N )]T 

Vk =
(
k−1∑
n=0 

Pn

)
r = (E + P + P2 + · · · +  Pk−1)r 

then 

V = lim 
k→∞ 

Vk 
k 

= lim 
k→∞

(
E + P + P2 + · · · +  Pk−1

)
r 

K
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If the Markov chain considered has a stationary distribution: 

Pm = 

⎡ 

⎢⎢⎢⎢⎣ 

p(m) 
11 p(m) 

12 · · ·  p(m) 
1N 

p(m) 
21 p(m) 

22 · · ·  p(m) 
2N 

... 
... 

... 
p(m) 
N1 p

(m) 
N2 · · ·  p(m) 

NN  

⎤ 

⎥⎥⎥⎥⎦ 
→ 

⎡ 

⎢⎢⎢⎣ 

π1 π2 · · ·  πN 

π1 π2 · · ·  πN 
... 

... 
... 

π1 π2 · · ·  πN 

⎤ 

⎥⎥⎥⎦ 

It can be proved that: 

v = lim 
k→∞ 

Vk 
k 

= lim 
k→∞

(
E + P + P2 + · · · +  Pk−1

)
r 

K
= lim 

k→∞ 
Pkr 

= 

⎡ 

⎢⎢⎢⎣ 

π1 π2 

π1 π2 

. . .  πN 

. . .  πN 
... 

... 
π1 π2 

. . . 
... 

. . .  πN 

⎤ 

⎥⎥⎥⎦ 

⎡ 

⎢⎢⎢⎣ 

r(1) 
r(2) 

... 
r(N ) 

⎤ 

⎥⎥⎥⎦ = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

N∑
j=1 

π j r( j) 

N∑
j=1 

π j r( j) 

... 
N∑
j=1 

π j r( j) 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(11.17) 

The average profit per unit time of unlimited period has nothing to do with the 
initial state, which is expressed as 

v(i) = 
N∑
j=1 

π j r( j) 

Chapter Summary 
Markov chain is often used in the prediction or evaluation of queuing problems, 

and coding technology, bioinformatics, hydrological resources and other fields. 
The premise of its application is that the research object should be discrete events 
with Markov properties. When it is applied to the study management science, we 
should first understand the characteristics of the research object. The main points 
of this chapter include the basic concepts and application methods of Markov 
process, Markov chain, continuous-time Markov and hidden Markov model. 

Key Concepts and Terms 

Markov process 
Markov chain 
Stochastic process 
State transition probability 
Steady-state probability 
Continuous-time Markov chain, CTMC
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Table. 11.5 Air states in the past month 

Date 1 2 3 4 5 6 7 8 9 10 11 12 

Air condition 2 2 3 1 1 2 5 5 4 5 5 4 

Date 13 14 15 16 17 18 19 20 21 22 23 24 

Air condition 1 2 2 4 3 4 2 2 5 5 0 1 

Date 25 26 27 28 29 30 31 

Air condition 1 3 2 4 4 1 1 

Hidden Markov model, HMM 

Questions and Exercises 

(1) Suppose there are six states of air quality: non-polluted, excellent, good, lightly 
polluted, heavy polluted, and severely polluted, which are represented by state 
variables Xn = 0, 1, 2, 3, 4, 5. The air conditions for the past month are shown 
in Table 11.5. Try to find the state transition probability. 

(2) Suppose that an institution’s investment income in a stock has three states, 
namely 1, 2, and 3. When the market is in state 1, the annual return is -4%. 
When the market is in state 2, the annual return is 30%. When the market is 
in state 3, the annual return is 10%. Suppose the state transition probability 
matrix P is applied to the weekly state transition of this stock: 

P = 

⎛ 

⎝ 
0.8 0.04 0.16 
0.05 0.8 0.15 
0.1 0.15 0.75 

⎞ 

⎠ 

(1) Try to find the steady-state distribution of this stock in the market. 
(2) Assume that 1 million yuan is invested in this stock for 6 years, and find the 

expected total profit. 

3. Briefly describe the properties of no aftereffect and state transition probability 
of Markov chains.
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