
Transfer Learning in Deep
Reinforcement Learning

Tariqul Islam, Dm. Mehedi Hasan Abid, Tanvir Rahman, Zahura Zaman,
Kausar Mia, and Ramim Hossain

Abstract Reinforcement learning has quickly risen in popularity because of its
simple, intuitive nature, and its powerful results. In this paper, we study a number of
reinforcement learning algorithms, ranging from asynchronous q-learning to deep
reinforcement learning. We focus on the improvements they provide over standard
reinforcement learning algorithms, as well as the impact of initial starting conditions
on the performance of a reinforcement learning agent.

Keywords Deep learning · Transfer learning · Reinforcement learning ·
Convolutional neural networks · Q-networks

1 Introduction

Reinforcement learning is a class of machine learning algorithms that are designed
to allow agents provided with only the knowledge of the states it visits and the
actions available to the agent to learn how to maximize its reward function, quite
similar to the trial-and-error approach. There are different techniques used for rein-
forcement learning, one of the most popular ones being Q-learning where an agent
develops a policy that chooses the action that is estimated to lead to the greatest total

T. Islam (B) · Dm. M. H. Abid · T. Rahman · Z. Zaman · K. Mia · R. Hossain
Daffodil International University, Dhaka, Bangladesh
e-mail: tariqul15-2250@diu.edu.bd

Dm. M. H. Abid
e-mail: mehedi15-226@diu.edu.bd

T. Rahman
e-mail: tanvir15-2245@diu.edu.bd

Z. Zaman
e-mail: zahura15-1381@diu.edu.bd

K. Mia
e-mail: kausar15-2248@diu.edu.bd

R. Hossain
e-mail: ramim15-2246@diu.edu.bd

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X.-S. Yang et al. (eds.), Proceedings of Seventh International Congress on Information
and Communication Technology, Lecture Notes in Networks and Systems 447,
https://doi.org/10.1007/978-981-19-1607-6_13

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1607-6_13&domain=pdf
mailto:tariqul15-2250@diu.edu.bd
mailto:mehedi15-226@diu.edu.bd
mailto:tanvir15-2245@diu.edu.bd
mailto:zahura15-1381@diu.edu.bd
mailto:kausar15-2248@diu.edu.bd
mailto:ramim15-2246@diu.edu.bd
https://doi.org/10.1007/978-981-19-1607-6_13


146 T. Islam et al.

future rewards. Reinforcement learning has seen great recent success, particularly
in Playing Atari with Deep Reinforcement Learning [1] and Mastering Chess and
Shogi by Self-Play with a General Reinforcement Learning Algorithm [2] as it is
a relatively simple yet extremely powerful algorithm, making it an interesting class
of learning algorithms to study. Furthermore, the training of reinforcement learning
agents is extremely slow, since the information it is provided is minimal, which
means that there is a lot of room for improvement with reinforcement learning algo-
rithms. Transfer learning on the other hand is a class of machine learning algorithms
that seek to transfer knowledge gained from solving one problem and applying it
to another problem, so transfer learning can solve the problem of speed for rein-
forcement learning agents. In this paper, we discuss the impact of initial conditions
with transfer learning on the convergence of reinforcement learning agents. In real
life, we know that initial starting conditions matter. Consider a person who chooses
to learn a sport: the athletic ability, age, equipment, training, and instructor will all
influence the time it takes for the person’s skill to peak. If it were at all possible,
we would want to transfer the traits of high-performing athletes to the beginner to
provide better chances at performing well. Based on this intuition, we want to exper-
iment with transferring the models of trained reinforcement learning agents as the
initial starting conditions of reinforcement learning algorithms and confirm that this
hypothesis does indeed apply here too. That is, we want to show that given better
initial conditions, an agent will likely achieve high performance faster than an agent
with worse initial conditions. This is reasonable, and we can easily produce simple
examples that illustrate the point. Consider an extreme example where an agent uses
a neural network to model its policy, and all the weights in the network are initialized
to zero. Then all the weights follow the same gradients, and the policy will likely
perform poorly. Conversely, an agent with a policy model that has been trained for
extremely long periods of time will likely be much closer to optimality: Hence, it
will likely take much less time to converge. Intuitively, it makes sense that better
initial conditions lead to optimal performance faster, and we wish to establish this
for reinforcement learning, by means of a simple form of transfer learning.

2 Related Work

An interesting improvement to Q-learning is asynchronous Q-learning (AQL). This
technique involves one central, shared neural network. Then each asynchronous
agent copies the shared network as its own individual network, learns on its own,
and periodically shares its accumulated updates with the shared neural network.
Furthermore, each agent will periodically copy the shared neural network as its
own individual neural network, making use of the learning that other agents have
done. In effect, an AQL agent searches across multiple locations in the state space
while sharing information with other agents, speeding up its learning process. Wang
et al. [3] represent the ride dispatching problem and suggest suitable solutions which
are based on deep Q-networks. Nowadays, the GPS authorization applications are



Transfer Learning in Deep Reinforcement Learning 147

getting more popular and are also used in ride-sharing. To get the result, they use a
window of 100 circumstances for counting the reward curve and the total number
of training duration is 40,000 circumstances. Our work has suggested a procedure
which has based on DQN for this dispatching platform. They are successful to show
that CFPT is most successful and better than other methods. Victoria et al. [4] aim to
establish a method for deep reinforcement learning that will refine the effectiveness
and capacity of this advisable method by structural perceptivity and relational argu-
ment. They advisable relational model has gained favorable performance and solved
more than 98% of levels. Lample et al. [5] focus on representing a structure to face
3D infrastructure in FPS games. In recent times, deep reinforcement education has
shown much success to achieve human-level control. In this paper, they describe a
procedure to increase the efficiency of the model to utilize the information of game
features. They apply the DQRN model because of its good performance accuracy.
This model is instructed and used to shorten Q-learning. Our advisable structure is
trained to permit various models in various phases of FPS games. This paper [6] aims
to establish an efficient model that will repetitively store the results of a chemical
reaction and select new exploratory conditions to upgrade feedback outcomes. Here
they take random 5000 functions, and the DRO takes 32 steps to arrive at the standard
of regret, where some other algorithms such as CMA-ES takes 111 steps, SNOBFIT
takes 187 steps, and Nelder–Mead fails. Our established DRO model has shown
its remarkable performance to optimize chemical reactions. This model has already
shown its ability to optimize and also increase the speed of reaction. Baldazo et al. [7]
aim to suggest a new model for the mean embedding of distribution which is based
on DRL. Nowadays, DRL has widely used for solving various multi-agent collabo-
ration problems. In our advisable model, they use the agents as a sample and as input
use mean embedding. Besides they describe various features of the mean embedding
by using radial basis functions and training neural networks. The paper [8] aims to
establish some effective methods to upgrade exploration conjunctional optimization
based on DRL. In recent times, DRL has successfully shown an excellent improve-
ment to solve different kinds of control problems. The paper [9] aims to explore
mobile edge computing for smart (IoT) based on deep reinforcement learning. In
incent times, there has been tremendous advancement in developing IoT. Basically,
Kiran et al. [10] aim to show a classification of automated driving activity where can
apply DRL methods. With the advancement of the DRL network, the autonomous
driving system has gained high fidelity.

3 Background

3.1 Reinforcement Learning

The reinforcement learning task is often formulated as a Markov decision process, a
modeling framework useful for partially random, partially controlled environments,



148 T. Islam et al.

which is certainly the case in reinforcement learning where the environment may
behave randomly, but the agent has control over its own actions. In the reinforcement
learning task, a Markov decision process consists of the following elements:

1. SE: The set of states that the environment (with the agent in it) E can be in.
2. AE: The set of possible actions that the agent can take in the environment.
3. WE: SE × AE → SE: The function that determines the resulting state given a

starting state and an action.
4. RE: SE × SE → R: The function that gives the immediate reward for a state

transition.

The agent constructs a policy πE: SE → AE that maps a state in the state space to
an available action that leads to the highest total immediate and future rewards. So
we formulate a utility function UπE : SE → R that determines all rewards received
by following the policy given a starting point s0:

UπE(s0) =
∞∑

t=0

γ t RE(st,WE(st, πE(st))) (1)

Then the policy for our reinforcement learning agent can be defined as follows:

πE(st) = argmaxaεAEUπE(WE(st, a)) (2)

3.2 Q-learning

Often times, an agent does not have access toWE, and in such cases, the agent’s policy
is said to be model-free. The agent must, then, estimate the utility function by its
internal Q-value functionQπE: SE ! R. A simple way to representQπE is to use a table
in which each possible state and action pair is listed, and the estimated cumulative
reward is the entry. To learn the optimal Q-value function which we denote byQE, we
use the Q-learning algorithm on our Q-value function QπE. In one-step Q-learning,
the algorithm takes one step at every training iteration t from state st, observes the
reward received rt and the new state st + 1, and updates the policy as follows:

QπE(st) = QπE(st) + α(r + γ QπE(st + 1) − QπE(st)) (3)

with α as the learning rate, typically a real number between 0 and 1. This algorithm
sets the target value to be the discounted sum of all the future rewards estimated by
γQπE(st + 1) added to the observed immediate reward r. The difference between the
target value and output value is then aweighted by the learning rate and used to update
the Q-function. To avoid settling for a non-optimal policy (premature convergence
of policy), an exploration factor is introduced: Is the probability that the agent will



Transfer Learning in Deep Reinforcement Learning 149

ignore its policy and execute a random action, to diversify its experiences and to
avoid local minima in its policy. As time progresses, the exploration rate is decayed,
so that the agent relies more (but not completely) on its policy. However, it is often
the case that the exploration rate is not allowed to decay to 0 and is instead held at
some fixed minimum exploration rate, to discourage the policy from sinking into a
local minimum.

3.3 Q-networks

It becomes hard to maintain such a Q-table when the size of the state space increases:
for example, consider an agent playing a video game, using the screen’s pixel values
as its state space. If the state is a 84 × 84 × 3 array of 8 bit pixels, and there are four
actions available, the q-value table will hold 284 ∗ 84 ∗ 3 + 2 ≈ 106,351 entries!
A popular solution to the problem of poorly scaling tables is the use of artificial
neural networks in Q-learning termed Q-networks [11, 12]. Q-networks map states
in the state space, represented by frames from the game, to q-values for each possible
action. Q-networks learn to approximate Q in a way intuitively similar to the update
formula for the Q-table, by computing gradients for the network based on the output
of the network (determined without knowing the next states) and target Q-values
(determined using the next states) for the network [1, 13]. Q-networks are far more
powerful than Q-tables because they can also approximate Q-values for states it has
not yet seen and scales much better in terms of size. However, they come with the
downside of being harder and slower to train.

4 Approach and Experiments

We first describe the infrastructure available to us for our experiments. For
high numbers of independent experiments, we use a distributed high-throughput
computing resource through the Center for High Throughput Computing (CHTC)
available at UW-Madison. For our guaranteed convergence experiment, we tested
using a custom maze environment with a state size of 4 and an action space size of 4.
For our initial conditions experiment, we describe how we done operational conver-
gence criteria for our problem setting [14, 15]. We say that the agent’s learning has
stopped if the winning rate over the last 100 evaluations averages to a value greater
than 78, the same stopping criteria for the environment FrozenLake.



150 T. Islam et al.

4.1 Guaranteed Convergence Given Infinite Time

We know from Even-Dar et al. [16] that using the action elimination algorithm, our
reinforcement learning agent will converge given infinite time. Our hypothesis was
that the algorithm would work for a reinforcement learning agent in an environment
with an extremely simple problem with an extremely small state space. We expected
to see the algorithm converge given a couple month’s time. Unfortunately, the algo-
rithm’s progress exponentially diminished, and we never saw the convergence (or
anything even close) after 2 months of running the algorithm on a high-throughput
computing cluster. As such, we affirm that “Infinite time” really does mean some
enormous time quantity that is infeasible. We ran this experiment on a Google Cloud
Compute Engine instance with 8 cores and 32 GB RAM.

4.2 Impact of Initial Conditions on Convergence

We hope to find that given better initial conditions, our DQN agent will converge
faster. We provided these initial conditions as trained DQN models, saved after
various periods of pre-training. We hypothesize that models that have had more
pre-training will require less time to converge, while models that have had little pre-
training. We first show the baseline performances of each initial condition in Fig. 3.
Then we show training times until convergence starting from each initial condition in
Fig. 4. Our hypothesis is affirmed through this experiment as we can see that indeed
agents with more pre-training had faster times to convergence. The pre-training was
done on a system with an Intel i7-7700 k overclocked to 4.9 GHz with 32 GB DDR4
3200 MHz SDRAM on a Samsung 960 EVO M.2 drive. When testing each initial
condition, we used CHTC. Each job was run on a system with 8 CPUs and 10 GB
memory (Figs. 1 and 2).

Fig. 1 Comparison of
average total number of
iterations over all agents
until the task was solved and
the average of the number of
iterations of each agent



Transfer Learning in Deep Reinforcement Learning 151

Fig. 2 Comparison of average total time over all agents until the task was solved

Fig. 3 Baseline
performances of the DQN
agent. The x-axis shows the
number of iterations that had
passed when the agent was
saved while the y-axis shows
the winning percentage of
the agent over 1000 games

Fig. 4 Comparison of time
to convergence for different
amounts of pre-training for
DQN agents



152 T. Islam et al.

5 Conclusion and Future Work

We have shown that initial conditions greatly impact the rate of convergence for
reinforcement learning. As a result, transfer learning shows great potential for accel-
erating the convergence rate of reinforcement learning agents. Transfer learning has
already seen great success in deep reinforcement learning, and we hope that this
research is now further motivated. In the future, we would want to study adversarial
learning in the reinforcement learning setting [17]. Intuitively, presenting challenges
allows humans to learn better, and we believe that this translates to reinforcement
learning agents as well. In fact, it has already been shown that this adds robustness
[18]. Furthermore, adversarial learning is perfectly suited for two-player games like
many of the Atari games. Hence, our future work should include studies in adver-
sarial learning in the reinforcement learning setting. We would also like to study
learning models for multiple games and use transfer learning to apply these models
to different reinforcement learning tasks.

References

1. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013)
Playing atari with deep reinforcement learning

2. Silver D, Hubert T, Schrittwieser J, Antonoglou I, LaiM, Guez A, Lan-tot M, Sifre L, Kumaran
D, Graepel T, Lillicrap T, Simonyan K, Hassabis D (2017) Mastering chess and shogi by
self-play with a general reinforcement learning algorithm

3. Wang Z et al (2018) Deep reinforcement learning with knowledge transfer for online rides
order dispatching. In: 2018 IEEE International Conference on Data Mining (ICDM). IEEE

4. ManfrediVet al (2021)Relational deep reinforcement learning for routing inwireless networks.
In: 2021 IEEE 22nd international symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM). IEEE

5. Lample G, Chaplot DS (2021) Playing FPS games with deep rein-forcement learning. In:
Thirty-first AAAI conference on artificial intelligence

6. ZhouZ, LiX, ZareRN (2017)Optimizing chemical reactionswith deep reinforcement learning.
ACS Cent Sci 3(12):1337–1344

7. Baldazo D, Parras J, Zazo S (2019) Decentralized multi-agent deep reinforce-ment learning in
swarms of drones for flood monitoring. In: 2019 27th European Signal Processing Conference
(EUSIPCO). IEEE

8. Landajuela M et al (2021) Discovering symbolic policies with deep reinforcement learning.
In: International conference on machine learning, PMLR

9. Zhao R et al (2020) Deep reinforcement learning based mobile edge computing for intelligent
Internet of Things. Phys Commun 43:101184

10. Kiran BR et al (2021) Deep reinforcement learning for autonomous driving: a survey. IEEE
Trans Intelligent Transp Syst

11. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image
recognition

12. SzegedyC, LiuW, JiaY, Sermanet P, ReedS,Angue-lovD,ErhanD,Van-houckeV,Rabinovich
A (2015) Going deeper with convolutions

13. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller
M, FidjelandAK,Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, KingH, Kumaran



Transfer Learning in Deep Reinforcement Learning 153

D, Wierstra D, Legg S, Hassabis D (2014) Human-level control through deep reinforcement
learning

14. Yin H, Pan SJ (2017) Knowledge transfer for deep reinforcement learning with hierarchical
experience replay

15. Mnih V, Badia AP,MirzaM, Graves A, Harley T, Lillicrap TP, Silver D, Kavukcuoglu K (2016)
Asynchronous methods for reinforcement learning

16. Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and stopping conditions for
reinforcement learning

17. Lin Y-L, Hong Z-W, Liao Y-H, Shih M, Liu M, Sun M (2017) Tactics of adversarial attack on
deep reinforcement learning agents

18. Pinto L, Davidson J, Sukthankar R, Gupta A (2017) Robust adversarial reinforcement learning


	 Transfer Learning in Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Background
	3.1 Reinforcement Learning
	3.2 Q-learning
	3.3 Q-networks

	4 Approach and Experiments
	4.1 Guaranteed Convergence Given Infinite Time
	4.2 Impact of Initial Conditions on Convergence

	5 Conclusion and Future Work
	References




