
Chapter 9 
Uncertainty Quantification 
in Hydrodynamic Modeling Using 
the Example of a 2D Large-Scale Model 
of the River Elbe 

Rebekka Kopmann, Sebastian Hudjetz, and Andreas Schmidt 

Abstract Using a two-dimensional depth-averaged model of a 65 km long stretch 
of the River Elbe in Germany from Torgau to Wittenberg, methods for quantifying 
uncertainties are demonstrated and their benefit versus the required computational 
and analytical effort is discussed. In a first step, several input parameters like the fric-
tion parameters and the inflow discharges were assumed to be uncertain. The First 
Order Second Moment method was used to determine the most influential uncer-
tain parameters. The influence of the most sensitive parameters on the model results 
was investigated in detail using Monte Carlo Simulations. The spatial distributions 
of the prediction interval and the failure probability visualize areas with uncertain 
or more reliable model results. Scatterplots and probability distributions at signifi-
cant nodes illustrate the dependence of the results on uncertain parameters in more 
detail. Furthermore, the development of the uncertainties over time with regard to 
the hydrograph were analyzed and discussed. 

Keywords Telemac-2D · Reliability analysis · FOSM ·Monte-Carlo ·
Metamodeling · Scatter plots 

9.1 Introduction 

Multidimensional hydrodynamic modeling is a state-of-the-art tool in river engi-
neering and is widely used at the German Federal Waterways Engineering and 
Research Institute (BAW). Within the last decades two-dimensional (2D) depth
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averaged modeling developed due to increasingly fast computations from small-
scale models towards large model areas with fine grid resolution and long simulation 
periods. The simulation of a current river state and the prediction of the effects of 
river engineering measures are mostly possible with adequate reliability. However, 
a single simulation result does not consider the uncertainties due to natural variation 
or lack of knowledge in input parameters. In deterministic approaches input param-
eters must be fixed at a single value. Some parameters like roughness coefficients 
for floodplain vegetation cannot be described adequately with single values. The 
natural variation of that kind of input parameters pushes a deterministic approach to 
its limits. However, with increasing computational power, stochastic approaches are 
possible even for large scale 2D hydrodynamic models. With stochastic approaches 
it is possible to consider uncertainties of input parameters. Using these approaches 
the variations of these parameters can be described with statistic distributions instead 
of best fit values. 

A central task of the BAW is the scientific investigation of river engineering 
measures on federal waterways on behalf of the Federal Waterways and Ship-
ping Administration. The aim is to predict the effects of structural or operational 
measures on the waterways on hydraulic (discharge distribution, flow velocities, 
flow depths) and morphological and morphodynamic parameters (grain composition 
of the river bed, sediment transport). High demands are placed on the reliability of 
these predictions, as they represent essential elements in plan approval procedures. 

In the context of morphological investigations, however, the results show consid-
erable uncertainties, especially over long periods of prediction due to the inherently 
complex physical processes, the natural variation of the input and the system param-
eters and the inadequacies of the mathematical-numerical model. But it is not only 
in morphological investigations that uncertainty and reliability analyses can make 
a significant contribution to improving the evaluation of measures and their quality 
control. When missing measurements prevent proper calibration or the natural vari-
ability of a parameter is not considered by model functions, uncertainty quantification 
is also essential in hydrodynamic modeling. 

In order to be able to evaluate the quality and significance of model simulation 
results, the following questions must be answered: 

• Which uncertain parameters have the greatest impact on the simulated output 
parameters (e. g. water level, flow velocity)? 

• How big is the influence on these output parameters? 
• Which model areas are more (or less) uncertain? 
• How does the uncertainty behave over time? 

At BAW a tool was developed to integrate uncertainty quantification methods 
into project work [5]. In Chap. 2 of this paper the methods used in this tool are 
briefly described. The application of uncertainty quantification to a large Elbe model 
is presented in chapter 3. In chapter 4 results are presented and the benefits of 
uncertainty quantification in project work are discussed.
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9.2 Uncertainty Quantification 

With increasing computational power, the investigation of uncertainties for 2D hydro-
dynamic models became more and more popular (e.g. [9] or [1]). A good overview 
about uncertainty analysis in river modeling can be found in [11]. They state that in 
river modeling uncertainty analysis is an indispensable step and describe a method-
ology for it. According to [10], the potential deficit in the modeling process is defined 
as uncertainty if the reason is a lack of knowledge, or as error if it is not the lack of 
knowledge. With the uncertainty quantification the influence of the uncertainties to 
the model results is determined. 

At BAW, a recently developed tool called UnAnToPy (Uncertainty Analysis Tool 
in Python) supports users performing an uncertainty analysis of 2D river models. A 
procedure adapted to BAW requirements consisting of three steps was realized (see 
Fig. 9.1). 

A detailed description of the method used in UnAnToPy can be found in [2]. In 
the following only a brief description of the procedure is given. 

9.2.1 Initialization 

First of all, the appropriate uncertain parameters must be selected depending on the 
model issues. Typically, input parameters that are not directly accessible to measure-
ments and those that result from imprecise measurements are declared as uncertain. 
Additionally, parameters which have a natural variation can also assumed to be uncer-
tain. The uncertain parameters should be statistically independent or the dependency 
between the parameters (joint probability distribution) must be known. 

For each uncertain parameter a statistical description of its distribution is needed. 
In UnAnToPy six different distributions can be chosen each also as truncated distri-
bution: uniform, normal, log-normal, exponential, gamma and beta. Dependent of

Fig. 9.1 Schematic diagram of the three steps of the uncertainty analysis tool UnAnToPy
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the chosen distribution the statistical parameters mean value, standard deviation or 
truncation limits need to be given.

9.2.2 Probabilistic Approach 

Three uncertainty quantification methods are implemented in UnAnToPy: First-
Order Second-Moment (FOSM), Monte-Carlo Simulation (MC) and metamodeling 
(META). 

The basis of the FOSM method is a Taylor series expansion which is truncated 
at the first order term. The variance of the output variable σ2 

output with respect to the 
standard deviation of the uncertain input parameters σpar_i can be calculated (Eq. 9.1) 
on the assumption that the uncertain input parameters are statistically independent, 
the system behavior is linear and the input parameters are normally distributed. 

σ 2 output = 
Σ 

i 

[ 
∂output 

∂ par_i 
σpar_i 

]2 

(9.1) 

The sensitivity which is the gradient of the model output and the uncertain input 
parameters is computed by finite differences of two model runs. In case of centered 
gradients, the simulations with the mean value minus and plus the standard deviation 
of the uncertain parameters are used. The number of needed simulations results in 
twice the number of uncertain parameters. If the gradient is computed using forward 
or backward schemes, the number of needed simulation runs is reduced to the number 
of uncertain parameters plus one. 

The probabilistic MC method is based on a large number of similar random exper-
iments. Concerning the chosen distribution, the uncertain parameters are random-
ized and for each parameter set one simulation run is started. The standard devia-
tion of the model results can be calculated with a statistical analysis of the model 
results. The number of experiments must be sufficiently large in order to ensure reli-
able results. UnAnToPy uses Latin Hypercube Sampling [3], which is a method to 
reduce the number of needed random experiments without compromising reliability. 
Comparing runs with different numbers of experiments serves to determine the appro-
priate number of experiments. For large scale models, this is often not a manageable 
procedure. Usually the number of experiments are chosen based on experiences with 
similar model settings. In addition, the results can be validated by comparing them 
with the results from metamodeling which achieves a better accuracy than MC using 
the same numbers of experiments. 

Metamodeling is also based on a large number of similar random experiments like 
MC. Therefore, it is typically applied as an additional option to MC method. META 
is realized in UnAnToPy with the non-intrusive polynomial chaos (NIPC) method 
with the help of the OpenTURNS package of Python. The MC simulation runs were



9 Uncertainty Quantification in Hydrodynamic Modeling … 143

Table 9.1 Comparison of uncertainty quantification methods in UnAnToPy 

Uncertainty 
quantification 
methods 

Advantages Disadvantages Typical applications 

FOSM • Small number of 
simulation runs 

• Requirement of linear 
system behavior in the 
range of parameter 
deviation 

• Only Gaussian 
distribution for 
uncertain parameters 

• Requirement of 
statistical 
independency of 
parameters 

• Determination of most 
sensitive parameters 

• Determination of 
qualitative behavior of 
the uncertainty 
influence in model 
outputs 

• Determination of 
reliable / non-reliable 
regions 

MCS • No requirements for 
the probability 
distributions of 
uncertain parameters 

• No assumption of 
system behavior is 
required 

• Large number of 
simulation runs 

• Determination of 
quantitative behavior 
of the uncertainty 
influence in model 
outputs 

• Determination of 
dependency between 
uncertain parameter 
and model result 

META • No requirements for 
the probability 
distributions of 
uncertain parameters 

• No assumption of 
system behavior is 
required 

• One order of 
magnitude less 
simulation runs than 
MC 

• Large number of 
simulation runs 

• Additional 
approximation due to 
use of Polynomial 
Based on results from 
the FOSM method, 
Chaos functions 

• Determination of 
quantitative behavior 
of the uncertainty 
influence in model 
outputs 

• Determination of 
dependency between 
uncertain parameter 
and model result 

used to fit the polynomial chaos functions which replace the costly simulation runs. 
Additional runs with the META method increase the accuracy of the statistical results. 

Further details of the methods can be found in [2]. Table 9.1 shows the advantages 
and disadvantages and typical applications of the uncertainty quantification methods 
of UnAnToPy. 

9.2.3 Uncertainty Analysis 

Based on results from the FOSM method, the sensitivity of each uncertain input 
parameter and the standard deviation of the output variables can be computed with
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Eq. 9.1. Whereas both the MC and META methods offer more evaluation possibil-
ities. The model results of all random experiments N can be statistically analyzed 
regarding e.g. mean values, standard deviations and other statistical values of the 
output variables. 

In addition, data visualization as scatterplots offers the possibility to show the 
distribution of all random experiments at a (representative) node and to further 
examine the behavior of the model. A scatterplot visualizes the relative importance 
of the uncertain parameters with the standardized regression coefficient describing 
the correlation between two parameters. Furthermore, probability distributions of 
the output variables indicate the system behavior at selected nodes. This allows to 
verify the necessary assumptions for the FOSM method and is helpful for further 
understanding of the system. 

9.3 Case Study Elbe 

9.3.1 The Elbe Model 

At the River Elbe the BAW operates a 65 km long 2D hydrodynamic model between 
Torgau and Wittenberg to investigate different river bed and floodplain measures 
(Fig. 9.2). After approx. 45 km the River Elster flows from the right into the River 
Elbe. Dikes define the lateral boundaries of the model area which comprises approx.

Fig. 9.2 Model area and details of discretization. Blue arrows depict flow direction. © Open-
StreetMap contributors
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91.5 km2 and can be roughly divided into an upstream and a downstream region. The 
upstream region is characterized by small floodplains and several bottlenecks which 
lead to comparably high water depths during flood events. The downstream region, 
on the other hand, includes wide floodplains with numerous abandoned channels 
which distribute high water discharges over the whole river foreshore.

For the simulation the open source software Telemac-2D (opentelemac.org) was 
used. The model geometry was based on a digital terrain model and discretized with 
nearly 1.4 million triangles. The mean node distances varied from about 6 m in the 
main channel to up to about 20 m on the floodplains (Fig. 9.2). In order to precisely 
depict the groyne geometry a minimum node spacing of 1 m was sufficient. At 
the upstream boundary of the model area the Elbe discharge was used as boundary 
condition and the Elster discharge at the Elster inlet respectively, while the water 
level was used as boundary condition at the downstream boundary of the model area. 
The flow direction is from south to north. 

The model was calibrated using 31 different roughness zones for discharges 
between low water discharge and high flood discharge [7]. Mainly Nikuradse friction 
law was applied except for forests and buildings for which the Lindner & Pasche 
approach [6] was used. Figure 9.3 shows the different roughness zones with the

Fig. 9.3 Distribution of roughness zones
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category «river bottom» combining all 22 zones of river bottom roughness with 
equivalent sand roughness coefficients between 4 – 8 cm. As turbulence model the 
horizontal mixing model was chosen.

9.3.2 Uncertain Parameters 

In a first step all friction parameters and the inlet discharges for Elbe and Elster were 
considered uncertain which resulted in a total of 12 uncertain parameters. For each 
parameter a Gaussian distribution was assumed to describe the uncertainty. Table 
9.2 shows the mean values from the calibration and the chosen standard deviations 
for each uncertain parameter. The standard deviation for the discharges were set 2% 
for discharges up to mean flood and 5% for discharges above. This is within the

Table 9.2 Uncertain 
parameters 

Uncertain parameters Mean value Standard deviation 

Inflow Elbe (m3/s) 346 … 2875 2% up to mean flood 
discharge 
5% > mean flood 
discharge 

Inflow Elster (m3/s) 20 … 60 4% up to mean flood 
discharge 
10% > mean flood 
discharge 

Nikuradse roughness 
floodplain 1 (m) 

0.13 0.013 

Nikuradse roughness 
floodplain 2 (m) 

0.2 0.02 

Lindner Pasche 
distance forest (m) 

2.5 0.25 

Lindner Pasche 
distance buildings (m) 

3 0.3 

Nikuradse roughness 
fields (m) 

0.3 0.03 

Nikuradse roughness 
wet ground (m) 

0.1 0.01 

Nikuradse roughness 
bridge piers (m) 

0.02 0.002 

Nikuradse roughness 
river bottom (m) 

0.04 – 0.08 0.002 – 0.004 

Nikuradse roughness 
other waters (m) 

0.5 0.05 

Nikuradse roughness 
groynes (m) 

0.45 0.045



9 Uncertainty Quantification in Hydrodynamic Modeling … 147

range given in literature (e.g. [8]). The chosen Elster discharge is not based on direct 
measurements, but derived from measurements taken at a distance. Thus, the standard 
deviation of the Elster inflow is doubled to 4 resp. 10%. In the calibration process, 
the river bottom roughness coefficients are usually the most sensible. Preserving the 
calibration could only be done assuming a moderate standard deviation for these 
values.

Therefore, a standard deviation of 5% was chosen while the standard deviation of 
all other roughness coefficients was set to 10%. This reflect the lack of calibration 
data for higher water levels, the high natural variation of vegetation and the fact that 
there are a lot of possible roughness coefficients combinations at the floodplains. But 
the 10% does not consider the full natural variability of floodplain vegetation which 
is not the aim of this uncertainty analysis. 

9.3.3 Investigations 

9.3.3.1 Steady State Investigations 

The influence of the 12 uncertain parameters to the model results were firstly inves-
tigated at steady state conditions firstly. Three discharges were chosen from mean-
flow conditions to flood conditions in order to cover the most important discharge 
range: Mean water discharge (MQ), mean flood discharge (MHQ) and 5–10-year 
flood discharge (HQ5). The sensitivity and the influence of each of the 12 uncertain 
parameters to the outputs were investigated with FOSM. From these results the most 
influential parameters were selected and used for further analysis. 

For the mean flood discharge the methods MC and META were applied to verify 
qualitatively the FOSM results and to obtain more details about the system behavior 
and the influence of the uncertain parameters on it. 

9.3.3.2 Artificial Flood Event 

From the steady state investigations, the most influential uncertain parameters were 
selected: Elbe inflow, Nikuradse roughness for floodplain 1, floodplain 2, river 
bottom, other waters and groynes. An artificial flood event (Fig. 9.4) based on a 
natural flood event in 2006 was constructed. The hydrograph is characterized by 
28.5 flood days followed by a steady state of 11.5 days. The development over time 
of the influence of the 6 uncertain parameters to the model results were investigated 
with the FOSM method.
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Fig. 9.4 Artificial flood event 

9.4 Results and Discussions 

9.4.1 Steady State Investigations Using FOSM Method 

The influence of an uncertain parameter to the model results is not only determined 
by its sensitivity but also by its standard deviation. This influence is visualized in the 
following by the standard deviation of the output parameter. The water level is used 
as output parameter as it is an integral parameter with a smooth behavior in space 
and time. The standard deviation of the water level will be zero at the downstream 
model boundary due to the fixed water level as boundary condition. Thus, there is 
a general increasing trend of the standard deviation from the downstream to the 
upstream boundary. 

Figure 9.5 shows the standard deviation of the water level along the river axis for 
the most influential uncertain parameters and three discharge scenarios (MQ, MHQ, 
HQ5). The parameters are called most influential if they induce more than 1 cm of 
standard deviation in one of the steady state situations. This is only the case for the 
Elbe discharge and the roughness coefficients for the river bottom and the floodplain 
1 and 2. While the influence on the roughness coefficient for river bottom decreases 
with increasing discharge, the influence on the floodplain roughness coefficients 
increases with increasing discharges, since the decisive factor here is that more 
regions are covered with increasing runoff. Not surprisingly, the Elbe discharge 
causes the largest standard deviations of the water level for all three steady state 
situations. It is the only parameter which induces larger standard deviations than 
5 cm.  

Due to the chosen smaller standard deviation of the discharge for mean (MQ) 
and mean flood discharge (MHQ), the standard deviation of the water level is very 
moderate with a maximum of 7 / 10 cm at the inflow boundary and less than 1 cm
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Fig. 9.5 Water level standard deviation along the river axis according to the most influential uncer-
tain parameters for mean discharge (solid lines), mean flood discharge (dashed lines) and 5–10-year 
flood discharge (dashed dotted lines) 

downstream from El-km 175. The expansion of the influence in river length is equiv-
alent for mean and mean flood discharge but larger for the 5–10-year discharge due 
to the increased standard deviation from 2 to 5%. 

Figure 9.6 shows the standard deviation of the water level according to the Elbe 
discharge for all investigated discharges as surface plots. The white areas indicate 
water depths less than 10 cm. It can be seen that most of the model region is over-
topped for the 5–10-year flood. The differences across the flow direction are negli-
gible for mean and mean flood discharges. Small deviations can be seen for the 
5–10-year flood discharge (Fig. 9.6 bottom right). 

Figure 9.7 shows the standard deviation of the water level according to all chosen 
uncertain parameters along the river axis for the mean discharge. In addition to the 
most influential parameters discussed before, the small influence due to the Elster 
discharge—up and downstream the Elster confluence at El-km 198 - can be seen. The 
effect of groyne roughness is also shown. The instabilities at El-km 155.6 which are 
visible in the standard deviation according to the Elbe discharge, the river bottom and 
groyne roughness, are caused by not optimal boundary conditions at mean discharge. 
In case of smaller water levels, the cross section at the inflow boundary is not fully 
compact. A second flow chain is formed on the right outer side of the cross section, 
which connects the main flow over an area with low water levels. The shallow part 
is responsible for the instabilities at El-km 155.6. This is a good example that uncer-
tainty quantification is also able to highlight the numerically weak regions of a 
model. 

Figure 9.8 shows the spatial distribution of the standard deviation of the water 
level according to the roughness coefficients for floodplain 1 and 2. Notable is that 
an increase of roughness induces increasing water levels at the same regions (El-km 
155–183 and 205–220 for floodplain 1 and El-km 190–200 for floodplain 2) but 
decreasing water levels in the downstream regions (El-km 190–200 for floodplain 1 
and El-km 205–200 for floodplain 2).
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Fig. 9.6 Water level standard deviation according to Elbe discharge for mean discharge (top left), 
mean flood discharge (top right) and 5–10-year flood discharge (bottom left, detail: bottom right) 

Generally, it can be stated that the chosen uncertainty does not affect the model 
results significantly except for the Elbe discharge in the case of a 5–10-year flood 
event. Thus, the model calibration can be considered very robust concerning the 
chosen (small) uncertainty in the input parameters and is therefore well suitable for 
forecasting. The geometry of the model inlet and thereby the upstream boundary 
condition should be modified to avoid instabilities at mean discharge. This will 
improve the local accuracy of the model. 

For the steady state discharges, all simulations were started from a previous 
computation file including the steady state of the calibrated model. The adaptation 
according to the slight changes of the uncertain parameters did not need much simu-
lation time. Investigations showed that a steady state was reached after 2 h resp. 4 h 
simulation time for the highest discharge. The computing time for one simulation 
run on a parallel cluster at BAW using 256 cores needed depending on the discharge 
approx. 2 / 2.5 / 5.5 min. The FOSM method with centered gradient calculations
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Fig. 9.7 Water level standard deviation along the river axis according to all uncertain parameters 
for mean discharge 

Fig. 9.8 Water level standard deviation according to roughness of floodplain 1 (left) and floodplain 
2 (right) at 5–10-year flood discharge 

required 33 simulation runs for each discharge scenario. The overall computing time 
for the steady state investigations using FOSM was 5.5 h. 

9.4.2 Steady State Investigations Using the MC Method 

With the MC method the combined uncertainty of all significant parameters was 
investigated for the mean flood discharge. For this analysis, 100 and 1000 samples
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Fig. 9.9 Failure probability of the water level for the range ± 0.05 m of the calibrated value (left) 
and 95%-probability interval of the water level (right) 

were used to verify if that the smaller number is sufficient. The deviations of the results 
between 100 and 1000 samples were less than 10%. Nevertheless, the results used in 
this paper are based on 1000 samples because of the higher accuracy, especially for 
the scatter plots. For further investigations with similar models 250 or 500 samples 
are recommended. 

In addition to the most influential parameters found with the FOSM method (see 
Sect. 9.4.1: Elbe discharge, roughness coefficients of river bottom, floodplain 1, 
floodplain 2), the roughness coefficients for forest, groynes and other waters were 
investigated. Figure 9.9 on the left shows the failure probability that the water level 
is out of the range ± 5 cm of the calibrated value. According to the results of 
the FOSM method, even the combined uncertainty is negligible for most of the 
model region. Only at the inlet boundary a 5% probability was computed that the 
deviation according to the uncertain parameters is above ± 5 cm. This probability 
decreases to less than 1% at approx. El-km 164. This means that the influence of 
the chosen uncertainty to the input parameters can be neglected in the vicinity of the 
model inlet. The 95% probability interval is shown in Fig. 9.9 on the right. From 
El-km 175 downstream, the impact of the uncertain parameters is less than 2.5 cm 
with a probability of 95%. With this evaluation, the differences between the regions 
concerning the reliability of simulation runs can distinguished more clearly. 

Furthermore, segments of 5 km length along the river axis were chosen to compute 
scatterplots and standardized regression coefficients (SRC). With the scatterplots and 
the calculation of the SRC, the relative importance and the existence of a linear rela-
tion between the uncertain parameters and the simulation results can be shown. SRC 
values above 0.5 imply a significant relative importance of the uncertain parameter. 
The scatterplots in Fig. 9.10 plot the simulated water level values for each sampled 
Elbe discharge at exemplarily chosen nodes along the river axis. The scatterplots until 
El-km 175 show a distinct correlation between Elbe discharge and water level with
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Fig. 9.10 Scatterplots water level according Elbe discharge for nodes at the river axis at El-km 
155, 175, 195, 200 and 220 

SRC values near 1. Further downstream the relative influence of the Elbe discharge 
decreases up to zero (SRC values near 0). For the first 20 km (El-km 155 - 175) 
the Elbe discharge dominates the results and consequentially the SRC values of the 
other parameters are very low. 

From El-km 180 downstream, the roughness parameters of the river bottom and 
the floodplains are decisive. In Fig. 9.11 scatterplots with SRC values above 0.5 are 
plotted. During calibration, the river bottom was divided into 22 roughness zones 
using Nikuradse roughness from 4 to 8 cm. For the MC investigation, the zones

Fig. 9.11 Scatterplots of water levels according roughness coefficients (river bottom friction zones 
4 cm – 5 cm, floodplain friction zones 13 and 20 cm) for nodes at the river axis from El-km 180 
(top left) to 220 (bottom right)
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Fig. 9.12 Roughness coefficients of river bottom and floodplains along the river axis together with 
the position of the most important parameter given in the scatterplots in Fig. 9.11 

with the same value were combined resulting in 5 river bottom zones with roughness 
coefficients of 4 (zone 13), 4.5 (zone 11), 5 (zone 10), 6.5 (zone 9) and 8 (zone 12) 
cm. Zone 9 has no significant impact as it is located near the inflow boundary where 
the Elbe discharge has the biggest impact.

Figure 9.12 shows the arrangement of the river bottom and floodplain roughness 
zones together with the position of the most influential roughness zones. For almost all 
sections, the uncertainty of the respective roughness zones has a direct effect on their 
position and with a typical proportional behavior. But at El-km 180, the uncertainty 
of the downstream roughness zone and at El-km 215 and 220 the uncertainty of the 
upstream roughness zone also affects the section. In these cases, the influence of the 
roughness coefficients is inversely proportional to the water level. A similar behavior 
was already detected in Sect. 9.4.1 Fig. 9.8. 

The analysis with scatterplots provides detailed information about the impact of 
the investigated parameters on the simulation results. This knowledge can accelerate 
a calibration process or can help evaluate river engineering measures. 

The probability distributions for the output results at specified nodes can be 
computed from the statistical analysis by the MC method. The analysis was done 
for nodes at the river axis each 5 km. Figure 9.13 shows the probability distribution

Fig. 9.13 Probability distribution function of the water level and the statistic values for two chosen 
nodes at the river axis
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functions (PDF) and the statistic values for the water level at two chosen nodes at 
the river axis. The nodes were selected because the mean value of the PDF fits best 
(Fig. 9.13 left) or worst  (Fig.  9.13 right) to the calibration result (black dotted line). 
Even the worst node does not differ significantly from the calibrated value, which 
indicates a linear system behavior. This is also confirmed by the computed PDFs 
which could be roughly called Gaussian distributed. The requirement of a slightly 
linear system behavior for the FOSM method can be proofed hereby.

9.4.3 Investigations of Artificial Flood Event 

The investigations were done with the FOSM method as one simulation run needed 
approx. 18 h. For all 6 uncertain parameters and centered gradient computation the 
computing time was 234 h. Figure 9.14 shows the development over time of the 
standard deviation of the water level according to all uncertain parameters every 
5 km at the river axis from El-km 165 to 220. The influence of the Elbe discharge 
is approx. 10 times larger than for the other uncertain parameters so that the second 
y-axis was used. 

Fig. 9.14 Time evolution of the standard deviation of the water level according to all uncertain 
parameters every 5 km at the river axis (El-km 165 to 220)
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A main difference to the steady-state simulations of Sect. 9.4.1 and 9.4.2 is that 
a stage discharge curve was imposed at the downstream boundary. Therefore, the 
influence of the uncertainties at the downstream boundary does not decrease to zero. 
The standard deviations of the water level show a strong correlation to the inlet 
discharge for all uncertain parameters. The influence of the uncertain parameters 
remains almost constant after 28.5 days according to the inlet discharge. Again, 
the most influential parameter is the Elbe discharge. All other parameters induce a 
standard deviation of the water level of less than 1.5 cm. Remarkably, the uncertainty 
of roughness of the river bottom and groynes leads to a decrease of the standard 
deviation of the water level during high floods. Maximum values are reached at the 
minimum discharge for the river bottom roughness and at approx. 1100 m3/s for 
groynes. The reason is a reduced effectiveness of roughness because of high water 
levels. As groynes are generally higher than the river bottom, the maximum occurs 
at higher discharges. The simulation started from a steady state with a discharge of 
500 m3/s while the standard deviation started from zero. The strong increase and the 
first peak of the standard deviation after 1 day was related to this discrepancy. 

The analysis of the artificial flood event confirms that uncertainties in hydro-
dynamic simulation are correlated with the flow dynamics. In contrast to morpho-
dynamic simulations [4] no delay or aggregation of uncertainty can be observed. 
Therefore, the analysis of steady state situation seems to be sufficient as long as the 
objective of the study is not highly linked to flow development over time like e. g. 
investigations of retention effects. 

9.5 Conclusions 

The presented uncertainty analysis for a 65 km long 2D hydrodynamic model of the 
Elbe river shows the knowledge gain achieved with such a procedure for reasonable 
computing time. From a large number of uncertain parameters, the most influential 
ones were identified by the FOSM method. The results of this method are not neces-
sarily quantitatively accurate but deliver a good and fast overview of the effects of 
each uncertain parameter on the model results. The most influential parameters were 
analyzed in more detail by the MC method. This method is much more expensive in 
terms of computing time, but offers more accurate and detailed results. 

For the selected 12 uncertain parameters, comparatively small standard deviations 
between 2 and 10% of the calibrated values were assumed to cover the effect of other 
equally reasonable calibration configurations. Three steady state situations (mean 
discharge, mean flood discharge and 5–10-year flood discharge) were analyzed using 
the FOSM method. With the exception of the Elbe discharge, the impact of the 
uncertain parameters (roughness coefficients and the Elster discharge) was found to 
be negligible for all discharges. This result shows that the model is robust to small 
changes and can therefore be used for predictions.
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In addition, instability at the model inlet was found for the mean flow discharge. 
This is a typical (side) effect of uncertainty quantification, which highlights the 
numerically weak regions of a model. 

A more detailed analysis was carried out using the MC method for the mean 
flood discharge. This required 1000 simulation runs, which needed 30 times 
more computing time for one steady state situation than FOSM. The probability 
interval provided quantitative information about the reliability of the model results. 
According to the FOSM results, the small values of the prediction interval indicate 
that model predictions are reliable. Furthermore, the scatterplots and the standard-
ized regression coefficients (SRC) show the relative importance and the existence of 
a linear relation between the uncertain parameters and the simulation results. 

From the probability distribution of the output variables a comparison of the 
methods can be done. The assumption of a linear system behavior for the FOSM 
method could thus be confirmed. 

In contrast to morphodynamic simulations, the analysis of steady state situation 
seems to be sufficient. The investigation of the temporal development of uncertainty 
is not necessarily needed as long as the objective of the study is not highly linked to 
flow development over time. 

With the UnAnToPy tool it is very easy to set up an uncertainty analysis. In 
addition, the computing time required for the FOSM method for steady state scenarios 
should be negligible during calibration. Therefore, uncertainty quantification should 
be carried out as standard in order to enhance the reliability of the hydrodynamic 
modeling. 
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