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Geometry with a Simplified 
Cross-Section Shape in Shallow Water 
Models 
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and Renaud Hostache 

Abstract Riverbed geometry is crucial information of water flow models. Despite 
precise digital terrain models (DTM) are more widely available at rather reduced costs 
via RADAR or LIDAR surveys, the river bathymetry remains barely invisible. The 
only way to precisely measure riverbed geometry would be to carry out field surveys 
all along the river, which is too costly in reality. The use of physically-based models 
to simulate flood inundation extend is often hampered by a lack of data regarding 
the geometry of the riverbed. The bathymetry used is generally highly simplified 
and interpolated from very few measurement cross-sections. This study investigates 
how a river cross-section can be simplified into a trapezoidal cross-section shape, 
based on classically available data. The equivalent cross-section shape is defined by 
two parameters: the bottom elevation and the bank slope (assumed identical on both 
sides). The methodology is set up on a 19 km length river (Alzette—Luxembourg) for 
which the river bed and the floodplain have been measured over 144 cross-sections. 
A one-dimensional hydraulic model designed using the HEC-RAS software and 
validated in a previous study is considered here as the reference. For each cross-
section, the two parameters are calibrated, by minimising the root mean square error 
between the real and simplified sections. Three different cost functions are tested, 
based on: flow area, wet perimeter and hydraulic radius. The “real” and “simplified” 
hydraulic models are run under steady-state configuration with several discharge 
values. First results show a relatively small influence of the simplified cross-section 
shape on water elevation, especially for higher discharge. Next step will be to infer 
this optimal shape from the partial information given by the DTM.
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14.1 Introduction 

Nowadays, 2D hydrodynamic modelling is frequently used for the simulation and 
forecasting of large-scale flood inundation. These models require topographic data to 
describe the river bed and floodplain geometry. Modelling large areas with structures, 
confluences and meanders requires a detailed description of the terrain geometry and 
the acquisition of in situ measurement data are time-consuming, expensive and need 
require data processing. 

The availability of ground elevation data has increased considerably due to the 
recent improvements of technologies, in particular LIDAR or RADAR surveys, 
which provide high resolution data at a relatively low cost. However, the river 
bathymetry remains barely invisible for these sensors, especially the submerged 
surface. The lack of data regarding the geometry of the riverbed has a significant 
influence on numerical results. This brings to the first question: how, and on which 
criteria can one determine an equivalent section of the non-visible part of the river 
bed? 

The complexity of implementing data assimilation methods with dynamic models 
and the difficulty of estimating the flow rate with bathymetry and roughness led to the 
use of simplified models derived from the de Saint–Venant, also called shallow-water 
equations [1]. In the last two decades the shallow water models with porosity, such as 
the recent depth dependant porosity approach (SW2D-DDP), appeared as a conscious 
way of dealing with surface hydraulic problems in the case of complex geometry 
[2, 3]. The geometry is roughly represented with a parameter sub-mesh (porosity) 
to take into account the effects of elements that are not explicitly represented in the 
mesh. 

Furthermore, these models introduce simplification in topography and influence 
the line flow results in such a way that assessment of the model sensitivity is an 
important key step for optimizing the model performance since it can be used to 
define the relevant parameters for the calibration procedures [4]. This raises questions 
about the sensitivity of the hydrodynamic models by replacing the real topography 
with an “equivalent” one. 

This study aims to establish an optimization method to build a cross-section 
equivalent to that of the real river cross-section, but with approximated geometric 
properties. The equivalence between the simplified and real cross-section is assessed 
through objective functions based on different hydraulic variables. This method is 
applied to the study area of the Alzette river (located north of the city of Luxembourg) 
to validate the model.
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14.2 Methodology 

14.2.1 Equivalent Cross-Section Shape 

A “real” cross-section is generally defined by n points specifying the station x and 
the elevation z. It is supposed that the elevation of the left overbank can be different 
from the altitude of the right overbank. Water surface elevation can vary from the 
bottom bed to many meters above the right and left overbank. The cross-section is 
approximated by simpler shape based on classical available data. It is defined using 
two stratified geometric features where continuity of the section must be respected 
(see Fig. 14.1): 

• A uniform trapeze between the bottom bed (zr1) and the minimum (zr2) between 
the right overbank (zRd) and the left overbank (zRg), slope banks are the same on 
both sides of the trapeze, m. 

• An ordinary trapeze between zRd and zRg. One of the banks is defined having the 
same slope as the uniform trapeze, m, and the other one is vertical slope equal to 
0, so that the width of the river channel is conserved. 

In this simplified geometry, the bankfull width of the upper part (rectangle) 
depends on the river bottom width, the bank slope (m), and the water level (zs). 
We suppose the bankfull width can be estimated from geographical data such as 
aerial images or digital terrain models (DTM). The water level, corresponding to

Fig. 14.1 Simplified representation of a trapezoidal type section with overflow
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the distance between water surface elevation and the bottom bed elevation (zop), is 
supposed to be unknown.

To recreate the simplified bathymetry one need the bank slope and the bottom bed 
elevations. The proposed approach therefor aims to optimize these two parameters 
to create a simplified cross-section with the same hydraulic properties as the real 
cross-section. The simplified cross-section is described with the coordinates given 
by Eqs. (14.1) and (14.2). 

xop = 
[ 
xRg, xRg + m 

( 
zRg − zop 

) 
, xRd − m 

( 
zRd − zop 

) 
, xRd 

] 
(14.1) 

zop = 
[ 
zRg, zop, zop, zRd 

] 
(14.2) 

Equations (14.1) and (14.2) give a river section physically possible only if: 

• xRg + m 
( 
zRg − zop 

) ≤ xRd − m 
( 
zRd − zop 

) 

• zop ≤ zRg; zRg ≤ zRd 
A river cross-section is described by different geometry parameters (water level, 

bottom elevation of the riverbed, bankfull width…) and geometrical functions. 
Fundamental geometrical functions are: flow area S(z), wet perimeter χ(z) and 
hydraulic radius RH(z). These are the geometrical functions used to compare two 
or more sections for a specific z or an interval of z. Two cross-sections are consid-
ered equivalent when their geometric functions are equal or as close as possible for 
all z in a given interval. 

14.2.2 Optimisation Methods: Minimizing the Root Mean 
Square Error Cost Function 

The objective function chosen to optimize the couple of parameters (m, zop) is based 
on the classical Root Mean Squared Error (RMSE). To simplify the optimisation 
process, the unnecessary root and mean are not computed and the objective function 
is defined as the Sum of the Squared Errors (SSE). Using the couple (m, zop) as  
parameters the process minimizes the difference between the geometric functions 
of the real and simplified sections. This objective function gives an SSE value; the 
smaller the SSE value, the smaller the difference between the two functions being 
compared. The SSE function needs an interval of possible z values to optimize the 
couple (m, zop) over the whole cross-section, and not only for a unique given water 
elevation. 

It is possible to calculate the SSE with the flow area (SSES), wet perimeter (SSEχ), 
and hydraulic radius (SSERh). Using these geometric functions, three different 
optimization methods are possible. These optimization methods are described 
respectively in Eqs. (14.3) to (14.5).
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SSES 
( 
m, zop 

) = 
zΣ 

zin  f  

( 
Sz − Sz 

( 
m, zop 

))2 
(14.3) 

SSEχ 
( 
m, zop 

) = 
zΣ 

zin  f  

( 
χz − χz 

( 
m, zop 

))2 
(14.4) 

SSERh 

( 
m, zop 

) = 
zΣ 

zin  f  

( 
Rhz − Rhz 

( 
m, zop 

))2 
(14.5) 

where the interval [zinf , z] is discretized in ten elements from zinf = zr1 − zr3 to z 
= zr3. An equivalent cross-section described by the couple (m, zop) is produced for 
each optimization method according to a different criterion. The SSES, SSEχ and 
SSERh produces three equivalent cross-sections, each of them respectively in terms 
of flow area, wet perimeter and hydraulic radius. 

14.2.3 Validation Procedure 

To compare different couples of parameters obtained (m, zop) with each objective 
function (SSES, SSEχ and SSERh) the relative error is used in the interval of elevation 
[zinf z]. It gives the dimensionless error for each altitude (z) and allows comparison 
of different parameters that do not have the same dimension. To assess the influence 
of the cross-section simplification, the relative error is thus calculated for the flow 
area, wet perimeter, and hydraulic radius. Positive values are obtained when the 
optimized function is higher than the real one and negative values in the opposite 
case. The optimum case is when the relative error reaches zero. 

Once the optimization method is chosen and the relative error is determined, it 
is necessary to check the difference in steady-state of the water line for all sections 
(i.e. the large-scale model) and the real model. The Hec-Ras software [5] is used for  
the hydraulic modelling. Two models are set up, a model with the real bathymetry 
and a model with a simplified bathymetry. Both models share the same forcing 
and parameters (left and right banks, Strickler’s roughness coefficients, bridges, …) 
and diverge only in the representation of the geometry of the river channel. For 
the ‘simplified’ model every cross-section is substituted by a simplified geometry 
defined by the left and right bank elevation, the river width and the couple of optimum 
parameters (m, zop). Simulations are run under different steady states configurations 
with several discharge values. A critical depth downstream boundary condition is 
used for all these simulations. To cover various possible cases the model is tested 
with four different flows: 

• Configuration 1: is a low flow such that water always remains in the river bed (no 
overbank flow);
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• Configuration 2: is a low-medium flow such that the water overflows by 30% in 
half of the sections and the other half does not overflow; 

• Configuration 3: is a high flow such that the water (almost) always overflows by 
30% or more; 

• Configuration 4: is an extreme flow such that the water always overflows by more 
than 80%. 

14.3 Results and Discussion 

14.3.1 Application Test Case 

The study reach of River Alzette is located in the Grand Duchy of Luxembourg. The 
reach length is approximately 19 km and the average flood plain width 300 m. The 
basin area is about 1175 km2 located between Pfaffenthal and Mersh (Fig. 14.2). The 
river reach is described by 144 ground-surveyed channel cross sections whereas the 
floodplain topography has been extracted from a LidarDEM of 2 m pixel spacing 
and 15 cm vertical accuracy [6]. 

The method is first developed on a randomly chosen cross-section. The sensitivity 
of the geometric functions is assessed and one unique geometric function is set up 
on the 19 km length of River Alzette. A one-dimensional hydraulic model designed 
using the HEC-RAS software and validated in a previous study [7] is also available 
and considered here as the reference. 

14.3.2 New Simplified Sections 

The data used in the Hec-Ras hydraulic model come from topographic data produced 
by a riverbed bathymetry survey [6] and derived from LIDAR data. Data are then used 
in the form of DTM and characteristics lines (description of minor bed, floodplain, 
dikes, ponds…). These numerical data are treated automatically and only the minor 
bed bathymetry is replaced by a simplified trapezoidal geometry. Optimization func-
tion is used to obtain a couple of parameters (m, zop) for each geometric function and 
corresponding to the minimum SSE value of the selected objective function (SSES, 
SSEχ or SSERh ). 

To select the geometric function used in the hydraulic model a preliminary study 
is done. A typical cross-section, shown in Fig. 14.3, is selected. The flow area S(z), 
wet perimeter χ(z), hydraulic radius RH(z) are calculated for the water levels from 
230.6 to 239 m. Next, the SSE is calculated for every geometric functions. As said 
in the previous part, the couple of parameters (m, zop) is calculated by minimizing 
the sum of squared error with three different geometric functions: 

• SSES calculated with the flow area function
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Fig. 14.2 Study site in the Alzette River basin showing: a) the drainage area down to Pfaffenthal 
and the 19 km river reach whose geometry is represented by the cross sections, b) the hydrometric 
stations along the river (Source [6]) 

• SSEχ calculated with the wet perimeter 
• SSERh calculated with the hydraulic radius 

Initial values of m and zop are given in the optimization method (mo, zo). For the 
initial value zo the middle of the cross-section is chosen. In the case of the selected 
cross-section zo = 234.8 m and corresponds to the middle of the z interval: Then 
for the initial m value we assume as initial reconstructed figure a triangle, Eq. (14.1) 
gives m0 = xRg−xRd 

2z0−zRd−zRg 
for a triangle. 

The three optimization methods were used and three couples of parameters (m, 
zop) are obtained. Table 14.1 shows the value of optimized parameters and the SSE 
respective values. Numerically, for each individual cost function, the smaller the SSE 
the best the optimised parameters. 

Three equivalent sections are recreated using the couple of values in Table 14.1. 
These equivalent sections are shown in Fig. 14.4. Results shows that sections created 
with the SSES and SSERh have a bottom bed elevation higher than the real one (z = 
234.8) whereas the bottom bed elevation of the SSEx is the same as the real section
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Fig. 14.3 Example of Alzette’s river channel 

Table 14.1 Couples of 
parameter (m, zop) obtained 
by three optimization 
methods: SSES, SSEχ or 

SSERh with section shown in 
Fig. 14.3 

SSES SSEχ SSERh 

zop (m) 234.9 234.8 235.8 

m (m) 0.89 0.97 2.32 

SSE value (m) 10–2 3 64 

Fig. 14.3. It seems that section (c) Fig. 14.4 is the section giving the results further 
from reality due to the difference in altitude of its bottom elevation compared to the 
real section. This may be the consequence of the conditions that have been made 
previously to obtain a realistic section: 

• xRg + m 
( 
zRg − zop 

) ≤ xRd − m 
( 
zRd − zop 

) 

• zop ≤ zRg; zRg ≤ zRd 
Each optimization has been carried out using only a theoretical equation (i.e. the 

flow area, wet perimeter or hydraulic radius). As m and zop are used to calculate other 
hydraulic parameters, it is also necessary to take into account the influence of each 
couple on all the hydraulic parameters.
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Fig. 14.4 Comparison of the cross-sections of the real section and the sections recreated from a) 
flow surface, b) wet perimeter and c) hydraulic radius 

14.3.3 Comparison of Optimization Methods 

Sensitivity analysis for couples (m, zop) uses the relative error comparison method. 
For each pair of parameters (m, zop) and each geometric function (S, χ and RH), the 
relative error curve is plotted over the interval zs ∈ [234.8, 239] in Fig. 14.9. The  
objective is to analyse the influence of each couple on each parameter. We propose 
to select the optimization method enabling to minimizing the influence on the flow 
surface, wet perimeter, and hydraulic radius. 

Figure 14.5 shows the relative error on the flow surface for all zs in the interval z 
= 239 to zinf = 243.8 between real section and sections created by SSES, SSEχ and 
SSERh optimization methods. 

First of all, the cross-section optimized with SSERh underestimates the actual flow 
area with an error of more than 50% regardless of the zs value. Then, the section 
optimized with SSEχ (noted P on the figure) will overestimate the flow area from 
the bottom 234.8 m (zopχ), up to the pre-flood elevation 239 m (left bank). However, 
it is from 236.25 m that the error becomes lower than 10% (the relative error is 
naturally high for low zs values for which the real section is small). For the cross-
section optimized with SSES the real flow area is underestimated with 100% error 
for small values of zs. At 235.5 m the curve reaches the optimum value. And finally,
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Fig. 14.5 Relative error of the flow area of the sections recreated with SSES, SSEχ and SSERh. a) 
On  the error interval of [−100, 200] and b) zoomed on the error interval of [−30, 30] 

from 235.5 to 237 m there is an overestimation below 5% and finally up to river 
banks oscillating around the optimum value of almost zero. Section optimized with 
SSES reaches the Y-axis of 0% faster. From 235 m to river banks, the error of the 
SSES-optimized section is lower than the error of the section optimized with SSEχ. 
At 239 m (the altitude before overflow), the flow area of the section recreated with 
SSES and the real section are the same, there is no over-or underestimation of the 
maximum volume admitted by the section. The overall result is the one expected. 
The section optimized with SSES has the lowest errors on the flow area since this 
section has been optimized from the flow area values from 230.6 m to 239 m. 

As before, Fig. 14.6 shows the relative error in wet perimeter of the three simplified 
sections. The section optimized with the SSERh has the largest deviation from the

Fig. 14.6 Relative error of the wet perimeter of the sections created with SSES, SSEχ and SSERh. 
a) On  the error interval of [−100, 80] and b) zoom on the error interval of [−30, 30]
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real section by underestimating the wetted perimeter. This is due to the altitude of 
zop in Fig. 14.4 which is more than 1 m above the real bottom bed altitude.

For zs values ranging from 235 to 236 m, the section optimized with SSES and 
SSEχ overestimates the wet perimeter by 20% from 235 m and up to 5% from 236 m, 
which can increase the energy loss and thus the pressure drop. Then, between 236 
and 236.5 m both curves reach the optimal value and then underestimate the wetted 
perimeter by up to 5% at the river bank altitude. 

Although the section optimized with the SSEχ should show the smallest deviation 
from the real section, it can be seen at 236.25 m that the section optimized with the 
SSES shows a slightly lower percentage of error. The reason for this is that the section 
optimized with SSEχ has a m 1.09 times larger than the section optimized with SSES 
and a zop 0.1 m deeper. At 235 m, the wet perimeter recreated with SSEχ is 13 m 
and 14 m for the section recreated with SSES. Considering that the real section has 
a perimeter of 11 m at 235 m, it is the wetted perimeter recreated with SSEχ that 
will be the most adapted before the SSES section had the lowest error at 236.25 m 
because of the difference due to the smaller m. 

Figure 14.7 shows the relative error of the three recreated sections with the opti-
mization based on the hydraulic radius. Once again, the section optimized with the 
SSERh has very high error values with more than 30% over the whole studied interval. 
Then from 235 to 236 m the section recreated with SSES underestimates the hydraulic 
radius contrary to the section recreated with SSEχ that overestimates it. It is from 
236.15 m that the section recreated with SSES overestimates the actual hydraulic 
radius with a lower percentage of error than the section recreated with SSEχ. 

Finally, the flow rate is calculated for the same section of the Alzette (Fig. 14.3) 
using the Manning–Strickler equation. We assume Sf = S0 (friction slope = bottom 
slope), z = constant and uniform roughness. In Fig. 14.8 the flow of the equivalent 
section created with SSES seems to have the smallest deviation to the flow of the 
real section. This section decreases faster towards the optimum value that is reached

Fig. 14.7 Relative error of the hydraulic radius of the sections recreated with SSES, SSEχ and 
SSERh. a) On the error interval of [−100, 80] and b) On  the error interval of [−30, 30]
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Fig. 14.8 Relative error of conveyance: a) the error interval of [−100, 350] and b) zoom on the 
error interval of [−30, 30] 

near 235.5 m. At 239 m, the section recreated with SSES overestimates the actual 
flow by 3%.

Three altitudes are selected where the water level in the real section is: small (zs = 
235.5 m), medium (zs = 237 m) and large (zs = 238.5 m). The error of each method 
for these three altitudes is compared. The analysis in Table 14.2 shows that for three 
different altitudes the SSERh has the highest relative error values on S, χ, Rh and Q 
so the optimization method with the hydraulic radius equation will be rejected. 

Then, the relative errors are not significantly different between the optimization 
with SSES and SSEχ. However, the section recreates with SSES has the smaller error

Fig. 14.9 Comparison of the water surface elevations (zs) and bottom elevations of the 144 sections 
of the Alzette flow and the 144 sections optimized for a small flow (10 m3/s)
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Table 14.2 Relative error of sections optimized with SSES, SSEχ and SSERh on S, χ, Rh and Q 
for the altitudes 235.5 m, 237 m and 238.5 m 

zs = 235.5 zs = 237 zs = 238.5 
SSES SSEχ SSERh SSES SSEχ SSERh SSES SSEχ SSERh 

δαS 0.1 1 −45 0.2 3 −69 0.3 2 −100 

δαχ 8 5 −100 −4 −6 −40 −5 −6 −19 

δαRh −7 16 −100 4 9 −48 6 8 −32 

δαQ −5 35 −100 3 9 80 3 6 −58 

with the exception of the point zs = 235.5 m on δαχ. It is also observed at overflow 
(zs = 238.5 m) that the SSES has the smaller error percentage.

Finally, as the section recreated with the SSES has the lowest relative errors on the 
three selected altitudes (Table 14.2), this method is set up on the 144 cross-sections 
along the 19 km length of River Alzette. 

14.3.4 Comparison of the Simplified and Real Model Under 
HEC-RAS 

Two models of a 19 km length river (Alzette-Luxembourg) are run in steady states 
conditions with the Hec-Ras software, one with the real bathymetry [7] and the 
second one with the simplified bathymetry. 

The objective is to compare the results of the real model with the simplified model 
obtained by recreating each of the 144 sections with the SSES method. Four flow rates 
are selected: a small flow rate of 10 m3/s, a low-medium flow rate of 50 m3/s, a large 
flow rate of 100 m3/s and an extreme flow rate of 1000 m3/s. Both models will have 
the same information (elevation of rivers banks, Strickler coefficient, positioning of 
each section…) except for the positions and altitudes corresponding to the simplified 
part (river channel). The comparison of the models is done on water surface elevation. 

Figure 14.9 shows the evolution of the waterline along the watercourse for a flow 
rate of 10 m3/s. For this flow rate, the water remains in the river channel for all cross-
sections, so that there is no overflow. The difference between the real and optimized 
section waterlines, show that the optimized model overestimates the water elevation 
by less than 0.5 m over the whole model domain. 

It is observed that for the 50 m3/s flow rate, in Fig. 14.10 the water level variations 
along the course are unstable. An underestimation of the water line of the optimized 
sections is observed downstream while there is an overestimation upstream. globally 
the greater variations c.a. 15 cm are close to the weirs (represented by vertical red 
lines in Figs. 14.10). 

With a flow rate of 100 m3/s in Fig. 14.11, water levels of real sections are slightly 
higher than those of optimized sections. In cross sections with a hydraulic structure
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Fig. 14.10 Comparison of the water surface elevations (zs) and bottom elevations of the 144 
sections of the Alzette flow and of the 144 sections optimized for a low-medium flow (50 m3/s) 

Fig. 14.11 Comparison of the water surface elevations (zs) and bottom elevations of the 144 
sections of the Alzette flow and the 144 sections optimized for a high flow rate (100 m3/s) 

water levels fluctuate from 12 to 15 cm and exceptionally from 0.5 m in the 8300 m 
station. Between the weirs the water height difference varies from 2 to 3 cm. 

In the last configuration (Fig. 14.12), a flow rate of 1000 m3/s shows that water 
lines are quite similar with differences of a few centimetres before and after the 
hydraulic structures. In this case, the water volume in the channel represents only 
20% of the total volume of water. This confirms that the usefulness of the optimization 
is not visible in this case.
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Fig. 14.12 Comparison of the water surface elevations (zs) and bottom elevations of the 144 
sections of the Alzette flow and the 144 sections optimised for an extreme flow (1000 m3/s) 

To conclude this sensitivity analysis of the model to different flow rates scenarios 
shows that for some sections the real water levels are over-estimated and underesti-
mated for low flow rates, especially near the weirs. However, the difference between 
water levels in the real and simplified model is negligible for extreme flows. 

14.4 Conclusions 

In order to estimate an equivalent riverbed bathymetry, we evaluated an optimization 
procedure based on various geometric functions of the flow surface, wet perimeter 
and hydraulic radius. An optimization method has been therefore defined making 
use of the sum of the squares of the deviations as an objective function. 

Simplifying the riverbed shape on a 19 km long reach of the Alzette river shows 
that it is possible to optimize a section from complete observations. The optimization 
method based on the flow surface yields the smallest deviation from the real section on 
the various parameters. However, it is important to bear in mind that this conclusion 
was drawn based on a single section. 

A complete Hec-Ras model was used on 19 km of the Alzette river in order 
to study the consequences of this optimization on the waterline. This comparison 
indicates that for a small flow (no overflow) and medium flow (with some sections 
overflowing) the difference in water levels are of a few centimetres (c.a. 3 cm) far 
from the weirs and higher near the weirs (c.a. 15 cm). For extreme flows, the method 
used for the optimization of the simplified bathymetry does not significantly influence 
the waterline.
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Next steps will be to apply the methodology with partial observations (i.e. with 
a more restricted z interval). The sensitivity of the model should be studied with 
partial observations as input data, and then a parameter correction algorithm should 
be proposed to reduce, as far as necessary, the resulting error. 
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