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Abstract. For the sake of integrate the ratio of dissolved gas in the oil and the
advantages of artificial intelligence technology to enhance the accuracy rate of
transformer fault diagnosis, the fault diagnosis method for transformer based on
kernel principal component analysis (KPCA)and sparrow search algorithm (SSA)-
support vector machine (SVM) was proposed. Firstly, based on the oil dissolved
gas analysis (DGA), 24 fault features of the power transformer were extracted,
Secondly, KPCA was used for dimensionality reduction to obtain a feature space
with lower latitude. The fault diagnosis model of transformers based on SVM
was designed with the 8 selected features as inputs, and the parameters in the
model were simultaneously optimized by SSA. Then, SSA-SVM was adopted to
diagnose the typical working conditions. To prove the superiority of the SSA-SVM
diagnostic model combined with KPCA feature space, the comparative experiment
of SSA-SVM classifier results in the origin feature space, the KPCA feature space
was carried out, the comparison for accuracy of various methods in the KPCA
feature space was proceed as assist.

Keywords: Dissolved gas analysis - Power transformers - Fault diagnosis -
Kernel principal component analysis - Sparrow search algorithm

1 Introduction

The power transformer is one of the most significant electrical equipment in the electric
power system. It undertakes the most important task of electric power transmission and
voltage change. It will cause local or even large area power cut when it breaks down.
And it must be sure to cause a huge financial losses [1]. Consequently, establishing the
efficient and accurate transformer fault diagnosis model and mastering its operation state
are of significant meaning to enhance the operational level of power transformer and
guarantee the secure and dependable operation of power systems [2].
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In the aspect of transformer fault diagnosis, Dissolved Gas Analysis (DGA) tech-
nology has become one of the most valid means for fault diagnosis of oil-immersed
transformers [3]. At present, the transformer fault diagnosis methods based on DGA
mainly include traditional methods and methods based on artificial intelligence. Tradi-
tional methods include main gas method [4], IEC ratio method [5], Rogers method [6]
and David triangle method [7] and so on. All of them have advantages of simple princi-
ple, small amount of calculation and easy implementation. So, they play a crucial role in
the transformer fault diagnosis. However, these methods are based on on-site experience,
so there will be a large error in diagnosis [8].The methods based on artificial intelligence
mainly include neural network [9], random forest [10], support vector machine [11,
12] and so on. Compared with traditional means, the above diagnosis methods have the
advantages of continuous learning and updating. It can establish the complex curvilinear
relations between the transformer fault and DGA gas content. Although the calculation
accuracy of traditional methods are improved, there are also some limitations as follow.
There are some problems in neural network, such as slow convergence and complex
system structure [13]. Random forest has the disadvantages of long training time and
over-fitting. Compare with the above two methods, support vector machine has strong
generalization performance and can deal with local minimum well. Nonetheless, the
diagnosis capability of SVM is influenced by penalty factor and kernel parameter. The
diagnosis result will be a great error if the value is selected improperly.

When using artificial intelligence technology for transformer fault diagnosis, most
studies are mainly founded on existing DGA ratios (such as IEC, Rogers) as the input
characteristic parameter of artificial intelligence model to establish transformer fault
diagnosis model. However, there is no unified standard of DGA gas ratio for diagnosis
models. According to the literature [14], the effect of transformer fault diagnosis will be
affected if use the partial DGA gas ratio. Therefore, in order to combine the advantages of
DGA ratio and artificial intelligence methods [15], KPCA and SSA-SVM are proposed in
this paper. In this method, 24 characteristic parameters of transformer are extracted on the
basis of DGA. Dimensionality reduction and optimization of characteristic parameters
by using KPCA. The data after dimensionality reduction were used as samples to train
the SVM model. While SSA was used to optimize the model parameters. The transformer
fault diagnosis means founded on KPCA and SSA-SVM is established. The real-time
and accurate diagnosis of power transformer operation state will be realized.

2 Kernel Principle Component Analysis

Kernel Principle Component Analysis (KPCA) is an algorithm integrating principle com-
ponent analysis and kernel method. It can make up for the defect that PCA can’t extract
the nonlinear structural characteristics. Finally, the nonlinear dimensionality reduction
data samples will be realized [16].

The basic idea of KPCA is to transform a nonlinear problem in the input space into a
linear problem in the mapping space by introducing a certain nonlinear mapping function
[17, 18]. The nonlinear mapping is realized by using the kernel inner product arithmetic
in the input space. RBF is used as kernel function in this paper. Suppose to input the
spatial dataset X = {x;},1=1, 2, 3..., N, the x; is a vector of m * 1. Each observation
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has m characteristics. The RBF kernel matrix is calculated as:

2
K(xi,x) = expwa,j —1.....N) 1)

Centralize the kernel matrix, the centralization formula is:
K =K — P,K — KP,, + PTKP,, )

In the formula, P,, refers to the m x m matrix whose elements are all 1/m.
Next, solve the eigenvalues and eigenvectors of the central kernel matrix K:

Ky = (AAT)v = v 3)

Make sure the s largest eigenvalues ) (j = 1,2...s)and its corresponding eigenvectors
v; (j = 1,2...s). The valve of s is defined judging by the cumulative variance contribution
rate. The formula is as follow:

Al4A2 A3 As

— > 85% 4)
A4 A24+ A3, A

The cumulative variance contribution rate, that is the eigenvalue corresponding to the
eigenvector as the dimensionality reduction weight. The matrix after the dimensionality
reduction is:

|
Z=Kv=K |—

1 1
i TTA‘] ©)

3 SVM Parameter Optimization Based on Sparrow Search
Algorithm

3.1 Support Vector Machine

SVM is a model with strong generalization ability and is suitable for small specimen
learning [19]. It has been extensive used in the domain of fault diagnosis.

SVM was originally proposed to study the linear separable binary classification
problem. The most of the cases are nonlinear in fact. The samples of the original input
space need to be mapped into the high dimensionality feature space through the nonlinear
mapping function, after that the optimum classification super function will be constructed

in the space. In this time, the optimization problem is transformed into:
min 4 W+ C i 9
, b ) g 2 i l

vilw-px)+b) >1—-§;
£>0,i=1,2...n

(6)

s.t.

In this formula,w is the weight coefficient, C is the penalty parameter. §; is the slack
variable, which the classification error of training samples was characterized; b is the
partial value constant.
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The form of the dual optimization is as follows:

n

max non
ai =5 > 3 iy (K (xi, %))
o= i=1j=1 7
5.t Z?:] a;yi =0

O<o;<C,i=1,2...n

In this formula, «; is the Lagrange multiplier, y; € {—1, 1} is the category label.
Thus, the optimal classification function of the nonlinear problem is:

@) =san>_ ofyiK (x, x;) + b* ®)
i=1

K (x;, x;) is the kernel function, different kernel functions can be selected to construct
different classification performances of SVM. The common kernel functions are: Linear
kernel function, polynomial kernel function, RBF and Sigmoid. The RBF is easier than
others, and the classification effect is better, so the RBF was used in the paper. The
expression is as follows:

K(x.3) = exp(—gllx = xl1?). g > 0 ©

In this formula, the kernel parameter g is a positive real number.

3.2 SSA Algorithm
3.2.1 Algorithm Principle

SSA is a novel swarm intelligence majorization algorithm enlightened with foraging
behavior and anti-predation behavior of sparrows in nature [20, 21].

In SSA, each sparrow position corresponds to a feasible solution. Supposes that in a
D-dimensional search space, there is a population of N sparrows: X = [X7,X;2, ..., Xid],
i=1,2, ... n, X4 indicates the location of sparrow i in d-dimension. When sparrows are
foraging, there are 3 behavior.

Finders lead the population to search and forage, so the search area is wide. They
use the memory to constantly update their location in order to obtain the food sources.
Finders take up 10%—-20% of the population. And its location is updated as follows:

g+l _ | Xij-ew (—a.f,e’rm) if R2 < ST (10)
i, X[{j_,_Q.L ifRZZST

In this formula, X;; means the location of sparrow i in j-dimension. ¢ means the
present Iteration ordinal number. iter,,,, means the maximum iteration ordinal number.
« is a uniform random number between(0,1]. R2 €[0,1] represents the warning value.
ST €[0.5,1] represents the safe value, Q is a stochastic number that follows a normal
distribution. L indicates the array of 1 x d. The elements of this array are all 1.
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In order to obtain the higher fitness, the new entrants follow to the finders to forge
constantly. The location is updated as follows:

XW()VY7X . .
g+ 0 -ex (l—> ifi >n/2
o=
XH—l_I_
14

(1)

Xi{j - Xlﬁ“‘ AT . L otherwise
X, expresses the optimal location occupied by the finders during the £ + /th iteration.
Xworst €xpresses the global worst location of the ¢th iteration. i expresses the population
size. A represents the matrix of the 1 x d. Each element is randomly evaluated of 1 or
—1.A* = AT(AAT )1,
Scouts watch for the predators’ threats and warn the population to anti predation.
The location is updated as follows:

best + '3

best

LoX] (12)

if fi > fe

+1

ij = ' Xi = Xworst
X+ K-\ Sgmre | W=t

Xpest 1 the global best position at present. 8 means the step length control parameters.
It is a stochastic number that follows a normal distribution with a mean value of 0 and
a variance of 1. K shows the orientation in which the sparrows move. It is a stochastic
number between [—1,1]. f; expresses the fitness value of the i sparrow. f, represents
the optimum fitness value of the sparrow population. f,, means the worst fitness value
of the sparrow population. € is a minimal constant, in order to avoid the situation of the
denominator is 0.

3.2.2 Algorithm Performance Test

To verify the effectiveness of the SSA, test functions Rosenbrock and Ackley were
selected to test its performance, and compared with PSO and GA for analysis.

Rosenbrock only has one global optimal value, it doesn’t have the local value. Just
like Fig. 1, the formula is as follows:

n—1

Fi(x) = Z[loo(ml - x,?)z + (- 1)2] (13)

i=1

x €[—30,30], the global minimum in the domain is 0.

There are a great quantity of local optimum values in the outer region of the Ackley.
The center concave position is the global optimal value of the whole function. Just like
Fig. 2, the formula is as follows:

| — | —
Fa(x) = —206Xp(—0.2\/; ;xl?) — exp(~ ; cosrx)) +20+e (14

x €[—32,32], the global minimum in the domain is 0.
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Fig. 1. TryltStatic F1 Fig. 2. TryltStatic F2

SSA,PSO,GA were used to conduct 30 independent simulation experiments on F1
and F2 test functions. The maximum number of the iterations of each algorithm is 1000.
Population size is set to N = 100. The fitness change curves of the 3 algorithms during
the optimization of F1 and F2 test functions are shown in the Fig. 3 and 4. Table 1 lists
the comparison of test accuracy and stability results of the 3 algorithms for the 2 test
functions.
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Fig. 3. F1(x) Function Fitness Change Curve Fig. 4. F2(x) Function Fitness Change Curve

According to the F1(x) Function Fitness Change Curve in Fig. 3, although SSA did
not find the optimal fitness value on F1(x), the fitness value is better than PSO, GA
obviously.

According to the F2(x) Function Fitness Change Curve in Fig. 4, SSA had reached
the optimal fitness value after 13 iterations on F»(x). However, PSO needs 922, GA
needs more.

According to the results of the optimal value and average value in Table 1, we can
know that the constriction accuracy of SSA is better than PSO and GA on test functions
F1 and F2 obviously. SSA algorithm has better stability compared with PSO and GA.
We can get the results from the worst difference, median and Std. Deviation.
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Table 1. Comparison of test accuracy and stability

Function | Algorithm | Optimal value | Worst value | Median Average value | Std
F1 PSO 31.6539 381.6988 81.1324 108.5045 87.156

GA 80.6832 1405.9881 | 222.5685 286.2865 249.0589

SSA 6.811e—12 3.0416e—07 | 7.0691e—09 | 5.2461e—08 9.4188e—08
F2 PSO 0.2752 2.4193 1.7369 1.7347 0.52752

GA 0.082683 1.2485 0.16271 0.26456 0.25981

SSA 8.8818¢—16 | 8.8818e—16 | 8.8818c—16 |8.8818e—16 |0

In conclusion, we can get that SSA algorithm is better than GA and PSO on the part
of convergence speed, convergence accuracy and stability through the test of Rosenbrock
and Ackley.

3.3 Sparrow Search Algorithm Optimizes SVM Parameters

From the foregoing analysis, the punishment parameter C and kernel function parameter
g of SVM are the main factors that affect its fault diagnosis results. In this paper, SSA is
used to seek out the best C and g in the training stage of SVM, so as to enhance the fault
diagnosis rate of SVM. The steps of SSA optimizes SVM parameters are as follows:

(1) SSA parameters are initialized. Including sparrow population Pop, search space
dimension D, maximum iteration number iter,,,y, proportion of sparrows aware of
danger SD, proportion of Discovers PD, warning value ST.

Compute the fitness of every sparrow to find the position Xp,s; corresponding to the
best fitness value and the position X, corresponding to the worst fitness value
at present.

According to the formula (10), (11), and (12), update the positions of finders,
entrants and sparrows aware of danger.

Recalculate the fitness value of every sparrow after position renew and compare
it with the fitness value in the last iteration. If it is higher than the original fitness
value, the new location value is taken as the best fitness value Xp,;;. Otherwise, the
original fitness value remains unchanged.

Determine whether the maximum number of iterations or solving accuracy is
attained. If not, return to step (3). If so, the iterative process will be stopped and
the sparrow position information of the best fitness will be returned. The optimal
combination (C,g).

@

3
“

&)

4 Transformer Fault Diagnosis Based on KPCA and SSA-SVM

4.1 Fault Type Classification and Feature Selection

According to IEC 60599 standard and some actual transformer operation data, the trans-
former fault mode will be divided into 6 types: medium low temperature overheating
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T1(<700 °C), high temperature overheating T2(>700 °C), low energy discharge D1,
partial discharge PD, high energy discharge D2 and normal working condition N.

When the transformer occurs the above thermal or electrical faults will lead to the
decomposition of transformer oil and insulating paper. According to the “Oil-immersed
transformer State Evaluation and Maintenance Guide” [22], the products include H2,
CH4, C2H2, C2H4, C2H6 and other gases. Based on the above 5 gases, a total of 24 gas
ratios are generated as the set of features to be selected, as shown in Table 2.

Table 2. Gas ratios dissolved in oil

Number DGA ratio Number DGA ratio

1 Hp 13 H,/TH

2 CHy 14 CH4/(SUM)

3 CyHg 15 CoH4/(SUM)

4 CoHy 16 CyHy/(SUM)

5 CyHj 17 CoHy/CoHy

6 CH4/C>Hg 16 CoH4/CoHg

7 CH4/CoH4 19 CoHL/(C1 4 C2)/%

8 CH4/TH 20 Hy/(Hy + C1 + C2)/%
9 CoHg/CoHy 21 CoH4/(C1 4 C2)/%

10 CoHg/TH 22 CHy4/(C1 4 C2)/%

11 CoHy/TH 23 CyHg/(C1 4 C2)/%

12 CoH,y/TH 24 (CHy + CoHy)/(C1 + C2)/%

(Note: SUM is the sum of CH4, CH», and CoHy contents, TH is the sum of 5 gases, and (C1 +
C2) is the sum of the CHy, CoHg, CoH4 and CoHj.)

4.2 Concrete Realization Process of Transformer Fault Diagnosis

Figure 5 shows the realization procedure of transformer fault diagnosis means founded
on sparrow search algorithm to optimize SVM parameters. The specific steps are as
follows:

(1) DGA data of various fault patterns during transformer operation are gathered to
compose fault sample data;

(2) The numerical dispersion between different DGA ratios maybe large was consid-
ered, it may affect the diagnosis is accuracy if it is input directly as a sample.
Normalized processing is carried out for all fault sample data according to formula
(15).

Xy = Xi — Ximin (15)

Ximax — Ximin
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In this formula, X;;;in, Ximax 18 the minimum and maximum value before normaliza-
tion, x; is the value before normalization.

(3) KPCA dimension reduction is performed on normalized sample data to eliminate
redundant gas ratio that affects fault diagnosis accuracy. In this paper,KPCA non-
linear dimension reduction technique based on RBF kernel is selected to lessen the
dimension of dissolved gas ratio in transformer oil according to formula (1)-(5).

(4) Sample data are randomly separated into training set and test set in proportion. The
data after dimensionality reduction is chose as the feature import of the model.

(5) Combined with SSA, a transformer fault diagnose model based on SSA to optimize
SVM parameters was established.

(6) Test sets were used to test the diagnosis effect of SSA-SVM model and output fault
diagnosis results.

Sample data

'

Data preprocessing

'

KPCA dimensionality reduction

Training sample

Parameter optimization

: i i

Test sample

N
The algorithm termination conditions are met
Sparrow
l v search
algorithm
. optimization
Optimal parameters SVM

SVM model

:

Fault type

Fig. 5. Fault diagnosis flowsheet of SSA optimized SVM
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5 Example Analysis

5.1 Fault Sample and Data Pretreatment

In this paper, 240 transformer DGA data with determined state types are selected from
reference [23] for fault diagnosis of SSA-SVM model. Firstly, 240 transformer DGA
data are converted into the ratios in Table 2 to obtain a 240 * 24 dimensional DGA ratio
set. Normalization pretreatment was performed on all ratios according to formula (15)
to eliminate differences between different values.

5.2 Analysis of Feature Value Optimization Results Based on Kernel Principal
Component Analysis

The normalized 240 * 24 dimensional DGA ratio was optimized for dimensionality
reduction, the characteristic values and feature vector of its RBF kernel matrix were
calculated, and the characteristic values whose cumulative variance contribution ratio
was greater than 85% were selected for analysis to achieve dimensionality reduction.
The eigenvalue and variance contribution ratio of RBF kernel matrix are shown in the
table, and the variation trend of variance contribution rate with components is shown in
Fig. 6.

Table 3. Eigenvalue and cumulative variance contribution ratio

Principal component | Eigenvalue | Variance contribution rate/% | Cumulative variance
contribution ratio /%

1 0.0523 27.5003 27.5003

2 0.0376 19.7915 47.2918

3 0.0225 11.8084 59.1002

4 0.0194 10.2115 69.3117

5 0.0131 6.8765 76.1882

6 0.0084 4.4162 80.6044

7 0.0059 3.1211 83.7255

8 0.0051 2.6851 86.4106

9 0.0041 2.1733 88.5839

10 0.0036 1.8768 90.4607

As can be seen from Table 3 that the cumulative variance contribution of the eight
components is 86.4106%. It means these eight components can represent the internal
fault characteristics of the transformer. It can be seen from Fig. 6, the change trend of
variance contribution ratio progressively decreases, and the variance contribution rate
after 8 components has stabilized. Therefore, taking the first 8 components can reflect
most of the variable information, which is transformed from 24 indicators to 8 new
indicators, so as to reach the aim of dimension lessen.
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Fig. 6. Trend chart of contribution rate with the principal components changing

Further, the distribution of the first principal component in different fault types and
normal working conditions in the original feature space and KPCA space is plotted
as shown in Fig. 7. It can be displayed from Fig. 7a that the distribution of the first
principal component in the original feature space is disordered and there is serious
aliasing, which affects the diagnostic performance of the subsequent model; Comparing
Fig. 7b with Fig. 7a, it can be seen that the distance between the first principal components
becomes larger and the aliasing phenomenon is significantly reduced under the six
working conditions after dimensionality reduction. It verifies the effectiveness of KPCA
dimensionality reduction method.
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Fig. 7. Distribution of six states in the origin and the KPCA feature space

5.3 Parameter Optimization

150 groups of failure samples were randomly selected as training samples (25 groups
for each type of failure), and the rest of the 90 groups as test samples (15 groups for
each type of failure). SSA was used to optimize parameters in the SVM model, and
relevant parameters were set as follows: The search range of SVM kernel parameters
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and penalty factor is [0.01,100], population size Pop = 50, maximum iteration times
itermqy = 100, search space dimension d = 2, the sparrows aware of danger SD = 0.2,
sparrows discovers PD = 0.7, warning value is 0.6. During the optimization of SVM
parameters by sparrow search algorithm, the curve of fitness change is shown in Fig. 8.

° °
Bl >

Best Fitness
o
=

0.13

10 20 30 40 50 60 70 80 90 100
Iteration

Fig. 8. Fitness change curve

As can be seen from Fig. 8, when the sparrow search algorithm is employed to
optimize the SVM parameters, the optimal fitness curve gradually converges with the
increase of the iterations, and converges to the minimum after 9 iterations. It shows that
sparrow search algorithm can better resolve the optimization matter of SVM parameters.

5.4 Contrast of Diagnostic Results of Diverse Diagnostic Models in KPCA
Dimensionality Reduction

To verify the superiority of the method in the paper, firstly, the diagnosis effects of SSA-
SVM in original and KPCA feature spaces are compared, Table 4 shows the diagnosis
outcomes of SSA-SVM model in two feature spaces.

Table 4. Eigenvalue and cumulative variance contribution rate

Type Original feature space KPCA
N 86.67 86.67
T1 93.33 93.33
T2 100 93.33
D1 60 93.33
PD 86.67 86.67
D2 93.33 80
Mean value of accuracy/% 86.67 88.89
Time/s 13.29 9.91
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According to the data in Table 4, the mean diagnosis accuracy of SSA-SVM in KPCA
feature space is 2.22% higher than that in original feature space, and the diagnosis time is
reduced by 3.38 s. Through the comparison with that, the SSA-SVM diagnosis method
in KPCA feature space is better than the original feature space in both effect and time.

5.5 Comparison of Diagnostic Results of Different Diagnostic Models in KPCA
Dimensionality Reduction

In Sect. 4.4, the diagnostic effects of SSA-SVM in original and KPCA feature space are
compared. In this section, SVM, GA-SVM, PSO-SVM are selected for comparing with
SSA-SVM in KPCA feature space. Different fault diagnosis results of each diagnosis
model are contrasted as shown in Table 5.

Seen from Table 5 that in KPCA feature space, the mean diagnostic accuracy of
SVM, PSO-SVM, GA-SVM and SSA-SVM are 83.33%, 84.44%, 84.44% and 88.89%
respectively; The diagnostic time of them are 0.14 s, 35.79 s, 19.13 s and 9.91 s respec-
tively. It shows that the fault diagnosis outcomes of this means are more accurate than
other diagnosis models in KPCA feature space.

5.6 Influence of the Number of Training Samples on Fault Diagnosis Outcomes

To further explain the availability of SSA-SVM, the number of training samples of each
type was reduced to 4/5 and 3/5 respectively based on the original training samples.
Then the fault diagnosis model was trained and tested. The outcomes are shown in
Table 6.

Table 5. Comparison outcomes using various models in the KPCA feature space

Type Accuracy/%
SVM PSO-SVM GA-SVM SSA-SVM
N 86.67 86.67 86.67 86.67
T1 86.67 93.33 93.33 93.33
T2 100 86.67 86.67 93.33
D1 80 93.33 86.67 93.33
PD 93.33 86.67 86.67 86.67
D2 53.33 60 66.67 80
Mean value of accuracy/% 83.33 84.44 84.44 88.89
Time/s 0.14 35.79 19.13 9.91

From Table 6 we can see that the diagnosis accuracy of various types of faults is
less affected by the reduction of the quantity of training samples. In the case of the
test samples in Table 5, when the quantity of various training samples is reduced, the
overall fault diagnosis accuracy of SSA-SVM model is still better than that of SVM,
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Table 6. Fault diagnosis results after reducing the training samples

Type Test set 4/5 Training sample 3/5 Training sample
Number of Accuracy/% Number of Accuracy/%
misjudgments misjudgments

N 15 2 86.67 3 80

T1 15 0 100 1 93.33

T2 15 0 100 0 100

D1 15 3 80 4 73.33

PD 15 0 100 0 100

D2 15 7 53.33 5 66.67

Total 90 12 86.67 13 85.56

GA-SVM and PSO-SVM models in Table 5. It shows that the transformer fault diagnosis
model based on SSA-SVM has the merits of good robustness and strong generalization
capability. It can still obtain high fault diagnosis accuracy with less training samples.

6 Conclusion

This paper proposes a transformer fault diagnosis method founded on the kernel prin-
cipal component analysis and the sparrow search algorithm optimization support vector
machine, and the main conclusions are as follows:

KPCA is used to reconstruct the feature space and reduce the dimension, and the
effective features of transformer fault diagnosis are obtained. Compared with the original
feature space, the diagnosis accuracy is improved by 2.22%, the diagnosis time is reduced
by 3.38 s, and high-precision diagnosis results are obtained.

Using sparrow search algorithm to optimize SVM parameters can improve the accu-
racy of SVM fault diagnosis model. Compared with SVM, PSO-SVM and GA-SVM
fault diagnosis models, the fault diagnosis model established in the paper has a greater
test accuracy (the accuracy rates are 88.89%, 83.33%, 84.44%, 84.44%), which proves
the validity of the method in this paper.

In case of training sample reduction, the optimization of SVM fault diagnosis model
parameters by sparrow search algorithm can still obtain high fault diagnosis accuracy,
which is better than the accuracy of SVM, PSO-SVM and GA-SVM models without
training sample reduction. It shows that SSA-SVM model is less affected by the reduction
of the quantity of training samples. It proves the generalization of the method in this
paper.
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