
121

Genomic Selection for Enhanced Stress
Tolerance in Maize 4
Hirenallur Chandappa Lohithaswa,
Sowmya Muntagodu Shreekanth, Santhosh Kumari Banakara,
K. V. Sripathy, and Mallana Gowdra Mallikarjuna

Abstract

Maize is the fastest-growing cereal in the world and serves as the most significant
component of the global coarse grain trade. Interestingly, in addition to being a
prime nutritional source, maize also has a variety of industrial applications.
However, the crop is highly sensitive to various biotic and abiotic stresses,
negatively affecting maize production worldwide. Thus, enhancing maize pro-
ductivity is the central thrust area in maize breeding in the era of changing
climate. The development and deployment of hybrids resistant or tolerant to
biotic and abiotic stresses through genetic options is the most economical,
sustainable and eco-friendly way to mitigate stress-mediated yield losses. Several
breeding strategies are being employed to bring about the desired improvement in
stress tolerance levels. With the advent of DNA markers, marker-assisted selec-
tion supplemented conventional breeding. However, marker-assisted introgres-
sion breeding has failed to significantly contribute to the improvement of
quantitative traits in maize. Recently, genomic selection emerged as a potential
breeding approach to deal with complex stress tolerance traits. Genomic selection
(GS) or genomic prediction, which merges all the genome-wide marker informa-
tion into a model to estimate the genetic worth of candidates for selection, appears
to be very practical in biotic and abiotic stress tolerance maize breeding. Here, we
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summarize the genomic selection efforts in maize breeding to deal with various
abiotic and biotic stresses.
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4.1 Introduction

Maize is entitled as ‘Drosophila of Plant Breeding’ owing to the vast amount of
genetic diversity and amenable to undertake basic and applied studies. It is a member
of Poaceae family with a chromosome number of 2n ¼ 20 and genome size of
2.5–2.7 Gb (Haberer et al. 2005). The existence of both dicliny and dichogamy made
the crop highly cross-pollinated. Additionally, maize is one of the three major staple
food crops. Maize has offered countless benefits to mankind since the prehistoric era.
Maize as a crop showed its ability to support and uplift the farmer’s standard of
living, serve as a soil fertility indicator, generate income and feed the growing
population. In addition to sustaining food and nutritional security, maize also serves
as raw material for versatile industries such as starch and glucose production, biofuel
processing, ethanol production and other sub-by-products.

Photosynthetically efficient (C4), day-neutral and highly adaptive nature of the
maize makes it suitable for most agro-climatic regions. Presently, maize is being
grown in 169 countries across the globe (Anonymous 2019). Globally, maize is
cultivated in 197.20 million hectares with a production of 1.15 billion tonnes and has
a productivity of 5.82 tonnes/ha (Anonymous 2019). The major maize-growing
countries in the world are the USA, China, Brazil and India. The USA is the major
global corn-growing country with 30.21% of global production and accounting for
32.95 million hectares of the area under cultivation (Anonymous 2019). The low
productivity in the developing world can be attributed to various biotic and abiotic
stresses. Maize is highly sensitive to many pests, diseases and abiotic stresses like
drought, salinity, nutrient deficiency and temperature stresses (Fig. 4.1). In addition,
climate change induced abiotic constraints to have a wide range of yield-reducing
effects on all field crops, including maize. Thus, they should be given high priority in
maize improvement programmes (Gazal et al. 2018). Further, intensive cultivation of
potential hybrids and varieties resistant to major diseases and pests leads to resur-
gence and increased crop vulnerability to minor pests and diseases.

Presently, more than 60 diseases are reported in maize. The major diseases which
are severely affecting the production and productivity of maize are Northern and
Southern corn leaf blights (NCLB, SCLB), sorghum downy mildew (SDM), brown
spot (BS), polysora rust (PR), brown stripe downy mildew (BSDM), pre- and post-
flowering stalk rots (PSR) and ear rots (ER) (Hooda et al. 2018). NCLB is the major
foliar fungal disease affecting global maize production (Technow et al. 2013) and is
reported to cause a yield loss of >50% (Raymundo and Hooker 1981; Perkins and
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Pedersen 1987). Maydis leaf blight or SCLB is the most severe disease in warm and
wet temperate and tropical areas of the world, and yield losses are reported up to
70% (Hooda et al. 2018). SDM is a major foliar disease of maize with global
distribution and is prevalent in different altitudes and agro-ecological systems in
the American, African, Australian and Asian subcontinents (Wongkaew et al. 2014;
Lukman 2012). Ten different downy mildew pathotypes are known to uniquely
infect the maize crop in tropical regions (Hooda et al. 2018). The SDM causes severe
yield losses of 30–40% in maize (Rashid et al. 2018). Maize ER disease is prevalent
in all the maize-growing areas worldwide. It is known to be caused by more than
20 fungal species, viz. Aspergillus flavus, Cladosporium spp., Fusarium
graminearum, Fusarium verticillioides, Penicillium spp., Trichothecium roseum,
etc. (Zummo and Scott 1990; Görtz et al. 2008; Guo et al. 2020). However, the
most important ER fungi occurring globally are Fusarium verticillioides
(F. moniliforme Sheldon) that causes Fusarium ear rot (FER) and Fusarium
graminearum that causes Gibberella ear rot (GER) (Mesterhazy et al. 2012).
Along with causing yield loss, Fusarium ear rot also produces fumonisins
(mycotoxins) that affect grain quality and consumers’ health. These mycotoxins
are known to cause higher rates of oesophageal cancer (Munkvold and Desjardins
1997).
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Recently, the synergistic interaction of maize chlorotic mottle virus (MCMV) and
sugarcane mosaic virus (SMV) resulted in serious maize lethal necrosis virus
(MLND) incidences in maize-growing areas of Eastern Africa, the USA, parts of
Latin America and China (Wangai et al. 2012; Gowda et al. 2015). Maize plant
shows susceptibility to this disease at all the growth stages and leading to the death
of plants in severe condition (Gowda et al. 2015). Tar spot (TS) is one of maize’s
most destructive foliar diseases, prevalent in tropical and subtropical areas of South
and Central America. Under a favourable environment, TS is reported to cause
significant grain yield losses (Cao et al. 2017). Cultivating resistant cultivars is
considered the most effective method to manage the disease incidences in maize
(Dingerdissen et al. 1996).

Along with several biotic stresses, the maize crop is also severely affected by
various abiotic stresses. Among several abiotic stresses, drought exerts the most
harmful effects on maize production, resulting in substantial yield loss in rainfed
areas accounting for 74% of maize-growing areas (Nepolean et al. 2014; Wang et al.
2019). Under the present era of climate change, drought has become more recurrent
and unpredictable. Similarly, heat and waterlogging stresses are other important
abiotic stresses in maize. Temperature regimes beyond the threshold level (max.
35 �C to min. 23 �C) result in heat stress in maize (Mallikarjuna et al. 2020). The
one-degree rise above 30 �C in each day above was seen to lower the final grain yield
of maize by 1% and 1.7%, in optimum and drought conditions, respectively (Lobell
et al. 2011). Additionally, 4–5 �C increase in air temperature during the kernel
development stage drastically reduces the kernel number per ear up to 73% (Cárcova
and Otegui 2001).

Flooding or excessive soil moisture or waterlogging is one of the impeding
abiotic stresses for maize production in South and South-East Asia owing to erratic



rainfall patterns (Zaidi et al. 2004). Maize is a highly resource-demanding crop.
Further, in maize production systems of developing world like sub-Saharan Africa,
low nitrogen stress is one of the widespread problems, especially among marginal
farming community (Ertiro et al. 2020). Phosphorus is a vital nutrient that mostly
gets fixed in the soil largely by aluminium and calcium ions and becomes unavail-
able to the plants. Phosphorus starvation will severely affect the growth and devel-
opment of maize, thereby decreasing the biomass and yield (Yu et al. 2018). The
management of these stresses necessitates the development of stress-resilient maize
cultivars in addition to system-specific management practices.
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4.2 Genetic Improvement Strategies for Stress Tolerance
in Maize

Genetic improvement of crops for enhanced stress tolerance is the most effective
approach in managing unwarranted stress occurrence. The breeders employ various
conventional and improved molecular tools in maize to improve the genetic toler-
ance for several abiotic and biotic stresses. The genetic improvement of maize
through conventional breeding methods was mainly based on (i) selection and
backcrossing, (ii) extensive screening for stress tolerance to derive improved
stress-resilient germplasm via recurrent selection, (iii) utilization of alien genetic
variation (pre-breeding activities) and (iv) breeding for early maturity and varieties
with adaptation to specific ecologies (Gazal et al. 2018). The conventional methods
of plant improvement are successful in increasing maize production by exploiting
hybrid vigour, using male sterility systems through backcross methods, population
improvement schemes for deriving the good inbred lines, synthetics and composites.
As in conventional breeding, selection depends mainly on the phenotype that is
highly sensitive to the environment; thus, selection efficiency is low. The advance-
ment in molecular biology, i.e. marker technologies, supplemented the conventional
breeding approaches by increasing the selection efficiency and contributed substan-
tially to crop improvement. Molecular marker technology helps in reshaping the
breeding activities and facilitates rapid gains from selection (Jannink et al. 2010; Liu
et al. 2020).

Currently, the role of marker-assisted selection (MAS) in improving the poly-
genic traits is limited. However, it has been effectively utilized to improve traits with
large effect alleles linked to markers (Zhong et al. 2007). The major limitation in
improving quantitative traits is having the same QTL or genomic region expressing
target traits across environments owing to QTL � environment interactions. Simi-
larly, the genetic background of inbred lines limits the QTL expression across the
germplasm set in a crop (Bernardo 2016). MAS and marker-assisted recurrent
selection (MARS) depend mainly on significantly linked markers, tagged gene
(s) or mapped quantitative trait loci (QTL). Furthermore, the MAS or MARS has
main disadvantage in capturing the significant marker-QTL associations with minor
effects (Heffner et al. 2009; Xu et al. 2012). Thus, marker-assisted selection has two
components: first is to identify the QTL, and second is to estimate the effects



(Jannink et al. 2010). QTL identification using linkage mapping is carried out using
biparental populations, but the power of detecting marker-trait association is poor
because of the presence of chromosomes with low recombination rates and tedious
and time-consuming nature (Guo et al. 2020).
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To resolve the issue associated with linkage mapping for QTL detection, the
concept of association mapping started during the early twentieth century to facilitate
the identification of marker-trait association in non-biparental populations and for
fine mapping of genomic regions with higher recombination rates. Nevertheless,
even though it is advantageous, it has a drawback in identifying rare QTLs with
minor genetic effects governing the economically important characteristics and is
greatly influenced by the environment (Jannink et al. 2010). For instance, resistance
for NCLB disease in maize showed many QTL dispersed throughout the genome
(Van Inghelandt et al. 2012; Poland et al. 2011; Wisser et al. 2006; Ranganatha et al.
2021). Furthermore, high cross-pollination in maize resulted in the rapid decay of
linkage disequilibrium (LD). Hence, maize demands a large number of polymorphic
SNPs distributed throughout the genome (Gowda et al. 2015). To overcome the
disadvantages associated with the above breeding approaches, Meuwissen et al.
(2001) proposed the genomic selection (GS) to capture the total additive genetic
variance using genome-wide molecular markers and to enhance the genetic gain for
quantitative traits (Poland and Rutkoski 2016).

4.3 Genomic Selection in Maize: Need and Importance

With the advent of third-generation sequencing, longer sequence reads can be
generated in a short period and at a significantly lower cost per run, which are
subsequently helpful in the creation of fixed SNP-genotyping arrays that
encompasses set of genome-wide dispersed genic and non-genic SNPs (Varshney
et al. 2014). The cost of genotyping has reduced significantly relative to phenotyping
costs; thus, GS becomes an attractive selection decision tool in breeding activities
(Atanda et al. 2021). GS arose with an intention to utilize the available high-density
parallel NGS technologies. Unlike other methods, GS capitalizes on all marker loci
with and without significant trait association, thereby giving unbiased estimates of
marker-trait association, and it is assumed that casual polymorphism would be
coherent across the families, so the marker effects based on population-wide
estimates would be meaningful (Jannink et al. 2010; Meuwissen et al. 2001; Guo
et al. 2020). GS enhances the genetic gain through improved prediction accuracy of
genomic estimated breeding values, shortening generation intervals and effective
utilization of existing germplasm via genome-guided selection (Sonesson et al.
2010; Schierenbeck et al. 2011; Pryce et al. 2012). In different sets of maize,
Arabidopsis and barley germplasm, the GS reduces the selection time by almost
half per cycle compared to the phenotypic selection for most of the traits (Lorenzana
and Bernardo 2009). The effectiveness of GS in predicting complex traits has been
proven in various crops, including maize (Zhao et al. 2012; Rutkoski et al. 2014;
Zhang et al. 2015). Further, GS with linkage and association mapping has improved



breeding efficiency (Cao et al. 2017). However, GS is mainly used to predict the
additive genetic value of the line, and non-additive genetics are often disregarded
(Robertson et al. 2019).
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GS can be employed to predict breeding values of the individuals with or without
phenotypic information of their own. GS with phenotypic information improve the
accuracy of selection, and without phenotypic information, it shortens the breeding
cycle length by eliminating the need for phenotyping of the candidates before
selection. Further, it is also possible to predict breeding values for a very large
number of individuals, which cannot be phenotypically assessed, resulting in
increased selection intensity. Additionally, GS can also be applied at several stages
in the breeding process to enhance the genetic gain from selection (R total) (Poland
and Rutkoski 2016).

In the genomic selection, marker effects are estimated based on the training set of
genotypes, which are both phenotyped and fingerprinted with dense marker data.
Based on these estimated marker effects, the individuals related to the training
population that is only genotyped but not phenotyped are selected (Zhao et al.
2012). The estimated GEBVs are not the function of underlying genes; instead,
they are the ideal selection criterion (Jannink et al. 2010). The major problem in the
development of the prediction model is over-fitting, and such models can exaggerate
minor variations in the data, and the prediction ability decreases (Jannink et al.
2010). Hence, the application of GS in breeding pipelines is influenced by several
factors when the trait of interest is affected by a large number of loci. The training
population size, genetic diversity and genetic relationship with the breeding or test
population, i.e. the individuals of the training population or a close relative or distant
relatives of the individuals of the breeding/test population, are the most important
among other factors (Pszczola 2012). The heritability of the trait under selection,
i.e. complex traits with low heritability and small marker effects, is suitable for
genomic prediction/selection, whereas the oligogenic traits can be predicted accu-
rately with few markers with relatively large effects (Daetwyler et al. 2010). The
prediction accuracy is low for a complex trait(s) with a large number of markers
when these markers are not in linkage disequilibrium with the QTL/genomic
regions. However, the accuracy increases when the heritability of the trait and
training population size increases (Isidro et al. 2015).

4.4 Genetic Resources for Genomic Selection in Maize
for Stress Tolerance

Germplasm in crop plants serves as a valuable resource for crop improvement
activities as they exhibit a high level of genetic diversity in many important
agronomic traits. The usefulness of genetic resources or germplasm collections in
achieving the improvement in grain yield and agronomic performance was unequiv-
ocally established by numerous reports. Presently, more than seven million crop
accessions are presently preserved in the global gene banks worldwide, which
represent the paramount but largely untapped opportunities for breaking productivity



bottlenecks to accelerate genetic gain for yield and other traits (Wang et al. 2017).
The major hindrances in utilizing the crops’ genetic resources comprise the avail-
ability of larger germplasm collections and the lack of an integrated method to
exploit the available germplasm resources. Recent advancements in high-throughput
genotyping and phenotyping tools, along with evolving biotechnological tools,
create opportunities to employ exotic germplasm in plant improvement programmes.
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Phenotyping is the current bottleneck in plant breeding compared to genotyping,
especially with the decline in genotyping cost by more than 100-fold in the last two
decades. Therefore, the phenotyping cost needs to be optimized within the breeding
programme. While designing the implementation of the GS scheme into the breeding
cycle, the breeders need to select the optimal method for the selection of the training
population so that the prediction accuracy increases and reduce the phenotyping cost
with improvement in precision (Akdemir and Isidro-Sánchez 2019).

Various panels, training populations and biparental populations have been used to
predict GEBVs for various stress-resilient traits in maize. Cao et al. (2017) have used
the Drought Tolerant Maize for Africa (DTMA) association mapping panel to
implement GS and GWAS analysis for tar spot complex in maize. The DTMA
panel carries 282 tropical and subtropical maize inbreds developed at CIMMYT and
comprised of lines with resistance or tolerance to an array of biotic and abiotic
stresses, which affects the maize production, improved nitrogen use efficiency and
grain nutritional quality. At the University of Hohenheim, 2 elite mapping panels
comprising 130 dent and 114 flint lines of European origin were used to investigate
the GWAS and genomic predictions for Gibberella ear rot (Han et al. 2018) and
NCLB resistance in maize (Technow et al. 2013). Similarly, for Fusarium ear rot
resistance, genomic predictions were performed in a panel of 874 lines
encompassing the previous DTMA panel, CML lines and SYN_DH population
(Liu et al. 2021) and tropical maize core collection (Ertiro et al. 2020). Three DH
populations (CML550 � CML504, N ¼ 219; CML550 � CML511, N ¼ 110;
CML550 � CML494, N ¼ 229) and IMAS (Improved Maize for African Soil)
panel were employed in genomic prediction for maize chlorotic mottle virus and
maize lethal necrosis resistance (Sitonik et al. 2019) and nitrogen use efficiency
(Ertiro et al. 2020). For insect pest resistance, Badji et al. (2021) employed a diverse
tropical maize panel composed of 341 DH and inbred lines.

For drought and heat stresses, genomic predictions were carried in the diverse
maize gene pools. A recent study employed 3068 DH lines derived from 54 biparen-
tal and test crosses generated by crossing an agronomically elite line with lines of
drought-tolerant and farmer-preferred traits (Beyene et al. 2021). Further, a multi-
parent yellow synthetic maize population and rapid cycle genomic selection were
employed to simultaneously improve drought and waterlogging stress tolerance in
maize (Das et al. 2020). Many of the previous GWAS panel results can be employed
to constitute the testing population to predict genomic breeding values for various
abiotic stress tolerances like drought and heat (Shikha et al. 2017; Seetharam et al.
2021). Further, maize wild relatives and landraces harbour various abiotic and biotic
stress tolerance genes (Table 4.1). Applying appropriate breeding tools like DH
technology coupled with genomic selections could bring these valuable genes into
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Table 4.1 Genetic resources for various stress tolerance in maize to develop training sets in
genomic selection (Modified from Mammadov et al. 2018)

Wild maize Reason of tolerance/
Stress relative resistance Reference

Biotic stress
Insect resistance

Fall
armyworm
(FAW)
resistance

Z. mays subsp.
parviglumis

Leaf trichomes and leaf
toughness

Moya-Raygoza (2016)

Z. diploperennis Leaf chemical composition Farias-Rivera et al. (2003)

Z. mays spp.
parviglumis

Higher expression of
wound inducible protein-1
(wip1), maize protease
inhibitor (mpi) and
pathogenesis-related
protein (PR1) genes

Szczepaniec et al. (2013)

Teosinte; insect
tolerant
synthetic (ITS)
G1

Release of herbivore-
induced volatile
compounds, viz. indole and
various mono- and
sesquiterpenes, resulting
from FAW attracts FAW
larval parasitoids, viz.
Cotesia marginiventris,
Campoletis sonorensis and
Meteorus laphygmae

de Lange et al. (2014), de
Lange et al. (2016), de
Lange et al. (2018),
Mammadov et al. (2018)

Maize spotted
stalk borer
resistance

Z. mays spp.
mexicana

Possess high
benzoxazinoid
(BX) content

Frey et al. (2009), Glauser
et al. (2011)

Z. mays spp.
mexicana

Oviposition of Chilo
partellus produce the (E)-
4,8-dimethyl-1,3,7-
nonatriene and which
attracts the egg
(Trichogramma bournieri)
and larval (Cotesia
sesamiae) parasitoids of
Chilo partellus

Mutyambai et al. (2015)

Z. mays spp.
parviglumis

Z. mays spp.
parviglumis

Western corn
rootworm
resistance

Teosinte
(no information
on specific
species)

(E)-β-caryophyllene
released from root
herbivory by cutworm
invites entomopathogenic
nematode Heterorhabditis
megidis

Rasmann et al. (2005)

Disease resistance

SCLB
resistance

Z. diploperennis – Wei et al. (2001)

NCLB
resistance

Z. diploperennis – Wei et al. (2001)

Tripsacum
floridanum

Ht3 gene Hooker (1981)
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Table 4.1 (continued)

Stress
Wild maize
relative

Reason of tolerance/
resistance Reference

Grey leaf spot
resistance

Z. mays subsp.
parviglumis

– Zhang et al. (2017)

Rust resistance Eastern
gamagrass

Rp1 gene Smith et al. (2004)

Corn smut
disease
resistance

Teosinte – Chavan and Smith (2014)

Maize
chlorotic
dwarf virus
resistance

Z. diploperennis – Nault and Findley (1981),
Nault et al. (1982)

Maize
chlorotic
mottle virus
resistance

Z. diploperennis – Nault and Findley (1981),
Nault et al. (1982)

Maize streak
virus
resistance

Z. diploperennis – Nault and Findley (1981),
Nault et al. (1982)

Maize bushy
stunt
(mycoplasma)
resistance

Z. diploperennis – Nault and Findley 91,981)

Maize stripe
virus
resistance

Z. diploperennis – Nault and Findley (1981)

Maize rayado
fino virus
resistance

Z. diploperennis – Nault and Findley (1981)

Weed resistance

Striga
hermonthica
resistance

Z. diploperennis Resisting to attachment
germinating striga to roots
and restricting the
subsequent penetration into
the vascular system via
signalling that prevents the
haustoria growth

Lane et al. (1997), Rich
and Ejeta (2008), Gurney
et al. (2003)

Eastern
gamagrass

Amusan et al. (2008)

KSTP 94 (open-
pollinated maize
variety)

Post-attachment resistance
to S. hermonthica

Mutinda et al. (2018)

Abiotic stress tolerance

Drought
tolerance

Eastern
gamagrass

Deeply penetrating root
system

Clark et al. (1998)

Acid soil and
aluminium
tolerance

Eastern
gamagrass

– Foy (1997)



breeders’ disposal for their rapid utility in the current breeding pipelines to deliver
stress-resilient maize hybrids.
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Table 4.1 (continued)

Stress
Wild maize
relative

Reason of tolerance/
resistance Reference

Waterlogging
tolerance

Z. nicaraguensis To prevent oxygen loss in
stagnant deoxygenated
conditions, adventitious
roots develop radial
oxygen barriers

Abiko et al. (2012)

Z. luxurians Developing root
aerenchyma under anoxic
conditions

Ray et al. (1999)

Eastern
gamagrass

4.5 Statistical Models in Genomic Selection

In GS, various statistical methods have been employed to estimate marker effects
which are classified into parametric, semi-parametric and nonparametric models.
The accuracy of marker effects estimation using various statistical methods is a
function of the target trait’s genetic architecture (Daetwyler et al. 2010), the popula-
tion structure (Habier et al. 2007; Zhong et al. 2009) and the marker’s density
(Meuwissen and Goddard 2010). The genomic selection models can be categorized
into parametric, semi-parametric and nonparametric methods.

4.5.1 Classification of Statistical Models in Genomic Selection

4.5.1.1 Parametric Models in Genomic Selection
Linear least square regression model: Genomic selection is focused on predicting
individuals’ breeding value by modelling the association between individuals’
genotype and phenotype. Linear least square regression (LLSR) is the simplest
parametric model. The major problem associated with the LLSR model is that it is
difficult to perform the estimation with much higher number of markers than the
number of individuals with phenotypic information. Although an alternative
approach, a subset of markers can be used; still the poor prediction accuracies are
obtained if the ratio of the markers’ number and the individuals’ numbers is very
large or has multicollinearity (Howard et al. 2014). Therefore, Meuwissen et al.
(2001) suggested the modifications to the LLSR model to eliminate the problem of
more independent variables (predictor) than dependent variables (regressands).
However, it fails to fully take advantage of all the markers’ information since the
final model is based on markers with a significant effect only.

Ridge regression (RR): Multicollinearity between the marker data negatively
affects the performance of variable selection methods. Ridge regression can be



used when a large amount of marker information is available, so it can overcome the
‘p> n’ problem of the least square regression model (Howard et al. 2014). RR in GS
was implemented with an assumption of random marker effects (mj’s j ¼ 1. . .p), and
markers were drawn from a group with normal distribution and Var(mj)¼ σ2m, where

σ2m ¼ σ2a
nk σ2a

represents the additive component of genetic variance expressed among

individuals and nk is the number of marker loci (Meuwissen et al. 2001; Habier et al.
2007). The key property of RR is that it won’t select a subset of predictors in contrast
to other methods such as LASSO and elastic net (de Vlaming and Groenen 2015).
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Best linear unbiased prediction (BLUP): The concept of BLUP theory and the
mixed model formulation and their utility in animal and plant breeding were
discussed by Henderson (1949) and Henderson et al. (1959). The BLUPs are useful
to deal with unbalanced datasets, for instance, multilocational datasets, a discrepancy
in the number of individuals, etc. (Bernardo 2010). Genomic BLUP (GBLUP) is
based on a genomic relationship matrix that explains genetic relationships between
individuals, which are calculated from genotypes at single-nucleotide
polymorphisms (SNPs), whereas traditional pedigree BLUP (Henderson 1975)
uses pedigree relationship matrix with a genomic relationship matrix (Habier et al.
2013).

Least absolute shrinkage and selection operator (LASSO): LASSO is a compelled
form of ordinary least squares, which is developed to overcome the limitations of
linear least squares by Tibshirani (1996) and in GS first implemented with cross-
validation by Usai et al. (2009). LASSO is indifferent to closely correlated markers,
i.e. LASSO picks one among the highly correlated markers and ignores the
remaining (Wang et al. 2018). Being a penalized regression-based approach,
LASSO gives better estimates when the number of markers is greater than the
number of individuals ( p > n) (Budhlakoti et al. 2020).

Bayesian alphabet models: The Bayesian alphabet models in the genomic selec-
tion were started with BayesA and BayesB models (Meuwissen et al. 2001). Later
several models, viz. BayesCπ and BayesDπ (Habier et al. 2011), fast EM-BayesA
(Sun et al. 2012), fast BayesB (Meuwissen et al. 2009), BRR (Bayesian ridge
regression on markers) (VanRaden 2008), Bayesian LASSO (Park and Casella
2008), etc., were derived.

In BayesA and BayesB models, the data and the variances of the marker positions
need to be modelled. The main difference between BayesA and BayesB is the prior
for the variance components, i.e. in contrast to BayesA, BayesB assumes that not all
the markers contribute to the genetic variation. The BayesCπ gives a more sensible
formulation of the mixture. However, it poses the same spirit and limitations as
BayesB (Gianola 2013). Park and Casella (2008) used the idea from Tibshirani
(1996) to connect with Bayesian analysis to come up with Bayesian LASSO.
Bayesian LASSO generates the models with non-null regression coefficients even
if p > n (Gianola and Fernando 2020). In other words, LASSO results in the sparse
model, whereas Bayesian LASSO yields an effectively sparse specification like
BayesB (Meuwissen et al. 2001). Yi and Xu (2008) first used the Bayesian
LASSO model for QTL mapping followed by subsequent applications in genomic



prediction by various researchers (de Los Campos et al. 2009; Legarra et al. 2011;
Lehermeier et al. 2013).
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4.5.1.2 Semi-Parametric Models
Reproducing kernel Hilbert space (RKHS): Gianola et al. (2006) proposed this semi-
parametric model proposed by coalescing the best qualities of a nonparametric
model with a mixed model framework (Howard et al. 2014). The RKHS model
combines a genomic relationship matrix (G) and pedigree-based numerator relation-
ship matrix (A) in a kernel matrix while making weaker assumptions on the
compatibility of G and A (Rodríguez-Ramilo et al. 2014).

4.5.1.3 Nonparametric Models
Nadaraya-Watson estimator: Using Silverman’s (1986) nonparametric kernel esti-
mator, which is used in the estimation of p (x), Nadaraya (1964) and Watson (1964)
estimated the conditional expectation function. The estimator is just a weighted sum
of observations yi, i ¼ 1, 2, 3. . . ..n and is called Nadaraya-Watson’s equation.
Nadaraya-Watson estimator is one of the most widely used nonparametric models
for genomic selection. In the presence of additive effects, the prediction of
Nadaraya-Watson estimator model is poor compared to other nonparametric models.
However, in the presence of epistatic interactions, the performance of Nadaraya-
Watson estimator was significantly better than the parametric methods (Howard
et al. 2014).

Support vector machine (SVM) regression: Vapnik (1995) and Cortes and
Vapnik (1995) proposed and discussed SVM approach. The SVM is originally
employed in classification and regression analysis as supervised learning method.
Here, the training dataset is used to create a maximum marginal classifier that results
in the biggest possible separation between the comparing classes of observations. In
plant breeding, the SVM regression explains the association between the marker’s
genotypes and the phenotypes which can be modelled with a linear or nonlinear
mapping function that takes samples from a predictor space to an abstract, multi-
dimensional feature space (Hastie et al. 2009; Long et al. 2011).

Neural networks (NNs): NNs are types of nonparametric GS models. NNs are
originally developed to understand how neurons of the human brain interact, work
and conduct computations (Bain 1873; James 1890; Hastie et al. 2009). The feed-
forward model is a basic NNmodel, which is a two-stage network with three types of
layers, i.e. an input layer, a hidden layer and an output layer. Nonparametric nature
of NNs able to model both linear and complex nonlinear functions permits the
quantification of additivity and epistasis interactions (Howard et al. 2014).

4.5.2 Genomic Selection Models: Predictive Abilities
and Accuracies

Presently, there are various statistical models available to estimate genomic
estimated breeding values. The selection of appropriate models is most crucial for



effective genomic selection. Some models are fit better for extremely quantitative
traits, while some are performing good for traits which fall between qualitative and
quantitative nature (Poland and Rutkoski 2016).
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An optimal model should give the highest possible prediction accuracy, limit
overfitting on the training dataset and be based on maximum marker-QTL LD rather
than on kinship (Habier et al. 2007). This makes models easy to implement as these
are consistent across the broad range of phenotypes and datasets and computation-
ally efficient (Heslot et al. 2012). Further, the prediction ability of GS models can be
increased by correcting the field spatial variation, which includes use of blocking,
with resolvable incomplete block designs such as the alpha-lattice being popular in
early-generation testing (Patterson and Williams 1976; Ward et al. 2019).

Furthermore, genetic architecture and heritability have the utmost influence on
estimates of prediction accuracy and mean squared error (MSE). Parametric methods
give somewhat superior estimates than nonparametric methods for traits with addi-
tive genetic architecture. However, when the genetic architecture of the target trait is
entirely under the interaction component, parametric methods fail to provide accu-
rate estimates (Howard et al. 2014; Momen and Morota 2018). The parametric, semi-
parametric and nonparametric models showed increased prediction accuracies with
heritability and the number of markers and individuals. However, an inverse associ-
ation was observed with the increase in the number of QTLs from 50 to
200 (Sahebalam et al. 2019).

4.6 Genomic Selection Strategies for Stress Tolerance in Maize

The genomic selection strategies can be grouped into three categories other than
regular or basic GS in cereals. These strategies can be employed for the GS of
desired traits depending on the germplasm relatedness, trait phenotyping and
resources (Robertson et al. 2019).

4.6.1 Across-Breeding Cycle Genomic Selection

Across-breeding cycle GS necessitates the good association between training and
test datasets. The relationship between training and the test data and high association
between the datasets in subsequent years are most pre-requisite for across-breeding
cycle GS. The association of training and test datasets can be achieved by including
common parents in crossing plans for subsequent years, and/or the crossings must be
based on the progeny of previous years that were used as parents (Robertson et al.
2019). In many cases, the varieties released by other breeders or germplasm of
special interests enter the breeding pipelines as a source for germplasm diversifica-
tion. At this juncture, to ensure the breeding materials with sufficient genetic
relatedness to implement the across-breeding cycle GS is more challenging. Addi-
tionally, without any modifications of across-breeding cycle GS, 6 years is required



to use the lines from the respective breeding programme as new parents (Robertson
et al. 2019; Michel et al. 2016).
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4.6.2 Within-Breeding Cycle Genomic Selection

In within-breeding cycle GS method, the lines from the same breeding cycle are used
to constitute the training population for GS, for example, to predict GEBVs of the
sister lines with missing phenotypic datapoints. GS within-breeding cycle is impor-
tant when the aim is to reduce the phenotyping or environments or measuring the
expensive and complex traits on selected portion of the progenies to predict for the
rest. Generally, high GS prediction accuracies in the same generation are often
associated with high genetic relatedness between lines, since multiple lines from
each family are being tested. Therefore, prediction accuracy of GS selection is higher
within the breeding cycle or generation (Robertson et al. 2019).

4.6.3 Genomic Selection Using Untested Parents for Breeding

In GS with untested parents’ method, the untested parents refer to those lines which
are started being used as parents without being tested in the field. It is a drastic way to
use genomic selection wherein the phenotyping testing is skipped, at least for the
portion of breeding programmes. Here, novel parental lines are selected solely on
GEBVs. The use of untested parents can often significantly shorten the breeding
cycle and allow faster genetic gain per year, especially when the breeding cycles are
large owing to extensive phenotyping. In dairy cattle breeding, Schaeffer (2006)
suggested the use of untested parents for the selection of bulls. Presently, use of
untested parents in predicting the GS is more popular and revolutionizing dairy cattle
breeding programme. In the case of agricultural crops and cereals where the exten-
sive phenotyping is required, the use of untested parents could similarly revolution-
ize cereal’s breeding approaches (Robertson et al. 2019).

4.7 Genomic Selection for Abiotic Stress Tolerance in Maize

Drought, heat, salinity, waterlogging and mineral nutrient stresses are the major
abiotic constraints limiting maize production worldwide (Edmeades et al. 1989). The
climate change effects resulted in increased frequency of moderate to severe
drought, high air temperature and erratic rainfalls with high intensity. The major
focus of maize research in the present scenario is to improve abiotic stress tolerance.
However, identifying genetic components that provide abiotic stress tolerance is
challenging and resource demanding.

The traits imparting abiotic stress tolerance are governed by several QTL with
small individual effects on overall trait expression, which makes it difficult for its
identification, modifications and introgression into elite cultivated varieties. Thus,



marker-assisted selection and QTL mapping using linkage analysis fail significantly
in bringing significant changes. Hence, with the advent of high-throughput
genotyping, genomic selection is now being used in breeding for abiotic stress
resistance in maize (Pace et al. 2015; Table 4.2).
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4.7.1 Drought Tolerance

The genomic selection was attempted for drought tolerance in 240 maize subtropical
lines employing 29,619 SNPs and assessed the genomic prediction accuracies with
7 GS models, i.e. BayesA, BayesB, elastic net, LASSO, random forest, reproducing
kernel Hilbert space and ridge regression, for different agronomic target traits under
drought stress environments. Of these seven genomic selection models, BayesB has
been shown to have the highest prediction accuracy for the dataset. From the top
1053 SNPs, 77 SNPs were found to be associated with 10 drought-responsive
transcription factors, which are associated with different physiological and molecu-
lar functions. Thus, these drought-related SNPs can be further employed for the
development of drought-resilient maize cultivars (Shikha et al. 2017).

Rapid cycle genomic selection (RCGS) for drought resulted in a genetic gain of
110 and 135 kg ha�1 year�1 in multi-parent yellow synthetic populations MSY-1
and MSY-2, respectively. The higher genetic gain for the trait of interest in biparen-
tal populations could be due to a change in the population structure of the base
population. Further, the genetic diversity of MSY-1 and MSY-2 did not change
significantly even after two cycles of GS, indicating that RCGS can be effectively
used to achieve high genetic gains without loss of genetic diversity (Das et al. 2020).

Genomic prediction in 210 maize inbred lines under drought and well-watered
conditions was conducted using all the SNPs, random SNPs and trait-associated
SNPs. The investigation revealed the greater prediction accuracies with trait-
associated SNPs across drought and well-watered conditions and all the traits such
as grain yield, plant height, ear height, date of anthesis and silking and anthesis-
silking interval (Wang et al. 2019). Recently, Beyene et al. (2021) employed
genomic selection in 3068 DH lines derived from 54 biparental populations
generated by crossing elite inbred line with lines showing tolerance to drought
tolerance and other farmer-preferred traits. The study demonstrated that increasing
the training set with genotyping and phenotyping data from the previous year along
with combining 10–30% lines from the year of testing results in enhanced prediction
accuracies. Additionally, Cerrudo et al. (2018) showed the superiority of GS over
MAS for grain yield and physiological traits in the maize DH population across the
water stress regimes.

4.7.2 Heat Tolerance

Along with drought stress, maize production is also constrained by damage caused
by heat stress, which is more predominant in the present circumstances because of
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global warming. Inghelandt et al. (2019) carried out an experiment to assess the
diversity and QTL and predict the genomic values for heat tolerance-associated
traits. The genome-wide prediction models’ ability was tested by employing a large
number of KASP (Kompetitive allele-specific PCR genotyping) and RAD (restric-
tion site-associated DNA sequencing) SNPs. Additionally, the intra-, inter- and
mixed pools prediction accuracies were also examined. Results from the study
confirmed that the prediction ability of genome-wide prediction models was found
high for within-population calibrations; hence, use of such approaches for selecting
heat tolerance at the seedling stage is most preferred (Inghelandt et al. 2019).
Genomic prediction for combined drought and heat stress in a panel of 300 maize
lines of tropical and subtropical origin revealed that the genomic prediction
accuracies obtained from marker trait-associated SNPs were comparatively greater
(0.28 to 0.75) than those obtained from the genome-wide SNPs (0.13 to 0.64) for
most of the targeted traits (Yuan et al. 2019).
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4.7.3 Waterlogging Tolerance

Waterlogging tolerance in maize can be assessed easily by means of yield reduction.
Three genomic selection models, viz. RR-BLUP, Bayesian RR and Bayesian
LASSO, were employed in 92 sampled families from 390 S1 families tested for
waterlogging tolerance. The prediction accuracies from the three models were closer
to 0 for crop yield susceptibility index and ranged from 0.16 to 0.44 for yield per se
under normal and stressed conditions indicating the necessity of employing larger
populations in genomic predictions (Paril et al. 2017). Under waterlogging stress,
phenomic and genomic selection showed a genetic gain of 80 and 90 kg ha�1 in
populations MSY-1 and MSY-2, respectively, whereas rapid cycle genomic selec-
tion resulted in a gain of 90 (MSY-1) and 43 kg ha�1 (MSY-2) (Das et al. 2020).

4.7.4 Nutrient Use Efficiency

Maize is a fertilizer-responsive crop and shows increased grain yield per unit
fertilizer application associated with better nutrient use efficiencies. These nutrients
are vital for plants to carry out many of the metabolic processes. Any deficiency of
these nutrients inhibits plant growth and development, thereby affecting plant yield.
Few studies were undertaken to predict genomic breeding values for major nutrients
like nitrogen and phosphorus use efficiency traits in maize.

Under low phosphorus stress, the genomic prediction was undertaken in a maize
panel with 410 maize inbred lines for 11 agronomic traits employing 5 classical
models, viz. RR-BLUP, GBLUP and three Bayesian models (BayesA, BayesB and
BayesC). The prediction accuracy was assessed by fivefold cross-validation. The
predictive ability of all five models was comparable, although GBLUP outperformed
the others. The prediction accuracies significantly varied between contrasting phos-
phorus environments. Under normal phosphorus conditions, the prediction



accuracies were ranging from 0.40 (ASI in 2015) to 0.76 (days to tasselling in 2014),
with a mean of 0.53, whereas, under low phosphorus stress, the predictions were
0.06 (ASI in 2015) to 0.73 (days to tasselling in 2015), with a mean of 0.45.
Furthermore, traits with higher heritability mostly showed better prediction
accuracies than those with relatively low heritability (Xu et al. 2018).
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Genome breeding values were predicted in testcross progenies of 411 inbred lines
selected from the IMAS panel and crossed with tester CML539 under both low and
optimum nitrogen conditions. Moderate to high GEBVs were observed under both
optimum and low nitrogen conditions. Under optimum nitrogen condition, the
GEBVs of 0.42, 0.62, 0.59, 0.48, 0.60, 0.54, 0.29 and 0.52 were predicted for
grain yield, anthesis date, ASI, plant height, ear height, ears per plant and senes-
cence, respectively, whereas, under low nitrogen, the corresponding GEBVs were
0.45, 0.67, 0.64, 0.53, 0.64, 0.63, 0.42 and 0.24 (Ertiro et al. 2020).

4.8 Genomic Selection for Biotic Stress Tolerance in Maize

Maize production is limited by biotic stresses commonly induced by insect pests
and/or diseases (Lodha et al. 2013). Maize is plagued by pests, including stem
borers, pink borers, shoot fly, termites and various storage pests. In maize, resistance
to various biotic stresses is controlled by various QTLs with small or minor effects
(Gazal et al. 2018). Hence, the marker-assisted selection cannot serve the purpose.
Thus, researchers are facing the genomic predictions and association mapping for the
resistance breeding in maize. Presently, quite a good number of investigations were
available on genomic perfections for biotic stresses, viz. insect pests and diseases, by
fungal and viral pathogens (Table 4.3).

4.8.1 Fungal Diseases

Resistance to many fungal pathogens is complexly inherited. Thus, genomic predic-
tion seems to be the viable option. Genomic predictions for NCLB resistance in the
two heterotic groups (N ¼ 197) of maize through the BLUP model showed greater
prediction accuracies (~0.70) for both dent and flint heterotic groups (Technow et al.
2013). The application of the RR-BLUP model in F2:3 populations derived from
crosses CM212 � MAI 172 (population 1) and CM202 � SKV 50 (population 2)
achieved the prediction accuracies of 0.83 (population 1) and 0.79 (population 2) for
NCLB resistance, respectively (Balasundara et al. 2021).

A total of five biparental DH populations (N ¼ 635) phenotyped for Gibberella
ear rot incidence and three grain yield component traits were used to predict the
GEBVs employing the RR-BLUP model. The prediction accuracies ranged from
0.20 to 0.39 among the DH populations. Within DH populations, the prediction
accuracies were in agreement with theoretical expectations for the target traits
showing moderate to high heritability. In contrast, the prediction accuracies are
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declined by 42% when full-sib lines were replaced by half-sib lines (Riedelsheimer
et al. 2013).

144 H. C. Lohithaswa et al.

Two hundred and thirty-eight maize lines were clustered to identify the lines
resistant to ear rot using 23,154 DArTseq markers. Bayesian stochastic search
variable approach and RR-BLUP methods were employed to carry out genomic
predictions, and both methods presented the equivalent predictive abilities (dos
Santos et al. 2016). For FER resistance, the genomic predictions in a panel of
509 maize lines showed similar prediction ability of five GS models, viz. BayesA
(0.355), BayesB (0.338), BayesC (0.357), GBLUP (0.367) and RR-BLUP (0.351)
(Guo et al. 2020). Similar work on Fusarium ear rot and fumonisin contamination in
maize using 449 S0:1 lines derived from recurrent selection population was subjected
to GBLUP, BayesCπ, Bayesian LASSO and extreme gradient boosting models.

The prediction accuracies showed a maximum value of 0.46 for FER and 0.67 for
fumonisin (Holland et al. 2020). Further, the prediction accuracies for FER resis-
tance estimated with genome-wide markers across the environments in the CML
population, DTMA-AM panel and SYN_DH population and across the populations
were 0.46, 0.53, 0.32 and 0.57, respectively. These prediction accuracies were
improved (CML, 0.74; DATM, 0.62; SYN_DH, 0.63; and across populations,
0.65) when the models were framed with FER resistance-associated SNPs (Liu
et al. 2021). However, quite low prediction accuracies were reported for FER
(0.34) and starburst (0.4) in 320 tropical maize inbred lines using GBLUP, Bayesian
LASSO and BayesC prediction models with 5000-fold cross-validations (Kuki et al.
2020).

In the case of tar spot disease, genomic predictions showed moderate to high
prediction accuracy in different populations (DTMA, 0.55; pop1, 0.58; pop2, 0.74;
and pop3, 0.69) employing several training populations and marker densities. When
half of the population was included in the training set with 500 to 1000 SNPs, the
prediction accuracy was more than 0.50 (Cao et al. 2017). There are no large effect
resistant genes nor any practical control methods available to control Goss’s wilt and
leaf blight diseases. Additionally, the GWAS was not effective to identify variants
that are significantly associated with Goss’s wilt. However, genomic prediction with
RR-BLUP showed prediction accuracy of 0.69, indicating the possible scope of GS
in improving Goss’s wilt and leaf blight diseases in maize (Cooper et al. 2019).

In maize, grey leaf spot (GLS) is one of the major diseases. GLS resistance is
genetically controlled by multiple genes with cumulative effects. The genomic
prediction was performed in biparental populations and association panel consisting
of 410 maize lines employing RR-BLUP with fivefold cross-validation. The predic-
tion accuracies within populations were low to moderate, i.e. 0.39, 0.37, 0.56, 0.30,
0.29 and 0.38 for IMAS association panel, DH pop1, DH pop2, DH pop3, F3 pop4
and F3 pop5, respectively. Further, across the populations, the prediction accuracy
was greatly increased to 0.84. GP results further consolidated the resistant line
development by incorporating both major and minor effect genes (Kibe et al. 2020).
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4.8.2 Virus Diseases

Recently, the viral diseases are gaining importance owing to sudden outbreaks and
devastating effects on maize production in the developing world. Among the viral
diseases of maize, maize lethal necrosis (MLND) is the most prominent one. MLMD
resulted through synergistic interaction of two viruses, viz. maize chlorotic mottle
virus (MCMV) and sugarcane mosaic virus (SCMV). The fivefold cross-validation
of ridge regression best linear unbiased prediction (RR-BLUP) model revealed
higher prediction accuracy of 0.56 and 0.36 for IMAS-AM (N ¼ 380) and
DTMA-AM (N ¼ 235) panels, respectively. Importantly, the addition of SNPs
associated with MLND resistance in the prediction model improved the prediction
accuracy from 0.41, which increased to 0.56 in the panels (Gowda et al. 2015).
Genomic prediction for the MLND using 1400 diverse inbred lines showed an
increase in prediction accuracy for disease severity and AUDPC with an increase
in marker density and training population size from 500 to 6300 and 230 to
915, respectively (Nyaga et al. 2020). Similarly, genomic prediction for MLND
which was carried out with RR-BLUP in three doubled haploid populations with
fivefold cross-validation showed high prediction accuracy for the populations with
high heritability and large population size compared to the others (Sitonik et al.
2019).

4.8.3 Bacterial Diseases

In maize, Goss’s bacterial wilt and leaf blight are the major bacterial diseases. Under
severe disease incidences, yield losses of>40 per cent have been seen in susceptible
maize hybrids (Carson andWicks 1991). Resistance to Goss’s wilt is an intricate and
polygenic trait with no large effect resistance genes or major QTL. Goodman maize
diversity panel consisting of 223 diverse maize lines was evaluated to identify the
genomic regions associated with Goss’s wilt resistance by using the genomic
prediction model RR-BLUP. The prediction accuracy of 0.69 was recorded (Cooper
et al. 2019).

4.8.4 Insect Pests

Insect damage on maize plants in the field and stored grains severely affects food
security in many countries across the globe (Demissie et al. 2008). Fall armyworm
and stem borers are the major pests of maize that impede maize production in the
field, and maize weevils are the major category of storage pests, causing the severe
yield loss of up to 10 to 90 per cent. This, in turn, affects the grain marketability, and
consumer health concerns may arise due to probable contamination of the grains
with aflatoxins and mycotoxins (Tefera et al. 2019; Munyiri et al. 2013).

Individual and joint-population QTL analyses and genome-wide predictions with
GBLUP for European corn borer stem damage resistance showed the superiority of



the GBLUP model with the prediction accuracy of 0.70 over the QTL model despite
the detection of QTL with large effects. The genomic trained model based on DH
line per se performance was effective in predicting stalk breakage in test crosses
(Foiada et al. 2015). Genomic prediction with 16 GP models on BLUPs and
BLUEs for fall armyworm andmaize weevil resistance was employed in 341 doubled
haploid and inbred lines with ten- and fivefold cross-validation. The prediction
accuracy realized with BLUPs was at least as twice as those with BLUEs. Addition-
ally, genomic prediction models showed similar predictive abilities for all the
studied traits, and a highly positive correlation (0.92) was witnessed between
training population size and prediction accurecies in the random-based training set
approach, and the reverse was seen in the pedigree-based training set approach
(�0.44), owing to degree of kinship between the training and the breeding
populations (Badji et al. 2021).
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4.8.5 Weeds

Weeds cause devastating effects on maize yield potential. The striga (Striga
hermonthica) parasitism is one of the major hurdles in the maize production system
of sub-Saharan Africa. The genomic selection for striga resistance showed impres-
sive gains in grain yield under striga-infested (498 kg ha� 1 cycle� 1 or 16.9%
cycle� 1) and optimal environments (522 kg ha� 1 cycle� 1 or 12.6% cycle� 1),
respectively. Additionally, the study revealed an enhanced genetic gain of grain
yield per cycle in striga-infested condition was associated with enhanced plant and
ear heights, resistance to root lodging, husk cover, ear parameters and striga toler-
ance level (Badu-Apraku et al. 2019).

4.9 Integrating Genomic Selection with Contemporary Maize
Breeding Tools for Stress Tolerance

With improvement in biotechnological tools, the selection of plants has become
more accurate and precise owing to the integration of both phenotypic and genotypic
criteria in the selection process. Traditional marker-assisted selection methods with
QTL or MAS served as a complementary tool to accelerate the selection in maize
breeding programmes (Ribaut and Ragot 2007; Mayor and Bernardo 2009; Tuberosa
and Salvi 2009; Beyene et al. 2016). But the identification of the QTLs that are
showing expression constitutive across environments and populations with different
genetic background is essential to use them in MAS (Bernier et al. 2008). G � E
interactions reduce the correlation between the traits and QTL detected among the
target environments (Bolanos and Edmeades 1996; Tuberosa et al. 2002). In practi-
cal breeding, the QTL identified for the target trait usually changes with different
genetic backgrounds (Rong et al. 2007) and maize between the inbred lines per se
and their testcross hybrids (Mei et al. 2005; Szalma et al. 2007). Numerous QTL
mapping experiments conducted in the past have limited application in actual



breeding because of the low marker densities in those studies which resulted in poor
genetic resolution. Recent advances in genotyping techniques, such as genotyping
by sequencing, have resulted in the availability of thousands of SNPs that are equally
scattered throughout the genome (Elshire et al. 2011; Poland et al. 2012). The high-
resolution genetic maps with high-density SNPs reduce the confidence interval of
surrounding QTL, thereby allowing high-precision mapping.
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Recently, MAS-based GS (GS-MAS) is considered as an upcoming strategy in
maize breeding (Meuwissen et al. 2001). The GS-MAS allows the major benefit of
capturing the minor effects in selection process. The traditional QTL-MAS demands
the use of the flanking markers of target QTL or gene; however, the GS-MAS
requires the large number of genome-wide distributed markers (Peng et al. 2014).
For complex traits controlled by many QTLs with minor effects or low heritability,
simulation and empirical analyses suggested the superiority of GS-MAS over
QTL-MAS (Bernardo and Yu 2007; Mayor and Bernardo 2009; Heffner et al.
2010; Guo et al. 2013). Proper integration of GS-MAS in the breeding workflow
can partially replace the field testing and reduce the line development time and cost
of breeding activities (Heffner et al. 2010).

Phenotyping of the large-scale breeding material like doubled haploids is highly
resource demanding and often exceeds the phenotyping capacity to evaluate all the
lines in multi-environment trials. Therefore, partial use of genotypic data to select
DH lines while improving the genetic gains for the key traits along with phenotypic
selection can significantly save resources (Beyene et al. 2021). Hybrid breeding is
also an evergreen area in maize research. Therefore, the application of genomic
prediction in the pre-screening of hybrids could improve the efficiency and efficacy
of maize hybrid breeding programmes. Among the various prediction models
available, Bayesian models offer great flexibility for predicting and studying the
hybrid performance (Alves et al. 2019). Additionally, bringing all the contemporary
breeding tools on a platform with GS could enhance the genetic gain and efficiency
of GS for stress resilience in maize. Especially, integrating GS with rapid generation
advancement methods like doubled haploid (DH) technology, speed breeding cou-
pled with precision phenotyping and high-throughput genotyping assisted by deci-
sion support tools could be useful in the rapid delivery of stress-resilient maize
cultivars (Fig. 4.2).

4.10 Major Challenges for Genomic Selection in Maize Stress
Tolerance Breeding

Genomic selection is yet to be popular among the plant breeding community, which
necessitates more evidence for sensible and successful utility in ongoing breeding
programmes. In fact, most of the studies on GS application rely on statistical models
and simulations, which requires appreciable knowledge of both statistical genomics
and quantitative genetics. Furthermore, many of the abiotic and biotic stress toler-
ance/resistances show complex inheritance and challenge the accuracy of GS as
much as phenotypic selection. Since the statistical models in GS are trained with



phenotypic data, therefore, the reliability and successful utility of GS for stress
resilience breeding depend on well-replicated phenotypic data (Juliana et al. 2018).

148 H. C. Lohithaswa et al.

Fig. 4.2 Schematic representation of integrating genomic selection with rapid generation advance-
ment tools like DH technology, speed breeding, high-throughput genotyping and novel high-
throughput phenotyping for stress tolerance to enhance the efficiency and pace of stress-resilient
maize breeding

The applicability of GS is limited within its scope. The performance of GS is
generally low when GS models are trained with completely unrelated germplasm or
with lines evaluated in non-correlated environments (Juliana et al. 2018; Ertiro et al.
2020). The major goal of GS is to reduce the repeated phenotyping cost and
accelerate the genetic gain. The GS requires high-throughput genotyping to capture
the genomic contribution towards GEBVs for target traits. The necessity for
genotyping with a large number of markers in every generation of selection adds
considerably to the price of breeding programmes. Although NGS cost is reduced
very significantly, still the prices are not affordable by many plant breeders of
developing and underdeveloped worlds to incorporate the GS in their regular
breeding programme.

Changes in the gene frequencies and interactions in the breeding generations
influence the marker effects and subsequently GEBVs. Therefore, an amendment of
the trained GS model in the breeding cycle with the addition/deletion of markers is
required. Additionally, the accuracy of GEBVs has been evaluated with the additive
component-based simulation models. However, these models ignore interaction
components that do not seem to be realistic in practical plant breeding. Therefore,
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there is a need to develop statistical models which consider interaction effects in
addition to additive genetic components.
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The successful implementation of GS in stress-resilient breeding requires inten-
sive infrastructure in terms of high-throughput genotyping and phenotyping, which
are rapid, reliable and easy. Unfortunately, most of the moderate-sized public sector
breeding programmes in the developing world don’t possess high-end phenotypic
platforms. Further, planning, integration and execution of GS with ongoing breeding
programmes require breeders to reorient their strategies in their breeding
programmes.

4.11 Prospects

Presently, GS is one of the most promising breeding methods for accelerating the
development and release of new cultivars; as a consequence, the use of GS to shape
the gene pools and breeding populations from gene bank accessions demands further
focused investigation, especially given the vulnerability of elite inbred lines and
hybrids to climate change-induced stresses. Furthermore, GS is mainly practised for
a single trait; developing models to practise selection for multiple traits and includ-
ing the component of G E interaction would be more beneficial.

Genomic prediction requires the marker information that covers the entire geno-
mic region. Thus, it becomes necessary to genotype the breeding material exten-
sively. With the advancement in next-generation sequencing technologies, the
genotyping has become easy and less resource driving. The most employed
genotyping platforms like Ion Torrent, AmpSeq, GBTS and SNP-seq are reported
to genotype thousands of SNPs at a time. A recent technique termed target SNP-seq
conglomerates the benefits of high-throughput sequencing and multiplex PCR
amplification. The genome-wide SNPs employed in the SNP-seq are poses the
conserved flanking sequences, which facilitated capturing through PCR amplifica-
tion. Furthermore, SNP-seq is suitable in developing countries owing to gain in
several hundred SNPs while sequencing the SNP location with approximately a
thousand times coverage within a short time and reduced cost.

Efficiency of genomic prediction is adversely affected by outliers, which may
occur due to erroneous data imputation and outlying responses. Outlier detection in
high-dimensional genomic data is difficult. Therefore, combining p-values based
strategies to obtain a single p-value have been found to be very useful. The
prediction accuracy of breeding values can be improved by considering the group
means or group sums as a substitute to individual records for several traits which are
difficult to phenotype but are economically important. For some of the economical
and difficult-to-quantify traits, utilizing group means or group sums as an alternative
to individual records can increase breeding value prediction accuracies. These
prediction accuracies increase with increasing relationships between the group
members.
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