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Abstract Nowadays, the lithium-ion battery pack (LiB) is used as the main power
supply for electric vehicles (EV). The remaining energy of LiB is the very important
parameter determined continuously by estimating LiB’s state of charge (SoC). SoC
estimation is one of the main functions of the battery management systems (BMS).
This article presents the use of two sigma-point Kalman filters (SPKF) to estimate
accurately the SoC of the LiB based on the second-order model of the cell. The
LiB’s average SoC and the zero bias of the current measurement through the LiB
are estimated by the first SPKF, while the second filter is applied to calculate the
SoC differences between LiB’s average SoC and the modules’ SoC in the LiB. To
improve the SoC accuracy of the LiB modules, a second-order RC equivalent circuit
model (SECM) of the cell is used, and the influences of temperature, voltage hysteric,
measurement errors, and zero bias of current measurement on the SoC estimation
of the LiB are taken into account. To verify the method, the experimental test is
conducted in the LiB with cells connected in parallels and series. The simulation and
experimental results are analyzed to prove that the SoC estimation of the modules in
the LiB is higher accuracy, and the LiB’s average SoC errors are less than 1.5% at
different temperatures ranging from − 5 to 45 °C. The calculation time consuming
is shorter, and the calculation complex is reduced significantly.

Keywords Lithium-ion cell · Battery pack · Sigma-point Kalman filter · Current
bias · SoC estimation · Second-order RC equivalent circuit model

1 Introduction

From the practical point of view, there are many advantages of the LiB such as
higher energy density, less weight, high voltage out (about 3.7 V), safety, and fast
charging/discharging rates comparing to the other kinds of battery [1, 2]. Today,
the LiB is used more largely in the practice applications varying from electronics
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devices like laptops,mobile phones, and small power home devices to the large power
electrical vehicles. LiBoperation is safe in the small power devices, butwhen it comes
to the large power and high voltage applications, the LiB is easily unsafe because
the LiB is formed by ten to thousands of cells connected in series-parallel in order
to supply enough power (see Fig. 1a). The cell explosion caused by overcharge/over
discharge could happen in the practice (see Fig. 1b). The control problem to ensure
LiB operating stably, safety, and optimally is very important. This task is conducted
by the BMS. The main functions of BMS are protecting the LiB, calculating the
SoC, control charging/discharging, monitoring the health and safety of the LiB, etc.
The SoC is the amount of energy remaining in the battery, and it is a significant
input parameter of BMS and reflects the battery performance. The SoC cannot be
measured directly but can be estimated by using the cell voltage, the current of the
cell, the ambience temperature, etc. The BMS uses the accurate SoC estimation as an
input not only to protect LiB, prevent the LiB from overdischarge/overcharge, and
improve LiB life but also to conduct the control strategies to equalize energy level
of cells in the LiB and to save energy [3].

Up until now, regarding SoC estimation methods for the LiB cell, there are many
approaches being used. First, methods related to the model of cells in the LiB include
themethods based on open circuit voltage, coulomb counting, and impedancemethod
[4, 5]; in the works [6, 7], authors used the cell’s first-order model to estimate the
SoC; and in order to improve the accuracy of SoC estimation, the hysteristic, the
aging process, and the change of cell internal resistance are considered in the SoC
estimation [8]. The second, methods consider to the SoC estimation algorithms as
the extended Kalman filters presented in the materials [9, 10], the particle filters used
in the references [11, 12], the methods using learning algorithms presented in [13,
14], the methods based on fuzzy logic and nonlinear model used in the materials
[15, 16].

The SoC estimation of the LiB is the complex issue, and many research works
in the literature [17–20] related to this problem have been implemented in recent
years. The SoC estimation is needed to be considered not only the complexity of the

a) b) 

Fig. 1 a The electric car battery; b the battery fire of Tesla Model S
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Fig. 2 Structure of the LiB

LiB’s model and the complexity of the estimation algorithm but also the varying of
parameters of the cell model and measurement noise.

There are many specific directions to solve the SoC estimation problem for LiB
with distinct accuracy level, depending on the practical applications. To estimate the
SoC of the cells in the LiB, themeasurements of operating temperature, voltages, and
current of the LiB are made available. In the practice, the measurements of current
and voltage are affected by the noise; especially, the current is drifted by zero bias
which is caused by the amplifier.

In this article, the SoC estimation method based on SPKF [21] for the LiB formed
by a series of modules, each module consisted of some paralleled cells as shown in
Fig. 2, is presented. This SoC estimation takes into account the noises and the zero
bias of the measurements of current and voltage.

In this work, to describe the cell dynamic we use the SECM. The noises and the
zero bias of the measurements of current and voltage are considered in this model.
The cell dynamic is reflected more exactly in the operation condition with charge
and discharge magnitude varying suddenly by using the second-order RC equivalent
circuit model. The SoC estimation algorithm based on two filters is used to estimate
SoC for all modules in the LiB by summing LiB’s average SoC estimated by the first
SPKF filter and SoC difference of modules calculated by the second SPKF filter.

The remainder of paper is organized as follows: In part 2, the dynamic second-
order RC equivalent circuit model of the LiB is presented. In part 3, the SoC esti-
mation of LiB using two filters based on the SPKF is given. Some simulations and
experimental results are shown in the next part. In the last part, discussions for the
paper are mentioned.



430 N. V. Thuy et al.

2 The Dynamic Model of the Cell and the LiB

2.1 The Second-Order RC Equivalent Circuit Model of Cell

To describe more accuracy of the dynamic of the cell, especially for the application
using LiB with charge/discharge amplitude varying suddenly, the SECM model is
used based on our previous work [6].

The SECM of the cell is depicted in Fig. 3. The notations in the model are as
follows: two currents of two dynamic branches of the cell iR1 , iR2 ; the hysteresis
h(t); SoC z(t); zero bias of current of the cell b(t); andi(t) and v(t) denote the
current and the voltage of the cell, respectively. They are available by measuring and
affected by noises.

In discrete-time domain, define xk+1, uk , yk to be the state vector, input and output
vectors at the sample time k, k = 0, 1, 2, . . . ,∞, respectively. They are written in
Eq. (1).

xk+1 =

⎡
⎢⎢⎢⎢⎢⎣

iR1,k+1

iR2,k+1

hk+1

zk+1

bk+1

⎤
⎥⎥⎥⎥⎥⎦

, uk =
[

ik
sgn(ik)

]
, yk = vk (1)

The state model of the cell is written as shown in Eq. (2):

Fig. 3 The SECM of the cell
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⎡
⎢⎢⎢⎢⎢⎣

iR1,k+1

iR2,k+1

hk+1

zk+1

bk+1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

AR1C1 0 0 0 0
0 AR2C2 0 0 0
0 0 Ah 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

iR1,k

iR2,k

hk
zk
bk

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

(
1 − AR1C1

)
0(

1 − AR2C2

)
0

0 (1 − Ah)
−ηk�t

Q 0

0 0

⎤
⎥⎥⎥⎥⎥⎦

[
ik

sgn(ik)

]
+

⎡
⎢⎢⎢⎢⎢⎣

wiR1,k

wiR1,k

0
0

wb,k

⎤
⎥⎥⎥⎥⎥⎦

(2)

The matrices in Eq. (2) are defined as:

AR1C1 = exp

( −�t

R1C1

)
, AR2C2 = exp

( −�t

R2C2

)
,

BR1C1 = 1 − AR1C1 , BR2C2 = 1 − AR2C2; Ah = exp

(
−

∣∣∣∣
ηkikγk�t

Q

∣∣∣∣
)

; Bh = 1 − Ah

w = [
wiR1,k wiR1,k 0 0 wb,k

]T
(3)

in which w is the disturbance vector of the model formed by the current noises of
two RC dynamic branches of cell wiR1,k , wiR2 ,k and current bias noise of cell wb,k .
Two parameters depending on the ambient temperature of cell ηk and γk are the
columbic efficiency.

The output equation of the SECM model is written as Eq. (4), and this equation
describes the relationship betweenvk and ik , SoC,hk , the currents of two RC branches
iR1,k, iR2,k , and the voltage noise of cell ζk .

vk = OCV(zk) + Mhk − R1iR1,k − R2iR2,k − R0ik + ζk (4)

Based on Eqs. (2), (3), and (4), the state space model of cell is:

{
xk+1 = Akxk + Bkuk + wk

yk = OCV (zk) + Ckxk + Dkuk + ζk
(5)

In the state space model (5), the matrices are formed as follows:
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Fig. 4 The model of the lithium-ion battery pack (LiB)

Ak =

⎡
⎢⎢⎢⎢⎢⎣

AR1C1 0 0 0 0
0 AR2C2 0 0 0
0 0 Ah 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, Bk =

⎡
⎢⎢⎢⎢⎢⎣

(
1 − AR1C1

)
0(

1 − AR2C2

)
0

0 (1 − Ah)
−ηk�t

Q 0

0 0

⎤
⎥⎥⎥⎥⎥⎦

Ck = [−R1 −R2 M 0 0
]
, Dk = [−R0 0

]

(6)

2.2 The Dynamic Model of the LiB

The LiB is formed by some modules connected in series as described in Fig. 4. In
this LiB structure, Ns is number of modules, and Np is number of paralleled cells in
the modules. The symbols of the quantities are described in Fig. 4 also.

For the paralleled cells, after a certain period of time cells’s SoC will balance by
itself. So the model of the LiB is transformed into the string with many modules
connected in series, as plotted in Fig. 4. Demonstration of self-balance voltage and
SoC of cells in one module is plotted in Figs. 5 and 6. Suppose that the initial SoCs
of 6 cells vary in the range of 65–90%. The internal resistances of cells R0 vary in
the range of 1.0–1.4 m�. After 50 s, all six cells have the same voltage and the same
SoC level.
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Fig. 5 a Current through the module, b current through the cells of the module
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Fig. 6 a The voltage of the module, b SoC of the cells of the module
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3 SoC Estimation of the LiB Using Two SPKF

The SoC estimation algorithm for the LiB using two SPKF is described as follows:

• Step 1: estimate the SoC average of the LiB using the first SPKF
• Step 2: estimate the SoC differences between the SoC average of the LiB and

SoCs of the modules
• Step 3: The SoC of modules in the LiB is calculated by summing the SoC average

(estimated in the step 1) and the SoC differences (estimated in the step 2)

To implement step 1, consider the LiB to be an equivalent cell that has the second-
order RC equivalent circuit model as presented in Eq. (5). State variables need to be
estimated at every sample times k are the two currents iR1(k), iR2(k) of two dynamic
branches RC of the equivalent cell, the voltage hysteretic h(k), the module’s SoC
z(k), and the current’s zero bias of b(k).

The model input is the current of the LiB, it is affected by zero bias and measure-
ment noise, and the output of the model is the sum of the voltages of modules in the
LiB. We use the state vector formed as following equation:

x = [
iR1,k iR2 hk zk bk

]T
(7)

Define the notes σx̃ , σw, and σζ as covariance matrices of state estimation errors,
systems noises, and voltage noise, respectively. The SoC estimation algorithm for
the LiB is presented as following part.

State of Charge Estimation Algorithm for the LiB

Initialize the parameters of LiB
Initialize SoC0 ∈ R(Ns×Np), R0 ∈ R(Ns×Np)

Initialize σx̃ , σw, and σζ

Calculate z(i)
0 , R

i
0, and Qi

Fork = 1 to ∞ do

Measure ik , vk , Tk
Do step 1: Estimate zk by the first filter
For i = 1 to Ns do

Do step 2: Estimate �ẑ(i)
k of module ith by using the second filter

End
Do step 3: Calculate ẑ(i) = ẑk + �ẑ(i)

k , i = 1, 2..., Ns

End



State of Charge Estimation of the Lithium-Ion … 435

4 Experimental SoC estimation results

In this study, the SoC estimation algorithms are coded in MATLAB software. The
LiB is formed by seven serial modules; each module consists of six SAMSUNG
ICR18650-22P paralleled cells. The technical parameters of cell are shown in the
Table 1. The experimental system is depicted in Fig. 7. The SoC estimation is
conducted with the LiB with a scenario of charge/discharge varying continuously in
1 h and current amplitude changing suddenly, and the maximum of discharge/charge
current amplitude are 10 A and 3 A, respectively. The scenarios of charge/discharge
in this test simulate the charge/discharge situations of LiB used in the EV in the
practice. Suppose that the zero bias of the current b(k) of LiB varies in the range of
0.1–0.5 A.

The current of the LiB in the charge/discharge scenarios is plotted in Fig. 8. The
voltages of the modules in the LiB are shown in Fig. 9, and SoC varying by the time
of the modules is described in Fig. 10. Figure 11 is the varying of the voltages and

Table 1 The technical parameters of LiB SAMSUNG ICR18650-22P

Item Specifications

Model ICR18650-22P

Nominal capacity 2150 mAh

Minimum capacity 2050 mAh (0.2 °C discharge, 2.75 V discharge)

Charging voltage 4.2 ± 0.05 V

Nominal voltage 3.62 V (1 °C discharge)

Charging current 1075 mA

Max. charge current 2150 mA

Max. discharge current 10 A (continuous discharge)

Discharge cut-off voltage 2.75 V

Operating temperature Charge: − 10 to 50 °C; discharge: − 20 to 70 °C

Fig. 7 Setup of the experimental system (A4 building, RIAT, TNUT)
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Fig. 9 The voltages of the modules in the LiB
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Fig. 10 The SoC varying by the time of the modules

currents of the cells in the module. The current of the 6 cells has the same rule as
the current of the LiB, and the current of the LiB is equal to the total current flowing
through all the cells.
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Fig. 11 The varying of the voltage and the currents of the cells in the module

Table 2 Model’s dynamic parameters of the cell

T °C − 5 °C 5 °C 15 °C 25 °C 35 °C 45 °C

ηk 1.0869 0.9803 1.0220 1.0183 1.0542 1.0399

Q (Ah) 2.1596 2.1877 2.1943 2.1507 2.1515 2.1523

γ 250.000 78.4915 63.6762 2.0748 170.6407 151.3064

M (V) 0.0347 0.0257 0.0188 0.0177 0.0201 0.0185

M0 (V) 0.0072 0.0049 0.0048 0.0018 0.0036 0.0024

R0 (�) 0.0013 0.0013 0.0012 0.0012 0.0012 0.0011

R1 (�) 0.0204 0.0203 0.0201 0.0019 0.0019 0.0019

R2 (�) 0.0494 0.0376 0.0288 0.0443 0.0136 0.0134

R1C1 (s) 0.6124 1.7555 0.3227 1.4881 0.2997 0.4630

R2C2 (s) 3.9035 7.5994 8.1118 36.8543 5.1840 6.5319
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Fig. 12 The results of SoC estimation for the modules in the LiB

The dynamic parameters of the cell are given in Table 2. The initial parameters
of the LiB determined at T = 25 ◦C are SoC0 ∈ R(Ns×Np), R0 ∈ R(Ns×Np), and
Q0 ∈ R(Ns×Np). The covariance matrices are:

σ+
x̃,0 =

⎡
⎢⎢⎢⎢⎢⎣

0.001 0 0 0 0
0 0.0001 0 0 0
0 0 0.01 0 0
0 0 0 0.01 0
0 0 0 0 0.01

⎤
⎥⎥⎥⎥⎥⎦

, σw̃ =
[
0.001 0
0 0.001

]
, σṽ = 0.0001

The estimated average SoC for each module in the LiB is depicted in Fig. 12,
and the SoC estimation error of the modules is shown in Fig. 13. The estimated SoC
shows that the SoC estimation of the modules when considering the zero bias of the
current of the LiB has been tracked to the actual SoC average of the LiB with the
estimated SoC error in the test is quite small, about 0.28% for each module.

The estimated current’s zero bias of LiB is plotted in Fig. 14. The real values of
zero bias are set as 0.1 A, 0.3 A, and 0.5 A, respectively. After a period of time t =
2 min, the estimated zero bias tracks up to the real value and it is distributed around
the real value of zero bias. The average value of the estimated zero bias in the test
is 0.102 A, 0.306 A, and 0.484 A, respectively, with the errors of 2.0%, 2.0%, and
3.2%. These are quite small errors, so this test shows that the estimation of zero bias
is suitable for practical applications.

The SoC estimation results and estimated errors for module 1 as shown in Fig. 15
when the zero bias of the LiB current varying from 0.0 A to 0.5 A at the operation
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Fig. 13 The results of SoC estimation errors of the modules in the LiB

Fig. 14 The estimated result of the zero bias of the current of LiB

temperature T = 25 °C. The comparison of the SoC estimation errors of the LiB
over the experimental period is illustrated in Table 3.

Figure 16 shows the SoC estimation error of the modules in the LiB according
to the operating temperature at T = [− 5 °C ÷ 45 °C] with the zero bias = 0.3 A.
From the above of the SoC estimation results, it shows that the estimation errors
of the modules in LiB are small; in another word, the estimation of SoC has high
accuracy. In the temperature ranging from – 5 to 45 °C, the SoC estimation errors of
the modules are less than 1%.When the working temperature of the LiB is decreased
to – 5 °C, the SoC estimation errors of the modules have an increasing tendency, but
the largest error value is less than 2.3% and the average error value is about 1.5%.
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Fig. 15 The SoC estimation results and estimated errors for the module 1

Table 3 The comparison of the SoC estimation errors with respect to values of the zero bias of
current of the LiB

I bias (A) SoC error (%), T = 25 °C

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 Module 7

bk = 0.0 0.12 0.10 0.12 0.11 0.14 0.11 0.12

bk = 0.1 0.21 0.20 0.22 0.21 0.24 0.20 0.21

bk = 0.3 0.39 0.38 0.40 0.40 0.43 0.38 0.40

bk = 0.5 0.57 0.56 0.59 0.60 0.63 0.56 0.59

This is a very important SoC estimation error for the SoC estimation problem for the
LiB in EV applications.

5 Conclusion

This paper presented a method to improve the SoC estimate accuracy for a LiB
including many cells that are connected in series and parallel. This study uses two
filters based on the SPKF algorithm to design the SoC estimation method for the LiB
when taking into account the effect of temperature, measurement noise, and zero
bias of current of the LiB. The dynamic model of cell in the LiB is described by
the SECM to reflect more accurately the nonlinear characteristics of the LiB. The
SoC estimation algorithm is applied experimentally to LiB, this LiB is formed by
ICR 18650-22P SAMSUNG cells in 7 serial modules, and each module consists of
6 parallel cells. The SoC estimation results for the LiB under with the temperature
changing from – 5 to 45 °C show that the errors of SoC estimations for modules in
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Fig. 16 The results of SoC estimation error of the modules in the LiB with respect to operating
temperatures

the LiB are quite small, and the accuracy of SoC estimation has been significantly
improved compared to other methods. The estimation method in this study can be
applied to the SoC estimation problem for the LiB with a large number of cells. The
calculation complex is reduced. This result is significant when the LiB for EV today
is made by thousands of cells. Our future work focuses on improving the accuracy
of the current zero bias estimation of the LiB.
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