
Advanced Magnetic Resonance Imaging
(MRI) of Brain 9
Navdeep Kaur , Soumya Swaroop Sahoo,
and Shailendra Singh Rana

Abstract

Magnetic Resonance Imaging (MRI) uses the principle of nuclear magnetic
resonance to generate high-resolution images of brain. Due to abundance of
water in human body, current MR imaging is based on proton imaging. MRI
enables non-invasive structural as well as functional evaluation of brain paren-
chyma. T1WI provide detailed structural evaluation of brain. Advanced
sequences such as Diffusion Weighted Imaging (DWI), MR Perfusion, MR
Spectroscopy, Diffusion Tensor Imaging and functional MRI enable the evalua-
tion of metabolic, haemodynamic and cytoarchitecture of brain parenchyma in a
non-invasive manner. This book chapter aims to provide insight into basic and
various advanced MRI sequences along with its potential applications in
neuroimaging.
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9.1 Introduction

The fine spatial resolution and non-invasiveness of Magnetic Resonance Imaging
(MRI) makes it an integral component of the algorithm for evaluating patients with
any neurological disease. Nowadays, MRI is not just limited to provide the
anatomical details of tissues. Many advanced MRI sequences are being introduced
to provide information about the cytoarchitecture, metabolic, haemodynamic and
functional status of tissues to investigate the disease at molecular level.

9.2 Basic Principle

MRI is used to generate high-resolution images of human body. MRI is established
on the principle of nuclear magnetic resonance (NMR). The two fundamental
principles of NMR are as follows:

• Atoms with odd number of protons or neutrons have a spin.
• A moving electric charge generates a magnetic field.

Human body has many atoms such as 1H, 13C, 19F, 23Na and 31P that can be used
for MR imaging.

Currently, MR is primarily based on proton imaging. Hydrogen atom has only
single proton, so one H+ ion ¼ one proton. Hydrogen ions are present in abundance
in human body as water. So, out of all nuclei H+ ion gives most intense signal on MR
imaging (Fig. 9.1).

To localize from where the signal is coming from human body, three additional
magnetic fields are superimposed on the principal magnetic field in X, Y and Z axes.
These are called gradient fields which vary in strength with varying location. Slice
selection gradient is used to select the slice and is sent at the time of Radiation
Frequency (RF) pulse. Phase encoding gradient is turned on briefly after slice
selection gradient. Frequency encoding/read out gradient is sent at the time of signal
reception.

TR (Time to Repeat)—Time period between two RF pulses.
TE (Time to Echo)—Time gap between the start of RF pulse and reception of signal.

Varying combinations of TR and TE are used to generate different MR images.

T1-weighted images—Short TR and short TE.
T2-weighted images—Long TR and long TE.
Proton density images—Long TR and short TE.
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Fig. 9.1 Generation of magnetic resonance signal
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9.3 Various MR Sequences

9.3.1 T1 Weighted Images (T1WI)

Short Repetition Time (TR) and short Time to Echo (TE) generate T1WI. Fluid
appears dark and fat appears bright on T1WI (Fig. 9.2a). T1WI best depict the normal
anatomy of brain parenchyma. Grey matter appears intermediate in signal intensity,
while white matter appears hyperintense as compared to grey matter. Gadolinium
decreases T1 of the tissues and appear bright on T1WI. So, post-contrast images can
be used for depiction of vascular changes. In various pathologies such as tumours
and inflammation, breakdown of blood–brain barrier can lead to leakage of contrast
into the brain parenchyma causing its enhancement and thus localization of pathol-
ogy on post-contrast T1WI.

9.3.2 T2 Weighted Images (T2WI)

Long TR and long TE generate T2WI. Fluid appears bright and fat appears dark on
T2WI. Grey matter appears intermediate signal intensity, while white matter appears
hypointense as compared to grey matter (Fig. 9.2). As most pathologies are
associated with cerebral oedema, i.e. increased signal on T2WI, they are more easily
picked up on T2WI.

9.3.3 Fluid Attenuation Inversion Recovery (FLAIR) Sequence

FLAIR is a special inversion recovery sequence which supresses the cerebrospinal
fluid (CSF) (Fig. 9.2). So, it enables us to detect cerebral oedema without glaring
high signal from CSF particularly in periventricular regions and in periphery near

Fig. 9.2 Axial MRI of brain at level of lateral ventricles showing cerebrospinal fluid as dark signal
on T1WI (a), bright on T2WI (b) and suppression on FLAIR (c) images
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sulcal spaces. FLAIR sequence is very useful in evaluating various diseases of
central nervous system such as infarction, demyelination and subarachnoid
haemorrhage in trauma patients [1–3]. Post-contrast FLAIR images have been
used for evaluating leptomeningeal diseases as early meningitis as it enables us to
detect which even subtle meningeal enhancement [4].

9.3.4 Diffusion Weighted Imaging (DWI)

DWI is based on the principle of measuring Brownian, i.e. random motion of water
molecules in each voxel of tissue. Since microarchitecture of cerebral tissues affect
the Brownian motion of water molecules, it may be used to study the cellular
integrity. Any pathology such as inflammation or mass lesion restricts the free
motion of water molecules in tissues causing bright signal on DWI.

However, few tissues which are bright on T2WI,appear bright on DWI without
any apparent reduced water diffusion. This is specified as T2 shine through. Misin-
terpretation of T2 shine through for true restricted diffusion can be avoided by using
Apparent Diffusion Coefficient (ADC) maps. These ADC images demonstrate actual
diffusion values of tissues. Any pathology appears dark on ADC images.

DWI plays a major role in evaluating the following diseases [5–7]:

1. Diagnosis of early stroke, distinguishing acute from chronic stroke and stroke
mimics—the vasogenic oedema in acute stroke restricts the free motion of water
molecules in affected brain tissue, thus appearing bright on DWI images and dark
on ADC maps (Fig. 9.3).

2. Differentiating epidermoid cyst from arachnoid cyst—both the lesions will
appear hyperintense on T2WI. Epidermoid cyst shows diffusion restriction on
DWI/ADC as compared to arachnoid cyst which does not show diffusion
restriction.

3. Assessment of active demyelinating lesions as in multiple sclerosis which will
show restricted diffusion as compared to the chronic plaques.

4. Grading of diffuse gliomas and meningiomas—extent of tumour cellularity is
used for quantitative assessment with DWI. Glioma grade is inversely related
with ADC values [8]. Higher the tumour grade—more the cellularity, more the
diffusion restriction and lower the ADC values.

9.3.5 Susceptibility Weighted Imaging (SWI)

Compounds having paramagnetic, diamagnetic and ferromagnetic properties distort
the local magnetic field altering the phase of local tissues and thus resulting in
change of signal [9]. SWI aids in detecting structures that have separate susceptibil-
ity in comparison to the surrounding structures like deoxygenated blood, ferritin,
haemosiderin and calcium [10]. Calcium can be easily picked up on SWI images
which may not be visible on routine images.
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SWI is also known as high-resolution blood oxygen level-dependent (BOLD)
venography. Paramagnetic deoxyhaemoglobin in veins cause shift in resonant fre-
quency between venous channels and the surrounding brain parenchyma thus aiding
in detecting various vascular malformations such as deep venous anomaly.

It is exquisitely sensitive in detecting small haemorrhagic contusions in traumatic
brain injury. Identification of small haemorrhages along with their location provides
valuable information concerning the mechanism of injury and prognosis of the
patient [11].

SWI has the ability to detect minute bleeds within the infarct thus precluding the
use of revascularization therapies in case of early haemorrhagic transformation of
infarct [12] (Fig. 9.4).

9.3.6 MR Perfusion Imaging

MR perfusion imaging enables us to non-invasively measure cerebral perfusion
through assessment of multiple haemodynamic parameters such as cerebral blood

Fig. 9.3 Axial MRI of brain showing area of altered signal intensity involving right frontal lobe
and left parietal lobe. It appears hyperintense on T2WI (a) and FLAIR (b) images. The area shows
restriction on DWI (c) and ADC (d) images consistent with acute infarct
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volume, cerebral blood flow and mean transit time. Exogenous tracer method
involving the use of paramagnetic contrast material may be used or magnetically
labelled blood may be used as endogenous tracer material [13].

9.3.6.1 Dynamic Susceptibility Contrast (DSC) MR Perfusion
It is the most frequently used technique for MR perfusion study. It uses the regional
susceptibility-induced signal loss due to paramagnetic contrast material (such as
gadolinium) on T2 or T2* WI. Gadolinium containing contrast medium is injected
intravenously and rapid repeat sequences of brain are acquired during the first pass of
the contrast. Signal in each voxel represents the intrinsic tissue T2/T2* signal
attenuated by susceptibility induced signal loss proportional to the amount of
contrast in the vessels [14, 15].

After image acquisition, signal intensity-time curve is generated from area of
interest and various parameters such regional cerebral blood volume, cerebral blood
flow and mean transit time can be calculated. Also, we can use these values to
generate coloured maps of area of interest.

Fig. 9.4 Axial MRI of brain showing area of altered signal intensity involving right parietal lobe. It
is hypointense on T1WI (a), and hyperintense on T2WI (b) consistent with infarct. Foci of blooming
seen in it in right parasagittal location on SWI (c) and appearing bright on phase images (d)
indicating haemorrhagic transformation
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9.3.6.2 Dynamic Contrast Enhanced (DCE) MR Perfusion
DCE MR perfusion calculates cerebral perfusion parameters by assessing T1

shortening effects of gadolinium. Gadolinium-based contrast media is injected
intravenously and repeated T1WI are obtained. The most frequently calculated
parameter is k-trans, i.e. measure of capillary permeability.

9.3.6.3 Arterial Spin Labelling (ASL)
It does not require use of any exogenous contrast medium. Water molecules in
incoming blood are magnetically tagged using a radiofrequency pulse which
saturates the water protons. Labelled or tagged images and control images are
obtained in which the signal from static tissues is identical but of inflowing blood
is different. Subtraction of labelled and control images removes the signal from static
tissues and the remaining signal measures perfusion which is proportional to cerebral
blood flow (CBF).

Compared to other methods, ASL has very low signal-to-noise ratio but is very
useful in paediatric patients or patients with impaired renal function who require
serial follow-ups [16].

9.3.6.4 Uses
• In acute stroke, perfusion-diffusion mismatch can help in identifying ischaemic

penumbra, i.e. surrounding viable ischaemic tissue which is at risk of infarction
[17, 18]. Area with reduced cerebral blood volume and cerebral blood flow and
increased mean transit time represents the infarcted core as well as the reversible
surrounding ischaemic tissue, whereas the area with diffusion restriction
represents irreversibly infarcted core.

• Cerebral blood volume maps help us to assess neovascularity within the tumour
that correlates well with tumour grade and malignant histology and to localize
tumour area expected to yield positive results on stereotactic biopsy. It can enable
us to differentiate radiation necrosis from recurrent tumour.

• While evaluating patients with migraine headaches, during the aura, patients
show decreased cerebral blood flow and blood volume as compared to post-
aural state.

• Its role is being evaluated in dementia patients. Alzheimer’s disease patients have
shown decreased cerebral blood volume in the temporal and parietal lobes. The
results are consistent with findings of single-photon emission computerized
tomography (SPECT) studies in these patients [19, 20].

9.3.7 Magnetic Resonance Spectroscopy (MRS)

1H-MRS is an advanced non-invasive imaging tool which provides information
about biochemical composition of tissue being imaged. The main metabolites of
brain parenchyma include N-acetyl aspartate (NAA), Choline (Cho) and Creatine
(Cr) which show peaks at different parts per million (ppm) (Fig. 9.5). The metabolic
changes precede the anatomical changes during the development of disease as well
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as during response to treatment. So, MRS is a highly sensitive tool to assess these
changes at an early stage (Table 9.1).

9.3.8 Diffusion Tensor Imaging (DTI)

DTI is utilized to map and characterize three-dimensional diffusion of water
molecules as a function of spatial localization [37, 38]. Diffusion of water in
biological tissues is produced by random thermal fluctuations and is hindered by
cellular structures and cell membranes. Thus, it leads to anisotropy, i.e. varying
magnitude in different directions.

In cerebral white matter, diffusion of water is relatively less restricted in the
direction parallel to fibre orientation, while it is exceedingly impeded in the direction
perpendicular to the white matter. Major diffusion eigenvector is presumed to be
parallel to the orientation of white matter tracts in homogenous white matter
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Fig. 9.5 MR spectroscopy image of normal brain parenchyma showing N-acetyl aspartate (NAA)
peak at 2.01 ppm, Choline peak at 3.20 ppm and Creatine peak at 3.03 ppm
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[39]. Tractography algorithms are used to generate estimates of the white matter
trajectories in human brain.

Tractography methods are applied primarily to generate reconstructions of the
major projection pathways, i.e. corticospinal tract, corona radiata, commissural
pathways (corpus callosum and anterior commissure) and also association pathways
such as arcuate fasciculus, uncinate fasciculus and inferior longitudinal fasciculus
[40–44] (Fig. 9.6). Any pathology causing change in tissue microarchitecture alters
the anisotropy, thus making DTI a highly efficient tool for indicating the effects of
disease on tissue microarchitecture (Fig. 9.7). DTI has a high sensitivity but low
specificity which poses a unique challenge to its applications in neurology.

9.3.8.1 Uses
1. Brain tumours—The customary clinical application of DTI is characterization of

white matter tracts in persons with brain tumours. DTI maps and tractography
help to localize white matter fibre tracts involved in critical functions such as
vision, language and motion [44–46]. This information enables the neurosurgeon
to plan the surgery accordingly minimizing damage to these critical tracts such as
corticospinal tracts [47].

2. Stroke—Diagnosis and characterization of acute ischaemic lesions can be done in
the brain parenchyma. During acute phase of the disease, the mean diffusivity
significantly reduces in the lesion [48]. After few days (5–7 days), the mean
diffusivity normalizes and significantly increases in chronic phase when

Table 9.1 Magnetic resonance spectroscopy peaks

Metabolite Peaks at Significance

NAA (N-acetyl
aspartate)

2.01 ppma Recognized as neuronal marker as it is predominantly found in
neurons, axons and dendrites in the central nervous
system [21].
Elevated in Canavan’s Disease [22].

Choline 3.20 ppm Elevated in gliomas and in active demyelination [23].
Low levels in hepatic encephalopathy [24].

Lactate 1.31 ppm Not detectable under normal conditions in brain parenchyma.
Elevated in acute hypoxia, ischaemic injury, in brain tumours or
mitochondrial diseases [25–30].

Myo-inositol 3.5–
3.6 ppm

Reduced in hepatic encephalopathy [31].
Elevated in Alzheimer’s dementia and demyelinating diseases
[32, 33].

Creatine 3.03 ppm Involved in energy metabolism.
Glial cells have higher concentration than neurons [34].
Higher levels of creatine in cerebellum as compared to
supratentorial brain parenchyma.

Glutamate and
glutamine

2.2–
2.4 ppm

Most abundant amino acid in brain.
Glutamate is the dominant neurotransmitter.
Glutamate is elevated in multiple sclerosis plaques [35].
Elevated glutamine is found in hepatic encephalopathy and
Reye’s syndrome [31, 36].

appm: parts per million
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encephalomalacia ensues. Fractional anisotropy increases during the acute phase
and decrease below the baseline level during chronic phase [49–51].

3. Demyelination—Parallel organization of white matter fibres forms the ground for
diffusion anisotropy and myelin modulates the degree of anisotropy [52]. Any

Fig. 9.6 Diffusion
tractography image showing
anteroposterior fibres as
green, transverse fibres as red
and craniocaudal fibres as
blue in color

Fig. 9.7 Diffusion tractography image of brain showing destruction of left middle cerebellar
peduncle by the mass lesion in left cerebellar hemisphere

9 Advanced Magnetic Resonance Imaging (MRI) of Brain 157



disease process causing dysmyelination or demyelination will cause increased
radial diffusivity and decrease in anisotropy. This has been particularly seen in
relapsing-remitting multiple sclerosis, periventricular frontal white matter in early
Alzheimer’s disease, in periventricular white matter in hydrocephalus, in
extratemporal white matter in temporal lobe epilepsy, in genu of corpus callosum
in cocaine addicts and in the corpus callosum of patients with autism [53–58].

9.3.9 Functional MRI (fMRI)

fMRI as a technique is used to obtain functional imaging by visualizing alterations in
blood flow in cerebral cortex in response to stimuli or actions (Fig. 9.8).

In this technique, the patient is instructed to perform a particular task. In response
to the task, there is an increase in regional cortical activity which increases the
oxygen requirement of the activated cortex leading to drop in oxyhaemoglobin
concentration and an increase in deoxyhaemoglobin concentration. Following a
delay of 2–6 s, there is an increase in cerebral blood flow (CBF) thus washing
away deoxyhaemoglobin. This rebound in tissue oxygenation is measured [59, 60].

fMRI utilizes the difference in paramagnetic properties of oxyhaemoglobin and
deoxyhaemoglobin. Deoxygenated haemoglobin is basically paramagnetic causing

Fig. 9.8 Functional MRI showing activation of corresponding motor cortex with movement of
right index finger
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local dephasing of protons and thus reducing the signal returned from surrounding
tissues. Heavy T2* weighted sequences are used for imaging in fMRI.

This imaging technique is used to look for the extent of involvement of eloquent
areas (such as those involved in speech or motor function) by the tumour for
presurgical planning.

9.4 Conclusion

Today MRI is not just limited to providing the anatomical details. Advanced MRI
sequences also enable us to evaluate the metabolic and functional status of tissues at
molecular level in a non-invasive manner. Use of advanced MRI techniques forms
an essential component of diagnostic algorithm of neurological diseases both for
diagnosis and assessment of response to treatment before anatomical changes set in.

Declaration All the figures described in the text have been obtained by the authors at their
institute.
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