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Abstract Intelligent 3-D path planning is a crucial aspect of an unmanned aerial
vehicle’s (UAVs) autonomous flight system. In this chapter, we propose a two-step
centralized system for developing a 3-Dpath-planning for a swarmofUAVs.We trace
the UAV position while simultaneously constructing an incremental and progressive
map of the environment using visual simultaneous localization and mapping (V-
SLAM) method. We introduce a corner-edge points matching mechanism for stabi-
lizing the V-SLAM system in the least extracted map points. In this instance, a single
UAV performs the function using monocular vision for mapping an area of interest.
We use the particle swarm optimization (PSO) algorithm to optimize paths for multi-
UAVs. We also propose a path updating mechanism based on region sensitivity (RS)
to avoid sensitive areas if any hazardous events are detected during the execution of
the final path. Moreover, the dynamic fitness function (DFF) is developed to eval-
uate path planning performance while considering various optimization parameters
such as flight risk estimation, energy consumption, and operation completion time.
This system achieves high fitness value and safely arrives at the destination while
avoiding collisions and restricted areas, which validates the efficiency of proposed
PSO-VSLAM system as demonstrated by simulation results.

Keywords Visual-SLAM · PSO · Path planning · Autonomous aerial vehicles ·
UAV

1 Introduction

The ability of an autonomous aerial vehicle to navigate in an unknown environment
while simultaneously building a progressive map and localizing itself is a prominent
research topic in robotics. Because of the practical uses of simultaneous localization
and mapping (SLAM), research has been conducted [1]. Advances in vision-based

U. A. Mughal · I. Ahmad · C. J. Pawase · K. Chang (B)
Department of Electrical and Computer Engineering, INHA University, Incheon 22212, South
Korea
e-mail: khchang@inha.ac.kr

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Z. Kaleem et al. (eds.), Intelligent Unmanned Air Vehicles Communications for Public
Safety Networks, Unmanned System Technologies,
https://doi.org/10.1007/978-981-19-1292-4_8

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1292-4_8&domain=pdf
mailto:khchang@inha.ac.kr
https://doi.org/10.1007/978-981-19-1292-4_8


170 U. A. Mughal et al.

SLAM algorithms assess the robot’s position and generate the terrain as the robot
of interest moves [2]. Many SLAM systems in the literature include a diverse set of
sensors, including Laser Range Finders (LRF), inertial measurement units (IMU),
GNSS receivers, magnetometers, optical flow sensors (OFS), barometers, and Light
Detection and Ranging (LiDAR) [3, 4]. Single camera SLAM systems, on the other
hand, have gained in popularity in recent years due to their light weight, low cost,
and variety of applications in complex environments [5, 6]. In this regard, monoc-
ular visual-SLAM has gotten attention for UAV applications since it provides fully
autonomous systems in a range of challenging settings without the usage of external
positioning systems.UAVs are commonly used for trafficmonitoring, health services,
search and rescue, security, and surveillance [7–9]. UAVs enhance wireless network
coverage, capacity, and efficiency by serving as base stations [10].

Path planning algorithms are designed to find the optimum path based on a set of
constraints and objectives (such as terrain constraints and collision avoidance, energy
consumption, flight risk, etc.). As a result, path planning must take into account not
only limitations and objectives, but also the possibility of dangerous events that
occurred unexpectedly along the UAV’s path. We propose the region sensitivity
(RS) to reduce unconditional hazards by allowing the UAV to recognize an unsafe
region and optimize its path to the destination. The focus of this research is to provide
a framework for determining the best path to take using monocular vision maps. A
visual-SLAM (VSLAM) approach builds an incremental map of the environment
while continuously tracking the camera’s position. Following that, the resulting map
is analyzed and used as input for an optimization algorithm.

The PSO framework is easier to implement and requires less time to compute than
other metaheuristic search algorithms. It is also better at handling nonlinear chal-
lenges than other heuristic algorithms like ant colony optimization (ACO), Genetic
algorithm (GA), and an evolutionary technique (EA). Because the GA is fundamen-
tally discrete, i.e., it encodes to design discrete variables, it has a high computing
cost, whereas the PSO is inherently continuous and can be easily modified to handle
discrete design variables. As a result, we utilize PSO since it converges efficiently in
a dynamic environment. The particle is treated as an integrated individual in the PSO
framework, representing a candidate solution. As a result, the performance of all
particles defines the global best particle. To analyze a feasible path, the PSO planner
evaluates the quality of the entire path rather than a single waypoint.

1.1 Main Contributions

This chapter aims to develop a system that generates the best paths for multiple
UAVs to safely arrive at their destinations, even when GPS is unavailable. To build
an incremental and progressive map of the surrounding environment, we designed
a two-step centralized system based on visual-SLAM. The constructed terrain map
in the form of a points cloud is loaded into the proposed multiple-path UAVs opti-
mization planner. To stabilize the system in the least textured environment, we use
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the Canny and Harris detectors at the same time. We proposed a dynamic fitness
function (DFF) as a joint cost determinant, which contains multiple optimization
indexes, such as flight risk estimation, energy consumption, operation completion
time, and numerous constraints, such as UAV constraints, which consider the phys-
ical limitations of the UAVs, and environmental constraints, which also consider the
surrounding conditions. To address unexpected hazardous events, we’ve presented a
path-updating system based on the RS, which allows the UAV to identify an unstable
location and optimize its path accordingly. Based on the RS and DFF, the proposed
optimization planner utilizes the PSO to compute the fitness of each path. All of these
factors contribute to the practicality of our proposed methodology for path planning
of multiple UAVs.

1.2 Related Work

SLAM and PSO technologies are often used in research involving underwater, inte-
rior, andoutdoor environments. The authors of [11] utilize activeSLAMfor deep rein-
forcement learning-based robot path planning. The convolutional residual network
is used to detect obstacles in the path. The suggested approach employs the Dueling
DQN algorithm for obstacle avoidance while also employing the FastSLAM tech-
nique to create a 2D map of the surrounding area. Similarly, the authors of [12] use
stereo vision-based active SLAM to locate, navigate, and map their environment.
To avoid obstacles and complete the task effectively, the cognitive-based adaptive
optimization algorithm is introduced. The main focus of the approaches in [11, 12] is
on the complete robot task while detecting and avoiding the environment’s obstacles.

In [13], the author recommends using a visual-SLAM technique to build an incre-
mental map of the terrain for surveillance. For path planning, the author offers
the Cognitive-based Adaptive Optimization (CAO) algorithm. A monocular-inertial
SLAM is proposed in [14]. To augment the monocular camera’s sensing cues with
inertial measurement unit (IMU). PSO method was used in a hazard exploration
scenario for a network of UAVs in [15]. The new and improved PSO is proposed
as dynamic PSO for UAV networks (dPSO-U). UAVs use delay tolerant networking
(DTN) for sharing information. The solution simply evaluates the optimum UAV
combinations to thoroughly explore the environment. The 5G network is enhanced
with multiple UAVs in [16]. The UAVs serve as a link between the users and the
cellular base station. The designed approach’s major goal is to position the UAVs
in the best possible position to maximize the communication coverage ratio. The
authors offer per-drone iterated PSO (DI-PSO) system that utilizes PSO to find the
optimum position for each drone. In our method, the UAVs function as individual
PSO particle. A group of unmanned aerial vehicles (UAVs) tackles a forest fire in
[17]. Before the mission begins, the target locations are assumed to be known. Using
an auction-based algorithm, the UAVs were assigned to the various fire areas. The
UAVs then employ the centralized PSO algorithm, as well as the parametrization and
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time discretization (CPTD) algorithm, to compute the best paths to the designated
fire sites.

In [18], an improved PSO algorithm is used for real-time path planning of a
single UAV.Work falls under the low-level category of trajectory planning because it
involves avoiding moving obstacles. The NBVP [19] is relevant to this paper. Within
the planning loop, it employs the RRT technique. A tree node is used to retrieve
visual data from the depth sensor. During planning, a small fraction of the best view
is executed in each iteration, enabling the trajectory to be adapted to the plan between
iterations as a new explored map.

Our previous work [20] examined the environmental and physical characteristics
of the surroundings. However, we present a dynamic fitness function (DFF), which
involves various optimization factors to handle environmental constraints including
terrain limitations, restricted areas, collision avoidance, etc. Moreover, we propose
RS to tackle any unexpected hazardous event during UAV flight. To find the optimal
DFF and RS system designs, we employ a monocular vision-based SLAM tech-
nique. In [21] authors developed an enhanced PSO (IPSO) for robot path planning.
The authors evaluate three alternatives in two different environments: PSO, artifi-
cial potential field (APF), and IPSO. In [22], the authors developed the adaptive
selection mutation limited differential evolution method for path planning in disaster
environments. A single objective evolutionary technique, based on reference points,
is presented in [23]. The author also developed a hybrid grey wolf optimization tech-
nique for UAV path planning in [24]. In the literature, different system parameters
were generated from various system philosophies and objectives [25].

Challenges of 3-D UAV placement, such as resource and power allocation, trajec-
tory optimization, and user association are discussed in [26]. This challenge becomes
considerably more complicated as the height of the UAV changes, changing the
channel conditions and reducing coverage due to severe co-channel interference.
The authors proposed optimizing the 3-D UAV placement and path-loss compensa-
tion factor for various UAV deployment heights in the suburban setting in order to
provide a solution. The authors of [27] suggested a rapid K-means-based user clus-
tering model and jointly optimum power and time transfer-ring allocation that can
be used in the real system by deploying UAVs as flying base stations for real-time
network recovery and maintenance during and after disasters. Nguyen et al. [28]
presented a unique approach based on deep reinforcement learning for finding the
best solution for energy-harvesting time scheduling in UAV-assisted D2D commu-
nications. The article [29] investigated wireless systems by using a full-duplex
(FD) unmanned aerial vehicle (UAV) relay to allow two adjacent base stations to
communicate with users and are far distant. In order to increase user performance,
non-orthogonal multiple access (NOMA) aided networks and multiple-antenna user
design are also investigated. For delay-sensitive communication in UAVs, a disaster
resilient three-layered architecture for PS-LTE (DR-PSLTE) is presented in [30].
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2 Visual-SLAM Framework

Most vision-based SLAM systems employ a corner features detector, such as the
Harris corner detector. In a non-textured scene, the corner detector cannot identify
enough feature points. As a solution, we present the corner-edge point system, which
employs edgepoints aswell. The edge-point is the detectedpoint on the edge segment.
Our method recognizes corner and edge points by comparing the 3D points of the
next image and estimating the camera’s position by comparing the 3D points of the
next image. In this method, the camera’s trajectory and a 3D map are produced.
In addition to robustness, it provides a detailed representation of the object, which
improves the modeling process of surface detection and reconstruction.

2.1 Approach

Correspondence between the points may lead tomultiplematches, including outliers.
Random sampling consensus (RANSAC) [31] handles inliers, outliers, dividing data
using perspective projection [32]. The large matching errors are eliminated by the
progressive sample consensusPROSACalgorithm [33]. In the beginning,we estimate
the trajectory of the camera with small detected points, and afterwards, we use a
coarse-to-fine approach to refine the trajectory and feature point correspondence by
progressively increasing the points. The overall approach to constructing amap using
the visual- SLAM system can be seen in Fig. 1.

2.1.1 Keypoint Matching

Most computer vision applications require Structure from Motion (SfM), Multi-
view Stereo (MvS), image registration, and image retrieval. The technique begins
with keypoint detection and description and then proceeds on to keypoint matching.
A descriptor is a multidimensional vector that denotes the keypoints in space. As
a result, the keypoint is identified, which is then projected on the images from two
different perspectives. First, we apply acceleration segment characteristics to find
keypoints (FAST). The edge locations are then determined using the well-known
Harris Corner detector [34] and Canny edge detector [35]. To eliminate outliers, the
robust independent elementary features (BRIEF) descriptor is oriented around the
gradient. Due to their lower processing complexity and higher accuracy compared to
other detectors and descriptors [36]. The SIFT has the lowest matching rate of 31.8%
in 0.25 s, while the ORB combines FAST and BRIEF to have the highest matching
rate of 49.5% in 0.02 s.
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Fig. 1 Flowchart of map construction using Visual-SLAM

2.1.2 Keypoint Reconstruction

A 3D point from consecutive images is calculated using the following equation:

Pe =
(
b(x1 + xr )

2(x1 − xr )
,

by

(x1 − xr )
,

b f

(x1 − xr )

)T

(1)

where, b indicates baseline, and f is the focal length, y = y1 = yr, while (x1, y1)
represents the points on one image, and (xr, yr) represents the point on the consecutive
next image. We set u = (x1, y1, xr , yr) and Pc = S(u), and therefore, the covariance
of the edge point (Pc) is calculated as

∑
Pe = δS

δu

∑
u

δST

δu
(2)

Now, we assume (
∑

u = diagσ2
x1, σ

2
yr , σ

2
yr ) and, for the implementation, we take

σxr = σy1 = σyr = 0 : 5[Pixels]. The correlation between σy1 and σyr is assumed to
be very strong.
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2.1.3 Camera Motion Estimation

The trajectory of the camera can be estimated by successfully matching the points
from time t-1 to t when the points are reconstructed in frame It −1, and the points are
detected at frame It. Let vt be a camera pose at time t,where Pi

t−1 is a i-th reconstructed
3D point at t − 1. Similarly, Pi

t−1 is a point that was taken as a projection of Pi
t−1

on the image at It. The point Pi
t−1 is termed a map point because it is stored for

map generation, and therefore, point Pi
t−1 can be represented as P

i
t−1 = k(Pi

t−1, vt ),
where k indicates the function of perspective projection:

K = N−1
t

(
Pi
t−1 − Mt

)

k
(
Pi
t−1, vt

) =
(
f
Kx

Kz
, f

Ky

Kz

)T

(3)

where, Mt and Nt are the translation and rotation matrices of vectorvt . Let git is a
point on the image corresponding to Pi

t−1, so the cost function, C can be defined as

C(vt ) =
n∑

i=1

q
(
git , P

i
t−1

)
(4)

where q
(
git , P

i
t−1

)
represents the penalty that depends on the Euclidean distance

between points git and Pi
t−1. We use the perpendicular distance between the point

Pi
t−1 and the segment containing the point git in image [37, 38]. We estimate the

motion using pose vector vt at time t, and the correspondence between the points
from decreasing cost function C(vt ). This can be achieved by utilizing the gradient
descent method, setting the initial value of vector vt to vt−1, and setting closest point
git to its closest corresponding point, Pi

t−1, by calculating the Euclidean distance.
This process of point matching repeats, which decreases C(vt ), and the optimal pose
vector vt , and thus, point correspondences are achieved.

2.1.4 Map Construction

We build an incremental 3D map of the environment based on camera pose vector vt
by transforming the 3D points into world coordinates from the camera coordinates.
Let us take the camera coordinates and Pi

e as the i-th 3D point, so the location of this
point in the camera coordinates can be represented as follows:

Pi = c
(
Pi
e , vt

) = Nt P
i
e + Mt (5)
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We integrate the identified 3D points based on their correspondences, which
decreases the depth error. Based on the covariance, we integrate the location of
all the identified 3D points. We take the average location of the identified 3D points
between the keyframes,which increases the efficiency. The created 3Dpoints indicate
the map, and estimate the trajectory of the camera, between the keyframes.

2.1.5 Camera Motion Update

Camera motion is updated by extracting the keyframe from the sequence of images
with interval d, and then, we refine themotion using the RANSAC algorithm between
the keyframes. As expected, the camera motion is relatively large between the
keyframes, so to avoid the local minima, we initialize the value of a keyframe to
Id from the estimated camera motion by each keyframe It + 1. Every 3D point Pi

t−d
taken upto keyframe It-d is supposed to project onto keyframe It and match to the 3D
point qi

t in the image [39].
Uncertainty is evaluated by calculating the covariancematrix of camera poses.We

usevt and
∑

vt
to represent themean and covariance, inwhichvt is calculated from the

keyframe, whereas
∑

vt
is calculated with the followingmechanism. Let st represents

the vector of multiple points in the image at time t where wt indicates the vector of
3D points, which are matched with st. We can indicate st as st = h(wt , vt ) + nt ,
where nt is noise having zero mean and zero covariance,

∑
nt
, and st can be obtained

with the Taylor expansion, as follows:

st ≈ k(wt , vt ) + δk

δwt
(wt − wt ) + δk

δvt
(vt − vt ) + nt (6)

We can calculate the covariance of camera trajectory utilizing Eq. 6, as follows:

∑
vt =

(
J T
vt

(∑
nt

+Jwt

∑
wt

J T
wt

)−1
Jvt

)−1

(7)

where, Jvt = δk
δvt

(wt , vt ), Jwt = δk
δwt (wt , rt ) and

∑
wt represents the covariance

matrix of the 3D points that match st. The size of the
∑

wt depends on the number
of 3D points and if the number of points is large, which makes

∑
wt computation

intractable.
We assume that the location of all the 3D points that are reconstructed from the

same frame have a strong correlation. To overcome the complexity, we divide all 3D
points into two parts, wa and wb, where wa indicates the 3D points reconstructed
from the last keyframe, It-d, and wb represents the reconstructed 3D points from the
past key frames, I1 to It-2d. we can approximate each group covariance to the mean
covariance of all 3D points. Considering all the assumptions, we have the following:
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Jwt

∑
wt
J T
wt = 1

|wa|
∑
P∈wa

JP
∑

P
J T
P + 1

|wb|
∑
P∈wb

JP
∑

P
J T
P

JP = δk

δP

(
P, vt

)
(8)

where, JP and
∑

P represent the Jacobian and covariance matrix of a 3D point,
respectively. This supposition decreases the computational complexity of the system.

2.1.6 Map Update

We construct the 3D map according to section II-A4. We fuse the matched 3D points
with weights according to their covariance. The 3D point explained in section II-A4
can also be expressed as

Pi
t = c

(
Pi
e,t , vt

)
(9)

As mentioned above, we are ignoring correlation term
∑

wt , and therefore, we

calculate the covariance matrix of each 3D point. Let Pi
t and

∑
Pi
t
represent the mean

and covariance of a 3D point, respectively. Using the Taylor expansion, we have the
following:

Pi
t ≈ c

(
Pi
e,t , vt

)
+ δc

δPi
e,t

(
Pi
e,t − Pi

e,t

)
+ δc

δvt
(vt − vt ) (10)

The covariance of 3D point Pi
t can be calculated using Eq. 10 as follows:

∑
Pi
t

= δc

δPi
e,t

∑
Pi
e,t

δc

δPi
e,t

T

+ δc

δvt

∑
vt

δc

δvt

T

(11)

We update the location and covariance of a 3D point by fusing Eq. 11 with the
point at t−d, as follows:

Pi
t = Pi

t−d +
∑

Pi
t−d

(∑
Pi
t−d

+
∑

Pi
t

)−1(
Pi
t − Pi

t−d

)

∑
Pi
t =

(∑−1

Pi
t−d

+
∑−1

Pi
t

)−1

(12)
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3 Swarm-Based Path Planning Approach

In this section, we introduce the proposed path planning scheme based on particle
swarm optimization. The elevation map generated by the visual-SLAM algorithm is
used as input terrain information for the optimization algorithm to plan the optimum
path. The data set we used in our system is very diverse, and provides information
on the terrain. There are multiple system constraints, which must be satisfied before
planning the path from source to destination and meeting the multiple objectives we
desire in order to obtain the maximum value. In this regard, we propose the DFF to
derive the optimal trajectory of the UAVs while considering all the constraints and
objectives of the system.

3.1 Working Principle of Particle Swarm Optimization

PSO is a heuristic search algorithm. It was first developed by Kennedy and Eberhart
in 1995 to introduce a method for optimization of a nonlinear function [40]. It is a
nature-inspired set of computational methodologies to resolve complex real-world
problems. PSO computes the number of particles to look for the best solution. Each
particle moves in accordance with both its previous best particle in the group and
the swarm’s global best particle. Each particle changes its velocity and location in
real time using information from the prior velocity and best position obtained by any
particle in the group, as well as the global swarm’s best position.

3.2 PSO Formulation

The mathematical formulation for each particle’s velocity and position are stated as
follows. Let the total number of particles in a swarm be P, the total iterations is N,
and the 3D dimension of each particle is D. Therefore, for the particle, position x
and velocity v can be represented as:

xi = (xi1, xi2, . . . , xiD)

vi = (vi1, vi2, . . . , vi D) (13)

The position for the best particle, pi,best , in the group and the global best swarm
paticle, sbest , can be computed as follows:

pi,best = (
pi1,best , pi2,best , . . . , piD,best

)
sbest = (

s1,best , v2,best , . . . , vD,best
)

(14)
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Because pbest and sbest are termed cost values for PSO, once a cost function is
defined, then the position and velocity are updated as follows:

xt+1
i j = xti j + vt+1

i j

vt+1
i j = χvt

i j + ar1
(
pi, j,best − xti j

) + br2
(
s j,best − xti j

)
For i = 1, 2, 3, . . . P j = 1, 2, 3 . . .D t = 1, 2, 3, . . .N (15)

where, a and b are the self-cognitive acceleration property and the social knowledge
parameter of the swarm, respectively, which represent the inheritance characteristics
of the personal particle and the whole swarm; and are random values in the range
[0–1], and χ represents the inertia of an individual particle, which induces an effect
on the velocity from one iteration to next iteration. The authors in [41] suggested
optimum values of a = b = 1:496 and χ = 0:7298 for PSO performance.

4 Proposed Dynamic Fitness Function

In order to derive the optimal trajectories, the DFF computes the fitness of the trajec-
tory considering optimization parameters,which are divided into two groups, namely,
objectives and constraints. The former consist of risk estimation, energy consump-
tion, and operation completion time; the latter are further divided into two parts
depending upon the UAV’s physical constraints (flying slope and turning angle) and
the physical limitations of the environment (region sensitivity, restricted areas, and
terrain constraints). The working flow of the DFF can be observed in Fig. 2. The
DFF can be formulated as seen in equation:

DFFf itness = Fobjectives + Fconstraints (16)

where, Fobjectives indicates the objectives function on which we focus to gain the
maximum value, whereas Fconstraints indicates the UAV physical and environmental
restrictions, which must be fulfilled before planning the trajectory.

4.1 Objectives Design

We have set optimization parameters, and the objectives were constructed to improve
the quality of path planning. The objectives can be represented as weighted compo-
nents of risk estimation, energy consumption, and operation completion time, as
follows:

Fobjectives = w1ORE + w2OEC + w3OOT (17)
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Fig. 2 Flowchart to
compute dynamic fitness
function

Initialize the parameters

Compute constraint functions value

Compute objective function value

Compute the fitness functions value

Output the fitness value of the 
particle

Calculate Nw = 8

For i = 1:Nw 

Nw = 8 ?

YES

NO

where, w1, w2, w3 denote the weights of the objective components [39], which are
chosen to derive the importance of each component while planning the path, and
ORE , OEC , OOT are functions from which values are taken in the range [0, 1]. We
aim to derive the optimum path with less risk, energy, and time.

4.1.1 Risk Estimation

Some flight restrictions should be implemented. In harsher weather conditions, such
rain, snow, or strong winds, small UAVs are susceptible to damage. The UAV altitude
while doing the work should be moderate; winds at higher altitudes are stronger. The
UAV also faces risks because of dense clouds that impede its ability to focus. Based
on the above risks, we identify the following two types of risk.

1. Environmental Risk

The environment has a wide range of characteristics, and therefore, it is difficult
to make a model that precisely measures the environmental risk. Therefore, for
simplicity, an environmental value is generated randomly, rei,i+t , that represents the
risk from the i-th waypoint to waypoint (i + 1). The summation of the risk values
would be considered the environmental risk.

2. Altitude Risk
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The altitude risk is actually an absolute difference in altitude between twowaypoints,
and therefore, we formulate altitude risk rai,i+t as follows:

rai,i+t = k ∗ (zi+1 − zi ) (18)

where, k represents a constant parameter for control. Because risk analysis depends
on location, it will change according to weather conditions and the UAV’s altitude at
the same instant during flight. Therefore, the total risk can be formulated as follows:

ORE =
∑Nw−1

i=1 REi

max RE
(19)

REi = wE Rr
e
i,i+t + wARr

a
i,i+t (20)

REi shows the total risk from the i-th waypoint to waypoint (i + 1), while wER

and wAR are the weight factors of the environmental and altitude risks, respectively.
Nw denotes the total number of waypoints from source to destination, and maxRE
is a normalized value of the risk, which can be computed as follows:

maxRE = (Nw − 1) ∗ [
wER ∗ Z ∗ wAR

(
2 ∗ maxre

)]
(21)

where, maxre indicates the maximum value instigated by the environment risk, and
Z is the altitude of the UAV during flight.

4.1.2 Energy Consumption

Fuel is essential to UAV missions. If the UAV does not arrive on time, the mission is
said to have failed. A simple method that uses less energy (EC) should be the priority.
We assume the UAV velocity stays constant during flight. We define EC as follows:

OEC =
∑Nw−1

i=1 FCi

maxFC
(22)

FCi = Pu ∗ ti,i+1 (23)

ti,i+1 = di,i+1

v
(24)

di,i+1 =
√

(xi+1 − xi )
2 + (yi+1 − yi )

2 + (zi+1 − zi )
2 (25)
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where, FCi represents the fuel burned in flying from the i-th waypoint to waypoint
(i + 1). Pu is the power of the UAV at velocity v, while ti,i+1 is the total time taken
by the UAV to fly from the i-th waypoint to waypoint (1 + i); di,i+1 indicates the
Cartesian distance of a flight from the i-th waypoint to waypoint (1+ i), andmaxFC
is a normalized value for fuel consumption, which can be formulated as follows:

maxFC = (Nw − 1) ∗ Pu ∗ dmax

v
(26)

where, dmax = √
X2 + Y 2 + Z2 where X, Y, Z indicate the three dimensions of the

UAV, i.e., the X-axis, Y-axis, and Z-axis, respectively, during flight time.

4.2 Constraints Design

To optimize possible flight paths Constraints are 0when satisfied, otherwise a penalty
is applied. Applying a penalty Q assures that the path from source to destina-
tion is always feasible. Considering the physical restrictions on the UAV and the
environment’s limits, we can formulate the constraints as follows:

FConstraints = U AVconstraints + Environmentconstraints (27)

4.2.1 UAV Constraints

The UAVs have physical properties that cause these constraints. The UAV’s behavior
during maneuvering should be treated as a priority, as it offers smoothness in flight.
In this regard, we care for the most crucial aspects of a UAV: slope and rotation. UAV
limitations are therefore defined as follows:

U AVconstarints = T A + FS (28)

1. Turning Angle

The turning angle indicates a UAV’s maneuverability in the horizontal direction, i.e.
the angle taken during flight from the previous and current directions. The turning
angle should be less than the maximum tolerable threshold for turning, thus we
calculate it as follows:

T A = 0, T A =
Nw−1∑
i=2

T Ai
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where,

T Ai =
{
Q, i f θ > θmax

0, otherwise
(29)

where, θ defines the turning angle of the UAV in 3D directions (xi, yi, zi), and θmax

maximum tolerable angle. The authors in [34] provided the formulation to calculate
turning angle θi as follows:

θ = arccos

( (
pxi , pyi

)(
pxi+1, pyi+1

)T
∥∥pxi , pyi∥∥2

∥∥pxi+1, pyi+1

∥∥
2

)
(30)

where, pxi = xi − xi−1, Pxi+1 = xi+1 − xi , pyi = yi − yi−1, Pyi+1 = yi+1 − yi and
‖x‖2 is a vector norm for a vector x .

2. Flying Slope

The flying slope is defined as themobility of aUAVwhile gliding andwhile climbing.
During flight, the UAV’s slope is along the horizontal from one waypoint to the next.
Given the permissible gliding and ascending angles, the slope of a UAV is derived
as:

FS = 0, FS =
Nw∑
i=2

FSi

where,

FSi =
{
Q, i f fi /∈ [tan(αmax ), tan(βmax )]

0, otherwise
(31)

where, FSi is the flying slope from one waypoint to the i-th waypoint; αmax and
βmax represent the maximum tolerable gliding and climbing angles, and fi can be
formulated, according to [34], as follows:

fi = zi − zi−1

‖xi − xi−1, yi − yi−1‖2 (32)

where, fi is the flying slope taken by the UAV from the i-th waypoint (xi; yi; zi).
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4.2.2 Environment Constraints

Due to the external environment, the UAV must follow specific rules. Restricted
areas such as military sites, key government institutions, etc., should be taken into
consideration. Therefore, a system should be planned to avoid these limited locations.
Likewise, unforeseen events can occur in which the UAV encounters a flying toy, for
example, an unregistered aerial vehicle, or birds in flight. Regional sensitivity is used
to handle these types of circumstances. This deals with randomly generated sensitive
regions where the UAV recognizes a threat and computes a safe path to avoid them.
Furthermore, the terrain restricts flight. Environmental constraints can be expressed
as follows. We divide the path into a 20 × 20 grid, and the UAV can sense four cells
around itself.

Environmentconstraints = RA + RS + T L + ML + CA (33)

1. Restricted Area

There are some specific areas that UAVs are not permitted to fly through due to
restrictions, such as cantonments, restricted government territories, and so on, and
hence the feasible path to the destination should be a legal one that avoid those
regions. For simplicity, we consider a restricted area to be a rectangle. Formulation
of a restricted region as follows:

RA = 0, RA =
Nw∑
i=1

RACi (34)

where,

RACi =
{
Q, i f waypoint in Range(xr , yr )
0, otherwise

where, Range
(
xr , yr

) = {mx ≤ xr ≤ nx } ∩ {
my ≤ yr ≤ ny

}
and mx and nx repre-

sent the lower and upper bounds, respectively, for x coordinates of the r-th restricted
area at the i-th waypoint, whereas my and ny indicate the lower and upper bounds,
respectively, of y coordinates of the r-th restricted area at the i-th waypoint.

2. Region Sensitivity

Unconditional and unexpected events might occur during flight. Thus, all hazardous
events in the path of a UAV are randomly generated. It notices the hazard and
constructs a path to avoid them. This can be formulated as follows:

Rs = 0, Rs =
Nw∑
i=1

Rsi (t) (35)
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where

Rsi =
∑

cellx∈N (i)

vcellx (t)

Rsi =
{
Q, i f Rsi > Rsth
0, otherwise

(36)

where, Rsi (t) is the value for sensitivity at the i-th waypoint during the flight at time
t, and vcellx (t) is the cell value at flight time t. N(i) is the set of neighbor cells for
the i-th waypoint. The UAV checks the values of the cells at every waypoint, and if
any cell has a sensitivity value greater than the threshold, penalty Q will be given. It
checks the values of the set of neighbor cells for N(i) to avoid that region to satisfy
the constraint.

3. Terrain Limits

During flight, a UAV should take into consideration the limitations of the terrain so
that the UAV always flies above it and avoids collisions (for example, with moun-
tains). To adhere to a terrain constraint, the algorithm gives penalty Q to provide the
feasible path. This constraint can be formulated as follows:

T L = 0, T L =
Nw∑
i=1

T Li (37)

where,

T Li =
{
Q, i f zi ≤ map(xi , yi )

0, otherwise

where, map(xi , yi ) is a function that returns the altitude of the terrain location at
point (xi , yi ), which finds the number of points inside that location.

4. Map Limits

For a feasible path, theUAVmust stay inside themission space to avoid uncertainties.
Therefore, the algorithm applies penalty Q to the points of a trajectory that are off
the map limits. This constraint ensures the space of a mission can be formulated as
follows:

ML =
Nw∑
i=1

MLi (38)

where,
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MLi =
{
0, I nmap(xi , yi )
Q, Otherwise

I nmap(xi , yi ) = (
xml ≤ xi ≤ xmu

)
�

(
yml ≤ yi ≤ ymu

)
(39)

where, xml and xmu are the lower and upper bounds, respectively, for the x coordinate,
and yml and ymu are the lower and upper bounds, respectively, for the y coordinate.
The minimum value to satisfy the map constraint is ML = 0.

5. UAV Collision Avoidance

When calculating paths for multiple UAVs, the planner must ensure that the UAVs do
not get too close to each other, increasing the possibility of a collisionwhile following
their individual paths. To keep a safe distance between them, the limitation can be
expressed as follows:

CA =
Nu

w∑
i=1

Nu
w∑

j=1

CAi (40)

where,

CAi =
{
Q, i f duv

i j < dmin

Q, otherwise

duv
min =

√(
xui − xv

j

)2 +
(
yui − yv

j

)2 +
(
zui − zv

j

)2
(41)

where, dmin is the minimum distance between the UAVs to avoid a collision, and
duv
i j is the distance between the i-th waypoint and the j-th waypoint of the u-th UAV
trajectory and the j-th UAV trajectory, respectively.

5 Operation of the Proposed Path Planner

In this section, we explain the working mechanism of the proposed multiple UAV–
path planner, which is based on visual-SLAM, PSO, and the DFF explained in Sects.
2, 3, and 4, respectively. The proposed planner first utilizes the elevation map gener-
ated by visual-SLAM and fed into the PSO planning algorithm to derive the optimum
trajectory for each UAV to the defined destinations, in which the DFF optimizes all
the possible waypoint sequences to reach destinations considering all constraints and
objectives, along with satisfying the collision avoidance condition. If all conditions
are satisfied, the planner will output the optimum trajectory for each UAV to its
destination.
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In our proposed system, the path from source to destination consists of waypoints
and line segments. We opted for an eight-waypoint trajectory-generation system. For
clear understanding, we divided the whole operation area into cells and determine
the estimated flight time to the destination. Next, we initialize the PSO algorithm to
plan the optimum path for each UAV, which can be seen in Fig. 3 from step 5–33. In
the quest to attain the optimum trajectory for each UAV, at first, the planner randomly
generates the velocity and position vectors of particle PN. Next, using Eq. (15), the
velocity and position vectors of each particle are updated.

After that, the proposed DFF is applied to the updated particle as shown the
working flowchart of theDFF in Fig. 2. Considering all the constraints and objectives,

Fig. 3 Pseudocode of the proposed path planner
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the DFF optimizes each particle and finally outputs the best particle, pibest and the
global best particle in the swarm, sbest, which is explained in Sect. 4. TheDFF output
is based on the fitness value acquired by each particle. Then, we store the optimum
path for the first UAV and set the iteration number to Nt. Before initializing the
other UAVs, we aim to derive a collision-free path, and therefore, we check collision
avoidance condition CA. If CA is satisfied, the planner outputs optimum trajectories
for all UAVs; otherwise, it goes back to step 5 if the CA is not satisfied. Finally, when
the flight time reaches, the planner will output the optimum paths for all UAVs to
their respective destinations. The process of the proposed planner is represented in
the pseudocode algorithm shown in Fig. 3.

6 Simulation Results

In this section, we develop a Matlab-based operational environment to evaluate the
working performance of the proposed two-step UAV path–planning system. The
main simulation parameters are listed in Table 1. In our implementation, we used a
data set [42] that was collected by a monocular camera installed at the quad-copter,
in different environments. The data set is publicly available, and more details can
be found at midair.ulg.ac.be. The data set was utilized as input to the optimization
algorithm for multiple-UAV path planning algorithm. We used different types of test
sequences, which can be seen in Figs. 4 and 5 in our system to construct an online
map of the environment. Figure 6a indicates the features in the consecutive scenes
that were matched to simultaneously build an incremental map, which can be seen
in Fig. 6b. The points cloud map contains information on the x, y, z positions and
normal at every point. The terrain representations from the points cloud can be seen
in Fig. 7. We utilized a triangulation algorithm [43] to reconstruct the terrain from

Table 1 Simulation
parameters

Parameter Value

No. of UAVs 2

Speed 10 m/s

Power 20

Iteration number 32, 64, 128, 256, 512

Sensitivity threshold 10

Turning angle threshold 85°

Gliding angle threshold −30°

Climbing angle threshold 30°

Minimum distance threshold 0.2

Initial environmental risk 1–5

Flight time threshold 2

Grid size 20 × 20
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Fig. 4 Flight path (sequence 0005)

Fig. 5 Flight path (sequence 0012)

(a) Matching Features (sequence 0005)                         (b) Points cloud Map (sequence 0005)

(a) Matching Features (sequence 0012)                          (b) Points Cloud map (sequence 0012)

Fig. 6 a Image registration between consecutive scenes and bMap construction by VSLAM to be
used for path planning
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Fig. 7 Terrain representation from the points cloud of sequence 0012

the points cloud.
Figure 8 shows the effect of different numbers of particles on the optimal fitness

value of the proposed DFF. We can clearly see that the fitness value of the proposed
DFF converges to a stable value faster as the number of particles and iterations

Fig. 8 Optimal fitness values for different numbers of optimization particles
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(a) (b)
No. of Iteration No. of Iteration

Fig. 9 Optimization of the PSO path planner performance in terms of a risk estimation and b
energy consumption

increases. The optimization performance of the path planner in terms of energy
consumption and flight risk estimation can be observed in Fig. 9. We utilized 128
particles in our system. As the number of iterations increased, the values of energy
consumption and flight risk estimation converged to a stable value. Moreover, the
difference between the optimum value of energy consumption, where both UAVs
converge, is less than five, and the values of flight risk estimation for both UAVs
is similar, which depicts the effectiveness of the proposed path planner by ensuring
fairness between the generated paths for both UAVs.

Figure 10 shows the optimal paths followed by UAV 1 and UAV 2 from source
to destination while avoiding sensitive regions and restricted areas, respectively, for
the first three flights. The small red 1 × 1 rectangles have a sensitivity greater than
the threshold, while the black 2 × 2 rectangles indicate restricted areas where UAVs
are not allowed to fly.

The sensitive regions generate randomly, indicating a hazardous event, so the
proposed planner optimizes the path until hazardous free paths to the destinations

(a) First Flight                          (b) Second Flight                            (c) Third Flight

Fig. 10 Optimal trajectories of the UAVs from source to destination using proposed algorithm
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Fig. 11 a Optimal fitness values attained and, b UAVs Flight using Conventional PSO Algorithm

are determined. We can observe that the trajectories generated for each flight time
avoids all the sensitive regions and reach the destination safely.

The proposed algorithm also ensures that the multiple UAVs do not collide with
each other. The green 1 × 1 rectangles represent the source and destination. In
Fig. 10, the yellow highlighted areas are high elevations. We can also see that the
trajectory waypoints generated do not overlap, and a UAV reaches the destination
by following the shortest path, which indicates the high efficiency of the proposed
planner. Therefore, Fig. 11a indicates the high fitness value attained by each UAV
driven by the proposed path planner.

Figure 11b indicates the trajectories generated by the conventional PSO. As the
defined environment is dynamically complex due to which conventional PSO is
incompatible with adapting the situation; therefore, it takes very high computational
time to converge. Considering the incompatibility of the conventional PSO in our
environment, we choose tomake the environment less complicated and convenient to
converge. The computational time for the conventional PSO for the simple environ-
ment is higher than our proposed algorithm in the dynamic and complex environment.
The conventional PSO takes 1,767 s while our proposed algorithm takes 739.8 s.

The same computer is used to run the both algorithms. The Table 2 indicates the
flight statistics of both algorithms for the first flight. The conventional PSO algorithm
for both UAVs reaches the destination following the long path. It takes more travel
time while our proposed algorithm reaches the destination for both UAVs following
the shortest path and in optimal travel time in a highly complex environment. The
distance covered from one waypoint to another and the corresponding flight times
for both UAVs can be seen in Fig. 12a, b.

The total distances from the source to destination covered by UAVs during the
first flight were 3,062.4369 m and 3,065.0706 m. Likewise, the times taken to reach
the destinations for both UAVs were almost the same i.e., 307 s. Similarly, Fig. 12c,
d indicates the distance covered and corresponding flight time for both UAVs from
one waypoint to another using the conventional PSO algorithm. We can observe that
the distance and time taken at each waypoint is greater than the proposed algorithm.
The total distance covered by the UAVs for the first flight is 5,571.9591 (m) and
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Table 2 Distance and Time
comparison with the
conventional PSO

Parameter Value

(a) Flight dynamics of first flight using proposed algorithm

Distance covered by UAV 1 3,062.4369 (m)

Distance covered by UAV 2 3,065.0706 (m)

Travel time by UAV 1 307.2542 (s)

Travel time by UAV 2 307.4481 (s)

(b) Flight dynamics of first flight using conventional PSO
algorithm

Parameter Value

Distance covered by UAV 1 3,062.4369 (m)

Distance covered by UAV 2 3,065.0706 (m)

Travel time by UAV 1 307.2542 (s)

Travel time by UAV 2 307.4481 (s)

(a)                                                             (b)

(c)                          (d)

Fig. 12 UAV flight dynamics in terms of distance and time using proposed algorithm for a UAV 1
and b UAV 2 and using conventional PSO algorithm c UAV 1 and d UAV 2
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Fig. 13 Fitness values
attained at each waypoint
during the flight by proposed
algorithm

6,065.0706 (m). Similarly, the total time consumed by UAV1and UAVs is 551.6796
(s) and 549.7633 (s), respectively. In Fig. 13, we show the fitness values attained
at each waypoint by both UAVs during their flights. We sum up the optimal fitness
values of all waypoints for UAV 1 and UAV 2. The total optimal fitness for all the
waypoints of UAV 1 and UAV 2were 5.52 and 5.51, respectively, which are virtually
the same and which depict the fairness of our proposed twostep path planner.

7 Conclusions

In this paper, we designed a two-step, centralized system to construct a map using
state-of-the-art visual-SLAM.We introduce corner-edge pointsmatchingmechanism
to stabilize the system with the least extracted map points. The proposed algorithm
effectively detects the keypoints in different environments and successfully regis-
tered the features. The constructed map is processed as an input mean for the particle
swarm optimization algorithm to plan UAVs’ optimum path.We proposed a dynamic
fitness function considering different optimization objectives and constraints in terms
of UAVflight risk estimation, energy consumption, andmaneuverability for the oper-
ational time.We also proposed a path updatingmechanismbased on region sensitivity
to avoid sensitive regions if any hazardous and unexpected event detects in UAVs’
paths. The system effectively avoids the sensitive regions and returns collision-free
paths to reachUAVto thedestinations safely.The simulation results validate the effec-
tiveness of our proposedPSO-VSLAMsystem.Wecurrently consider twoUAVsover
different flight times to evaluate our proposed PSO-VSLAM system’s performance,
and it successfully outputs the collision-free trajectories and proves high adaptability
towards the complex dynamic environment. Therefore, we plan to considermore than



UAVs Path Planning by Particle Swarm Optimization … 195

two UAVs in our future work and implement machine learning algorithms because
our proposed system effectively achieves the collision-free trajectories for two UAVs
while adapting to the highly dynamic and complex environment.
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