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Abstract Unmanned aerial vehicles (a.k.a. drones) have a wide range of applica-
tions in e.g., aerial surveillance, mapping, imaging, monitoring, maritime operations,
parcel delivery, and disaster response management. Their operations require reli-
able networking environments and location-based services in air-to-air links with
co-operative drones, or air-to-ground links in concert with ground control stations.
When equipped with high-resolution video cameras or sensors to gain environmental
situation awareness through object detection/tracking, precise location predictions
of individual or groups of drones at any instant possible is critical for continuous
guidance. The location predictions then can be used in trajectory optimization for
achieving efficient operations (i.e., through effective resource utilization in terms of
energy or network bandwidth consumption) and safe operations (i.e., through avoid-
ance of obstacles or sudden landing) within application missions. In this chapter, we
explain a diverse set of techniques involved in drone location prediction, position
and velocity estimation and trajectory optimization involving: (i) Kalman Filtering
techniques, and (ii) Machine Learning models such as reinforcement learning and
deep-reinforcement learning. These techniques facilitate the drones to follow intel-
ligent paths and establish optimal trajectories while carrying out successful applica-
tion missions under given resource and network constraints. We detail the techniques
using three scenarios. The first scenario involves location prediction based intelli-
gent packet transfer between drones in a disaster response scenario using the various
Kalman Filtering techniques along with sensor fusion. The second scenario involves
a learning-based trajectory optimization that uses various reinforcement learning
models for maintaining high video resolution and effective network performance in
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a civil application scenario such as aerial monitoring of persons/objects. The third
scenario involves salient non-ML-based trajectory optimization techniques that can
be adopted within UAV-based applications for public safety networks. We conclude
with a list of open challenges and future works for intelligent path planning of drones
using location prediction and trajectory optimization techniques.

Keywords Drone swarms · Location-based services · Situational awareness ·
Deep reinforcement learning

1 Introduction

The use of drones has been increasing at a rapid pace for a diverse range of applica-
tions in e.g., aerial surveillance, mapping, imaging, monitoring, maritime operations,
parcel delivery, and disaster responsemanagement.Many applications involvemulti-
UAV configurations [1], wherein several drones act as either carrier devices to carry
supplies [2], or are used for aerial surveillance for intelligent information gather-
ing [3]. They also are deployed as aerial base stations to provide bandwidth and
network coverage for ground users in certain applications [4]. An example of air-
to-air links with co-operative drones surveying over a designated area is shown in
Fig. 1. These operations require location-aided drone movement and optimal drone
paths for reduced energy consumption and efficient resource allocation. We discuss
salient challenges in realizing these drone location prediction and trajectory opti-
mization techniques and show their advantages through two scenarios involving: (i)
network and video analytics orchestration, and (ii) intelligent packet transfer in a
disaster response management scenario. This chapter will illustrate how various pre-
dicted location information and intelligent path planning schemes help in achieving
efficient performance of application missions.

1.1 How Can Drone’s Location Prediction Be Useful in
Networking Environments and Application Scenarios?

To explain the significance of drone location prediction in real-time applications, we
consider a multi-drone co-ordination and networking system for a critical applica-
tion mission such as e.g., a disaster response scenario (DRS) [5, 6]. This scenario
involves critical tasks such asmonitoring the disaster affected area, search and rescue
operations, and providing supplies to victims. This system features a Flying Ad-Hoc
Network Topology (FANET) [7] to support air-to-air, as well as air-to-ground links.
The ground control station (GCS) sends requests to the drones to execute certain
tasks and the drones send back situational awareness information to the GCS. Such
a scenario, however involves challenges related to drone positioning and path plan-
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Fig. 1 Overview of multi-drone setup based on air-to-air and air-to-ground links

ning. Particularly, the location estimation of drones is necessary for multi-drone
co-operation in order to stay on-course and avoid mid-air collisions. Furthermore,
trajectory planning and optimization is required to efficiently carry out the appli-
cation mission considering the limitations of energy and resources. To explicitly
understand how these two essential methods impact the performance of drones in
application missions, we elaborate them in the following:

1. Location Estimation and Prediction: Tracking and predicting the locations of
drones is important in order to get real-time estimates of drone positions for
autonomous control and to improve the accuracy of delivery tasks execution in
a specific application scenario. It measures how closely the drones are being
monitored and also measures the reliability of the path computation algorithm
performance. This can be achieved by using motion models of the drone move-
ments, and by using such models within a tracking algorithm or a recursive filter.
To get the near-optimal estimates with the motion model, prior works use the
Kalman Filter [8] technique which is widely-used for estimation purposes. The
popularity of Kalman Filter is due to the fact that this technique takes in the
current values as input data (i.e., measurement) along with noises (i.e., measure-
ment noise and process noise) to produce unbiased estimates of system states [9].
Leveraging this state estimation technique can help achieve predicted positions
of drones.

2. Trajectory Optimization The path that a drone follows during its operation is
crucial for effective communication, computation offloading [10], energy con-
sumption and information transfer. A drone’s trajectory design unquestionably
plays an important role in the application performance enhancement and effective-
ness. During its operation, the drone flies over areas which are prone to network
and communication vulnerabilities such as signal-loss, cyber-attacks, coverage
and range limitations that could severely impact the drones’ performance and put
the application mission at risk. Machine learning techniques such as model-free
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reinforcement learning [11] and deep reinforcement learning [12] provide effec-
tive reliable solutions for tackling these implications. They use trial-and-error
path learning techniques for a drone to establish optimal and intelligent trajectory
during its overall flight time during an application mission.

1.2 Chapter Organization

This book chapter aims to address the concepts of drone position and trajectory
optimization techniques related to intelligent path planning. The chapter will first
discuss the challenges related to drone location prediction and trajectory optimiza-
tion. Next, methods for location prediction will be discussed that involve various
Kalman filtering techniques and methods of trajectory optimization using reinforce-
ment and deep reinforcement learning techniques. In this context, we also discuss
non-ML-based methods for trajectory optimization. They together provide motiva-
tion for localization and intelligent path planning of drones for a given application
scenario. Furthermore, we discuss how trajectory optimization of UAVs can aid the
operations of public safety networks. These techniques are based on the theoretical
and experimental research conducted by the authors in the Virtualization, Multi-
media and Networking (VIMAN) Lab at University of Missouri Columbia. Lastly,
we discuss the main findings of this chapter and list out the open challenges and
future works that can be implemented using our approaches to carry out drone-based
application missions effectively and efficiently.

2 Challenges in Drone Location Prediction and Trajectory
Optimization

Since drones are classified under unmanned aerial vehicles, it can be presumed that
the navigation, operation and controlling is carried out externally by a ground con-
trol station or a ground (human) pilot. In most of the applications today, however
the drones flight is increasingly becoming autonomous and may require minimal or
almost no external (human) guidance. This is possible due to the variety of sensors
on-board that constitute the inertial measurement unit (IMU), global positioning sys-
tem (GPS), inertial navigation system (INS), gyroscope, accelerometer, barometer
and high resolution cameras. These sensors facilitate the autonomous drone flights
with high accuracy. Nevertheless, these sensors are prone to external noises that can
cause inaccuracies malfunctioning. Anther critical elements on which a drone’s fight
is dependent is the battery that powers the drones flying mechanism, its flight con-
troller and the above-mentioned sensors. Some of the major challenges pertaining to
localization and path-planning relating to the above issues are:
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Collision avoidance: Real-world application missions are carried out in complex
environments and sometimes, civil applications involving drones are conducted in
urban areas. The UAVs are only dependent on their on-board sensor capabilities
for their traversal through these environments. It is not always feasible to rely on
these sensor readings for navigation and the drones may run into obstacles, hit trees,
buildings or other drones mid-operation. Many techniques have been proposed for
collision avoidance using decentralized control [13, 14]. The drone has to be aware of
the location of its neighbor (drone) and itself at any given instant of time. Leveraging
this information can help tackle the problem of mid-air collisions. Object detection
using computer vision can help in identifying certain objects by training on datasets
of images of common environment obstacles [15]. However, drone’s system reliance
and communication within the network is usually difficult and challenging in large-
scale application missions involving complex environments.

System Security: A wide range of drone-based applications are carried out by
the military that operate on highly confidential information gathering within classi-
fied missions. Also, many civil applications involve sensitive data collection when
drones are deployed as aerial base stations or network providers that handle ground
user data (e.g., faces and postures of individuals in crowds). Drones are at risk of
cyber-attacks and can be hacked, without the drone being physically captured. The
information gathered can become vulnerable and exposed to hackers. Mostly, the
camera modules are targeted and video captured is received by hackers which may
expose the operations that are carried out in the surveillance area. The work in [16]
uses Blockchain technology that encrypts the data being transmitted to base stations.
An approach for threat analysis of drone based systems is described in [17]. Coun-
termeasures to security issues in professional drone based networks are shown in [18].

Energy Limitations: Drones require energy for total flight time including hov-
ering over an area for surveillance and data transmission. Additionally, the on-board
sensors constantly consume energy to function properly and provide localization of
the drones. Energy consumption can also be increased due to attached payloads [19],
wind resistance [20] and network issues [21]. The total energy on a drone is limited
thus restricting the flight-time of the application mission. The work in [22] provides
an energy-aware approach that uses trajectory planning of drones used as mobile
anchors to save energy.

Location Awareness and Blockage of Line-of-Sight: In the context of location
estimation of drones, blockage of line-of-sight for drones is a very trivial problem
that surfaces in the rarest of times [23]. As drones tend to fly long distances based
on their application missions, the location awareness becomes essential in order for
them to remain in their trajectory and under a predefined network connection for
information transfer. It is necessary that they avoid collisions and interference. It
becomes a problem if a drone’s flight is affected due to external factors and it might
become susceptible to unknown attacks. In the worst case scenario, the drone can be
thrown off-path and after consuming all its power, it can land or fall in an unknown
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territory. Thus, it can render itself and the information collected vulnerable, and any
expensive sensors or video camera components are subject to expensive damage or
loss. Various types of research is being conducted by many groups to realize location
awareness [24] of drones.

3 Methods for Drone Location Estimation and Prediction

In our DRS application the drone environment is considered to be a 2D dynamic and
non-linear horizontal plane. As discussed in Sect. 1.1, we assume that all the drones
are connected forming a FANET. They communicate the mapping and monitoring
information over the same network to the delivery drones in order to carry out a
delivery task. Consequently, the network topology of the multi-drone system keeps
on changing based on the mobility of the drones. The position estimation of the
drones must be performed in very short intervals of time using the new coordinates
being updated rapidly within the FANET. Each drone in the FANET is considered
to have a GPS module and an IMU to record its current location. This information
is broadcast to the FANET so that the other drones in the vicinity are recognized for
packet or information transfers when needed. We get the initial measurement data
of the drone using GPS and other on-board sensors such as gyroscope, barometer,
accelerometer and magnetometer that are all part of the IMU. The drone’s rotational
movement angles observed and controlled by a gyroscope and rotary movements,
for stability are shown in Fig. 2. The accelerations and rotations of the drone can be
observed over time to give an estimated position by learning the next measurement
values for different time-steps.

The position, velocity, acceleration and heading of a UAV are considered as
dynamic states at a given time-step. In order to get the location prediction of an
UAV, a state estimator is required to get the true values along with a prediction of
these states for the next time-step. Kalman filter can be used to observe state esti-
mates over time along with process noise and measurement noise from sensors to
give estimates on which drone position state estimates are closer to true values that
cannot be calculated directly [25]. Since the inception of Kalman filter in 1960, it
has evolved over time, and the most popular Kalman filters for UAV location esti-

Fig. 2 Motion angles of a
drone responsible for
movement with six degrees
of freedom controlled by the
gyroscope and flight
controller
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mation are the original Kalman filter, the extended Kalman filter (EKF) [26] and the
unscented Kalman filter (UKF) [27].

3.1 State Estimation of Drone Parameters Using Original
Kalman Filter

The functionality of Kalman filter relies on consecutive iterations of prediction and
filtering i.e., it follows a sequence of prediction and update equations. Along with
the inertial navigation system (INS) data, a predefined motion model of the drones’
movement is given as input to the Kalman filter. The motion model is basically a
state transition matrix having time-periods of the states i.e., x and y coordinate,
acceleration and angular velocity. The prediction equations give priori estimates
and the update equations give posterior estimates. The update equations take up the
previous state’s mean and noise covariance and produce the updated mean and noise
covariance values for the next state. The filter then combines the predicted states and
noisy measurements to produce unbiased estimates of drone system states. In this
process, datawith process noise andmeasurement noise from sensors is used as input,
and the Kalman filter produces a statistically optimal estimate of the underlying state
by recursively acting on the series of observed inputs.

For simplicity, theKalman Filter can be used to get position and velocity estimates
of UAVs but only in a 2D plane, assuming it us flying at a fixed altitude. Other
applications of Kalman filter include guidance and navigation systems, tracking of
maneuvering targets, dynamic positioning, sensor data fusion and signal processing.
An approach for path planning of UAV using a Kalman filter is given in [28].

3.2 Extended Kalman Filter for Non-linear Drone State
Estimation

The major limitation of a Kalman filter is that it can only process estimates of linear
systems, and it suffers from linearization when operated on nonlinear models. Drone
flight operation is generally non-linear and time varying and system parameters
with a dynamic motion model cannot be measured directly with on-board sensors
because they may be subject to noise and malfunctioning. To overcome this non-
linearity issue of drone position estimation, one of the widely used filter for non-
linear state estimation, i.e. the extended Kalman filter (EKF) is used. It uses Taylor
series expansion and linearizes and approximates the state estimates of a non-linear
function around the conditionalmean. EKF can be reliablewhile estimating the drone
positions using the drones’ dynamic state parameters.

The dynamic motion model is solved by learning the non-linear transition of
measurement noise covariance and process noise covariance along with the change
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in states to give an optimal estimate of the UAV position. The EKF also follows a
series of prediction and update equations. The priori estimates calculated during the
prediction process are updated to give the posterior estimates and their covariance.
Additionally, Jacobians of dynamic functions are used with respect to system state
of the UAV to map its states to observations. Additionally, by recursive operations,
the covariance of the estimated error is minimized. Hence, the EKF can be used to
get the more accurate positions of the drones through prediction of future positions
with insignificant errors, when compared to the original Kalman filter.

Thework in [29] shows the non-linear estimation of drone’s state alongwith sensor
data for localization and [30] shows an approach for determining the locations of
drones using inter-drone distances in 2D co-ordinates.

3.3 Unscented Kalman Filter for Improved Position
Estimation and Orientation Tracking of UAVs

The EKF is computationally complex and takes longer to produce estimates, also its
accuracy is reliable in real-time but can still be improved. The unscentedKalmanfilter
(UKF) is used for the same applications requiring higher accuracy. It is a deterministic
sampling approach involving sampling of distributions using a Gaussian random
variable. It employs the unscented transform method to select a set of samples called
sigma points around the mean to calculate the mean and covariance of the estimation
that eradicates the requirement of using Jacobians, as in the EKF. This preserves
the linear update structure of the original Kalman of estimates filter unlike the EKF.
Table1 shows the comparison of various Kalman filtering schemes used for location
estimation of UAVs; for a detailed comparison, readers can refer to [31].

In drone localization application, the system dynamics is expanded as the drone’s
cartesian location i.e., position, velocity and acceleration. These provide a non-liner
relationship between the system states andmeasurements, and thereby the implemen-
tation becomes simpler. The orientation tracking of a drone is also carried out using
the UKF [32] by considering rigid body dynamics using various types of measure-
ments like acceleration, angular velocity and magnetic field strength. It uses quater-
nions and UKF, thus proving its computational effectiveness of tracking. Another
approach for position estimation using UKF samples images uses a visual target. It
uses weights (difference of observed value and estimated value of vision sensor) for
observations to prevent divergence in estimated values by UKF [33].

3.4 Sensor Fusion for UAV Localization

Multi-sensor fusion is another technique that shows the importance of using data
from distinct sensors to predict the dynamic state estimates of drones for aerial
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Table 1 Comparison of Kalman filtering scheme variants for location estimation and prediction of
UAVs

Type of filter Type of system Accuracy Model design

Kalman Filter Linear Least accurate Least complex

Linearized Kalman
Filter

Non-linear Moderately accurate Moderately complex

Extended Kalman
Filter (EKF)

Non-linear Accurate Most complex

Unscented Kalman
Filter (UKF)

Non-linear Most accurate Complex

applications. The work in [34] shows how data collected from the GPS, IMU, and
INS are fused together for UAV localization using state-dependent Riccati-equation
non-linear filter alongwith aUKF.Drone path planning involves navigating the drone
to a desired destination travelling over a predefined path that constitutes obstacles and
other environment constraints. The work in [35] shows how the sensor fusion along
with real-time kinematic GPS sensors is used to accurately calculate the altitude and
position of the drone. They generate a data-set using instantaneous positions of the
drone in different directions along with the roll, pitch and yaw angles. Further, they
compare this data with the output of the sensor fusion model estimations that are
carried out using an EKF to produce position and altitude estimates of drones.

3.5 Location Prediction Based Intelligent Packet Transfer

The location prediction algorithm embedded with the above drone position models
along with the position and velocity estimation by Kalman filter and location predic-
tion by EKF, can be run online to make advance decisions by using future location
information of the mapping drones, monitoring drones and the delivery drones in
the FANET. UKF along with sensor fusion methods can alleviate potential inconsis-
tencies in the dynamic state estimation and can help the algorithm produce accurate
results. Thus, the FANET in the DRS scenario can utilize theses location estimation
techniques to facilitate efficient packet transfer.

Table2 summarizes how different methods of location prediction of drones have
been proposed in prior works to achieve goals in different application missions.
The details of the salient methods used to perform drone location prediction while
operating in an application are described in the following:
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Table 2 Methods and applications of location estimation of drones

Case study Method Solution Application Goal

Xiong et al. [25] Kalman Filter Linear estimation State estimation Autonomous
flight

Mao et al. [30] Extended Kalman
Filter

Non-linear
estimation

Localization of
UAVs

Localization
without GPS

Kraft et al. [32] Unscented
Kalman Filter

Linearized
estimation

Localization of
UAVs

Orientation
computation

Abdelfatah et al.
[35]

Sensor Fusion Non-linear
estimation

Localization of
UAVs

Altitude, position
estimation

4 Methods for Drone Trajectory Optimization Using
Machine Learning

In context of drone trajectory optimization, we consider an area that is prone to
signal-losses, cyber-attacks and potential obstacles like trees, buildings, tall-standing
structures which affect the drones’ performance and cause hindrance in the appli-
cation mission. An overview of a drone’s trajectory during an application is shown
in Fig. 3. To overcome these problems there is a need for intelligent path planning
that can enable the drones follow an optimal trajectory, flying in areas free of all the
impediments and attacks.

The details of the salient methods used to optimize the drones’ trajectories while
operating in an application are described in the following:

Fig. 3 Overview of drone’s trajectory in a learning based environment comprising of potential
obstacles
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Reinforcement Learning: Path planning of drones is a crucial aspect of research
in drone-based applications because the efficiency of missions is dependent on the
traversal of the drones in a given area. It correlates with autonomy and has a profound
impact on guidance, operation and endurance of the drones. Most drone based appli-
cation missions are defined in unknown environments. Therefore, Markov Decision
Process (MDP) is employed to solve such environments and the Q-Learning algo-
rithm is used that follows the Markov property [36]. It is a model-free reinforcement
learning algorithm that puts emphasis on an agent to learn actions under given cir-
cumstances to handle problems with stochastic transitions. For any finite MDP, the
Q-learning algorithm finds an optimal policy by maximizing the expected value of
cumulative rewards over successive actions taken in given states, starting from a
current state. There has been a wide usage of reinforcement learning algorithms in
varied areas of drone-based application research where drones are allowed to directly
and continuously interact with the environment.

Deep Reinforcement learning (DRL): This concept can be considered as a com-
bination of deep learning and reinforcement learning. It employs a deep neural net-
work (DNN) to estimate the Q function Q(s, a) for a given set of state-action pairs.
Often reinforcement learning requires the state space and the action space to be
fixed and discrete, and the agent learns to make decisions by using a trial and error
method. It basically involves employing a Q learning algorithm that maintains a
record of values of what actions have been taken in given state spaces and also the
rewards associated with the corresponding states and actions in a limited format
where the state space is predefined. The DRL method allows the agent to act in an
environment that has a continuous and mostly undefined state space. It also uses a set
of discrete or continuous actions which are given as a stack of inputs in contrast to
the single inputs in case of a simple reinforcement learning. In other words, the DRL
makes sure that the agent performs well with extensive input data coming from a
large state space to optimize the given objective of any application e.g., it uses pixels
as input data in Atari games [37]. The DNN approximates the Q function which
estimates the cumulative reward for each state-action pair. A DNN may often suffer
with divergence, so it uses a set of experience replay memory and target network to
overcome this issue. DQN based RL solutions for drones are necessary because a
drone’s operation in a given environment is considered as a continuous state space
and multi drone scenarios require more robust algorithms such as the multi-agent
DQN [38] and the actor-critic [39] networks, which also employ DNNs to generate
an optimal policy solution.

4.1 Q-Learning

Q-learning is a type of model-free reinforcement learning as described in [40], which
is used to solve MDP based problems with dynamic programming. The Q-learning
algorithm creates a table (i.e., Q-table) containing the corresponding values of each
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Fig. 4 Overview of
Reinforcement learning
showing the agent’s
interaction with the
environment corresponding
to given states and actions to
generate a policy

Action 
(At)State

(St)

Environment

Agent

Policy
Reward 

(Rt)

Observations

state-action pair and keeps updating them along with the reward values. The scores
obtained in the Q-table are represented as the values of the Q-function Q(st , at ), and
are given by -

Q(st , at ) = E

[∑
k

γ k Rt+k+1|(st , at )
]

(1)

where t is the time step and k is the episode. The Q-function is updated for each
episode when the agent performs certain actions in a given state to maximize its
cumulative reward using the Bellman’s equation [41], which is given as -

Q(st+1, at+1) ←− (1 − α)Q(st , at )

+ α[Rt + γ.maxaQ(st+1, at+1) − Q(st , at )]; (2)

The algorithm converges when maximum reward is reached. The policy encour-
ages the agent to choose optimal actions and receive greater scores in an iterative
fashion, which results in the model rendering high Q-values. The interaction of the
agent with the environment to generate rewards and to establish a policy is shown in
Fig. 4. The output of the Q-learning is the drone trajectory update guidance that is
used to keep the drones as much as possible in the optimal trajectory.

Ensuing the design of the drone’s optimal trajectory selection scenario using an
MDP, we can evaluate the overall performance by tuning the values of the discount
factor γ for obtaining the optimal policy π∗

t : St → At, which maps the state space
with best suitable actions.
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4.2 Deep Q-Network

To implement the Q-Learning based algorithm that render optimal trajectories of the
drones, we choose a DQN that allows formaximum exploration and exploitation [42]
of the learning environment by the agent. The actions in this case are dependent on
theweights of the primaryDNN,which adds flexibility in the overall learning process
i.e., as the weights update, the rewards update accordingly. The intelligent trajectory
learning application for DRS scenario renders network performance in terms of
throughput and the video quality scores (i.e., rewards) obtained in the process of
learning. The DQN is trained using a experience replay, which is memory buffer
that stores the sequence of state-action pairs from previous episodes. The process of
utilizing replay memory to gain experience by random sampling is called experience
replay.

The DQN utilizes the mini-batch from experience replay with the observed state
transition samples to update its DNNs after each episode during the training process.
Thereby, it breaks any correlation made using sequential state-action pairs in the
previous episodes.Sometimes, drones are used as swarms in application missions
that are connected via wireless links. For any broken link, the drones have to position
themselves to make up the broken link to maintain the same QoS requirements. The
work in [43] gives an approach that uses DQN to determine optimal links between
drones in swarms and to localize the drones to improve overall network performance
of the swarm’s wireless network.

4.3 Double Deep Q Network

The Deep Q Network has a single action value function and while updating the
primary DNN, same values are used for selection and evaluation of actions. This in
turn leads to overestimation that renders over optimistic action value estimates. To
avoid this issue, Double Deep Q Learning decouples the selection and evaluation
of value function using two separate DNNs (primary and target). It employs two
value functions that learn by selecting random experiences that produce two set of
weights [44]. It aims to get the most out of Double Q learning with slight increase
in computation. For civil and military based application missions, Double Deep Q
Network (DDQN) is used for 3 Dimensional path planning of drones using greedy
exploitation strategy to improve learning in complex environments [45].

4.4 Dueling Deep Q Network

The Dueling Deep Q Network (Dueling DQN) is another form of a deep reinforce-
ment learning algorithm. It consists of two separate estimators (DNNs) for state value
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function and action value function. It is used to overcome the impact caused by similar
action values in multiple episodes [46]. Some application missions involve multi-
drone connections using cellular networkswith each drone acting as a base station. To
improve the connectivity over the cellular network, Dueling DQN is used to provide
trajectory optimization and coverage-aware navigation for radio mapping [47]. Also
in other dynamic environments with unrealized threats, Dueling DQN can provide
intelligent path-planning using epsilon greedy policy to render optimal trajectories
of the drones [48].

4.5 Actor Critic Networks

Some of the most recent and popular reinforcement learning algorithms are the actor
critic networks that aim to achieve optimal policies using low-gradient estimates.
The actor network is a DNN that takes in the current environment state and com-
putes continuous actions and the critic judges the performance of the actor network
with respect to the input states. It also provides feedback to determine the best
possible actions that render higher rewards [49, 50]. An approach to achieve effi-
cient communication and band allocation in the drone network involves determining
their 3D trajectory under energy constraints using deep deterministic policy gradient
(DDPG) [51] actor-critic networks as shown in [52].

4.6 Orchestration Motivation for Online Learning

The performance in the network links acrossmulti-drone FANETs vary due to certain
factors such as, application requirements, weather conditions, obstacles in the path,
etc. that cause frequent or intermittent outages in transmission and receptionof crucial
information inside the FANET. This could also affect the drone’s video analytics,
when used for civil applications for aerial surveillance. Our proposed orchestration
process solves the network links and video analytics disruption by employing an
online learning based technique. It analyzes the trajectory during the drone flight,
and find ways to optimize the drone’s path and even the video quality by selection
of pertinent network protocol and video properties during the drone flight.

The Q-learning algorithm forms the basis of the trajectory learning of the drones
in different areas and can be applied across all the drones in the FANET. An approach
for path planning and obstacle avoidance is shown here [53]. However, Q-learning
cannot be used for complex learning environments as it would not allow exploration
and exploitation [54] of the total area that the drones are covering during their flights.

To achieve intelligent trajectory learning, we propose a Deep Q-Network based
method. The path selection aids the drones to learn and make necessary sequence
of decisions under uncertainty in FANET conditions. The learning involved in path
selection by the drones can be represented as aMarkov Decision Process (MDP) [39]
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which forms the basis for the DQN algorithm and is defined as a tuple containing
the following-

M=(st, at, pt, rt, s
′
t) (3)

where st is the state space,at is the action space, rt is the reward, pt is the probability of
transition of states and s

′
t is the next state. TheMDP aims tomaximize the cumulative

rewards that are received by the drones along their trajectories during the operation
over a surveillance area. The drones are assumed to be fully charged before they enter
the initial state. The learning environment comprises of all the states and actions.
(1) States: For any MDP, the states used are the current state st and the next state s

′
t .

(2) Actions: These are the actions that the drone chooses to perform during its flight
operation.
(3) Reward: It is a feedback parameter, received either as an award or penalty which
is a consequence of taking certain actions in the learning environment state-space.
(4) Probability of State Transition: It is defined as the probability distribution of the
next state s

′
t given the current state st and current action at .

The video and network analytics of drones can be formulated as states st ,
actions at along with corresponding reward functions in a civil application based
on requirements. A DQNwith pre-defined weights can take state space values (st ) of
drones as input, forward pass the values and generate optimal action value function
Q(st , at ), and compare it with optimal action value function Q∗

π (st , at ). Through
back-propagation, it can perform updates to the weights of the neurons so that in the
later iterations the output values come close to the optimal value. The DQN algo-
rithm converges when an optimal value is reached. The DQN model can be further
extended to Double DQN, Dueling DQN and Actor-Critic network using the same
learning environment based on the requirements for network and video orchestration.

An approach that uses deep reinforcement learning for optimizing UAV trajecto-
ries is detailed in [55] and uses flow-Level modeling for UAV base station deploy-
ments. A similar approach in [56] uses a deterministic policy gradient (DPG) on a
model-free reinforcement learning scenario to obtain intelligent UAV trajectories.
Deep reinforcement learning can also be applied to more complex scenarios involv-
ing tedious tasks such as real-time resource-allocation in multi-UAV scenarios [57].
We consider a scenario that aims to achieve optimal solution for ‘energy harvest
time scheduling’ in a UAV assisted device-to-device (D2D) communications setup
by conceiving a systemmodel that can reflect dynamic positions of UAVs along with
unknown channel state information. The system model also uses the deep determin-
istic policy gradient (DDPG) algorithm to solve the energy efficient optimization
game for the D2D communications scenario.
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5 Non-ML-Based Trajectory Optimization Techniques for
Drones

Although machine learning is gaining traction in solutions for autonomous vehi-
cles, trajectory optimization of UAVs in real-time scenarios is challenging because
it is a non-convex optimization problem. There have been advances in drone trajec-
tory planning and optimization techniques for single-UAV, dual-UAVandmulti-UAV
based applications. A survey for long-distance trajectory optimization of small UAVs
is given in [58], and a survey of techniques involving joint trajectory optimization
with resource allocation is given in [59]. An approach to perform joint trajectory and
communication co-design can be found in [60]. Advances in path-planning tech-
niques feature techniques that are quite different from learning-based methods. To
provide high-mobility and flexibility in FANETs, many techniques have been pro-
posed. However, there are several open challenges when it comes to path planning
of UAVs. A series of latest works that try to solve the open challenges are as follows.

5.1 Trajectory Optimization Using Quantization Theory-
Lagrangian Approach

An approach to provide optimal UAV positions in static networks under spatial user
density is described in [61]. This approach uses uniform distribution of ground termi-
nals at zero altitude anddetermines optimal placement ofUAVs in static environments
along with ways to reduce power consumption. The optimizations for the static case
are done by considering the UAVs at varying altitudes, followed by characterizing
optimal UAV deployments in dynamic scenarios. These optimizations are performed
by varying ground terminal density in any given dimension for a fixed number of
UAVs which are placed at moderate distances from each other. Two two cases are
considered: (i) UAVs with no movement, and (ii) UAVs with unlimited movement.
This approach aims to achieve lowest possible average power consumption followed
by providing a Lagrangian-based descent trajectory optimization technique. The
Lagrangian technique is similar to Voronoi based coverage control algorithms and
is based on time discretization.

5.2 Joint Optimization of UAV 3D Placement and Path Loss
Factor

An approach in [62] aims to fill the gaps of joint aerial base station (ABS) deploy-
ments and path loss compensation forABSplacements at certain heights. It puts stress
on the power control mechanism needed to establish reliable communication, and on
the propagation path-loss that hinders the overall communication performance. The
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3D UAV placement procedure involves altitude optimization for maximum coverage
along with horizontal position optimization for 2D placement that uses a modified
K-means algorithm for aerial base station height with a compensation factor.

5.3 Flexible Path Discretization and Path Compression

This technique considers a piecewise-linear continuous trajectory of a UAV whose
path comprises of consecutive line segments connected through a finite number of
points in 3D called way-points. It provides a solution to render an optimal path
by using a flexible path discretization technique to optimize number of way-points
in the path to reduce the complexity in the design of the UAV trajectory [63]. The
variables that tend to solve the path-planning are considered in two sets of design-able
and non-design-able way-points. The way-points are generated using their sub-path
representations that ensure a desired trajectory discretization accuracy. They also
help to obtain utility and constraint functions that retain accuracy in e.g., aerial data
harvesting using distributed sensors. Following this, a path compression technique is
performed that takes the 3D UAV trajectory and decomposes it into a 1D (sub-path)
signal to further reduce the path-design complexity.

5.4 Connectivity Constrained Trajectory Optimization

This technique provides a solution to optimize an UAV’s trajectory in an energy
and connectivity constrained application to reduce the overall mission completion
time. It uses graph theory and convex optimizations to achieve high-quality solutions
in various scenarios involving: (i) altitude mask constraints, (ii) coordinated multi
point (CoMP)-based cellular enabled UAV communications, (iii) QoS requirements
based communication using UAVs, and (iv) non-LoS channel model. The degree of
freedom of UAV movement is exploited to increase the design flexibility of UAV
trajectories with respect to the locations of GCS, and ground users for effective
communication. By applying structural properties, effective bounding and approx-
imation techniques, the non-convex trajectory problem is converted into a simple
shortest path problem between two vertices and solved using two graph theory based
algorithms [64]. A similar technique involving effective trajectory planning under
connectivity constraints using graph theory is shown in [65].

5.5 3D Optimal Surveillance and Trajectory Planning

Public safety is another crucial application domain for designing drone based com-
munication systems. Prior works such as [66] have proposed approaches to solve
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Table 3 Methods and applications of trajectory optimization of drones

Case study Objective Solution Method Performance

Koushik
et al. [43]

Node Positioning MHQ-PRP
Queuing

Deep Q-Network Increased
throughput of
dynamic UAV
swarming
network

Zhao et al. [45] 3D Path Planning Greedy
Exploration
(DRL)

Double Deep
Q-Network

Better
convergence
compared to
DQN and DDQN

Yan et al. [48] Real-time path
planning

STAGE scenario Dueling DDQN Efficient dynamic
environment path
planning

Ding et al. [52] 3D Trajectory
Planning

DDPG (DRL) Actor-Critic
Network

Increased
throughput under
fairness
conditions

Saxena et al. [55] Traffic-aware
UAV trajectories

Leveraging UAV
Base Station
Network
(UAVBSN)

Deep
Reinforcement
Learning

Three fold
increase in
throughput of
UAVBSN

Nguyen et al. [57] UAV Trajectory
Optimization

Energy
Harvesting Time
Scheduling

Deep
Deterministic
Policy Gradient

Efficient resource
allocation under
energy and
flight-time
constraints

Xu et al. [60] 2D Trajectory
Planning

Semi-definite
Programming

Monotonic
Optimization
(various)

Significant power
saving

Koyuncu
et al. [61]

Multi-UAV
Trajectory
Optimization

Lagrangian
Approach (1D)

Quantization
Theory

Minimized power
consumption

Shakoor et
al. [62]

3D Placement
and Path-Loss

Placement
Compensation
Factor

Various
Optimization
techniques

Improved
coverage and
performance

Guo et al. [63] 3D Trajectory
Design

Flexible Path
Discretization
and Path
Compression

Graph Theory
(Shortest path)

Reduced path
design
complexity

Zhang et al. [64] 3D UAV
Trajectory Design

Graph Theory Optimization -
(various)

Improved
connectivity

Yang et al. [65] 3D UAV
Trajectory Design

Graph Theory,
Inequality
property

Optimization -
(various)

Improved
connectivity

Teng et al. [66] 3D Optimal
Trajectory
Planning

Particle Swarm
Optimization

Trajectory
Planner

Improved
dynamic
environment
adaptability
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challenges for the public safety application domain. Specifically, a swarm optimiza-
tion based trajectory planner is provided with surveillance-area-importance updating
apparatus. The apparatus aims to derive 3D surveillance trajectories of several mon-
itoring drones along with a multi-objective fitness function. The fitness function is
used as a metric for various factors of the trajectories generated by the planner such
as energy consumption, area priority and flight risk. This approach renders collision-
free UAV trajectories with high fitness values and exhibits dynamic environment
adaptability and preferential important area selection for multiple drones. Table3
summarizes how different methods of trajectory estimation and optimization have
been proposed to achieve certain goals in various applications.

6 How Can Trajectory Optimization Aid UAV-Assisted
Public Safety Networks?

Public safety networks (PSNs) are established for public welfare and safety. They are
essential means of communication for first responders, security agencies and health-
care facilities. Nowadays, PSNs have been widely relying on wireless technologies
such as long range WiFi networks, mobile communication and broadband services
that use satellite-aided communication links. In addition, PSNs operate extensively
during natural disasters, during times when there is a threat to national security such
as terrorist attacks, and any large-scale hazards caused due to human activities. As
wireless communication is the backbone of PSNs, advanced and efficient communi-
cation technologies such as LTE and 5G-based communications can help establish
broadband services that provide improved situational awareness with security and
reliability characteristics in the network. In this section, we will discuss how UAVs
could be a choice for public safety networks in terms of various use cases, provide
case studies on trajectory optimization and localization for UAV-assisted PSNs, and
discuss open challenges in UAV-assisted PSNs. Figure5 provides an overview of
multi-UAV operations spanning diverse applications ranging from civil applications
to public safety networks.

6.1 UAV-Assisted Public Safety Networks

Since wireless communications play a fundamental role in PSN operations, their
effectiveness and responsiveness to emergency situations becomes critical [67]. A
few issues that affect the functioning of PSNs include: communication equipment
deployment costs, spectrum availability, network coverage and quality of service
(QoS). A few of these issues can be solved by improving the ground-based com-
munication systems by fully exploiting the potential of situational awareness and
enabling advanced tracking, navigation and localization services [68]. However, to
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Fig. 5 Overview of
multi-UAV operations across
various applications ranging
from civil applications to
public safety networks
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eradicate these issues of PSNs as a whole, UAVs with enhanced functionalities that
can operate as aerial base stations with high-end communication equipment can be
used to amplify the effectiveness of communication, improve coverage, reliability,
and energy efficiency of wireless networks. In such UAV-assisted PSNS, UAVs are
operated by acting as flying mobile terminals within a cellular network or broadband
service while monitoring the area, simultaneously. The other advantage on UAV-
assisted PSNs is that the UAV base stations are faster and easier to deploy, which
provides effectively on cost and can be flexibly reconfigured based on mobility.

6.2 Trajectory Optimization and Path-Planning for
UAV-Assisted PSNs

Trajectory Optimization and localization of UAVs can significantly impact the 3D-
deployment of the aerial base-stations serving non-stationary users. Optimal path
planning can help strengthen the carrier channel transmitting and receiving charac-
teristics. The cellular networks involving aerial base stations can be converted to
FANETs, which can help to establish efficient wireless communication in the PSNs.
A case study in [69] used path-planning for UAVs in a disaster resilient network.
They showed how drones can be used in an wireless infrastructure, allowing a large
number of users to establish line-of-sight links for communication.Another approach
in [70] uses fast K-means based user cluster model for joint optimization of UAV
deployment and resource allocation along with joint optimal power and time transfer
allocation for restoring network connectivity during a disaster response scenario.
Similarly, research in [71] discusses the role of UAVs in PSNs in terms of energy
efficiency and provides a multi-layered architecture that involves UAVs to establish
efficient communication by considering the energy consumption considerations.
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6.3 Open Challenges in UAV-Assisted PSNs

As we can observe from the previous subsections, UAVs when used as aerial base
stations can significantly improve the performance and operation of PSNs. However,
there are sill open challenges that need to be resolved. For example, the monitor-
ing of moving objects/target-users becomes an issue after deployment in a disaster
scenario. Few challenges such as traffic estimation, frequency allocation and cell
association are addressed in [72]. An approach in [73] propose a disaster resilient
communications architecture that facilitates edge-computing by providing a UAV
cloudlet layer to aid emergency services communication links. Another approach
in [74] has a uplink/downlink architecture for a Full-Duplex UAV relay to facilitate
ground base stations around the UAVs. The UAVs communicate to distant ground
users using non-orthogonal multiple access (NOMA) assisted networks.

Another important concern raised with UAV-based PSNs is security (see Sect. 2).
In most cases, These PSNs are handling confidential information and may become
vulnerable. They can also be subject to cyber and physical attacks. A variety of
security concerns and challenges in drone-assisted PSNs are addressed in [75] such
as: WiFi attacks, channel-jams, grey hole attacks, GPS spoofing and other issues
relating to interruption, modification, interception and fabrication of information
along with procedures to handle them.

7 Conclusion and Future Outlook

In this chapter,wehavepresentedmulti-UAVco-operation applications and explained
howdrone location prediction and trajectory optimization can be performed.We have
learnt how location estimation prediction and trajectory optimization of drones can
be beneficial in diverse application missions such as disaster response and other civil
applications relating e.g., transportation. Various challenges in drone localization,
path-planning and trajectory prediction were detailed.

To cope up with the challenges of localization of drones in application scenarios,
we studied how techniques such as non-linear dynamic parameter state estimation
of drones using distinct Kalman filtering techniques and sensor fusion can solve the
drone localization and position prediction problem. We have also seen how Kalman
filter can be used for position and velocity estimation of drones followed by location
prediction with inter-drone distances and sensory measurements using the Extended
Kalman filter. To cope up with sensory malfunctions and other inconsistencies of
the filtering techniques, we detailed various machine learning techniques such as
reinforcement learning and deep reinforcement learning. Furthermore, to cope up
with the challenges of collision avoidance, trajectory optimization and path planning
aswell as handling of energy constraints,we have seen howavariety of reinforcement
and deep reinforcement learning techniques can be used to realize the potential of
multi-UAV co-operation.
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Further, we presented a scenario corresponding to online orchestration and learn-
ing of network and video analytics for civil applications using multi-agent reinforce-
ment learning techniques. These techniques feature prominent mechanisms that can
be used for the 2-D and 3-D path-planning of UAVs along with network and resource
allocation under bandwidth and energy constraints.Moreover,wediscussed non-ML-
based trajectory optimization techniques and explained howUAV-based applications
can aid public safety networks.

The Road Ahead to More Open Challenges: We conclude this chapter with a
list of more open challenges for multi-drone co-ordination in application missions.
Addressing these challenges is essential for a variety of multi-drone applications
such as aerial surveillance, deployment of UAVs as base stations and aerial mapping
and monitoring that are relevant for location estimation and path planning. Few
approaches such as [76] shows how joint positioning of UAVs as aerial base stations
is done to provide a smart backhaul-fronthaul connectivity network. Other issues are
shown in the following-

– Excessive movements during flight with no hovering: When the drones are in
complex environments or unknown territories with unrealized threats, they tend
to fly more rapidly and in different directions in a short span of time. This may be
a result of collision avoidance of obstacles in the path or ineffectual attempts to
explore the environment to learn threats. This leads to increased energy consump-
tion and affects the battery capacity of drones, thus shortening their overall flight
time. To avoid this issue, dynamic programming and scheduling algorithm could
be useful if the drone flight plan in the mission is known apriori. The work in [77]
provides two cases that show how data services using UAVs is maximized using
hover time management for resource allocation, where the optimal hover time can
be derived using service load requirements of ground users.

– Air-resistance due to strong winds: Severe wind gusts can throw the drones
off-course and deviate a drone from following its optimal path. The on-board
sensors are subject to vibrations during severe wind conditions and can produce
noisy data that may lead to inaccurate estimates of drones parameters. Unexpected
wind resistance can also hinder the trajectory learning of the drone using DRL
techniques. This hindrance is possible when the drone traversing in optimal path
may change course due to the impacts wind. Further research on EKF and UKF
based state estimation of gyroscope readings to study the effects of wind could
help in developing suitable solutions. The approach in [78] addresses the altitude
control problem of UAVs in presence of wind gusts and proposes a control strategy
along with stability analysis to solve the issue of air-resistance.

– Combining LSTMs with Kalman Filters and DQN: The non-linear state esti-
mation of drone’s dynamic parameters is done using individual time-steps of data
by on-board sensors and use of the Kalman filter. Also, for the DRL techniques,
the drone (agent) takes actions in a given state in independent episodes. Long short
term memorys (LSTMs) can be used to utilize the information of previous time-
steps of drones instead of just one time step or one episode to make predictions.
This way LSTM based Kalman Filtering mechanisms and LSTMs based DRL
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mechanisms can use past information of the drone(s) and make much accurate
predictions. There are works that show how coupling a Kalman Filter with LSTM
network improves performance and provides faster convergence of algorithms for
various application purposes [79, 80].

– Multi-drone Co-ordination under energy constraints: In missions involving
a drone swarm or a fleet of drones, it is difficult to monitor each of the drones’
parameters. Factors such as malfunctioning or loss of one drone due to total bat-
tery utilization can affect the operation of other drones and compromise the overall
application mission. Off-line path planning along with online path-planning can
help UAVs find the nearest base stations with recharge units and help alleviate
this issue and support multi-drone co-ordination even under available energy lim-
itations. One such approach to solve the issue of multi-drone coordination under
energy constraints is detailed in [81].
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