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Abstract Unmanned air vehicles (UAVs) has showngreat potential to enable numer-
ous applications ranging from industry verticals to public safety communications.
However, various challenges also arises with its integration into the existing terres-
trial networks such as efficient UAV positioning, power allocation, trajectory design,
and resource allocation. The existing conventional optimization solutions are not
intelligent enough to overcome those challenges. Thus, real-time optimization and
machine learning assisted solutions, and emerging technologies are required to over-
come those challenges. To address those challenges, we summarized key technolo-
gies and research directions for UAV deployment at the edge or in the cell center,
the power allocation and localization schemes, and the federated learning solutions.

Keywords Federated learning · RIS · Intelligent UAVs · UAVs localization ·
Machine learning

1 Machine Learning for Wireless Communications

The worldwide requirement for data traffic has endured around 1000×-fold increase
over the previous years [1]. Due to the development of modern wireless communi-
cation networks, data traffic requirements are supposed to increase the capacity of
future networks. In addition to a notable increase in data traffic, the latest commu-
nications applications, such as autonomous networks, wearable gadgets, Internet of
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Fig. 1 Types of base stations to enable next-generation public safety networks

Things (IoT) devices, and cellular-connected unmanned air vehicles (UAVs) com-
munications, continuously develop and produce immense data traffic with diverse
requirements as shown in Fig. 1.

This development in communication applications demands an undeniable need for
intelligent service, processing, and optimization of future communication systems.
Using machine learning (ML), also known as artificial intelligence, into the design,
planning, and optimization of future communication networks. The concept of ML
has a lengthy and flourishing history. For instance, the use of neural networks (NN)
for intelligent systems instead of utilizing a simple single-layer design to affect the
state of one neuron. The idea ofML has established its powerful benefits in numerous
fields, including robotics, computer vision, communications, and signal processing,
where it is hard to find a detailed mathematical design for the characteristic pattern.
In such areas, ML is considered a potential factor that does not demand any compre-
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hensive model specification. The traditional methods that mainly depend on models
and theories show weaknesses due to the extensive complexity of communication
systems. Hence, research on ML for communication systems, particularly wireless
communications, is currently encountering magnificent growth. For intelligent pro-
cessing in a variety of scenarios, the emerging structure of ML acts as an enabler.
The latest ML methods give a wide range of opportunities to develop intelligent
communication systems that assists in addressing numerous challenges related to
signal processing, classification, detection, channel estimation, resource allocation,
routing protocols, configuring transport protocol, and user behavior interpretation.
Various types of ML schemes have different usage in radio communication systems.
It breaks the levels according to the kind of supervision demanded for training the
ML models. Following are the three major categories of ML models.

1.1 Supervised Learning

Supervised learning model uses sample data with perceived results to estimate the
output. Every sample data value is mapped to a single result value. The main purpose
is to feed and train the model using sample data as input and with already known
outcomes. After that, the already trained model predicts the results of the new input
samples. Supervised learning is successful when there is a large amount of data to
train the model. Hence, supervised learning is practical in deploying 6G to cope
with rising traffic requirements. ML-based supervised learning collects performance
computations such as throughput, outage probability, signal-to-interference and noise
ratio, and pathloss for specific frequencies and bandwidth. ML-based supervised
learning is used to predict the various performance matrix that a user will experience
and adjust the different parameters accordingly [2]. ML-based supervised learning
is adopted to train the models for pathloss prediction by considering channel state
information (CSI) and approximate objective functions for associate propagation
loss for 6G wireless systems.

1.2 Unsupervised Learning

An unlabeled collection of data is used to train the model with different character-
istics and the system endeavors to identify subgroups with related features between
the variables without having human involvement. Various schemes like generative
deep neural network (DNN) and K-means clustering are advantageous when arrang-
ing devices for edge computing in a system. ML-based unsupervised learning is
advantageous for uncertainty and detecting various faults in a system. It collects
data in batches at data collection centers to decrease redundant data travel between
distributed storage centers. It minimizes the latency by grouping nodes to automati-
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cally determine the node with low powers that must be promoted to nodes with more
power for resource management in ultra-dense small cells.

1.3 Reinforcement Learning

Reinforcement Learning (RL) constantly works in probabilistic situations of wireless
systems. In order to obtain excellent performance, the network parameters are mod-
eled by using aMarkov decision process (MDP) as shown in Fig. 2. RL continuously
communicates with the environment, calculating the decisions at periodic intervals
of time. TheRLmodel needs to determine action at each point, obtained at the current
state, to which the model provides a positive or a negative reward and updates the
state. The rewards are associated with SINR and data rate. The RL is a data-driven
approach that is not completely modeled from physics andmathematical-basedmod-
eling. Undoubtedly, wireless communication networks are human-made with lots of
compositions that lack fast learning and transparency. Moreover, the state transition
probability is free of all prior actions and states. While we require to optimize the
system, the RL holds a record of all probabilities and their outcomes to obtain the
absolute optimum decision. The principal grounds for RL to be applied to a radio
communication system problem consist of (i) the signaling for obtaining the valuable
data sets required to accurately operate the system is too complicated, (ii) the mathe-
matical analysis of the wireless environment is considerably complicated to use in an
agent and (iii) the desired results of RL is presented as a scalar reward. For example,
the extensive machine-type communication and cell deployment (mainly small cells)
where comprehensive system preparation is not achievable.We also summarized and
compared key features of these three ML schemes in Table1.

Fig. 2 Reinforcement
learning working procedure
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Table 1 Comparison of supervised, unsupervised and reinforcement learning

Supervised learning Unsupervised learning Reinforcement learning

Output is known Output is not known Interacts with the environment
to make decision

Labelled data is used Unlabelled data is used Has no pre-defined data

Trained using past data Trained using any data Learning process rely on
reward and policy

Algorithm is trained to predict
output values

Algorithm is trained to
discover similarities and
differences in data

Algorithm learns by
interacting with the
environment using trial and
error method

Highly supervised Not supervised Less supervised and rely on
agent to find output

Learning predicts discrete
value

Discover unknown patterns Agent interacts with the
environment to get rewards

Compute formula on the basis
of inputs and outputs

Aim to find association among
input and output value to sort
them in groups

Aim to find the best possible
reward by choosing suitable
actions

2 Cellular-Connected UAVs for Emergency
Communications

UAVs have applications in numerous fields ranging from civil to vertical industries
as they can enhance coverage while supporting high mobility. UAVs also helps in
enabling real-time sensing applications and emergency communications [3]. UAVs
are getting popularity in provisioning emergency communications to the users in
disaster-hit areas by serving as an aerial base station (ABS) [4]. UAVs can assist in
carrying medical and food supplies to unreachable regions. With the assistance of
ABS deployment, an emergency communication network is established to prevent
further human lives and losses by connecting the victims with the emergency relief
providing personals. Since, it is hard for a communication service provider to deploy
a ground base station (BS) in a short time. Therefore, ABS are deployed to enable
emergency communications or to increase the coverage of the functional BS as shown
in Fig. 3.
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Fig. 3 UAVs-assisted public safety networks for coverage enhancement

Providing cellular connectivity to UAVs has enabled a plethora of applications
ranging from online video streaming to enable emergency communications [5]. The
Third Generation Partnership Project (3GPP), an industry-led consortium that stan-
dardises cellular networks, has been actively involved in identifying the key require-
ments, technologies, and protocols for aerial communications. To use enhanced Long
Term Evolution (LTE) support for aerial vehicles, 3GPP successfully completed the
first report in 2017 that led to 3GPP Release 15 Technical Report TR 36.777. That
report highlighted the necessary requirements for UAVs to optimize their operations.

In 2019, 3GPP TR 22.829 identifies several UAV-enabled applications and use
cases to improve and support 5G communications and networking technologies.
During 2020 in Release 17, 3GPP mainly focused on two aspects: (1) infrastructure
to support the connectivity and tracking inTR23.754, and (2) application architecture
to support UAVoperations in TR 23.755 [6]. However, in order to provide UAVswith
reliable wireless connectivity alongwith secure operation, a lot of challengesmust be
addressed, including interference management, mobility and handover management,
and malware attacks prevention.

To enable these applications, multiple UAVs are required for zone monitoring
during disaster situation. In addition, mutiple UAVs system can boost the system
efficiency through joint effort. However, number of challenges exists in multiple
UAVs system that includes localization, data processing at the edge, and trajectory
planning and 3D ABS placement optimization [7, 8]. When compared to normal
operating conditions, user association plays a significant role in emergency scenarios.
In the case of a disaster, when the traditional terrestrial base station (TBS) is out
of service, it becomes necessary to deploy UAVs in that area. Enabling device-to-
device (D2D) communications [9, 10], in addition to UAV deployment, could help to
improve coverage. The user association for numerous types of base stations is the key
challenge in co-existing D2D andUAVs network. To address this issue, the authors in
[11] explored how to solve the user association problem for UAV-enabled networks
using D2D connections by maximizing the weighted sum rate of UAV users and total
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Table 2 Related works in UAV communications

References Brief summary Placement
schemes

Localization
approaches

AI and
distributed
learning

Emerging
technolo-
gies

[17] Survey on object detection for
low-altitude UAVs

√

[7] Comprehensive survey on
UAV-assisted networks

√

[18] Survey on communication and
networking technologies for
UAVs

√

[19] Pervasive public safety
communication technologies

√

[20] Important issues in UAV
communications

√

[21] Survey on legacy and emerging
technologies for public safety
communications

√

[22] Issues in cybersecurity, Privacy,
and Public Safety

√

[23] Survey of public safety
communications: User- and
network-side solutions

√

[24] Survey on channel modeling for
UAV communications

[25] Survey on collaborative smart
internet of drones

√

[26] Survey on anti-drone systems:
components,designs, and
challenges

√

[27] Survey on applications,
databases, and open computer
vision research from drone
videos and image

√

[28] Survey on Collaborative UAV
and wireless sensor network
(WSN) for Monitoring

√

[29] A Survey on machine-learning
techniques for UAV-based
communications

√ √

[30] Survey on security and privacy
issues for UAV communications

√

[31] Role of UAvs in public safety
communications

√ √ √ √
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D2Dusers. This difficult problem is tackled by presenting a learning-based clustering
technique, which yielded sub-optimal results while being substantially simpler. As a
consequence, this technique can be used to improve public safety wireless networks
in the future.

In public safety communications, edge computing represents a paradigm change.
Time taken to complete task is greatly minimize by placing edge computing centers
in UAVs, which would minimize response time to consumers and save their lives.
This strategy was described in [12], where the authors used user association, UAV
trajectory, and user power to maximize offloaded bits from users to UAVs while con-
sidering the UAV’s energy constraints and the users’ QoS constraints. The trajectory
of the UAV is significantly affected by various elements such as energy, flight time,
and user needs.

UAVs equipped with Intelligent Reflecting Surface (IRS) are used in hazardous
communication environments to provide public safety users with customizable ser-
vices, quick deployment, low latency, coverage assurance, and a large amount of
energy. UAVs-IRS defend mission-critical, high-priority public safety users from
risks such as terrorism, natural disasters, and technological accidents. This commu-
nication helps to communicate and send the information (e.g., voice, data, and video)
which improves the cooperation among of public safety users [13]. Due to malicious
assaults or natural disasters [14], the BSs may be destroyed, leaving high-priority
public safety users’ without coverage. UAVs-IRS provide a direct or multi-hop by
acting as a relay communication situation to address this issue [15]. When UAVs-
IRS are used in conjunction with public safety networks, overall system congestion
and communication coverage gaps are reduced. Adding flexible UAVs-IRS relays to
disaster zones reduces the public safety users’ outages dramatically. The coverage of
public safety users’ is significantly boosted after deploying UAVs-IRS relaying sys-
tems. UAVs-IRS can simultaneously give coverage to adjacent public safety users’
and act as a relay to cover users that are positioned at a great distance by optimizing
IRS reflection angle and phase shifts [16].

We summarize recent works related to UAV communications that covers vari-
ous aspects such as ABS placement schemes, localization approaches, and artificial
intelligence (AI)-assisted communications in Table2.

3 ABS Placement, Power Allocation, and Localization
for Emergency Communications

UAV-assisted communication infrastructure can provide high performance, capacity
enhancements, and extended network coverage [32, 33]. They can explicitly provide
mission-critical communications tasks with the facility of autonomous operations.
Furthermore, UAVs play an important role in the distribution of critical information
on the fringes of the fighting area as well as in the implementation of cellular net-
works. To provide the coverage extension, UAVs as a flying adhoc network (FANET)
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Fig. 4 UAVs-assisted public safety communication use cases

has gain the popularity [34]. We summarized some of the use cases to enable public-
safety communications in Fig. 4.

A variety of future FANET communication architectures have been investigated
including existing wireless technologies in the literature. However, selection of key
communication technologies, architecture and core technology is truly a tedious
problem to handle in FANET [35]. For instance, in [36] the authors presented a
hybrid communication model, where they adopted features of 802.11 to meet high
data rate requirements and 802.15.1 for low power consumption to enable FANET
communications. This architecture considerably improved the network performance
and reduced infrastructures costs.

In [37], the authors presented the advantage of coordination between UAVs and
wireless sensor networks (WSNs). These two networks can support a wide range of
applications, including search and rescue, navigation, control and recognition. The
authors presented the solution for coverage enhancement using WSN-empowered
UAV networks and argued that an efficient selection of way-points can solve several
coverage issues.

To achieve high throughput gain during emergency situation, the authors in [38],
presented the solution to optimally place the UAVs as an ABS in the disaster-hit
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areas. They achieved the improved average as well as an edge throughput. Similarly,
the authors in [31] summarized the key contributions of ABS to enable public safety
communications by targeting energy efficiency perspective. Moreover, they also pro-
posed the ABS-assisted architecture that can assist the emergency users by enabling
emergency communication services.

To enhance the users’ coverage and improve their connection, the matching game
algorithm is proposed in [39]. Moreover, they also propose a medium access control
framework to optimize emergency efficiency and priorities emergency communica-
tions users. The simulation results proved the efficacy of the proposal within the
affected areas. In [40], the authors presented a solution for different path loss models
and deployment situations to enable ABS-assisted public safety communications in
heterogeneous networks. By system-level simulations, the authors proved that they
successfully improved the system performance by reducing the co-channel interfer-
ence.

For ABS-aided relay system to enable emergency communications [41], the
authors in [42] presented the joint optimisation of real-time ABS deployment and
resource allocation schemebyproposing a fastK-means-based user clusteringmodel.
They also provided the centralized and distributed models to maximise the energy
efficiency of the considered network under the tight QoS constraints. Numerical
results verified the effectiveness of the proposed scheme.

To solve the challenge of path planning during disaster situation with limited
battery and unknown user distribution constraints, the authors in [43] converted this
challenge into multi-armed bandit problem. Then to efficiently solve this problem,
they proposed two path planning algorithms which significantly enhanced perfor-
mance in terms of number of served users.

The back-haul-aware optimization problem is presented in [44] to minimize the
delay and search the ABS optimum altitude to maximize the users’ coverage. They
selected the optimumaltitude by considering theminimum transmit power constraint.
In [45], the authors jointly optimized the user association, resource allocation and 3D
UAV placement to maximize the downlink sum-rate. They divided the problem into
the three sub-problems and proposed the iterative solution that significantly enhanced
the sum rate by reducing the co-channel interference. In [46], the authors targeted to
maximize the network throughput by jointly optimizing the transmit power and UAV
trajectory subject to the mobility constraints. They proved that the proposed scheme
achieved notable throughput gains as compared to the conventional static relaying
system.

In [47], to jointly optimize the ABS elevation and power control with the goal
of reducing the concentrated outage probability, an iterative algorithm centered on
the block coordinate descent (BCD) technique was proposed. Simulation results
revealed that the outage probability was considerably reduced. In [48], the author
proposed a framework that optimizes UAV trajectory and transmits power in order
to improve the minimum throughput among UAV aided users. An iterative algorithm
was proposed with the goal of reducing access delay and improving throughput.

Localization of the users is key during the disaster situation. To address this chal-
lenge, the authors in [49] presented a solution to transmit the discovery message over
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an ABS-to-user link. Simulation results proved that by using root-MUSIC algorithm
the localization accuracy has been significantly improved. Similarly, in [50] data
routing mechanism for localization in GPS-denied areas. The proposal focused on
weighted centroid localization technique, where the position of unknown ABS are
calculated using fuzzy logic. The proposed idea improves the localization efficiency
by reducing the energy consumption and improving the lifetime.

4 Federated Learning for UAVs-enabled Public Safety
Networks

UAVs as an ABS play key role in coverage improvement, capacity enhancement,
and improving energy efficiency. During public safety communications, UAVs act
as mobile terminal to enable applications like real-time video streaming for secu-
rity personals. Here, UAV that act as an aggregator to globally train the model by
collecting the locally trained model from the users, as shown in Fig. 5.

To efficiently implement this system, recently deep learning approaches has
gained popularity to process the huge amount of received data. However, most of
those processing are cloud centric, that in turn consumes huge power, consumes
more bandwidth, introduce communication delay, and may pose security threats as
it may contain UAV location and identity [51]. We compare the federated learning
(FL) with the existing distributed and centralized learning schemes in terms of cost,
accuracy, and latency in Table. 3.

Fig. 5 Application of federated learning for UAV enabled public safety networks
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Table 3 Comparison of FL with distributed and centralized learning

Distributed learning Centralized learning Federated learning

Concept Data is shared and
process to multiple
server parallel

Data collected at
central server and
process centralized
manner

First client process
their local data then
local updates send to
central server

Accuracy Moderate High Low

Cost Feasibility Cost effective More costly More cost effective
due to locally sharing
data

Latency Less latency More Latency than
distributed learning

Latency is reduce to
significant number
from previous learning

Bandwidth Less bandwidth
require than
centralized

More bandwidth
needed

Updates are lighter so
less bandwidth needed

Privacy Privacy risk exist Privacy risk exist Due to exchange of
Raw data privacy is
not compromised

To overcome those challenges, recently Google introduced federated deep learn-
ing (FDL) or distributed deep learning concept [52] that has attracted huge popular-
ity in communications, and specially in UAV communications during public safety,
where only the locally trained models will be shared with the centralized entity for
aggregation. This in turn significantly reduced the latency and power consumption
as compared to centralized cloud processing as shown in Fig. 6 .

In FDL, deep neural network is collaboratively trained at the edge devices (UAVs
in our case). Afterwards, the trained model is shared with the cloud to aggregate
and create a global model. There are three main steps involved in this process; (1)
training initialization, where as per requirements of the targeted application, hyper-
parameters, initial global model, etc., are broadcasted to the UAVs by federated
learning (FL) server, (2) each UAV collect new data and update parameters of local
model based on the global model. Each UAV tries to optimize their parameters, and
then shared those trained parameter with FL server, (3) after receiving those local
parameters from UAVs, FL server aggregates them using the FederatedAveraging
algorithm [53] and sends back the updated model parameters to UAVs. At FL server,
the received parameters are optimized by minimizing the global loss function. More
details about those steps are summarized in [51].

In public safety communications, UAVs have to execute various tasks that ranges
from trajectory planning to target recognition. To address this challenge, the authors
in [54] presented framework to implement FL algorithms for UAV swarms. In UAV
swarm, one UAV as a leader gather the locally trained data from each of the following
UAV, generate global FL model, and then transmit it among the followers UAVs.
In order to optimize the the convergence rate of FL, joint power allocation and
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Fig. 6 Federated learning procedure for privacy preserving in safety networks

scheduling scheme was proposed by taking care of energy and delay constraints.
Simulation results proved the effectiveness of the proposal by significantly reducing
the communication rounds as compared to the baseline schemes.

Mobile crowd-sensing is key for successful implementation of emergency com-
munications as it assists in indoor positioning and environment monitoring. More-
over, the combination of UAVs with AI has open ways for efficient mobile crowd-
sensing [55]. However, the conventional existing AI models may arise serious secu-
rity and privacy threats. To overcome this threat, FL proved a promising solution
because of opening the possibilities of collaborative learning and training of the
model without exposing the sense data. To improve this security further, the in this
paper the authors introduced blockchain-based learning architecture that improves
the privacy of local models. Results proved that the security was improved by intro-
ducing effective solution of model sharing as compared to the baseline schemes.

In [56], to reduce the processing load in multi-UAV networks the authors pro-
posed an asynchronous federated learning (AFL) framework to enable asynchronous
distributed computing that disallows transmitting the raw data to UAV servers and
trained them locally.Moreover, to further improve the efficiency andmaintain quality
of service the device selection strategy was also introduced. The authors improved
the convergence speed and accuracy considering asynchronous advantage actor-critic
for joint device selection, UAVs placement, and resource management scheme [57].
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In disaster hit areas, the thorough inspection of local updates at UAVs is necessary
to guarantee privacy. To overcome this challenge, the authors in [58] combined
blockchain with FL and replaced the centralized FL platform with a UAV-assisted
FLwith blockchain at edge.Results verified that the proposed frameworkwas suitable
to enable intelligent disaster communications that consumes less energy.

5 Conclusion

In this chapter, we have summarized the key technologies related to intelligent UAVs
to enable public safety communications and also discuss future research directions
for researchers. We have concluded that the intelligence plays key role in improving
the UAVs performance in terms of coverage, throughput, mobility management, and
computation at the edge to enable public-safety communications.
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Mazzocchi S, Brendan McMahan H et al (2019) Towards federated learning at scale: system
design. arXiv:1902.01046

53. McMahan B, Moore E, Ramage D, Hampson S, Aguera y Arcas B (2017) Communication-
efficient learning of deep networks from decentralized data. In: Artificial intelligence and
statistics, pp 1273–1282. PMLR

54. Zeng T, Semiari O, Mozaffari M, Chen M, Saad W, Bennis M (2020) Federated learning in the
sky: joint power allocation and schedulingwithUAVswarms. In: IEEE international conference
on communications (ICC), pp 1–6

55. Wang Y, Zhou S, Zhang N, Benslimane A (2021) Learning in the air: secure federated learning
for UAV-assisted crowdsensing. IEEE Trans Netw Sci Eng 8(2):1055–1069, e3983

56. YangH, Zhao J,XiongZ, LamK-Y, SunS,XiaoL (2021) Privacy-preserving federated learning
for UAV-enabled networks: Learning-based joint scheduling and resource management. IEEE
J Sel Areas Commun 39(10):3144–3159, e3983

http://arxiv.org/abs/1902.01046


Intelligent Unmanned Air Vehicles for Public Safety Networks … 17

57. KaleemZ,KhaliqMZ,KhanA,Ahmad I,DuongTQ (2018) PS-CARA: context-aware resource
allocation scheme for mobile public safety networks. Sensors 18(5):1473

58. Pokhrel SR (2020) Federated learningmeets blockchain at 6g edge: a drone-assisted networking
for disaster response. In: Proceedings of the 2nd ACMMobiCom workshop on drone assisted
wireless communications for 5G and beyond, pp 49–54


	 Intelligent Unmanned Air Vehicles for Public Safety Networks: Emerging Technologies and Research Directions
	1 Machine Learning for Wireless Communications
	1.1 Supervised Learning
	1.2 Unsupervised Learning
	1.3 Reinforcement Learning

	2 Cellular-Connected UAVs for Emergency Communications
	3 ABS Placement, Power Allocation, and Localization for Emergency Communications
	4 Federated Learning for UAVs-enabled Public Safety Networks
	5 Conclusion
	References


