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Foreword

Unmanned air vehicles (UAVs) have shown great potential to enable numerous appli-
cations ranging from industry verticals to public-safety communications. However,
various challenges also arise with its integration into the existing terrestrial networks
such as efficient UAV positioning, power allocation, trajectory design, and resource
allocation. The existing conventional optimization solutions are not intelligent
enough to overcome those challenges. Thus, real-time optimization and machine-
learning-assisted solutions, and emerging technologies are required to overcome
those challenges.

In this regard, this book’s arrival is timely, and it will build your knowledge
about intelligent UAV communications for the public-safety network from the
ground up. This book provides the state of the art of public-safety communication
networks with the latest advances in intelligent UAV communications. This book
also supplies a clear picture of future trends related to emergency communications
that are assisted by the current research development of beyond 5G and upcoming 6G
wireless networks. The book contents will help researchers and other stakeholders
narrow down prospective concepts for employing intelligent UAV communications
for public-safety networks.

The book also contains compelling use cases and insights developed by some of
the leading researchers working in this exciting and pivotal research direction. It is
now in your hand to use this book for enabling intelligent UAV networks.

Prof. Chau Yuen
IEEE Fellow

Singapore University of Technology
and Design (SUTD)

Singapore, Singapore

v



Introduction

UAVs have shown promising potential in enabling a wide range of applications,
from industry verticals to public-safety communications. However, integrating it
into current terrestrial networks poses a number of issues, including effective UAV
placement, power distribution, trajectory design, and resource allocation. This book
examines both conventional non-intelligent and intelligent UAV communication
systems for public-safety networks. Furthermore, reconfigurable intelligent surfaces
(RIS) have lately piqued the interest of researchers and academician due to their
ability to improve the propagation environment and communication quality by intel-
ligently reflecting received signals. By incorporating intelligence into RIS-assisted
UAV communications, it will be able to satisfy the needs of intelligent, green, and
sustainable 5G and upcoming 6G cellular networks, making it a viable choice for
overcoming the fundamental flaws of older wireless systems.

Chapter “Intelligent Unmanned Air Vehicles for Public Safety Networks:
Emerging Technologies and Research Directions” reviews the essential technolo-
gies that will enable public-safety communications by deploying intelligent UAVs.
The authors pointed out the challenges related to them and also highlighted the
future research directions for researchers. To enable public-safety communications,
they highlighted that intelligence plays a critical role in increasing UAV perfor-
mance in terms of coverage, throughput, mobility management, and edge computing.
Moreover, they summarized that the existing traditional optimization algorithms
are not sufficient enough to address the challenges like UAV positioning, power
allocation, trajectory optimization, and resource allocation to enable emergency
communications.

Chapter “UAV Placement and Resource Management in Public Safety Networks:
An Overview” provided an overview about the features, applications, and enabling
technologies for public-safety networks. The importance of safety networks is high
when the existing terrestrial infrastructure is destroyed during the natural disasters.
To timely reach a disaster area and rescue people, communication infrastructure
quick deployment is desired. Hence, UAVs’ deployment is one of the finest solutions
for reaching difficult-to-reach regions. The authors in this chapter discussed UAVs’
types, public-safety use cases, state-of-the-art positioning and resource allocation

vii



viii Introduction

schemes, as well as the security challenges to quickly overcome the communication
challenges.

Chapter “3DUnmanned Aerial Vehicle Placement for Public Safety Communica-
tions” proposes a three-tier Aerial-HetNet to enable public-safety communications
consisting of terrestrial macrocells and small cells carried by UAVs. This chapter,
in particular, presents an Aerial-HetNet with strategically deployed UAVs to ensure
quality of service. The proposed scheme also considers range expansion bias at
small cells, various inter-cell interference coordination for interference mitigation,
3D beamforming for antennas, and 3D channel modeling for UAVs. The authors
investigated the fitness of numerous algorithms for locating optimal or near-optimal
3D UAV placements. Based on the comparison of the brute-force technique and the
heuristic algorithm examined in the chapter, it is necessary to discover a suitable
algorithm that can solve the trade-off of decreasing computing complexity while
finding the search problem’s near-global maxima.

Chapter “Power-Efficient UAV Placement in Relay Assisted Heterogeneous
Public Safety Networks” discusses the placement of UAVs as a relay to enable emer-
gency communications. The battery life of UAVs is a scarce resource that requires
UAVBS transmit power optimization. To overcome this issue, amodelwhich consists
of a fixed base station, observation UAV, and relay UAV is adopted to enable long-
distance communication. The optimal placement of relay UAV becomes requisite
for reliable connectivity between observation UAV and ground base station. In this
chapter, the authors minimize the sum power of observation and relay UAVs by
using the optimal placement of relayUAVs. The optimized power ensures throughput
requirements for real-time communication. They converted the non-convex problem
into a convex optimization problem, and the optimal solution is acquired using the
interior point method.

Chapter “LocationPrediction andTrajectoryOptimization inMulti-UAVApplica-
tion Missions” explains multi-UAV cooperation applications and the way to perform
drone location prediction and trajectory optimization using Kalman filtering and
machine-learning approaches. These techniques facilitate the drones to follow intel-
ligent paths and establish optimal trajectories while carrying out successful appli-
cation missions under given resource and network constraints. Moreover, three
scenarios are adopted to demonstrate the practicability of those techniques. The
first scenario uses multiple Kalman filtering techniques with sensor fusion to provide
location prediction-based intelligent packet transmission between drones in a disaster
response scenario. The second scenario incorporates a learning-based trajectory opti-
mization that employs a variety of reinforcement learning models to maintain excel-
lent video resolution and network performance in a civil application scenario such
as aerial monitoring of people or objects. The third scenario entails non-ML-based
trajectory optimization approaches in UAV-based public-safety applications. The
authors wrap up with a list of open issues and ongoing research on intelligent drone
path planning using location prediction and trajectory optimization approach.

Chapter “UAV Trajectory Optimization and Choice for UAV Placement for Data
Collection in Beyond 5G Networks” proposes collecting uplink traffic from disaster
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points to reduce the overall network’s Age-of-Information (AoI). Authors specifi-
cally examine the optimal trajectory of a UAV for data collection to ensure timely
delivery of information to the destination, lowering the overall AoI. They compared
the proposed trajectory performance with random trajectory and traveling salesman
problem (TSP). Furthermore, as compared to Matern type-I hard-core process-based
UAVs distribution, unsupervised learning-based UAVs distribution helps to reduce
the AoI. Moreover, the proposed trajectory is less computationally expensive than
a TSP-based trajectory design, making it suitable for the Internet of Things (IoT)
applications.

Chapter “Enhancing UAV-Based Public Safety Networks with Reconfigurable
Intelligent Surfaces” explains the fundamentals, design characteristics, and appli-
cations of reconfigurable intelligent surfaces (RIS) as a future wireless network
enabling technology. Specifically, the authors focused on integrating RIS into UAV
networks to flexibly move in the 3D space to achieve panoramic full-angle signals
manipulation,whileUAVusersmay rely on the availableRISswithin the environment
in order to operate securely, at extended ranges, and with reduced communication
and energy costs. Authors create two use cases related to public safety, namely, aerial
surveillance and search-and-rescue UAV operations, to demonstrate their feasibility
and usefulness. Finally, the author outlined the existing limitations of this integration
as well as future research objectives for developing RIS-enabled UAV systems.

Chapter “UAVs Path Planning by Particle Swarm Optimization Based on Visu-
al-SLAM Algorithm” The authors propose a two-step centralized approach for
developing 3D path planning for a swarm of UAVs. Using the visual simultaneous
localization and mapping (V-SLAM) method, they traced the UAV’s position while
simultaneously constructing an incremental and progressivemap of the environment.
Moreover, they offer a corner-edge points matching strategy for stabilizing the V-
SLAM system in the least extracted map points. In this case, a single UAV fulfills
the duty of mapping an area of interest using monocular vision. Furthermore, the
particle swarm optimization (PSO) algorithm is adopted to optimize pathways for
multi-UAVs systems. They also propose a path-updating method based on region
sensitivity to avoid sensitive areas during final path execution.

Chapter “UAV-AssistedCooperativeRouting Scheme forDenseVehicularAd hoc
Network” proposes UAV-assisted Cooperative Routing Scheme (UCRS), in which a
flying ad hoc network (FANET) assists a vehicular ad hoc network (VANET). Here,
each node in UCRS creates an Allied Node Table (ANT) based on the vehicles in
the forwarding zone. Moreover, they selected the best node among several nodes
available in ANT as an end-to-end route to forward the data traffic to the intended
destination. They evaluated the proposal using the network simulator (ns-2.31) and
proved that UCRS achieved better performance from U2RV and AODV with an
increase in node density.

We believe that this contributed book will be helpful for both academic and
industrial researchers. This book is made possible with the collaboration of
several international professionals and research teams. It covers the potential use
cases and intelligent technologies to enable UAV-assisted intelligent communica-
tions to enable public-safety communications. Moreover, the contributions include



x Introduction

machine/deep learning-assisted UAV 3D placement, trajectory optimization, path
planning, UAV-assisted layered architectures, cooperative routing schemes, and
3GPP standardizations process to enable public-safety communications.

We expect this book to open the path for more study on reconfigurable and
software-controlled meta-surfaces for intelligent UAV communications to enable
public-safety networks in the future. This book also provides a clear picture of
future trends related to emergency communications that assist in improving the effi-
ciency and performance of beyond 5G and upcoming 6G wireless networks. The
book contents will help researchers and other stakeholders narrow down prospective
concepts for employing intelligent UAV communications for public-safety networks.
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Intelligent Unmanned Air Vehicles for
Public Safety Networks: Emerging
Technologies and Research Directions

Zeeshan Kaleem, Ishtiaq Ahmad, and Trung Q. Duong

Abstract Unmanned air vehicles (UAVs) has showngreat potential to enable numer-
ous applications ranging from industry verticals to public safety communications.
However, various challenges also arises with its integration into the existing terres-
trial networks such as efficient UAV positioning, power allocation, trajectory design,
and resource allocation. The existing conventional optimization solutions are not
intelligent enough to overcome those challenges. Thus, real-time optimization and
machine learning assisted solutions, and emerging technologies are required to over-
come those challenges. To address those challenges, we summarized key technolo-
gies and research directions for UAV deployment at the edge or in the cell center,
the power allocation and localization schemes, and the federated learning solutions.

Keywords Federated learning · RIS · Intelligent UAVs · UAVs localization ·
Machine learning

1 Machine Learning for Wireless Communications

The worldwide requirement for data traffic has endured around 1000×-fold increase
over the previous years [1]. Due to the development of modern wireless communi-
cation networks, data traffic requirements are supposed to increase the capacity of
future networks. In addition to a notable increase in data traffic, the latest commu-
nications applications, such as autonomous networks, wearable gadgets, Internet of
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Fig. 1 Types of base stations to enable next-generation public safety networks

Things (IoT) devices, and cellular-connected unmanned air vehicles (UAVs) com-
munications, continuously develop and produce immense data traffic with diverse
requirements as shown in Fig. 1.

This development in communication applications demands an undeniable need for
intelligent service, processing, and optimization of future communication systems.
Using machine learning (ML), also known as artificial intelligence, into the design,
planning, and optimization of future communication networks. The concept of ML
has a lengthy and flourishing history. For instance, the use of neural networks (NN)
for intelligent systems instead of utilizing a simple single-layer design to affect the
state of one neuron. The idea ofML has established its powerful benefits in numerous
fields, including robotics, computer vision, communications, and signal processing,
where it is hard to find a detailed mathematical design for the characteristic pattern.
In such areas, ML is considered a potential factor that does not demand any compre-
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hensive model specification. The traditional methods that mainly depend on models
and theories show weaknesses due to the extensive complexity of communication
systems. Hence, research on ML for communication systems, particularly wireless
communications, is currently encountering magnificent growth. For intelligent pro-
cessing in a variety of scenarios, the emerging structure of ML acts as an enabler.
The latest ML methods give a wide range of opportunities to develop intelligent
communication systems that assists in addressing numerous challenges related to
signal processing, classification, detection, channel estimation, resource allocation,
routing protocols, configuring transport protocol, and user behavior interpretation.
Various types of ML schemes have different usage in radio communication systems.
It breaks the levels according to the kind of supervision demanded for training the
ML models. Following are the three major categories of ML models.

1.1 Supervised Learning

Supervised learning model uses sample data with perceived results to estimate the
output. Every sample data value is mapped to a single result value. The main purpose
is to feed and train the model using sample data as input and with already known
outcomes. After that, the already trained model predicts the results of the new input
samples. Supervised learning is successful when there is a large amount of data to
train the model. Hence, supervised learning is practical in deploying 6G to cope
with rising traffic requirements. ML-based supervised learning collects performance
computations such as throughput, outage probability, signal-to-interference and noise
ratio, and pathloss for specific frequencies and bandwidth. ML-based supervised
learning is used to predict the various performance matrix that a user will experience
and adjust the different parameters accordingly [2]. ML-based supervised learning
is adopted to train the models for pathloss prediction by considering channel state
information (CSI) and approximate objective functions for associate propagation
loss for 6G wireless systems.

1.2 Unsupervised Learning

An unlabeled collection of data is used to train the model with different character-
istics and the system endeavors to identify subgroups with related features between
the variables without having human involvement. Various schemes like generative
deep neural network (DNN) and K-means clustering are advantageous when arrang-
ing devices for edge computing in a system. ML-based unsupervised learning is
advantageous for uncertainty and detecting various faults in a system. It collects
data in batches at data collection centers to decrease redundant data travel between
distributed storage centers. It minimizes the latency by grouping nodes to automati-



4 Z. Kaleem et al.

cally determine the node with low powers that must be promoted to nodes with more
power for resource management in ultra-dense small cells.

1.3 Reinforcement Learning

Reinforcement Learning (RL) constantly works in probabilistic situations of wireless
systems. In order to obtain excellent performance, the network parameters are mod-
eled by using aMarkov decision process (MDP) as shown in Fig. 2. RL continuously
communicates with the environment, calculating the decisions at periodic intervals
of time. TheRLmodel needs to determine action at each point, obtained at the current
state, to which the model provides a positive or a negative reward and updates the
state. The rewards are associated with SINR and data rate. The RL is a data-driven
approach that is not completely modeled from physics andmathematical-basedmod-
eling. Undoubtedly, wireless communication networks are human-made with lots of
compositions that lack fast learning and transparency. Moreover, the state transition
probability is free of all prior actions and states. While we require to optimize the
system, the RL holds a record of all probabilities and their outcomes to obtain the
absolute optimum decision. The principal grounds for RL to be applied to a radio
communication system problem consist of (i) the signaling for obtaining the valuable
data sets required to accurately operate the system is too complicated, (ii) the mathe-
matical analysis of the wireless environment is considerably complicated to use in an
agent and (iii) the desired results of RL is presented as a scalar reward. For example,
the extensive machine-type communication and cell deployment (mainly small cells)
where comprehensive system preparation is not achievable.We also summarized and
compared key features of these three ML schemes in Table1.

Fig. 2 Reinforcement
learning working procedure
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Table 1 Comparison of supervised, unsupervised and reinforcement learning

Supervised learning Unsupervised learning Reinforcement learning

Output is known Output is not known Interacts with the environment
to make decision

Labelled data is used Unlabelled data is used Has no pre-defined data

Trained using past data Trained using any data Learning process rely on
reward and policy

Algorithm is trained to predict
output values

Algorithm is trained to
discover similarities and
differences in data

Algorithm learns by
interacting with the
environment using trial and
error method

Highly supervised Not supervised Less supervised and rely on
agent to find output

Learning predicts discrete
value

Discover unknown patterns Agent interacts with the
environment to get rewards

Compute formula on the basis
of inputs and outputs

Aim to find association among
input and output value to sort
them in groups

Aim to find the best possible
reward by choosing suitable
actions

2 Cellular-Connected UAVs for Emergency
Communications

UAVs have applications in numerous fields ranging from civil to vertical industries
as they can enhance coverage while supporting high mobility. UAVs also helps in
enabling real-time sensing applications and emergency communications [3]. UAVs
are getting popularity in provisioning emergency communications to the users in
disaster-hit areas by serving as an aerial base station (ABS) [4]. UAVs can assist in
carrying medical and food supplies to unreachable regions. With the assistance of
ABS deployment, an emergency communication network is established to prevent
further human lives and losses by connecting the victims with the emergency relief
providing personals. Since, it is hard for a communication service provider to deploy
a ground base station (BS) in a short time. Therefore, ABS are deployed to enable
emergency communications or to increase the coverage of the functional BS as shown
in Fig. 3.
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Fig. 3 UAVs-assisted public safety networks for coverage enhancement

Providing cellular connectivity to UAVs has enabled a plethora of applications
ranging from online video streaming to enable emergency communications [5]. The
Third Generation Partnership Project (3GPP), an industry-led consortium that stan-
dardises cellular networks, has been actively involved in identifying the key require-
ments, technologies, and protocols for aerial communications. To use enhanced Long
Term Evolution (LTE) support for aerial vehicles, 3GPP successfully completed the
first report in 2017 that led to 3GPP Release 15 Technical Report TR 36.777. That
report highlighted the necessary requirements for UAVs to optimize their operations.

In 2019, 3GPP TR 22.829 identifies several UAV-enabled applications and use
cases to improve and support 5G communications and networking technologies.
During 2020 in Release 17, 3GPP mainly focused on two aspects: (1) infrastructure
to support the connectivity and tracking inTR23.754, and (2) application architecture
to support UAVoperations in TR 23.755 [6]. However, in order to provide UAVswith
reliable wireless connectivity alongwith secure operation, a lot of challengesmust be
addressed, including interference management, mobility and handover management,
and malware attacks prevention.

To enable these applications, multiple UAVs are required for zone monitoring
during disaster situation. In addition, mutiple UAVs system can boost the system
efficiency through joint effort. However, number of challenges exists in multiple
UAVs system that includes localization, data processing at the edge, and trajectory
planning and 3D ABS placement optimization [7, 8]. When compared to normal
operating conditions, user association plays a significant role in emergency scenarios.
In the case of a disaster, when the traditional terrestrial base station (TBS) is out
of service, it becomes necessary to deploy UAVs in that area. Enabling device-to-
device (D2D) communications [9, 10], in addition to UAV deployment, could help to
improve coverage. The user association for numerous types of base stations is the key
challenge in co-existing D2D andUAVs network. To address this issue, the authors in
[11] explored how to solve the user association problem for UAV-enabled networks
using D2D connections by maximizing the weighted sum rate of UAV users and total
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Table 2 Related works in UAV communications

References Brief summary Placement
schemes

Localization
approaches

AI and
distributed
learning

Emerging
technolo-
gies

[17] Survey on object detection for
low-altitude UAVs

√

[7] Comprehensive survey on
UAV-assisted networks

√

[18] Survey on communication and
networking technologies for
UAVs

√

[19] Pervasive public safety
communication technologies

√

[20] Important issues in UAV
communications

√

[21] Survey on legacy and emerging
technologies for public safety
communications

√

[22] Issues in cybersecurity, Privacy,
and Public Safety

√

[23] Survey of public safety
communications: User- and
network-side solutions

√

[24] Survey on channel modeling for
UAV communications

[25] Survey on collaborative smart
internet of drones

√

[26] Survey on anti-drone systems:
components,designs, and
challenges

√

[27] Survey on applications,
databases, and open computer
vision research from drone
videos and image

√

[28] Survey on Collaborative UAV
and wireless sensor network
(WSN) for Monitoring

√

[29] A Survey on machine-learning
techniques for UAV-based
communications

√ √

[30] Survey on security and privacy
issues for UAV communications

√

[31] Role of UAvs in public safety
communications

√ √ √ √
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D2Dusers. This difficult problem is tackled by presenting a learning-based clustering
technique, which yielded sub-optimal results while being substantially simpler. As a
consequence, this technique can be used to improve public safety wireless networks
in the future.

In public safety communications, edge computing represents a paradigm change.
Time taken to complete task is greatly minimize by placing edge computing centers
in UAVs, which would minimize response time to consumers and save their lives.
This strategy was described in [12], where the authors used user association, UAV
trajectory, and user power to maximize offloaded bits from users to UAVs while con-
sidering the UAV’s energy constraints and the users’ QoS constraints. The trajectory
of the UAV is significantly affected by various elements such as energy, flight time,
and user needs.

UAVs equipped with Intelligent Reflecting Surface (IRS) are used in hazardous
communication environments to provide public safety users with customizable ser-
vices, quick deployment, low latency, coverage assurance, and a large amount of
energy. UAVs-IRS defend mission-critical, high-priority public safety users from
risks such as terrorism, natural disasters, and technological accidents. This commu-
nication helps to communicate and send the information (e.g., voice, data, and video)
which improves the cooperation among of public safety users [13]. Due to malicious
assaults or natural disasters [14], the BSs may be destroyed, leaving high-priority
public safety users’ without coverage. UAVs-IRS provide a direct or multi-hop by
acting as a relay communication situation to address this issue [15]. When UAVs-
IRS are used in conjunction with public safety networks, overall system congestion
and communication coverage gaps are reduced. Adding flexible UAVs-IRS relays to
disaster zones reduces the public safety users’ outages dramatically. The coverage of
public safety users’ is significantly boosted after deploying UAVs-IRS relaying sys-
tems. UAVs-IRS can simultaneously give coverage to adjacent public safety users’
and act as a relay to cover users that are positioned at a great distance by optimizing
IRS reflection angle and phase shifts [16].

We summarize recent works related to UAV communications that covers vari-
ous aspects such as ABS placement schemes, localization approaches, and artificial
intelligence (AI)-assisted communications in Table2.

3 ABS Placement, Power Allocation, and Localization
for Emergency Communications

UAV-assisted communication infrastructure can provide high performance, capacity
enhancements, and extended network coverage [32, 33]. They can explicitly provide
mission-critical communications tasks with the facility of autonomous operations.
Furthermore, UAVs play an important role in the distribution of critical information
on the fringes of the fighting area as well as in the implementation of cellular net-
works. To provide the coverage extension, UAVs as a flying adhoc network (FANET)
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Fig. 4 UAVs-assisted public safety communication use cases

has gain the popularity [34]. We summarized some of the use cases to enable public-
safety communications in Fig. 4.

A variety of future FANET communication architectures have been investigated
including existing wireless technologies in the literature. However, selection of key
communication technologies, architecture and core technology is truly a tedious
problem to handle in FANET [35]. For instance, in [36] the authors presented a
hybrid communication model, where they adopted features of 802.11 to meet high
data rate requirements and 802.15.1 for low power consumption to enable FANET
communications. This architecture considerably improved the network performance
and reduced infrastructures costs.

In [37], the authors presented the advantage of coordination between UAVs and
wireless sensor networks (WSNs). These two networks can support a wide range of
applications, including search and rescue, navigation, control and recognition. The
authors presented the solution for coverage enhancement using WSN-empowered
UAV networks and argued that an efficient selection of way-points can solve several
coverage issues.

To achieve high throughput gain during emergency situation, the authors in [38],
presented the solution to optimally place the UAVs as an ABS in the disaster-hit
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areas. They achieved the improved average as well as an edge throughput. Similarly,
the authors in [31] summarized the key contributions of ABS to enable public safety
communications by targeting energy efficiency perspective. Moreover, they also pro-
posed the ABS-assisted architecture that can assist the emergency users by enabling
emergency communication services.

To enhance the users’ coverage and improve their connection, the matching game
algorithm is proposed in [39]. Moreover, they also propose a medium access control
framework to optimize emergency efficiency and priorities emergency communica-
tions users. The simulation results proved the efficacy of the proposal within the
affected areas. In [40], the authors presented a solution for different path loss models
and deployment situations to enable ABS-assisted public safety communications in
heterogeneous networks. By system-level simulations, the authors proved that they
successfully improved the system performance by reducing the co-channel interfer-
ence.

For ABS-aided relay system to enable emergency communications [41], the
authors in [42] presented the joint optimisation of real-time ABS deployment and
resource allocation schemebyproposing a fastK-means-based user clusteringmodel.
They also provided the centralized and distributed models to maximise the energy
efficiency of the considered network under the tight QoS constraints. Numerical
results verified the effectiveness of the proposed scheme.

To solve the challenge of path planning during disaster situation with limited
battery and unknown user distribution constraints, the authors in [43] converted this
challenge into multi-armed bandit problem. Then to efficiently solve this problem,
they proposed two path planning algorithms which significantly enhanced perfor-
mance in terms of number of served users.

The back-haul-aware optimization problem is presented in [44] to minimize the
delay and search the ABS optimum altitude to maximize the users’ coverage. They
selected the optimumaltitude by considering theminimum transmit power constraint.
In [45], the authors jointly optimized the user association, resource allocation and 3D
UAV placement to maximize the downlink sum-rate. They divided the problem into
the three sub-problems and proposed the iterative solution that significantly enhanced
the sum rate by reducing the co-channel interference. In [46], the authors targeted to
maximize the network throughput by jointly optimizing the transmit power and UAV
trajectory subject to the mobility constraints. They proved that the proposed scheme
achieved notable throughput gains as compared to the conventional static relaying
system.

In [47], to jointly optimize the ABS elevation and power control with the goal
of reducing the concentrated outage probability, an iterative algorithm centered on
the block coordinate descent (BCD) technique was proposed. Simulation results
revealed that the outage probability was considerably reduced. In [48], the author
proposed a framework that optimizes UAV trajectory and transmits power in order
to improve the minimum throughput among UAV aided users. An iterative algorithm
was proposed with the goal of reducing access delay and improving throughput.

Localization of the users is key during the disaster situation. To address this chal-
lenge, the authors in [49] presented a solution to transmit the discovery message over
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an ABS-to-user link. Simulation results proved that by using root-MUSIC algorithm
the localization accuracy has been significantly improved. Similarly, in [50] data
routing mechanism for localization in GPS-denied areas. The proposal focused on
weighted centroid localization technique, where the position of unknown ABS are
calculated using fuzzy logic. The proposed idea improves the localization efficiency
by reducing the energy consumption and improving the lifetime.

4 Federated Learning for UAVs-enabled Public Safety
Networks

UAVs as an ABS play key role in coverage improvement, capacity enhancement,
and improving energy efficiency. During public safety communications, UAVs act
as mobile terminal to enable applications like real-time video streaming for secu-
rity personals. Here, UAV that act as an aggregator to globally train the model by
collecting the locally trained model from the users, as shown in Fig. 5.

To efficiently implement this system, recently deep learning approaches has
gained popularity to process the huge amount of received data. However, most of
those processing are cloud centric, that in turn consumes huge power, consumes
more bandwidth, introduce communication delay, and may pose security threats as
it may contain UAV location and identity [51]. We compare the federated learning
(FL) with the existing distributed and centralized learning schemes in terms of cost,
accuracy, and latency in Table. 3.

Fig. 5 Application of federated learning for UAV enabled public safety networks
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Table 3 Comparison of FL with distributed and centralized learning

Distributed learning Centralized learning Federated learning

Concept Data is shared and
process to multiple
server parallel

Data collected at
central server and
process centralized
manner

First client process
their local data then
local updates send to
central server

Accuracy Moderate High Low

Cost Feasibility Cost effective More costly More cost effective
due to locally sharing
data

Latency Less latency More Latency than
distributed learning

Latency is reduce to
significant number
from previous learning

Bandwidth Less bandwidth
require than
centralized

More bandwidth
needed

Updates are lighter so
less bandwidth needed

Privacy Privacy risk exist Privacy risk exist Due to exchange of
Raw data privacy is
not compromised

To overcome those challenges, recently Google introduced federated deep learn-
ing (FDL) or distributed deep learning concept [52] that has attracted huge popular-
ity in communications, and specially in UAV communications during public safety,
where only the locally trained models will be shared with the centralized entity for
aggregation. This in turn significantly reduced the latency and power consumption
as compared to centralized cloud processing as shown in Fig. 6 .

In FDL, deep neural network is collaboratively trained at the edge devices (UAVs
in our case). Afterwards, the trained model is shared with the cloud to aggregate
and create a global model. There are three main steps involved in this process; (1)
training initialization, where as per requirements of the targeted application, hyper-
parameters, initial global model, etc., are broadcasted to the UAVs by federated
learning (FL) server, (2) each UAV collect new data and update parameters of local
model based on the global model. Each UAV tries to optimize their parameters, and
then shared those trained parameter with FL server, (3) after receiving those local
parameters from UAVs, FL server aggregates them using the FederatedAveraging
algorithm [53] and sends back the updated model parameters to UAVs. At FL server,
the received parameters are optimized by minimizing the global loss function. More
details about those steps are summarized in [51].

In public safety communications, UAVs have to execute various tasks that ranges
from trajectory planning to target recognition. To address this challenge, the authors
in [54] presented framework to implement FL algorithms for UAV swarms. In UAV
swarm, one UAV as a leader gather the locally trained data from each of the following
UAV, generate global FL model, and then transmit it among the followers UAVs.
In order to optimize the the convergence rate of FL, joint power allocation and
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Fig. 6 Federated learning procedure for privacy preserving in safety networks

scheduling scheme was proposed by taking care of energy and delay constraints.
Simulation results proved the effectiveness of the proposal by significantly reducing
the communication rounds as compared to the baseline schemes.

Mobile crowd-sensing is key for successful implementation of emergency com-
munications as it assists in indoor positioning and environment monitoring. More-
over, the combination of UAVs with AI has open ways for efficient mobile crowd-
sensing [55]. However, the conventional existing AI models may arise serious secu-
rity and privacy threats. To overcome this threat, FL proved a promising solution
because of opening the possibilities of collaborative learning and training of the
model without exposing the sense data. To improve this security further, the in this
paper the authors introduced blockchain-based learning architecture that improves
the privacy of local models. Results proved that the security was improved by intro-
ducing effective solution of model sharing as compared to the baseline schemes.

In [56], to reduce the processing load in multi-UAV networks the authors pro-
posed an asynchronous federated learning (AFL) framework to enable asynchronous
distributed computing that disallows transmitting the raw data to UAV servers and
trained them locally.Moreover, to further improve the efficiency andmaintain quality
of service the device selection strategy was also introduced. The authors improved
the convergence speed and accuracy considering asynchronous advantage actor-critic
for joint device selection, UAVs placement, and resource management scheme [57].
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In disaster hit areas, the thorough inspection of local updates at UAVs is necessary
to guarantee privacy. To overcome this challenge, the authors in [58] combined
blockchain with FL and replaced the centralized FL platform with a UAV-assisted
FLwith blockchain at edge.Results verified that the proposed frameworkwas suitable
to enable intelligent disaster communications that consumes less energy.

5 Conclusion

In this chapter, we have summarized the key technologies related to intelligent UAVs
to enable public safety communications and also discuss future research directions
for researchers. We have concluded that the intelligence plays key role in improving
the UAVs performance in terms of coverage, throughput, mobility management, and
computation at the edge to enable public-safety communications.
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UAV Placement and Resource
Management in Public Safety Networks:
An Overview

Rizwana Shahzadi, Mudassar Ali, and Muhammad Naeem

Abstract Public safety networks (PSNs) can be deployed to help and rescue people
in any trouble situation. These networks can be used by police, fire department
or, a health service provider to instantly respond to an emergency situation. When
a disaster occurs, either due to some natural or man-made reasons, the terrestrial
infrastructure vanishes. The rapid deployment of communication infrastructure is
required to reach a disaster scene to rescue people. In recent years, UAVs have
emerged as a promising solution to this problem. UAVs fly independently without
human pilot intervention; therefore they can be one of the best options to reach the
difficult access areas. Even though UAVs offer numerous benefits of using them as
an aerial base station, few important challenges e.g., efficient resource allocation, 3D
placement, and security need to be addressed properly in order to efficiently utilize
the UAVs. This chapter has focused the details on the UAV-supported public safety
networks and state of the artwork related to UAV placement, resource allocation, and
UAV-related security concerns in PSN.

Keywords UAV · PSN · BS · QoS · LoS · (SF ad DF Relay) · CRN

1 Public Safety Networks

Public SafetyNetworks (PSNs) are specially designedwireless networks that are used
by first responders and emergency service providers in case of any disaster. PSNs can
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be useful in emergency situations to accomplish search and rescue activities. We are
living in a world where the risk factor for any disaster is very high. Disasters can vary
in nature, some are natural e.g., flood, storms, hurricanes, earthquakes and some are
man-made e.g., transport accidents, war situations, blasts, industrial accidents, etc.
There is also a new threat to society that is related to technology war. It is important
for societies to identify and rectify the disastrous situation in an efficient manner.
So, there is a great need for some kind of network that can be utilized in such a
disastrous situation to deal with threats towards people’s life and properties. Due
to the immense need for such infrastructures, PSNs have emerged as an important
future research direction. Public safety networks are used by different departments
to provide emergency services such as:

– Police
– Fire brigades
– Medical emergency service

Personal devices (handheld computers, mobile cameras) and network utilization
provide the greatest support towards the development of PSNs. The technological
revolution in personal devices and connectivity has greatly improved the visibility
and access to PSN service providers. Future PSN needs to efficiently collaborate the
information chain to get access to the correct information via sensors and command
chain to actually perform relief activities in a disaster scene. Public safety networks
can be classified into two broad categories:

1. Organizational perspective From an organizational perspective, public safety
network is a collaboration for information sharing and rescue functionality of
PSN agencies associated with law enforcement, emergency rescue, and criminal
activities. The factors that can affect the formation and operation of PSN may
include official choices, priorities, and capabilities of technology.

2. Communication perspective From a communication perspective, PSN is a wire-
less communication network used by emergency service providers such as police,
fire brigade, etc. The technological revolution in form of handheld and mobile
cameras has greatly improved the efficiency of safety workers. Sensors deploy-
ment have revolutionized the data collection and act as eyes and ears of PSN
service providers.

1.1 PSN Applications

Public safety networks involve several different operational sides in rural, urban, and
suburban areas. Some of them are as following [1] (Fig. 1):

– LawAgencies: It is the responsibility of law enforcement agencies in any country
to identify, investigate and keep away the culprits to make society a better place
to live in. They can use PSN to maintain law and order in the state.



UAV Placement and Resource Management in Public … 21

Fig. 1 PSN applications

– Emergency Medical Services: Medical services include immediate helpful care
of sick and wounded individuals, and transferring them to the appropriate hospi-
tal sites where doctors, nurses, and other related staff can provide them detailed
medical assistance.

– Environment Protection: This may include everyday observation of the envi-
ronment to keep it healthy, particular area surveillance in order to support an
endangered species, or maintaining the ecosystem of any area.

– Border Security: To protect the border area of any country by outsiders. This task
is mainly the responsibility of law enforcement agencies and is usually performed
by a specially formed force prepared for maintaining border security.

– War Scene: PSN can help people to rescue from war scenes either to safe places
or rush the injured individuals to medical facilities.

– Fire Fighters: It is the responsibility of the fire department to extinguish fires
erupted in any rural or urban area that is dangerous for people, animals, or people’s
possessions. PSN can be used by firefighters to do their job in an efficient manner.

– Search and Rescue: The purpose of search and rescue is to locate, identify and
rescue the lost individuals either due to a disaster or any crime scene.
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Fig. 2 PSN required features

– Disaster Management: In case of any disaster, it is the responsibility of the
concerned department to help the individuals stuck in disaster areas either by
search and rescue or necessary medical assistance.

Disaster management involves contributions from all modern-day communica-
tion and information techniques related to remote sensing, communication, video
processing, database management, and security protocols. At present, radio commu-
nication related to risk management is totally a matter of state. Future coordination is
only possible if the proposed scheme is flexible enough to address issues, risks, and
resources of different nationals. Decision-making is an important part of risk man-
agement which requires a high level of spatial analysis techniques to identify the
exact information for an accurate decision. Network reliability and security need to
be incorporated in PSN to fulfill theQoS andDoE requirements of served individuals.

It involves a three-step procedure:

1. Pre-Disaster (Assessment, Observation, Prevention)
2. During Disaster (Response, Evacuation, Assistance)
3. Post Disaster (Recovery, Reconstruction, Development).

1.2 Desirable Features of Public Safety Networks

Some of the desire-able features of PSN are as following [1] (Fig. 2):

– Flexible System Architecture:
Onemajor requirement ofPSN is that different kindof devices anddata types (voice
and video) has to work together. Internet should have mixed media support. The
architecture should be flexible enough to evolve with new technologies. Internet
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packet transport should bemore flexible to support high data rate (video streaming)
demanding applications. It should support both IPV4 and IPV6 formats. PSN
should be “bypass” and “talk around” enabled to exchange IP packets.

– Backward and Forward Compatibility:
It should have backward and forward compatibility towards new and old commu-
nications methods e.g., it can handle old telephone and IP-oriented sophisticated
traffic at the same time.

– Mesh Networking:
Mesh networking improves the network experience by allowing packet relay capa-
bilities at the edge devices and enabling the support for high frequency and high
bandwidth utilization. PSN should support the joint working of IP and mesh net-
works.

– Robustness and Recovery:
PSN should be designed taking into account the chances of failure like power and
malfunction of important network components e.g., towers, routers, switches. It
should be robust to such failures and must be able to recover from them quickly.

– Security and Authentication:
PSN should be designed in such a manner that it ensures that the network designed
for emergency services is only available to authenticated persons and the equip-
ment related to PSN should be available after a strong authentication process.
It should also have some strong distributed authentication processes as disaster
scenes may require the involvement of individuals from different locations.

– Standards:
Standers need to be clearly defined for PSN. Compatibility between different
connected devices can only be achieved via common standards to make PSN a
worldwide success.

– Ruggedization:
Device Ruggedization is important in PSN as one cannot afford device failure in
any critical situation. But it results in a high cost. Therefore, balance is required
between Ruggedization, cost, and reliability.

– Sensors and Location System:
High-quality sensors and location systems need to be designed to identify and
locate the individuals in any disaster situation. Better rescue services can only be
provided after accurate location tracking.

– High Density Radio Operation:
Any PSN must be able to deal with high traffic due to the emergence of sudden
heavy traffic volume in any particular area.

1.3 Key Enabling Standards and Technologies of PSN

Analog communication systems have been replaced by wireless digital communica-
tion systems. The main wireless communication standards for PSN are TETRA and
TETRAPOL in Europe and APCO 25 in the USA. Nowadays, several other com-
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Fig. 3 Legacy and future PSN technologies, LMRS (Land Mobile Radio System), LTE (Long
Term Evolution), SDR (Software Defined Radio), CR (Cognitive Radio), D2D (Device to Device),
M-MIMO (Massive-Multiple Input Multiple Output), mm-wave, IoT (Internet of Things), UAV
(Unmanned Aerial Vehicle)

munication systems other than these are used for Safety service provision (Fig. 3).
Emergency service providers also include military standards using UHF and VHF.
TETRA is a digital radio system standard that has an inter-operability feature enabled.
Equipment from different vendors can operate at the same time using TETRA stan-
dards. It was designed by ETSI. It has a tendency to handle up to hundreds of users
[2]. A talk group is one of the most famous features of TETRA. Since 1997 several
networks based on TETRA have been deployed in Europe. It uses air as an inter-
face for communication between TETRA and other communication networks. It has
very strong security features such as encryption at the end to end and air interfaces.
TETRA Release 2 provides high data rate services up to 473Kbits/s along with
backward compatibility and wideband data connectivity features [3].

APCO 25 is the USA-based wireless communication standard designed for public
safety Networks. It has four main features:

– Improved functionality
– Better spectrum efficiency
– Healthy competition between vendors
– Support for inter-agency and intra-agency communication

APCO 25 is FDMA-based and supports the QPSK-Cmodulationmethod. It offers
a limited data rate of up to 9.6kb/s and several services e.g., messaging, group call,
broadcast, etc. it is a fixed network-based method and can provide security to some
extent. TETRAPOLwas designed to satisfy French police requirements. It is FDMA-
based and uses a 12.5kHz/carrier channel. It offers both voice and data and several
services similar to TETTRA which include messaging, broadcast, and group call
[4]. It is FDMA base with a bit modulation rate of 8Kbits/satellite are not terrestrial
infrastructure dependent so it is used in PSN in case of natural disaster [5]. DMR
(Digital Mobile Radio) unlicensed mode (in a 446.1–446.2 MHz band) and licensed
mode and avionic communications in the VHF band (e.g., 118–136 MHz) can be
used for PSN.
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– Land Mobile Radio System
LMRS is an analog source to destination communication which is only for voice
consisted of transmitter and receiver. The push to Talk button available on a micro-
phone is pressed whenever a user wants to talk. LMRS uses VHF and UHF bands
and Its range and power are limited.

– LTE:
LTE is one of the dominant future technology for commercial mobile networks.
Due to high data rate support, it is becoming famous among PSN providers as
high data rate-sensitive applications are emerging day by day. In Europe, LTE
can be used with TETRA for PSN [6]. LTE can be adopted for PSN after the
specification of services which are usually not defined in the commercial domain
but are used in PSN. 3GPP is working on standardization work in three domains
(1) Proximity services (2) Group Call (3) Public Safety Broadband. LTE has to
support existing infrastructure. LTE is designed for reasons that are much more
powerful as compared to PSN. Fears exist that PSN can’t influence LTE standards.
Technology evolution from TETRA to LTE is basically a five-step procedure in
Europe, particularly in Finland. These steps are as following [7]:

• Due to rapid increases in data rate requirement first step is to set up Mobile
Virtual Network Operator (MVNO).
• TETRA for critical and broadband for non-critical content.
• LTE core for dedicated broadband services for PSN in certain regions.
• Outclass voice services for both TETRA and LTE.
• Complete takeover of TETRA services by LTE broadband services.

– Software Defined Radio:
The broadband requirement of PSNs network is addressed by LTE. However,
interoperability is an important aspect that needs to be developed. SDN is an
important future technology that was designed to support interoperability factors.
The author in [8] has covered important aspects of SDN. Furthermore, public
safety aspects of SDN are covered in [9].

– Cognitive Radio:
Cognitive radio systems can identify, monitor, and adapt to the Radio frequency-
changing conditions of the surrounding environment. It can cater to operations
related to interference and availability when analyzing the radio frequency oper-
ation. CR-based devices can update their own RF parameters to adopt the sur-
rounding RF changes. It can be used in PSN due to the main two features. (1) It
can improve the spectrum utilization by detecting the spectrum availability (2) It
promotes the interoperability feature [10].

– D2D:
In case of any catastrophic situation where wireless infrastructure has been dam-
aged along with other facilities, D2D could serve the purpose of search and rescue.
D2D devices communicate in a peer-to-peer fashion in an unlicensed band. It can
provide a high data rate at a low price and latency features. An important feature
of D2D that enhances the system capacity is spatial frequency reuse. Therefore,
PSN D2D can be used to provide efficient search and rescue facilities [11]. The
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agility feature of UAV has made UAV-assisted D2D implementation very flexible
[12].

– Massive-Multiple input multiple outputs (M-MIMO):
It is an important future wireless technology that is designed to provide a better
communication experience in the case of a high mobility environment. M-MIMO
consists of multiple antenna arrays connected with BS, which can serve multiple
users at the same time and frequency resource.

– mm Wave:
As spectrum is a scarce resource and with the passing time congestion in the
already available spectrum is an important problem to be addressed. Mm-wave
is an important way to solve the capacity problem of future 5G networks. The
mm-wave spectrum ranges from 30 to 300 GHz. 250 GHz spectrum is available to
be used under the mm-wave title which is a huge range but the propagation losses
problem needs to be addressed in the mm-wave range.

– IoT:
IoT is a big future technology. It will transform the way we are living and can
act as a game-changer for PSN. It can be used for surveillance purposes that help
in the prevention of any disaster situation. If a disaster has happened, IoT can
improve the first responder’s experience. IoT sensors can help to actually locate
the source and cause of any emergency situation. Academia and researchers can
work together to combine two independently evolved streams IoT and PSN for the
purpose of public benefit.

– UAV:
Recently a new trend has emerged inwhich unmanned aerial vehicles (UAV) can be
used in PSN. If the infrastructure has completely vanished in any disaster and there
is a need for immediate infrastructure deployment to continue the search and rescue
operation, UAV can serve the purpose in a very efficient manner due to several
benefits such as low-cost deployment, maneuverability, and Los communication
link.

1.4 PSN Implementation Challenges

Despite several advancements in PSN, still, several challenges are associated with
PSN implementation. A disaster is a sudden event: therefore, immediate response
from emergency service providers is required to handle the situation, which may
cause several problems like Congestion, Connectivity, throughput, interoperability,
Accurate positioning, Decision Making [13, 14].

– CongestionAnemergency is a discrete randomevent, which causes a sudden spike
in traffic volume.A competition starts for resources between public and emergency
first responders (EFR), which may cause traffic congestion. The provision of a
congestion-free network in an emergency is an important issue to be addressed.
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Emerging trends like the use of unlicensed bands,UAVs, small cells, andM-MIMO
can help to solve the congestion problems.

– Connectivity Emergency is a discrete random event, which causes a sudden spike
in traffic volume.A competition starts for resources between public and emergency
first responders (EFR), which may cause traffic congestion. The provision of a
congestion-free network in an emergency is an important issue to be addressed.
Emerging trends like the use of unlicensed bands,UAVs, small cells, andM-MIMO
can help to solve the congestion problems.

– Throughput The high data rate is required in emergency service provision e.g.,
full-duplex communication link is required to maintain real-time communication
in order to rescue distantly located users or if the fire erupts in an area EFR may
require real-time video streaming to get to know about the exact situation at the
disaster scene. Multimedia involvement in emergency service provision increases
the efficiency of PSN up to several folds but at cost of a high data rate.

– Interoperability PSN network may involve more than one EFR with different
equipment types. Interoperability means coordination between every intended
operator’s parameters and equipment. Interoperability failure among different EFR
may cause the failure of PSN and ultimately is a serious threat to the lives of people
stuck in a disaster situation.

– Accurate positioning Wise decisions can only be made if the exact location and
situation of the disaster are known. SituationalAwareness (SA)mayhelp to identify
the exact location of PSN members. Continuous analysis of situational awareness
is required by EFR to get to know about the actual scenario at the disaster scene:
therefore, it is essential for decision making in an emergency.

– Decision Making Intelligence is required to make wise decisions at the disaster
scene. Intelligent UAVs have served the purpose. They can hover the disaster
area autonomously and intelligently can collaborate with other UAVs to cover the
disaster area in an efficient manner e.g., Intelligent UAVs can take the decision to
move from an empty to a crowded area to rescue a large no of individuals.

2 UAVs in PSN

PSN routine communication patterns are quite different in comparison with normal
wireless communication scenarios. In PSNs traffic is usually low consisting of only
the surveillance kind of messages to immediately get to know about any disastrous
situation. However, the traffic volume of PSN suddenly increases once the disaster
occurs. It is a non-practical and resource inefficient method to permanently depute
high capacity fixed communication points for PSN even in normal times. However, it
requires some immediately deployable communication means. UAVs are very useful
communication nodes for PSNs because of the easy and immediate deployment, Los
propagation, mobility, and maneuverability characteristics [15] (Fig. 4).
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Fig. 4 UAV assisted PSNs

2.1 UAV Categories

A wide range of UAVs is available worldwide. They can be classified on the basis of
four different parameters: (1) size (2) range (3) altitude (4) rotator type [16, 17]. It is
important to utilize the application-specific UAVs for each scenario. Figure5 shows
the detail of UAV classification:

1. Size: UAVs can be classified With respect to size [17].

– Micro Micro UAVs also known as very small UAVs range in size up to the
size of small insect that is 30–50cm in length. They look like insects and they
provide options for both rotatory and flapping wings.

– Mini Mini UAV is also known as a small UAV range in size up to 2m not
greater than that and it has a minimum of one side dimension larger than
50cm.

– Medium Medium size UAVs are heavy enough that they can’t be handled by
human hand but still, they are smaller as compared to small size aircraft. Their
wings are 5–10m long and they support payload to 100–200kg.

– Large This class of UAVs is very large in size usually of the size of aircraft
and mostly they are used by the military.
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Fig. 5 UAV types
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2. Range
UAVs can be classified With respect to range as [17]:

– Low-cost Close Range They offer a range of up to 5km. Endurance time
20–45min and according to 2010 survey cost of 10000 dollars.

– Close range They offer a range of up to 50km. Endurance time 1–6h.
– Short Range They offer a range of up to 150km. Endurance time 8–12h.
– Mid-range They offer a range of up to 650km.

3. Altitude
UAVs can be classified With respect to the altitude as [16]:

– Low Altitude Easy fast and flexible to install, they have a Small endurance
time and coverage range.

– High Altitude Large deployment cost but larger range and endurance time.

4. Rotator Type
UAVs can be classified With respect to rotator type as [16]:

– Fixed wing Forwarding airspeed of wings is used to produce lift. Require
runway for taking off and landing it has simple structure and support high
payload.

– Rotatory Wing Lift is generated via blade it can hover in any required direc-
tion. It has a support of Vertical takeoff and higher payload.
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Fig. 6 UAV use cases in
PSNs

2.2 UAV Use Cases in PSN

We are living in an era of technology where demands of data rates are increasing
at a very rapid rate due to the emergence of new multimedia applications on daily
basis. As a result, the requirements for new communication means to satisfy such
increasing demands are also high. Recently, UAV-assisted heterogeneous networks
have attained much attention due to their easy deployment, low operational cost,
Los and maneuverability features. The purpose of PSNs is to maintain communica-
tion in a disaster area to locate and rescue the sufferers even if the communication
infrastructure is completely or partially destroyed. In absence of Communication
infrastructure UAVs have recently evolved as one of the best options to continue
the communication services for first responders to help endangered people and their
belongings. In any disaster area, UAV’s can be utilized in three possibleways (Fig. 6):

1. Flying BS UAVs can be used as flying base stations to serve an area where
the communication infrastructure is completely or partially destroyed due to a
disaster situation or the area is difficult to approach due to its geographical facts.
It can also facilitate the suddenly overloaded Macro Base Station due to the
emergence of a large no of users e.g football matches.

2. Relay UAVs can act as a relay with either a single UAV or several UAVs to
provide communication facilities or surveillance of distantly located users. It can
be used in both store and forward (SF) and Decode and Forward (DF) modes.
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3. Aerial User Equipment UAV can be used as aerial user equipment for delivery
monitoring and rescue services.

As Aerial Base Station:

– Technological revolution has caused greater use of multimedia applications which
hsulted from the rapid increase in no of connected devices and their required data
rate to satisfyQoS criteria. This is themajor driving force towards the development
of new and advanced communication methods to handling an increased no of
devices and can provide a high data rate. In any disaster area, several methods and
strategies such as M-MIMO, heterogeneous cellular network, orthogonal multiple
access techniques,mm-wave communication, etc. [18] have been developed in past
years. But each proposed method has some limitations. UAV-assisted networks
have emerged as a new feasible solution to this problem because of their low
operational cost, easy deployment, Los, and maneuverability features.

– • UAV-assisted BS is a very viable solution in comparison with other broadband
networks specially designed for public safety operations e.g., TETRA, First Net,
APCO 25. UAV BSs can easily and immediately be deployed at any location to
provide communication services to help the endangered people who are stuck in
disaster scenes and can’t communicate due to infrastructure failure [19].

– • PSN require some reliable Los communication methods and shift towards a
higher frequency band to provide more bandwidth capacity. UAV-assisted com-
munication is one of the best solutions as it can provide Los communication [20].

– •M-MIMOand 3DMIMO techniques enhance the network capacity by exploiting
spatial diversity factors. Los communication is the key factor to implement spatial
diversity. In this respect, UAVs serve the purpose in the most efficient way because
of their Los communication technique which is the most important factor for
beamforming [21].

As Flying User Equipment:

– • Nowadays, photographers are focusing to use UAVs for photography purposes
which were previously possible only with help of high-cost equipment such as
helicopters. The cinematography of action scenes and sports coverage has been
revolutionized. Another important development is the live coverage feature of any
disaster scene. It is nowpossible in a very economicalwaywith help ofUAVswhich
was previously only possible with help of expensive satellites. This live coverage
feature is of great help for PSN to perform the search and rescue operation.

– • Big names in the field of delivery services are working on the option of UAV-
assisted delivery. This can be used to deliver food, medicines, and instructions to
the disaster scene where other transport means have vanished.

– • It is now possible to gather information and 3D high-resolution images of hard-
to-reach areas which need continuous monitoring such as mountains, coastlines
with the help of UAVs.

– •Due to the small size of drones they can be utilized to capture close-up images of
the disaster areas and accurately collect victim’s data with help of sensors, radars,
and cameras.
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– • Infrared Sensors incorporated with UAVs help the farmers to continuously mon-
itor crop health and take suitable measures for its betterment.

– • UAVs can be utilized by PSN for the forecast of natural or man-made disas-
ters e.g., hurricanes and tornadoes to inform the locals before any such situation
actually happens.

– • Drones can be used to protect endangered species from hunters with help of
sensors and thermal cameras which can even work at night time. PSN can use the
information about wild animals collected via UAVs to tell the tourist and locals
about their presence in that particular area to avoid any mishap.

– • PSN can use drones to monitor large public gatherings to avoid any mishap
or criminal activity. Drug transportation, illegal smuggling across coastlines is
monitored by border force with help of UAVs.

As Relay Node: UAVs can form a flying Ad-hoc network [22] to provide very
reliable communication for far-flung areas which are difficult to reach due to their
geographical facts. UAV relay network can greatly extend the communication range
in a very economical and reliable way. They collect the data from far-flung areas
and transmit it to nearby BS. It can be used in situations that require continuous
monitoring e.g. borders, disaster areas, forest fire, Volcano, etc.

2.3 UAV Implementation Challenges in PSN

UAVs are becoming a potential candidate for PSN because of several advantages like
Los communication, easy and immediate deployment, maneuverability, etc. Despite
various benefits, there are certain challenges related to UAVs that need to be thor-
oughly investigated in order to maximize the efficiency of UAVs in PSN. Figure7
shows challenges related to UAV-assisted PSN.
• 3D Placement: UAV placement is one of the most important challenges. UAV
placement is a 3D placement problem which means that height is an important
parameter that needs to be adjusted along with other dimensions which makes it
different and challenging from 2D placement problems. Several parameters which
need to be addressed for UAV placement include User location, Channel conditions,
Battery constraint, and Interference with other UAVs [23, 24].
•Resource Management: Efficient Resource Management of UAV-supported PSN
is an important design challenge because UAV has to operate with resources that are
also shared with existing infrastructure. Several researchers have recently worked on
efficient resource utilization of UAV-assisted PSN to get the best out of it.
• Trajectory Planning: UAV Trajectory planning in PSN is a challenging task
because it requires finding the large number (approaching to infinity) of variables via
whichUAVcan fly during rescue operation [25]. Several important parameters which
need to be consideredwhile trajectory planning is energy constraint duringflight time,
collision avoidance in case of multiple UAVs taking part in the rescue operation, user
demands, interference handling to maximize the network throughput, etc. Trajectory
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Fig. 7 UAV implementation
challenges in PSN
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planning is basically an optimization problem of finding the optimized path between
source and destination and this optimized path should maximize or minimize certain
performance indexes e.g. energy, power, path length, time, delay, etc. The absence of
proper laws hsulted in illegal drone usagewhich is a serious threat to drone utilization
and has made secure trajectory planning a challenging task [26].
• Interference Handling: Most of the time, PSN include multiple UAV operation
at disaster scene to maximize the network throughput and coverage. Despite several
benefits of multiple UAV operations, one important challenging factor is the interfer-
ence management between multiple UAVs. UAV footprint should be placed in such
a manner that it provides coverage to the larger area but not at cost of interference
with neighboring UAV footprints. Researchers are working on several interference
mitigation techniques to maximize network efficiency.
• Channel Modeling: Characteristics of the channel between transmitter and
receiver have a great impact on the quality of communication and system efficiency.
InUAV-assisted PSN, channelmodeling is a complicated task as compared to ground-
assisted PSNs because the air to ground channel is involved in UAV-assisted PSN
whereas and in ground-assisted PSN only ground to ground channel modeling is
required.UAV-assistedPSNhas both transmitter and receiver asmobile unitswhereas
in the terrestrial network only the user is mobile [27].
• Backhaul Connectivity: In the case of UAV-assisted PSN, backhaul connectivity
is another important factor. The mobile nature of UAVs demands wireless backhaul
connectivity insteadofwiredbackhauling [28]. Potential candidates forUAVwireless
backhauling include the following options: mm-Wave, FSO (free-space optical fiber
Communication), satellite links, Wi-Fi. Satellite offers large capacity but greater
delays and high cost whereas low cost and small delays still makeWi-Fi backhauling
the most potential candidate for backhauling.
• Energy Limitation: The limited battery is a significant challenge of UAV oper-
ation. Most of the time, UAVs are operated by onboard batteries that is why UAV
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energy resources can’t exceed certain limits. UAV onboard energy is used in sev-
eral tasks e.g.information processing,mobilitymanagement, communication control,
etc. Energy parameter is an important factor defining UAV lifetime. Researchers are
working on efficient energy utilization methods to prolong the UAV lifetime [29].
UAV energy consumption depends upon several factors e.g. channel conditions, mis-
sion details, placement, and path planning strategies.
• Security: Security is an important factor related to UAV-assisted PSN. UAV com-
munication links are broadcast in nature; therefore, hackers can easily launch attack
an attack on them. Security is challenging and difficult to manage the task in UAV-
assisted PSNs due tomulti-layer topology involvement. Ensuring the security of SDN
[30] controllers which are used for resource management in multi-layer networks is
another challenging side in UAV-assisted PSNs. Researchers are working to protect
UAV communication links from any kind of mischievous attacks, and have proposed
different solutions based on artificial intelligence, signal processing, multi-antenna,
relay selection, and friendly jamming techniques.

2.4 Intelligent UAVs

Unmanned Aerial Vehicles have been used to provide search and rescue services
in Public safety networks due to their several advantages. Initially, UAVs were fly-
ing objects without human pilots onboard controlled manually by ground control
stations. Recently a new concept of artificial intelligence combined with UAVs has
emerged, which hsulted in intelligent UAVs. Intelligent UAVs can be used in var-
ious fields. Artificial intelligence refers to a state where machines are capable of
performing tasks intelligently without human involvement. Intelligent UAVs have
modernized and updated aerial technology in several areas e.g., security, agricul-
ture, disaster management, remote sensing, etc. Intelligence hsulted in to increase in
UAV utilization up to many folds. Intelligent UAVs can control their flight operation
autonomously by intelligently controlling flying, trajectory planning, and battery
replacement [31].

Computer Vision helps UAVs to incorporate intelligent behavior [32]. Intelligent
UAVs can perform on-board image processing with help of neural networks which
are used to implement severalmachine learning algorithms. Sensors also play amajor
role in UAV automation. They gather all necessary data and feed this collected data
to a machine learning algorithm for appropriate action.

Intelligent UAVs have several uses. Some of them are as follows:
• Search and Rescue: In case of disaster intelligent UAVs can perform search
operations in areas that are otherwise impossible to reach for human beings after a
disaster. Intelligent drones can provide relief services in a better way by scanning
the disaster scene in a faster way.
• Military Uses: Intelligent drones have the biggest application in military areas.
Drones can replace pilots and save human costs in case of war. They can provide
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continuous surveillance of border areas and even can enter in cross border areas
because they are hard to notice due to their small size.
• Agriculture: UAVs can automate the agriculture sector by continuously monitor-
ing the fields and scattering seeds pesticides etc. Intelligent drones can decide by
themselves which treatment is needed for the crop and when the crop is ready to
harvest or when the seed scattering is required.
• Construction: Intelligent drones can provide continuous monitoring of construc-
tion sites which will minimize human involvement. It will benefit the most in the
monitoring of that construction site that is dangerous for human beings to monitor.
• Delivery: Big names like AMAZON are trying to update their delivery service
with help of intelligent drones. They can identify the targeted user and deliver them
the package. Drone delivery will not only save time but is also a suitable solution to
the traffic problems of the modern world.

3 UAV 3D Placement in Public Safety Network

Among the major challenges associated with UAV-assisted PSN, placement is one of
the major challenges due to several reasons. Firstly, in the case of the UAV-supported
communication scenario, both end-user and BS are mobile whereas in conventional
ground networks the end destined user is only mobile and BS is fixed. Therefore,
placement is a difficult task in UAV-supported PSNs. Secondly, UAV placement
in a 3D (length, width, height) placement problem is dissimilar from 2D (length,
width) placement of ground networks which means that height (altitude) need to
be adjusted in order to achieve optimized coverage and service quality along with
other placement parameters in UAV networks. UAV placement is divided into two
main problems altitude adjustment and 2D placement problem. Depending upon
altitude, UAVs are classified into two main categories high altitude and low altitude
platforms. The high altitude provides wider coverage and greater chances of Los but
with increased path loss factor due to an increase in distance between end-user and
UAV. Low altitude provides a narrow coverage area, fewer chances of a Los path,
and fewer losses. Important network parameters e.g., network throughput, QoS, and
DoE are directly linked with the UAV position [33]. SINR can be altered to adjust the
varying demand of end-user by changing the position of UAVBS as it is a function of
distances and locations of sender and receiver. Hence optimized placement problems
can bring the best possible outcomes of UAV-assisted PSNs.

3.1 State of the Art

Single UAV BS Placement: The author [34] has analyzed UAV placement in disas-
ter scenes with UAVs able to self-organize themselves. It has considered the circular
disaster area with a 30km radius. It has utilized a simple search algorithm used
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by bacteria to search the disaster space. Results indicate that vertical flexibility is
not as efficient as finding the optimized altitude in maximizing spectral efficiency.
Greater energy consumption is involved in vertical movements in comparison with
horizontal movements due to a change in elevation angle. So, a trade-off is required
between altitude performance improvement and energy consumption. The problem
of maximizing the covered users with minimum involved power in terrain situations
is discussed [35]. Averaged path loss model is used because of missing details related
to its being Los or NLoS due to terrain situation. The main 3D placement problem is
divided into two small problems vertical and horizontal placement. In the horizon-
tal direction, 2D circle placement (second-order cone) problem whereas in vertical
direction optimized elevation angle is utilized to get the optimized altitude [36] has
covered the 3D UAV placement to cover the users equally distributed within dif-
ferent floors of high rise building whose communication infrastructure is destroyed
due to disaster situation. An algorithm is proposed to solve the placement problem
based on particle swarm optimization algorithm [37]. The Convergence speed of
PSO and gradient descent algorithm are compared to each other for variable build-
ing widths and heights. UAV-assisted ad hoc networks are useful research directions
because they can easily be deployed to provide coverage in any disaster area where
the infrastructure is partially or completely destroyed due to any natural orman-made
disaster. UAV placement strategy has a very important impact on the ad hoc network
lifetime due to its direct impact on utilized battery resources. Researchers in [38]
have worked upon the recall frequency parameter which defines the lifetime of any
battery-operated UAV-supported networks. Smaller UAV recall frequency refers to
a larger lifetime of the corresponding ad-hoc network. UAV Placement is further
distributed into horizontal placement and vertical placement. Results indicate that
optimum altitude is a function of desired coverage area and slope depends upon the
communication environment e.g. high altitudes are required for dense scattering situ-
ations. Results indicate thatminimizing the onboard circuit power decreases theUAV
recall frequency factor and hence results in a significant increase in ad-hoc network
lifetime. Optimized 3D placement problem to support complete coverage for indoor
users while keeping the transmitted power at a minimum level is discussed in [39].
UAV 3D Placement problem is optimized for two situations: (1) building location
with highest path loss factor (2) users with the unvarying distribution. Simulation
results have proved that in the first case required transmitted power is much higher
and increases in a uniform manner with an increase in no of users. UAV placement
problem to satisfy the user demands with different QoS requirements is presented in
[40]. Optimized placement is done in two steps first is vertical optimized placement
and horizontal placement. The horizontal direction optimized placement is achieved
as a concentric circle placement problem. In [40], the designed algorithm is com-
pared with the standard Genetic and MVX toolbox and has appeared much better
than them when execution time and covered users factors are considered. In [41],
the author has presented the placement problem in a situation in which the number
of users and their demanded data rate is not stable but varies with time. Four diverse
data rate cases HD video, VOIP, online gaming, and web surfing are considered.
Knapsack-like problem is utilized for horizontal placement problem whereas verti-
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cal placement problem is solved similar to [42]. 3D UAV BS placement to maximize
the number of covered users based on the Honey bee algorithm [43] is presented in
[44].

Multiple UAV BS Placement: UAV has emerged as a potential candidate to assist
PSN due to several benefits like easy deployment, low cost, maneuverability, and
Los communication. However, in some scenarios instead of one, multiple UAVs are
involved to maximize the efficiency of PSN. The [45] problem of maximizing the no
of covered users with a minimum number of UAVs, while maintaining the fairness of
service is presented. A hybrid algorithm (greedy search and distribution motion) is
utilized to achieve the optimized solution for the NP-Hard problem. Firstly, Greedy
Search Algorithm is used to find the minimum number of UAVs and their optimized
position in discontinuous space. Then, the optimized UAV placement in continuous
space is achieved via the Distribution Motion algorithm. The proposed algorithm is
tested for random and cluster distribution scenarios. Mean-field type game (MFTG)
[46] to get the optimized placement for multiple UAVs is utilized [47]. Mean-field
term is affected by each UAV decision value. Each UAV makes the decision of
its optimized placement to achieve the Nash Equilibrium for optimized placement
depending upon its status and mean-field term. The author [48] has presented the
optimized multi UAV 3D placement while considering the energy constraint as well.
3D UAV placement problemwithin Network Flying platform is covered in [49]. Dis-
tributed placement and centric placement algorithms are utilized for optimized UAV
placement decisions [49]. The existence of co-channel interference is an extremely
important aspect to be addressed in real networks. UAV 3D placement problem in
presence of co-channel interference is presented in [50]. Joint optimization of 3D
placement and path loss factor to maximize the user up-link coverage is considered
in [51]. Then UAV height is optimized in dense suburban cases. Results indicate
improved coverage and throughput performance.

Ref. # Object Problem type Algorithm Use case NO OF UAV’S

27 Optimized UAV Altitude Non-Convex Heuristic Bio inspired BS Single

28 Maximized Coved Users MINLP Heuristic BS Single

29 Indoor Coverage Non Convex PSO BS Single

31 Increases the ad hoc network lifetime Optimization Heuristic BS Single

32 Minimized Transmitted power Minimum coverage circle Iterative BS Single

33 Maximized users with diff QoS Mixed Integer Multi population Genetic BS Single

34 Maximized Users with diff QoS knapsack Density Aware Placement BS Single

37 Maximized Covered Users optimization Artificial Bee Colony BS Single

38 Maximized Coverage with minimum UAV’s NP Hard Hybrid BS Multi

39 Minimized Cost Optimized Mean Field Type Game BS Multi

41 Maximized Coverage Cooperative Coverage Game Theory BS Multi

42 Maximum Coverage Optimization Distribute & Centric Placement BS Multi

43 Maximized Coverage Optimization Heuristic BS Multi

90 Maximized Coverage Optimization Round Robin/K-Mean BS Multi

3DPlacement ofUAVFlyingRelay:UAVs are getting an important part of advanced
networks at a very faster rate. An important use of UAVs in public safety networks
is acting as a relay node and providing information to the ground control station or
towards any other flying UAV. Due to limited storage and processing capabilities
UAVs need to act as a relay node to provide relief services in any far-flung area
under disaster situations. Placement is an important challenge for UAVs that are
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acting lay nodes. The altitude optimization problem for flying relay node (UAV) to
maximize the network reliability factor is presented in [52]. Both static and mobile
cases are considered while optimizing the altitude. Numerical results have indicated
thatDecode and Forward (DF) is a better-relaying strategy thanAmplify and Forward
(AF). Variation in performance matrices results in the variation of optimum altitude.
The author [52] has considered Bit error rate, outage probability, and power loss as
performance matrices. Outage probability is used as a performance metric. Results
have depicted that the power transmitted ratio among flying UAV and ground BS
has a direct impact on placement optimization. Optimized placement in a wireless
regenerative communication environment for a UAV relaying node in between relay
station and mobile is presented [53]. Placement optimization for UAV acting lay
node between users and fixed BS in terrain situation is discussed [54]. Placement
Optimization is performed to get the maximum network throughput. Firstly, UAV
collected information is used to estimate the location of end-users and information
related to path loss. Then, an iterative algorithm is utilized to get the optimized
placement. The work in [55] has presented the optimized placement of UAV relay-
ing node to ensure the attainability of communication link among BS and user if
there is any blockage due to terrain situation to maintain the QoS. Results have indi-
cated substantial performance gains of actual Terrain situation considered in [55]
instead of stochastic approach. Relay placement presented in [56] has considered the
clustering model based approach with no of UAVs and network performance jointly
acting as the performance metric. The researcher in [57, 58] has covered the UAV
relay placement problem. Joint deployment and resource allocation for UAV aided
relaying network in case of disaster is discussed in [59]. This research work has
considered real-time scenarios and has proposed User clustering based on k-means
along with joint power and time allocation transferring to recover the network after
the occurrence of a disaster. Latter the energy efficiency is also maximized. Results
have indicated the better performance of the proposed scheme as compared to other
standard methods. Several obstacles on the communication path make it challeng-
ing to provide communication services to distantly located users. (Non- orthogonal
multiple access) NOMA-enabled full-duplex UAV relaying strategy is proposed in
[60] to provide communication services to faraway users. Outage probability and
throughput performance are considered performance metrics. Results have indicated
that a larger number of antennas on the receiver side results in better performance
metrics (improved system throughput, reduced outage probability).
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Ref # Object Problem type Algorithm Use case

44 Maximized network Reliability NP Hard Numerical Method Relay
45 Minimized Outage Probability Convex Relay

Heuristic
46 Max Network Throughput Cooperative Coverage Non Convex Relay
47 Ensured link in case of terrain Quasi Convex Heuristic Relay
48 Optimized Placement NP hard Heuristic Relay
91 Maximized EE Non Convex K-mean Clustering Relay
96 Maximized Throughput/Minimized Outage Optimization Heuristic Relay

UAVPlacement as User Equipment:UAV-assisted networks where UAV is used as
flying user equipment are an important part of PSNs. UAV can be deployed to collect
actual information about a specific area either before any kind of disaster for forecast
purposes (weather forecast, aerial photography, wildlife monitoring, geographical
mapping, etc.) or after a disaster to accomplish search and rescue mission (search
and rescue, delivery services, Photography of the disaster scene, etc.). UAVs have
become one of themost suitable candidates for remote sensing and delivery networks
due to ease of deployment, low cost, maneuverability, and several other benefits.
In sensor networks, several nodes are deployed at different locations to monitor
different objects. UAVs are deployed for remote sensing tasks to collect these node’s
data to transmit it to the control station. The work in [61] has discussed efficient
UAV route planning in order to collect the data from these sensors.Efficient UAV
route planning has a significant impact on network lifetime. Optimization problem is
divided into small subproblem stages. The first stage is cluster formation. The second
is the optimization of connections between clusters. The third step involves route
optimization inside the clusters and the final stage involves UAV path optimization
between clusters. Path planning strategy for UAV relay deployed for data collection
in sensor networks is presented in [62]. PSO is used for path optimization. It has
considered UAV flight time, energy, and BER as performance metrics. Floods are
one of the biggest natural disasters that can cause huge destruction. As it is a very
random situation so the only way to save lives is the accurate information collection
from sensor nodes during the catastrophic event. The work in [63] has proposed a
numerical-based strategy forUAVpath planning deployed for flood sensing purposes.
Path planning of remotely piloted aircraft (RPAS) used for surveillance of moving
objects on the ground is discussed in [64]. Observer gets the raw data from RPAS
and provides the data to the path planner for trajectory design. Path planning for
Energy-efficient UAV swarms used for surveillance purposes is presented in [64]
that has discussed the trajectory is planned while keeping the energy factor in all
three stages of UAV life.

Ref # Object Problem type Algorithm Use case

44 Maximized network Reliability NP Hard Numerical Method Relay
45 Minimized Outage Probability Convex Relay

Heuristic
46 Max Network Throughput Cooperative Coverage Non Convex Relay
47 Ensured link in case of terrain Quasi Convex Heuristic Relay
48 Optimized Placement NP hard Heuristic Relay
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4 Resource Management in UAV Assisted PSNs

UAV-assisted PSNs have several key challenges whichmust be addressed thoroughly
to get the optimized network functionality. Among those, optimized resource allo-
cation is a key challenge. Recently, several researchers have worked for optimized
allocation of different resources in UAV-assisted networks. Some key resources are
as following:

– • Energy
– • Power
– • Time Slot
– • Bandwidth
– • User association.

4.1 State of the Art

Energy Firstly UAVs have been utilized only in defense-related missions but later
on, due to several advantages of UAVs as compared to conventional terrestrial com-
munication nodes, UAVs have emerged into several other commercial applications.
Recently UAVs have appeared as one of themost promising communicationmethods
for PSNs due to their easy and immediate deployment characteristic. PSNs require
a longer lifetime of flying nodes. Energy is a limited resource in the case of UAVs
and directly defines operation lifetime. Therefore, optimized energy utilization can
prolong the lifetime of UAV-assisted networks. The author in [65] has discussed
energy allocation among UAV BS and terrestrial ground BS as a weight optimiza-
tion problem. Weights of energy assignment are calculated via a proposed heuristic
method. Each node SINR value serves as a metric to calculate the energy assign-
ment weight of that node, more SINR referred to more weight. Optimized on-board
energy allocation of UAV-supported eLAA (enhanced Licensed Assisted Access)
network is presented in [66]. eLAA is an improved kind of LAA incorporated with
IEEE 802.11e protocol. UAV is loaded with both Small Cell BS for VIP users and
Wi-Fi access points for non VIP users. Joint resource and trajectory optimization is
performed to ensure energy efficiency for the downlink communication links.

Power Optimized bandwidth and power allocation along with optimized placement
for access and backhaul networks are presented in [67]. UAVPower used for relaying
data from UAV controls its lifetime or UAV hover time. UAV hover time maximiza-
tion (Convex problem) in UAV supported M2M communication is discussed in [68].
The results have shown that intelligent Selection causes the proposed scheme to out-
perform in terms of minimized transmitted power in comparison with RAS (resource
allocation scheme. An algorithm is proposed in [69] to allocate power to IoT nodes in
an intelligent manner towards Uplink direction based on deep reinforcement learn-
ing (DRL) algorithm for UAV assisted IoT networks. Optimized power allocation for
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UAV relay networks based on alternating direction method of multipliers (ADMM)
is presented in [70]. Results indicated that the presented algorithm has outperformed
in no of iterations, throughput, stability, and convergence rate. Joint power and tra-
jectory optimization to maximize the end-to-end throughput in the case of a relay
(amplify and forward ) is presented in [71]. The proposed optimization scheme has
significantly increased the throughput up to 600+bits/s/Hz which is much higher in
comparison with 500bits/s/Hz of fixed power and trajectory case. The author in [71]
has discussed the joint beamforming and power allocation problem in case of the DF
relay network. The maximum ration combining approach is utilized to get the opti-
mized result for beamforming, then these optimized results are used to address the
power allocation problem. Optimized power allocation for indoor users getting ser-
vice from UAV floating relay is presented in [72]. Joint power, Trajectory, and node
scheduling in the UAV relay network for theminimum average rate maximization are
discussed in [73]. In [74] network outage probability is minimized by the proposed
optimization scheme of joint UAV trajectory and power allocation optimization for
both devices and UAV. Proposed algorithm results are compared with circle trajec-
tory with power allocation scheme (CT-PA) and fixed position with equal transmit
power scheme (FT-EP). Results have indicated better performance in terms of outage
probability. With the increase in transmitted power outage probability decreases. An
iterative algorithm for joint optimization of power and trajectory for multiple UAVs
behaving lay among source-destination pair to maximize the end to end throughput
is discussed in [75]. Proposed scheme results have shown improved performance in
comparison with static relay scheme T > 205s (P = 10dBm) and T > 150s (P =
0dBm).

Time SlotTDMAbasedQoS (Quality of Service) demand satisfaction of users along
with maintained network throughput is presented in [76]. Dynamic time slot alloca-
tion is proposed and results are compared with the static time slot allocation scheme.
The proposed scheme has shown higher data rates in comparison with the fixed time
slot method which is as following for uplink channel (38, 435), downlink channel
(50, 460), Voice channel (34, 633), and video channel (282, 502). Bisection method-
based time slot allocation to maximize the spectrum along with energy efficiency
for DF relay is presented in [76, 77]. Joint UAV time allocation, speed, and trajec-
tory optimization are considered for optimizing the spectrum and energy efficiency.
Wireless powered UAV time slot allocation problem is presented in [78]. Firstly, a
closed-form solution based on the Albert function is used for optimized time allo-
cation. Later on, placement is also optimized. In comparison with other benchmark
schemes e.g., Dinkelbach based algorithm proposed algorithm outperforms while
having the same convergence rate (5 iterations). UAV-supported IoT network Time
allocation problem is presented in [79]. Firstly, UAV wirelessly powers IoT nodes,
and later on, the nodes send information to UAVs. Comparison has shown that min-
imum throughput performance of wirelessly powered separated UAV is 28% higher
than integrated UAV WPCN.15 iteration time is required by the proposed method
to reach a stable point. In the first case, the same UAV is performing both wireless
charging and information reception tasks. Whereas, two different UAVs are used for
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these purposes in the second case. Minimum throughput maximization is achieved
via both placement and resource allocation. An iterative algorithm is used to optimize
the time allocation problem to facilitate information transfer along with charging.

Bandwidth Due to day by day increase in military and civilian UAV applications,
UAV demand is continuously increasing. Conferring to a report by Teal group that
considers both military and Civilian UAV applications, UAV production in 2025 will
be up to 20.3 billion dollars from 4.5 billion dollars of 2016, and this is likely to
approach in a period of 10 years up to 135 billion dollars. With this rapid increase
in UAV utilization, efficient bandwidth utilization schemes are mandatory due to
the shortage of bandwidth resources. Cognitive Radio has appeared as a favorable
candidate in UAV-assisted communication. Opportunities and challenges of CRN for
UAV communication are presented in [80]. Reference [81] has discussed both sub-
carrier allocation andUAV trajectory design problems and has proposed an algorithm
“iterative subcarrier allocation and trajectory design” (ISACA). The carrier assign-
ment problem consists of two steps: (1) carrier allocation from UAV to interface
(2) carrier allocation form between UAVs. Results have indicated that the proposed
algorithm has caused a 20% improvement in the uplink rate. Deep reinforcement
learning (DRL) based channel and power allocation for UAV-assisted IoT nodes are
presented in [70]. The key objective of the proposed algorithm is to achieve the max-
min energy efficiency. Results show that the proposed algorithm is performing better
in comparison to deep Q networks (DQN), and randommethods. Subchannel alloca-
tion of UAV working as a relay node for ensuring QoS improvement for edge users
is presented in [82]. NP-hard problem is solved via a Joint mode selection and sub-
channel allocation, trajectory optimization, and power allocation (JMS-T-P) algo-
rithm. Proposed algorithm results are compared with several other cellular schemes
and standard random algorithms and have shown outperformance in throughput and
fairness among users. Power and Bandwidth assignment in the backhaul and access
network of UAV-assisted scenario is presented in [67]. The local optimum solution
is achieved by using successive convex programming and alternating optimization.
The proposed novel algorithm is compared with other benchmark schemes and has
shown better performance as compared to them. Uplink network throughput max-
imization via joint subcarrier and power allocation of drone acting as amplify and
forward relay for emergency communication scenario is presented in [83]. Results
have indicated an increase in network throughput with an increasing number of users
up to 8 users. The researcher in, [84] has considered the bandwidth optimization
problem for heterogeneous UAV networks (Ad hoc networks). Heterogeneity refers
to a network supporting satellite and ground networks alongwith UAVs. Three stages
of Action networking and processing are considered. All sensing data is collected in
the action stage and transferred to processing via the networking stage. The proposed
strategy hsulted in 75% spectrum efficiency. Joint user scheduling and bandwidth
allocation for DF relay are discussed in [85]. The proposed block successive con-
vex optimization algorithm (BSCA) outperforms other standard algorithms in terms
of complexity and simulation time. Results have indicated that in comparison with
other schemes proposed algorithm running time is 7 times small. Subcarrier allo-
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cation optimization for UAV-assisted cognitive radio network is presented in [86].
Stochastic geometry and Game theory-based bandwidth allocation for UAV-based
IoT network is covered in [87]. UAV-supported software-defined cellular network
efficient bandwidth allocation problem (SDCN) is discussed in [88].

User Association Due to numerous advantages of UAV network including, easy
deployment, maneuverability, and Los communication, they are the most suitable
candidate to serve the sudden increased no of users either due to some infrastructure
failure or any natural or man-made disastrous situation. In [89], the user association
problem is optimized via optimized UAV placement in Software-Defined Cellu-
lar Networks (SDCN) while maintaining the user QoS requirement as well. Three
scenarios are considered (1) 3D optimized placement (2) optimization of resource
allocation and 3D placement (3) optimized resource allocation and 2D placement.
Case 2 has presented the best results in terms of downlink served users in Urban
and dense urban situations. UAV-assisted power and wireless information transfer
network, where both energy and information is wirelessly transferred to IoT nodes is
considered in [90]. Joint user association and placement are optimized to obtain the
maximum number of ground users and minimized data rate. UAV-supported mobile
networks user association problem is discussed for the purpose of load balancing in
[30]. Users are distributed in several clusters. Initial UAV placement is performed
according to maximal user density. Then backtracking line algorithm is used to place
the UAV in a way to get the minimized value of the maximum traffic demanded by
a cluster of users. Optimum UAV position is achieved by the implementation of the
location and load balancing algorithm in an alternate manner. The proposed Clus-
tering approach hsulted in 3.71% of users without service which is a lot better as
compared to 6.94% of uniformly distributed methods.

5 Security Concerns in PSN

Public safety networks are used by emergency service providers and law enforcement
agencies. They must support endpoint devices like laptops, mobile phones, cameras,
and computers and they must also have strong support towards central support and
emergency service providers. Different sensors and surveillance cameras are also
part of public safety networks. This type of wide range of connected devices and
personals in public safety results in a complicated network scenario, which causes a
new type of security risk connected with PSNs. PSNs used by different departments
like police, fire department andmedical service providers are usually fixed networks.
These fixed networks are usually interconnected for use by first responders in case
of emergency by Long Term Evolution (LTE).

Why PSN Need to be secured Public safety networks usually carry information
related to police, firefighters, or medical service provides.

– • Data related to the police department is extremely secret because it contains
either criminal records or information about them or any future planning for an
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operation to catch the culprits. So this kind of information is extremely confidential.
Criminals will try to get it at any cost so good security schemes are required to
keep this information private.

– • Medical record of any patient used by PSN is extremely personal data and It
must be only available to the patient guardian or its doctor. Secrecy maintenance
of this critical data used by medical emergency providers is an important task.

– • Data use by the fire department must only be available to departmental rescue
providers and must not be publicly available as it can cause panic among people
in case of a fire eruption at any location.

Public safety networks usually have very low traffic volume in case of no emer-
gency but once an emergency situation arises there is a sudden increase in traffic. So
allocating a larger resource pool permanently is not a good deal. So, researchers have
worked on UAV-assisted PSNs because UAVs can easily and instantly be deployed
in any hard-to-reach area. Despite several advantages associated with UAV-assisted
public safety networks onemajor challengewhich arises is a security concern because
UAVs are broadcast communication devices. UAVs are flying platforms without
human pilot intervention and also they have a broadcast nature. These two facts
make them more prone to hackers attacks. Hackers can easily access the open links
to launch eavesdropping, a man-in-the-middle attack, and several other malicious
attacks. UAV-assisted public safety networks are examples of multi-layer network
topologies in which nodes of dissimilar characteristics are connected to form one
network. Security maintenance among this type of dissimilar characteristic nodes is
a major challenge as nasty attacks can easily be launched on multi-layer topology
networks. SDN controllers are used for managing the resources in multi-layer topol-
ogy networks. Security maintenance in SDN controllers is another challenging task
of UAV-assisted public safety networks.

The author in [30] has discussed different kinds of cyber-attacks that are possible
in the case ofUAV-assisted networks.Artificial Intelligence-based solution to address
theUAVassisted communication security concerns is presented in [91].UAV-assisted
network’s physical layer security in presence of eavesdroppers is discussed in [92].
Signal processing techniques are also investigated by several researchers to provide
a secure UAV communication experience. Relay selection, friendly jamming, and
multi-antenna type of signal processing techniques are discussed for UAV network’s
physical layer security in [93]. Finally, [94] has presented a dualUAV-based approach
in which one UAV is used to jam the eavesdroppers and another one is used to
continuing the routine communication service.

6 Conclusion

We are living in an extremely unpredictable world where several types of disasters
happen every day around the world, some of them are natural whereas some occur
due to human error or infrastructure failure. PSNs are designed for search and rescue
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missions in any disaster situation. UAV-assisted PSN recently emerged as a promis-
ing candidate for search and rescue missions due to several advantages of UAVs like
they fly without a human pilot, and can easily be deployed at any place and low
deployment cost, etc., However, there are certain challenges associated with UAVs.
This chapter has discussed the overview, features, applications, and enabling tech-
nologies of PSN. Furthermore, this chapter has presented types, use cases, state of
the artwork, placement, and resource allocation of UAVs and the security challenges
in PSNs.
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3D Unmanned Aerial Vehicle Placement
for Public Safety Communications

Abhaykumar Kumbhar and Ismail Güvenç

Abstract Emerging applications for public safety communications are further
strengthened by integrating unmanned aerial vehicles (UAVs) into an existing ter-
restrial network infrastructure. UAV-based communications and networking can
enhance wireless connectivity by integrating UAVs as aerial base stations and aerial
user equipment into an existing 5G terrestrial heterogeneous network (HetNet). This
chapter designs a public safety 3-tier aerial HetNet (Aerial-HetNet) composed of
macrocells and picocells on the ground and small cells carried by UAVs. In par-
ticular, this chapter proposes an Aerial-HetNet with optimally placed UAVs for
guaranteed quality-of-service. This proposed Aerial-HetNet also considers range
expansion bias at small cells, various inter-cell interference coordination (ICIC) for
interference mitigation, 3D beamforming for antennas, and 3D channel modeling
for UAVs. Furthermore, the performance of designed Aerial-HetNet with optimally
placed UAVs is evaluated in the coverage probability and fifth-percentile spectral
efficiency (5pSE), using various heuristics algorithms and a brute-force. The Aerial-
HetNet’s system-wide coverage probability and 5pSE are computed and compared
when the unmanned aerial base stations (UABS) are deployed on fixed hexagonal
locations using computer-based Matlab simulations. UABS locations are optimized
using an elitist harmony search genetic algorithm (eHSGA) and genetic algorithm
(GA). The simulation results show that the heuristic algorithms (eHSGA and GA)
outperform the brute-force approach and achieved higher peak values of 5pSE and
coverage probability. Furthermore, simulation results reveal that the Aerial-HetNet
performance of the low-altitude UABSs at 25m is sparsely better than medium-
altitude UABSs (50 m and 36 m). Finally, a trade-off is encountered between achiev-
ing the peak Aerial-HetNet performance and the computation time, while applying
different heuristic algorithms.
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1 Introduction

Drones, also known as Unmanned Aerial Vehicles (UAVs), have numerous mil-
itary, civilian, and commercial applications, such as telecommunications, public
safety networks, and smart cities. In particular, 5G-equipped UAVs are stationed
as unmanned aerial base stations (UABSs) to supplement the mobile data, satisfy
coverage demands, and restore damaged infrastructure within a geographical area of
interest. Thus, reducing stress on the existing terrestrial networks and reducing the
cost of ultra-dense and dense distributions of small cells [19, 40, 41, 43, 47, 65]. For
instance, in the aftermath of Hurricane Maria, AT&T deployed a UABS to restore
LTE cellular coverage in Puerto Rico [9, 22, 31, 67]. Whereas, in the United States,
Verizon has been experimenting with UABS that could provide broadband coverage
with a range of one-mile [22, 29].

With reference to smart cities trends, mobile UAVs could be used as aerial user
equipment (AUEs) for collecting data from sensors and Internet-of-Things (IoT)
nodes, monitoring traffic, and support various public safety applications such as
remote location sensing and search and rescue (SAR). During the Kilauea volcano
eruption, the first responders were able to carry out the SAR operation of a Hawaiian
man using a UAV [68]. Such practical applications have facilitated the original works
to investigate the practicability of trajectory planning and deployment of AUEs in
collaboration with 5G infrastructure in [8, 14, 38, 42, 46, 54, 60, 68].

The various application of UAVs in the field of SAR operations, disaster manage-
ment and response, crowd control and monitoring, traffic monitoring, investigating
and reconstructing crime scenes, and investigating active threats scenes are summa-
rized in Table1.

Given the developments with intelligent software and commercially viable hard-
ware solutions have enabled UAVs to be seamlessly deployed in three-dimensional
(3D), detect and avoid collisions, autonomous trajectory planning, and location-
aware connectivity. The mobile capability of UAVs allows it to be integrated both
as base stations and user equipment into a 5G heterogeneous network (HetNet) as
illustrated in Fig. 1. UAVs such as gliders, quadcopters, and balloons are deployed
as unmanned aerial base stations (UABSs) equipped with 5G new radio (5GNR)
capabilities and AUEs. UAVs, together with a terrestrial 5G HetNet, is defined as
a three-tier 5G air-ground HetNet (Aerial-HetNet). However, efficient UAV place-
ment in the proposedAerial-HetNet for guaranteed quality-of-service (QoS) requires
expert network topology planning and optimal 3D deployment. However, optimized
UAV placement with improved QoS requires addressing technical challenges such
as interference management, performance characterization, handover management,
cooperation between UAVs, and practical channel model.
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Table 1 Literature reviewon techniques used for optimal 3DUAVlocationplacement and trajectory
planning for public safety communications

References UAV goal Techniques Public safety
applications

[39]
Path planning Q-learning and

directional antenna
Search and Rescue

[15]
Path planning Heuristic algorithms Collecting data from

traffic sensors

[33]
Path planning,
waypoint
determination, 3D
positioning

Multivariable
optimization

Emergency data
collection and
transmission

[11]
Path planning Double deep

Q-network
Situational awareness
from IoT sensor data

[7]
3D positioning MAC-based

communication
optimization

Filling coverage holes

[32]
3D trajectory planning proximal

difference-of-convex
algorithm with
extrapolation

Video tracking and
surveillance

[70]
– mmWave antenna

design
Sub-THz PSC

[69]
Path planning MIMO Data relaying

[61]
– Deep-learning-based

image processing
Search and rescue in
forests

[26]
Path planning Thermal image

processing using deep
convolutional neural
networks

Real-time survivor
detection system

[12]
Path planning Image processing

using convolutional
neural network

Avalanche search and
rescue operations

[38]
Path planning Cooperative predictive

model
Localizing malicious
RF source

[3]
Path planning Long short-term

memory based
machine learning

Localization of RF
source

[48]
3D positioning Random-forest based

machine learning
Predictive crime
deterrence and data
acquisition

[35]
Ad-hoc network as
cloudlet (data centers)

Disaster resilient
three-layered
architecture

Edge computing
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Fig. 1 An illustration of an Aerial-HetNet with GUE, PBS, andMBS as terrestrial nodes and AUE,
and UABS as the aerial node. With inter-cell interference coordination techniques are considered
at MBS and PBS. Small cell such as mobile UABSs and PBSs utilizes range expansion to offload
users from congested cells

With anobjective to design anAerial-HetNetwith ubiquitous broadband coverage,
which is necessary to support mission-critical communication voice and data oper-
ations, this chapter aims to optimally deploy UABSs on 3D locations. To achieve
this goal, a system-level understanding is required to alter and scale the network
layout of the existing terrestrial infrastructure. To this end, in this chapter, an Aerial-
HetNet wireless network in an urban environment and operating with public safety
broadband frequency in LTE band class 14, as illustrated in Fig. 1, is defined and
simulated. The illustrated Aerial-HetNet model leverages range expansion specified
in 3GPP Release 8, intercell interference coordination (ICIC) specified in 3GPP
Release 10/11, antenna 3D beamforming (3DBF) specified in 3GPP Release 12,
and 3D channel model for UAVs specified in 3GPP Release 15. Consequently, to
evaluate the performance of this Aerial-HetNet, the model considers fifth percentile
spectral efficiency (5pSE) and coverage probability as the key performance indica-
tors (KPIs). To maximize the two KPIs of the Aerial-HetNet, the UABS locations in
two-dimension (2D), range expansion bias (REB), and ICIC parameters are jointly
optimized using an elitist harmony search algorithm based on the genetic algorithm
(eHSGA), genetic algorithm (GA), and brute-force. As seen in Table5, the deploy-
ment altitude of the UABS is not considered as one search space parameter to mini-
mize the overall complexity of the optimization algorithms. Nevertheless, the impact
of UABS altitude on the overall performance of the Aerial-HetNet is reviewed by
considering various practical deployment altitudes.

The remainder of the chapter is organized into the following sections. Section2
discusses UABS placement techniques considered, Sect. 3 defines the problem of
optimal 2D placement of UABS in the Aerial-HetNet using an eHSGA, GA, and
brute-force. Section4 describes the system model for the Aerial-HetNet model and
outlines the KPIs as a function of system parameters. In Sect. 5, through extensive
computer-based Matlab simulations, the two KPIs of the Aerial-HetNet are com-
puted, compared, and analyzed for various deployment altitudes of UABS, ICIC
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Table 2 Notations and symbols adopted in the chapter
Symbol Description

�mbs, �pbs MBS and PBS distribution density

�gue, �aue GUE and AUE distribution density

Lmbs,Lpbs,Luabs Locations of MBS, PBS, and UABS

Lgue,Laue Locations of GUE and AUE

Nue Cumulative users i.e., AUEs + GUEs

P tx
uabs, P

tx
pbs, P

tx
mbs Maximum transmit power of UABS, PBS, and MBS

ϑ(dun), ϑ(dpn ), ϑ(don ) Path-loss in dB from UABS, PBS, and MBS

F Nakagami-m fading

fpsc PSC broadband frequency

hbs Altitude of the terrestrial base station

huabs Altitude of the UABS station

hgue Altitude of GUEs

haue Altitude of AUEs

don , dpn , dun UE distance from its MOI, POI, and UOI

A3DBF(φ, θ) Transmitter antenna’s 3DBF element

P ′
mbs(don ) RSRP from the MOI

P ′
pbs(dpn ) RSRP from the POI

P ′
uabs(dun ) RSRP from the UOI

Iagg Aggregate interference at a UE from all base-stations, except BOI

�uabs
usf , �pbs

usf , �
mbs
usf USF SIR from UOI, POI, and MOI

�uabs
csf , �pbs

csf , �
mbs
csf CSF SIR from UOI, POI, and MOI

αpbs, αmbs, Power reduction factor of CSF for PBS and MBS

βpbs, βmbs PBS and MBS Duty cycle for the transmission of USF

ϒpbs, ϒuabs REB at PBS and UABS

ρmbs, ρpbs, ρuabs MUE PUE, and UUE Scheduling threshold

Nmbs
usf , Nmbs

csf Number of uncoordinated and coordinated MUEs

N pbs
usf , N pbs

csf Number of uncoordinated and coordinated PUEs

N uabs
usf , N uabs

csf Number of uncoordinated and coordinated UUEs

Cmbs
usf ,Cmbs

csf Aggregate SEs for uncoordinated and coordinated MUEs, respectively in a cell

Cpbs
usf ,Cpbs

csf Aggregate SEs for uncoordinated and coordinated PUEs, respectively in a cell

Cuabs
usf ,Cuabs

csf Aggregate SEs for uncoordinated and coordinated UUEs, respectively in a cell

C5pSE(.) Objective function for 5pSE

Ccov(.) Objective function for coverage probability

TCSE Capacity threshold supporting broadband rates

SICICmbs ICIC parameter matrix for MBSs

SICICpbs ICIC parameters matrix for PBSs

SICICuabs ICIC parameters matrix for UABSs

S, BSKPI All possible states and best state of objective functions

POP eHSGA and GA inital population

SZGA GA population size

cxr , mr GA crossover rate and mutation probability

SZHM eHSGA population size

HM eHSGA harmonic memory

RHMC eHSGA HM consideration rate

f r , par , NIMP, eHSGA fret width, pitch adjustment rate, and number of improvisation

Asim Simulation area
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techniques, and optimization techniques. Furthermore, the chapter explains the influ-
ence of UABS altitude on the KPIs and performance of the optimization techniques.
Given inTable2 are the lists of notations and symbols adopted throughout the chapter.

2 Literature Review

The advancements in UAV technology have made it possible to dynamically position
mobile small cells such as UABSs as illustrated in Fig. 2 and enhance the overall per-
formance of the Aerial-HetNet by offloading users in overcrowded and high-traffic
locations and filling the coverage holes in the network. The UABSs placement in an
Aerial-HetNet has two objectives: deploying UABSs on optimized 3D locations and
improving KPIs while addressing constraints such as interference mitigation, per-
formance characterization, handover management, cooperation between UAVs, and

Fig. 2 An illustration of Aerial-HetNet with agile UABSs dynamically changing their locations
to offload users in congested network, improving coverage, and providing seamless broadband
connectivity
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channel model. In this chapter, the literature review broadly classifies the optimized
UABS placement in the Aerial-HetNet into two categories: mathematical modeling
with numerical derivations and computer-based simulative study using algorithms-
based iterative methods.

Several comprehensive simulation-based studies in the literature [17, 18, 18, 21,
30, 47, 52, 64, 74, 75] have investigated location optimization and UABS deploy-
ment altitude. However, important aspects like UE handover, 3GPP specified inter-
ference mitigation, and the air-ground path loss model are not explicitly considered.
The advantages of enhanced ICIC (eICIC) specified in 3GPP Release 10, further-
enhanced ICIC (FeICIC) specified in 3GPP Release 11, and range expansion at
small cells have been examined in [41, 65] for LTE-Advanced Aerial-HetNet. Fur-
thermore, the brute-force and heuristic algorithms were used to maximize the KPIs
by jointly optimizing UABS locations in 2D and key ICIC parameters. Nevertheless,
the deployment altitude of UABS in Aerial-HetNet was not taken into account. In
literature [18, 41, 43, 47, 65, 74, 75] machine learning techniques are considered
to jointly optimize UABS location and wireless network parameters. Although the
Optimal 3D placement of UABS is studied in [20, 63], the other essential design
aspects of Aerial-HetNet are not considered.

In [5, 17, 23, 50, 58, 66], the goal of UABS positioning was formulated into the
numerical problem and was solved by using novel mathematical approaches. The
results from the analytical derivations were verified against numerical simulations
for accuracy. In particular, lower and upper bounds of the UABS altitude were deter-
mined; the KPI goal was limited only to maximize the coverage of users with varying
QoS experiences. Furthermore, these literature does not consider a multi-tier Aerial-
HetNet and techniques such as ICIC, CRE, and handover influencing the KPIs of a
multi-tier Aerial-HetNet.

Our literature review of related works on techniques used for optimizing UABSs
location placement and joint optimization of spectrum parameters in Aerial-HetNet
is summarized in Tables3, and 4. Given the summary and literature review earlier,
the specific contributions of the chapter include the feasibility study of deploying
UAVs as bothUABS andAUEswith an existing 5G terrestrial infrastructure. Further-
more, the investigation of critical aspects such as the inter-cell interference, spectral
efficiency, and coverage probability while considering key system parameters such
as channel modeling support, antenna 3D beamforming, and range expansions. The
system parameters under investigation and effectiveness technologies under consid-
eration are also extended to cover bothUABSs andAUEs as part of theAerial-HetNet.
Finally, the eHSGA, GA, and brute-force algorithms are modified to joint optimiza-
tion the UABS locations in 2D, REB, and ICIC parameters to maximize the gains in
KPIs defined in Sect. 3.
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Table 3 Literature review on techniques used for optimal UABS location placement and joint
optimization of spectrum parameters in Aerial-HetNet, wherein the optimization is presented using
analytical approach and is also verified using simulation

References Optimization
techniques

Optimization goal Approach

[72]
Strategyproof
mechanism

UABS 3D placement Analytical

[58]
– Coverage, Throughput Analytical

[66]
Region partition
strategy, Backtracking
line search algorithm

User load balancing,
UABS locations

Analytical

[51]
Truncated octahedron UABS 3D-locations Analytical

[27]
particle swarm
optimization, Hybrid
fixed-point iteration

UABS 3D-locations,
coverage, interference
mitigation, spectral
efficiency

Analytical

[59]
Integer linear
programming
optimization

UABS 3D-locations
and antenna
orientations

Analytical

[4]
Non-convex
optimization using
sequential exhaustive
search, sequential
maximal weighted
area

UABS locations,
number of users
scheduled

Analytical

[23]
Mathematical
modeling

UABS 3D-location,
Transmit power

Both

[25]
fast k-means-based
clustering model

UABS trajectory
planning, power and
time allocation

Both

3 UABS Optimal Placement in Aerial-HetNet

The simulative study in this chapter considers a public safety Aerial-HetNet during
an emergency or large-scale events such as a Soccer World Cup or Super Bowl.
Usually, during such an event, there is a surge in network activity and could cause
traffic congestion in commercial cellular networks and public safety networks. In
such a scenario, the existing terrestrial macrocell base stations (MBSs) and picocell
base stations (PBSs) tend to get overloaded with several user equipments (UEs).
Thus, resulting in scheduled UEs experiencing poor QoS. To address the network
congestion in this scenario, the design considers optimizing UABSs location and
maximizing the two KPIs. To this end, elitist harmony search based on the genetic
algorithm, genetic algorithm, and brute force algorithm are considered. The pro-



3D Unmanned Aerial Vehicle Placement for Public Safety Communications 59

Table 4 Literature review on techniques used for optimal UABS location placement and joint
optimization of spectrum parameters in Aerial-HetNet, wherein the optimization is presented using
simulative approach

References Optimization techniques Optimization goal Approach

[47]
Genetic algorithm,
Brute-force

Coverage, Throughput,
UABS locations

Simulation

[64]
Neural model UABS locations Simulation

[65]
Deep Q-learning,
Q-learning, Sequential
algorithm, Brute-force

Throughput, UABS
locations, interference
mitigation, energy efficiency

Simulation

[41]
Genetic algorithm,
Brute-force, Fixed
hexagonal

Throughput, UABS
locations, interference
mitigation, energy efficiency

Simulation

(continued)

posed system design defines the KPI, 5pSE, as the worst fifth percentile UE capacity
amongst all scheduled UEs. The coverage probability of the Aerial-HetNet is defined
as the percentage of a geographical area having broadband rates and capacity larger
than a threshold of TCSE . Where TCSE is the minimum guaranteed throughput needed
to support mission-critical broadband applications.

For each UABS, i ∈ {1, 2, ..., Nuabs}, individual location of a UABS is cap-
tured in (xi , yi ) coordinate. The matrix Luabs would represent all the UABS loca-
tions in 3D and are placed within the simulation area regardless of the exist-
ing PBS locations (Lpbs) and MBS (Lmbs). Given the locations of base-station
(Luabs, Lpbs, and Lmbs), individual ICIC parameters for each UABS can be rep-
resented in a matrix SICICuabs = [ρuabs,ϒuabs] ∈ R

Nuabs×2, individual ICIC parame-
ters for each small cell PBS is captured in matrix SICICpbs = [ρpbs,ϒpbs,βpbs,αpbs]
∈ R

Npbs×4, and an individual ICIC parameters for each MBS is given by matrix
SICICmbs = [ρmbs,βmbs,αmbs] ∈ R

Nmbs×3. The vectors ρuabs = [ρ1, ..., ρNuabs ]T captures
the scheduling threshold and ϒuabs = [ϒ1, ..., ϒNuabs ]T the range expansion for each
UABS. On the other hand, ρpbs = [ρ1, ..., ρNpbs ]T , captures the scheduling thresh-
old,ϒpbs = [ϒ1, ..., ϒNpbs ]T captures the the range expansion,βpbs = [β1, ..., βNpbs ]T
captures the USF duty cycle, and αpbs = [α1, ..., αNpbs ]T captures the power reduc-
tion for each PBS. Whereas, for each MBS, the vectors ρmbs = [ρ1, ..., ρNmbs ]T cap-
tures the scheduling thresholds, βmbs = [β1, ..., βNmbs ]T capture the power USF duty
cycle, and αmbs = [α1, ..., αNmbs ]T captures the power reduction factor applied at
CSF. Using these definitions, the initial state of the Aerial-HetNet can be given as

S =
[
Luabs,SICICmbs ,SICICpbs ,SICICuabs

]
.

Given the range and step size of the search space parameters defined in Table5,
intuitively, it can be observed that a large search space needs to be considered for
finding all feasible solutions. Therefore the system model is further simplified by
applying the same SICICmbs , S

ICIC
pbs , and SICICuabs parameters across all MBSs, PBSs, and
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Table 4 (continued)

References Optimization techniques Optimization goal Approach

[42]
Brute-force UABS locations, spectral

efficiency, coverage, energy
efficiency, interference
mitigation

Simulation

[30]
Brute-force, Gradient
descent location
optimization

Throughput, UABS
locations

Simulation

[18]
Deep reinforcement learning Energy efficiency, UABS

locations, interference
mitigation, wireless latency

Simulation

[74]
Centralized machine
learning

Energy efficiency, UABS
locations

Simulation

[75]
Wavelet transform machine
learning

User load balancing, UABS
locations

Simulation

[63]
Greedy approach User load balancing, UABS

3D-locations
Simulation

[44]
Alternating optimization,
Successive convex
programming

Bandwidth allocation,
UABS locations, energy
efficiency

[20]
Non-orthogonal and
Orthogonal spectrum sharing

UABS 3D-locations Simulation

[43]
eHSGA, Genetic algorithm,
Brute-force

UABS locations, spectral
efficiency, coverage, energy
efficiency, interference
mitigation

Simulation

[55]
Modified spiral algorithm UABS locations, number of

users scheduled, QoS of
UEs, interference mitigation

Simulation

[56]
disaster mobility model UABS placement, number of

users scheduled, coverage
Simulation

[62]
modified k-means algorithm UABS altitude, path-loss

compensation factor
Simulation

[53]
proximal policy optimisation Energy efficiency Simulation

UABSs, respectively. Consequently, also reducing the algorithm complexity and the
convergence time of the heuristic algorithms.

Using above understanding of the system-level parameters, the objective function
5pSE and coverage probability is defined as

C5pSE

(
Luabs,SICICmbs ,SICICpabs ,S

ICIC
uabs

)
, (1)
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Table 5 Upper bound values, lower bound values, and step size of parameters to be optimized
within the search space

Search Variable Variable Range Search space size

αmbs 0, δαmbs , 2δαmbs , ... 1 1/δαmbs + 1

βmbs 0, δβmbs , 2δβmbs , ... 1 1/δβmbs + 1

ρmbs ρlow
mbs, ρ

low
mbs + δρmbs , ρ

low
mbs +

2δρmbs ... ρ
high
mbs

(ρ
high
mbs −ρlow

mbs)

(δρmbs )

αpbs 0, δαpbs , 2δαpbs , ... 1 1/δαpbs + 1

βpbs 0, δβpbs , 2δβpbs , ... 1 1/δβpbs + 1

ρpbs ρlow
pbs , ρ

low
pbs + δρpbs , ρ

low
pbs +

2δρpbs ... ρ
high
pbs

(ρ
high
pbs −ρlow

pbs )

(δρpbs )

ϒpbs 0, δϒpbs , 2δϒpbs , ... ϒ
high
pbs

ϒ
high
pbs

δϒpbs

ρuabs ρlow
uabs, ρ

low
uabs + δρuabs , ρ

low
uabs +

2δρuabs ... ρ
high
uabs

(ρ
high
uabs−ρlow

uabs)

(δρuabs )

ϒuabs 0, δϒuabs , 2δϒuabs , ... ϒ
high
uabs

ϒ
high
uabs

δϒuabs

X coordinates in (xi , yi ) −loc/2,−loc/2 + δx ,
−loc/2 + 2δx , ...loc/2

loc
δx

Y coordinates in (xi , yi ) −loc/2,−loc/2 + δy ,
−loc/2 + 2δy, ...loc/2

loc
δy

CCOV

(
Luabs,SICICmbs ,SICICpabs ,S

ICIC
uabs

)
,CCOV > TCSE , (2)

whereC5pSE(.) signifies 5pSE objective function,Ccov(.) signifies coverage probabil-
ity objective function, and TCSE is minimum capacity threshold. A generic definition
of best state (BSKPI) from all possible states (S) using objective functions is given as

BSKPI = arg max
S

CKPI(S), (3)

where CKPI(.) is a generic representation of objective function defined in (1) and (2)
and KPI ∈ (

5pSE,COV
)
.

In the Aerial-HetNet, UABSs are initially deployed on a fixed hexagonal loca-
tions within the simulation area (Asim), as shown in Fig. 4a. Each UABS sends
its 2D location coordinates and the system-level resources allocation for an users
to an edge server, and using a brute-force described in the Algorithm 1, the two
KPIs of the Aerial-HetNet will be determined at the edge server. The global max-
ima values of the best state (BSKPI) from all possible states S are vectorized into

BSKPI =
[
Lhex
uabs,BS

ICIC
mbs ,BSICICpbs ,BSICICuabs

]
.

Subsequent to this brute-force evaluation, an edge serverwould run elitist harmony
search genetic algorithm (eHSGA) and genetic algorithm (GA). The pseudocode
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(a) Aerial base-stations deployed on a
fixed hexagonal locations.

(b) Aerial base-stations locations
optimized using heuristics approach.

Fig. 3 A 3D simulative rendition of the base-stations and user equipments distributed in the
designed Aerial-HetNet

Algorithm 1 Pseudocode for brute-force approach
1: procedure CKPI(Luabs,SICICmbs ,SICICpbs ,SICICuabs )
2: COV, 5pSE, Best state BS ← ∅
3: for all values of state S do
4: Current COV ← CCOV(S)

5: if Current COV > COV then
6: COV ← Current COV
7: BS ← S
8: end if
9: Current 5pSE ← C5pSE(S)

10: if Current 5pSE > 5pSE then
11: 5pSE ← Current 5pSE
12: BS ← S
13: end if
14: end for
15: Return COV, 5pSE,BS
16: end procedure

describing the optimization approach of these generic metaheuristic algorithms is
given in Algorithms 2 and 3, respectively. The goal of the heuristics algorithm is to
compute the global maxima of the best state (BSKPI) from all the possible states S

and is vectorized into BSKPI =
[
L′

uabs,BSICICmbs ,BSICICpbs ,BSICICuabs

]
. Where, L′

uabs is the

optimal 2D UABS locations as shown in Fig. 4b and BSICICuabs ,BS
ICIC
pbs , and BSICICmbs are

the global maxima of ICIC parameters for UABSs, PBSs, and MBSs, respectively.
With 2D optimization of UABS locations and ICIC parameters, the UABSs are
reorganized at these optimal locations as illustrated in Fig. 4b. Lastly, a step-by-
step representation of system flow given in Fig. 3 consisting the system-level details
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Fig. 4 A step-by-step
representation of system flow
and optimization approach
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Start
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to ∅
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Population selection
Luabs, SICIC

mbs ,
SICIC
pabs , S

ICIC
uabs

Calculate RSRP

Calculate SIR

user associa-
tion, schedul-
ing, handover

Calculate Shan-
non capacity

Calculate COV
and 5pSE

Stop
condition

Population adap-
tive variation

Boundary Control

No

Best state BSKPI,
COV,5pSE

Stop

Yes
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Algorithm 2 Pseudocode for Genetic Algorithm
1: procedure Objective function (CKPI) : CCOV(Luabs,SICICmbs ,SICICpbs ,SICICuabs ),

C5pSE(Luabs,SICICmbs ,SICICpbs ,SICICuabs )
2: COV, 5pSE, Best state BS ← ∅
3: Selection strategy ← Roulette Wheel
4: Initialize variables:

cxr , mr , and SZGA
5: Population (POP) Set of

S ← Luabs,SICICmbs ,SICICpbs ,SICICuabs
6: FITNESS = CCOV(.), C5pSE(.)

7: Evaluate POP FITNESS
8: Stop Condition ← number of iterations
9: while !Stop Condition do
10: for k = 1 : SZGA do
11: Parent1 (P1) ← SELECTION(POP, FITNESS)
12: Parent2 (P2) ← SELECTION(POP,FITNESS)
13: Child1 (C1), Child2 (C2) ←

REPRODUCE(P1,P2, cxr)
14: if rand() < mr then
15: Children <- MUTATE(C1, mr)
16: Children <- MUTATE(C2, mr)
17: end if
18: Evaluate Children FITNESS
19: Choose best state BS from Children
20: POP ← REPLACE(POP, Children)
21: end for
22: end while
23: Best state BS ← Best FITNESS
24: Return COV, 5pSE,BS
25: end procedure

discussed in Sect. 4, objective functions, and optimization algorithms proposed in
Algorithms 1–3.

3.1 Genetic Algorithm

Evolutionary algorithms are generic population-based metaheuristic algorithms and
consider routines and procedures inspired by biological evolutionary stages, such as
population generation, mutation, crossover, and selection. Genetic algorithm (GA)
is one of the popular evolutionary algorithms used for solving search problems
and produce high-quality optimal solutions. GA has been comprehensively inves-
tigated in [41, 43, 47] to obtain global maxima values of UABS locations in 2D
and system-level ICIC parameters. The solution obtained using the GA approach
showed meaningful improvement in system performance over the traditional brute-
force approach. This proven GA approach is extended to consider the three-tier
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Fig. 5 An example of a GA chromosome with UABS locations and ICIC parameters SICICmbs ,SICICpbs ,

and SICICuabs

Aerial-HetNet designed inSect. 4 and the optimization goals to parameters and search
space defined in Table5.

GA considers a population of candidate solutions that are evolved towards a global
maxima. Each candidate solution have a set of chromosomes and is assessed by the
objective function. Illustrated in Fig. 5 is an example chromosome that is composed
of UABS locations (Luabs) and Aerial-HetNet ICIC parameters (SICICmbs ,SICICpbs ,SICICuabs )
that form GA population (POP) and population size of SZGA. The initial steps of
the optimization process include a population of randomly generated chromosomes
that is altered and mutated to form the next-generation offspring [15]. This process
considers enough iterations to avoid local maxima and achieve true global maxima.
Given below are the step-by-step process involved in reaching global maxima and
obtaining adaptive-fit individuals from the population.

1. The objective functions C5pSE(.) calculated in (1) for 5pSE and Ccov(.) in (2) for
coverage probability is referenced as the fitness function in Algorithm 2 and is
used to evaluate the chromosomes.

2. Chromosome selection process is used for determining the most desirable set of
the chromosome from the population, which provides global maxima for a given
KPI. Furthermore, of the various selection strategies used in GA, the roulette
wheel selection strategy is applied and is directly proportional to its fitness
value. Let Pn = fn∑N

n=1 fn
be the probability of a nth chromosome being selected,

where fn is the fitness value of nth chromosome, and N is the total number of
chromosomes in the population pool. After the chromosomes are picked, they
are placed into a mating pool to generate a new set of chromosomes.

3. The genetic operator crossover is a process of recombining genetic information
of two-parent chromosomes using a one-point crossover strategy to reproduce
new generation chromosomes with a crossover rate of cxr .

4. Consequent to a reliable generation of new chromosomes using crossover oper-
ator, mutation genetic operator is applied for preserving genetic diversity in
subsequent generations. The mutation process also helps to prevent the solution
from converging at local maxima. During mutation, one or more gene values
are modified in a chromosome with a mutation probability of mr from its initial
state.



66 A. Kumbhar and I. Güvenç

Algorithm 3 Pseudocode for eHSGA
1: procedure Objective function (CKPI) : CCOV(Luabs,SICICmbs ,SICICpbs ,SICICuabs ),

C5pSE(Luabs,SICICmbs ,SICICpbs ,SICICuabs )
2: COV, 5pSE, Best state BS ← ∅
3: Selection strategy ← Roulette Wheel
4: Initialize variables:

RHMC , f r , par , and SZHM
5: Initial population S ← Set of

Luabs,SICICmbs ,SICICpbs ,SICICuabs
6: Evaluate Initial Population: CCOV(.), C5pSE(.)

7: Stop Condition ← number of iterations
8: while !Stop Condition do
9: for i tr = 1 : SZHM do
10: if rand() < RHMC then
11: Pick Best state, BS from HM
12: if rand() < par then
13: Pitch adjustment on BS
14: Snewrand = S′

rand + (2 × rand() − 1)
15: × f rrand
16: else
17: Crossover between Sk and
18: a random member Srand

19: end if
20: else
21: Random selection Snew

22: Snewj = (u j − l j ) × random() + l j
23: end if
24: Evaluate Population: CCOV(.), C5pSE(.)

25: end for
26: f r ← f r × 99%
27: end while
28: Best state BS ← Best solution
29: Return COV, 5pSE,BS
30: end procedure

Pseudocode describing the above step-by-step process is also described in Algo-
rithm2.GivenGA’s ability to achieve true globalmaxima,GA experiences high com-
putation time and low convergence speed. Furthermore, to investigate any potential
gain over GA, the chapter explores the eHSGA proposed in [16].

3.2 Elitist Harmony Search Genetic Algorithm (eHSGA)

The harmony search (HS) is based on the music harmony improvisation process
and stochastic technique to diversify search population. In its initial step, the HS
algorithm randomly creates a set of candidate solutions knownas the harmonyvectors
(HV) within a search space and then vectorized in the harmony memory (HM).
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Improving a candidate harmony vector within the HS happens in three main stages,
i.e., HM creation/update, pitch adjustment, and randomization. Upon generation of
a new vector, performance of the new vector performance is compared with other
harmonies in the HM, and only the best-performing harmony vector is retained [16,
28]. Given this overview of the HS, a search strategy compiled by hybridizing HS
and GA approaches is considered to improve the global maxima of search problems.
The hybrid approach considers chromosomes and population structure from GA,
whereas the aspects of pitch adjustment and HM phenomena are considered from
HS. The Hybrid eHSGA proposed in [16] is extended to consider the Aerial-HetNet
planned in Sect. 4 and the optimization goals to parameters and search space given in
Table5. The pseudocode of the proposed hybrid algorithm is described in Algorithm
3. The principal steps involved are:

1. In the initial steps, the first generation of population POP is produced using GA
and is tagged as harmony memory (HM). The size of theHM is given by SZHM,
and the chromosome shown in Fig. 5 form the HV.

2. Consider S j as the j th element of harmony S and the lower and upper bounds of
the j th element is given by l j and u j , respectively. The function random() gen-
erates a uniformly-distributed real random number in closed interval [0, 1] [16].
Then, the eHSGA initializes fret width ( f r ), maximum number of improvisation
(NIMP), HM consideration rate (RHMC), and pitch adjustment rate (par ).

3. The RHMC and par are key variables for regulating the execution and con-
vergence speed to global maxima during a harmony search. Variable RHMC is
updated linearly and is decreasing with each iteration. At the same time, par
is dynamically adapted to increase at linear values. Thus guaranteeing hybrid
search method can expeditiously avoid converging at local maxima, and the
solution reached is diverse.

4. The objective functions C5pSE(.) calculated in (1) for 5pSE and Ccov(.) in (2) for
coverage probability are used to to compute the fitness of every harmony in the
HM. Subsequently, the HM is sorted in descending order of best fitness. Thus
ensuring the best-fit harmony member is always at the head node of the HM.

5. A new HM is generated using selection, crossover, and mutation mechanism.
Then amerge rule is used to combine previously sortedHM and newly generated
HM to form an elitist HM. This aspect of elitism is applied through each iter-
ative process to obtain the optimal value of search space parameters defined in
Table5. Pseudocode describing the above step-by-step process is also described
in Algorithm 3.

3.3 Time Complexity of Algorithms

The range and step size of individual search space parameters αmbs, βmbs, ρmbs, αpbs,
βpbs, ρpbs, ϒpbs, ϒuabs, ρuabs is defined in Table5, where (δx , δy), δαmbs , δβmbs , δρmbs ,
δαpbs , δβpbs , δρpbs , δϒpbs , δρuabs , and δϒuabs refer to the step sizes for (xi , yi ) UABS 2D
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locationCartesian coordinates,αmbs,βmbs,ρmbs,αpbs,βpbs,ρpbs,ϒpbs,ρuabs, andϒuabs,
respectively. The lower bounds for ρmbs, ρpbs, and ρuabs is given by ρ low

mbs, ρ
low
pbs , and

ρ low
uabs, respectively and the upper bounds for ρmbs, ρpbs, and ρuabs is given by ρ

high
mbs ,

ρ
high
pbs , and ρ

high
uabs , respectively.

The time complexity of the brute-force approach with fixed UABS on hexagonal
locations is deterministic and is a function of the search space parameters and their
step size and range specified in Table5 and is given by

O
((

1/δαmbs + 1
)

×
(
1/δβmbs + 1

)
×

( (ρ
high
mbs − ρ low

mbs)

(δρmbs)

)
×

(
1/δαpbs + 1

)
×

(
1/δβpbs + 1

)
×

( (ρ
high
pbs − ρ low

pbs )

(δρpbs)

)
×

(ϒ
high
pbs

δϒpbs

)
×

( (ρ
high
uabs − ρ low

uabs)

(δρuabs)

)
×

(ϒ
high
uabs

δϒuabs

))
.

whereas the time complexity of a meta-heuristic algorithm considered in this chapter
is directly proportional to the dimension of the search problem, search variables
defined in Table5, the population size (SZGA/SZHM), and the complexity cost of
Ccov(.)/C5pSE(.) objective functions. Given these dependencies, it is challenging to
determine the time complexity of a meta-heuristic algorithm trying to converge to a
true globalmaximumwhile addressing amulti-dimensional andmulti-objective opti-
mization problem. With limited time and iterations restrictions, the meta-heuristics
algorithms do not always assure convergence at the true global maxima. Nonethe-
less, eHSGA considered in this chapter demonstrated a better convergence efficiency
than GA in reaching global maxima, and the results are reviewed in the upcoming
Sect. 5.5.

4 Aerial-HetNet Design Guidelines

For each base-stations in three-tier Aerial-HetNet, the 3D locations ofMBS, PBS,
and UABS are recorded in matrices Luabs ∈ L

Nuabs×3, Lpbs ∈ L
Npbs×3, and Lmbs ∈

L
Nmbs×3, respectively. In these matrices, Nuabs, Npbs and Nmbs are the number of

UABSs, PBSs, and MBSs within the geographical area of interest Areasim. The 3D
locations of GUEs and AUEs are recorded in Lgue and Laue matrices, respectively.
Using the distribution densities of�gue,�aue,�pbs and�mbs, theCartesian coordinate
distribution of wireless nodes GUE, AUE, PBS, and MBS are modeled using a 2D
Poisson point process (PPP). However, the RF antenna altitude remains fixed for
these wireless nodes. The UABS cartesian coordinates are either on fixed hexagonal
locations or optimized using an GA or eHSGA heuristic algorithm. Meantime low-
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altitude and medium-altitude deployment altitudes are considered [45]. Given in the
Table7 are the simulation values considered for deployment altitudes and distribution
densities for each of the wireless nodes.

Given the simulation area of Areasim, the aggregate number of users (AUEs and
GUEs) within the Areasim is given by Nue. Within, Areasim consider an arbitrary nth
UE, with the nearest distance from the UABS-cell of interest (UOI) is dun , picocell of
interest (POI) is dpn , and macrocell of interest (MOI) is don . The signal attenuation
in Aerial-HetNet is addressed by considering a Nakagami-m fading channel. The
influence of fading on reference symbol received power (RSRP) from base-station
of interest, i.e., the UOI, POI, and MOI at the arbitrary nth UE is given by

P ′
uabs(dun) = P tx

uabsA3DBF(φ, θ)F

10ϑ(dun)/10
,

P ′
pbs(dpn) = P tx

pbsA3DBF(φ, θ)F

10ϑ(dpn)/10
,

P ′
mbs(don) = P tx

mbsA3DBF(φ, θ)F

10ϑ(don)/10
, (4)

where variables ϑ(dun), ϑ(dpn), and ϑ(don) are path-loss in dB and respectively
observed from UABS, PBS, and MBS. The probability density function (PDF) for
Nakagami-m fading F is given by [10]

fN (ψ, q) = qqψq−1

�(q)
exp(−qψ), (5)

whereψ is the channel amplitude,q is the shaping parameter, and�(q) is the standard
Gamma function given as �(q) = ∫ ∞

0 exp(−u)uq−1du. Using q, the received signal
power can be approximated to suitable fading conditions in Aerial-HetNet.When the
shaping value equals 1 approximates to Rayleigh fading along non-LOS (NLOS),
and when the shaping value is greater than 1, Nakagami-m fading approximates to
Rician fading along line-of-sight (LOS).

In a Cartesian coordinate, let θ and φ be the zenith and azimuth of the spherical
angles and unit vectors. Then the transmitter antenna’s 3DBF element A3DBF(φ, θ)

specified in [1] is defined by

A3DBF(φ, θ) = G3DBF,max − min
{ − (AHor(φ) + AVer(θ)), Am

}
, (6)

G3DBF,max = 8 dBi, Am − 30 dB,

where AVer(θ) and AHor(φ) are the vertical and horizontal antenna elements of the
radiation pattern, respectively, and are defined as
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AVer(θ) = −min

[
12

(
θ − θtilt

θ3−dB

)2

, SL AV

]
, θtilt = 90◦, (7)

θ3−dB = 65◦, SL AV = 30, (8)

AHor(φ) = −min

[
12

(
φ

φ3−dB

)2

, Am

]
, φ3−dB = 65◦.

3DBF is an interference coordination method that can significantly improve signal-
to-interference ratio (SIR) of the desired signal by calibrating P tx

mbs, P
tx
pbs, and P tx

uabs
transmission powers from MBS, PBS, and UABS, respecitvely [36]. Regulating the
transmission power brings significant improvements to SIR for the UEs located at
cell-edge or UEs in range expanded regions and checks the power transmitted into
the neighboring cell sites.

4.1 Path Loss Model

To accurately investigate the signal reliability in the public safety network in an urban
environment, well-defined any-to-air (ATA), air-to-ground (ATG), and ground-to-
ground (GTG) communication links are considered between interfacing base-station
of interest (BOI) and UEs available.

4.1.1 ATA Communication Link

ATA Communication Link is considered when an aerial user (AUE) is scheduled on
any of the nearest MOI, POI, or UOI. To address the power loss experienced during
ATA communication in the Aerial-HetNet, an urban-macro with aerial (UMa-AV)
scenario specified in 3GPP Release 15 [2] is considered. The NLOS and LOS path
loss estimate of this 3D channel model is presented as

ϑ(d) =

⎧⎪⎨
⎪⎩

ϑNLOS(d) = −17.5 + (46 − 7log10(haue))10log10(d3Dist)

+20log10(
40π fpsc

3 )

ϑLOS(d) = 28.0 + 22log10(d3Dist) + 20log10( fpsc)

, (9)

where d3Dist is the 3D distance between AUE and the base-station of interest (BOI),
fpsc is the carrier frequency in MHz, and haue is the altitude of AUE in meter such
that 22.5m < haue ≤ 300m for ϑLOS(d) and 10.0m < haue ≤ 100m for ϑNLOS(d).
Finally, the LOS probabilities is given by

PLOS(ϑ) =
{
1, d2Dist ≤ dist1
dist1
d2Dist

+ exp(−d2Dist
par1

)(1 − dist1
d2Dist

), d2Dist > dist1
, (10)
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where isd2Dist is the 2Ddistance betweenAUEand theBOI such thatd2Dist ≤ 4km,
and the factors dist1 and par1 (in meters) are given by

dist1 = max(460log10(haue) − 700, 18).

par1 = 4300log10(haue) − 3800,

In the UMa-AV scenario for ATA communication link, the average path loss over
the probabilities of NLOS and LOS is calculated using (9) and (10); the average path
loss is given by

PLavg = P
LOS × ϑLOS + (1 − P

LOS) × ϑNLOS. (11)

4.1.2 ATG Communication Link

ATG Communication Link is considered when a terrestrial user (GUE) camps on an
aerial base station (UOI). Under this communication link, a more simplified NLOS
and LOS path loss model specified in [5, 34, 37] is considered, and the path loss
estimate given by

ϑuabs(d) =
y∏

x=0

[
1 − exp

(
− [huabs − (x+1/2)(huabs−hgue)

y+1 ]2
2�2

)]
, (12)

where huabs is the UABS altitude, y = floor(r
√

ζ ξ − 1), r is the ground distance
between the GUE and UABS, ζ is the ratio of construction area to the total land
area, ξ is given as buildings/km2, and � is distribution of building altitude (BH)

in meter and is based on a Rayleigh distribution: f (BH) = BH
�2 exp(

−B2
H

2�2 ). The LOS
probability P

LOS(ϑuabs) is simplified and considered as a continuous function of �,
and environment factors. By approximating the environment factors, the Sigmoid
function (S-curve) is simplified and the LOS probability is presented as

P
LOS(ϑuabs,�) = 1

1 + p exp(−q[� − p]) , (13)

where the S-curve is defined by parameters p and q.

4.1.3 GTG Communication Link

GTG communication link is considered when a terrestrial user (GUE) is scheduled
on terrestrial MOI and POI. Okumura-Hata Path Loss (OHPL) is better suited for
estimating the GTG communication link as the base-station altitude is constant [41,
71]. The path loss estimate using the Okumura-Hata model is given as
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Fig. 6 CDF of the path loss
values recorded between all
base-stations and users
scheduled in the public
safety network

ϑ(d) = U + Vlog(d) + W, (14)

where variables U, V, and W depends on frequency considered and antenna altitude
of wireless node and is presented as

U = 69.55 + 26.16log( fpsc) − 13.82log(hbs) − a(hgue), (15)

V = 44.9 + 6.55log(hbs), (16)

a(hgue) =
{
8.29(log(1.54hgue)2 − 1.1, fpsc ≤ 200MHz

3.2(log(11.75hgue)2 − 4.97, fpsc ≥ 200MHz
, (17)

W = 0 (18)

where hgue is the altitude of ground user inmeter, fpsc is the PSCbroadband frequency
in MHz, and hbs is the altitude of MBS (hmbs) and PBS (hpbs) in meter. The variable
a(hgue) and the factor C depends on the urban environment.

Using path loss model definition in (14)–(13), the cumulative distribution func-
tions (CDFs) for the path loss observed is calculated over all the distances between
base stations (Luabs, Lpbs, and Lmbs) and users (Lgue and Laue). The path loss values
in Fig. 6 reports distinct values for the maximum allowable path loss and are funda-
mentally due to the Aerial-HetNet environmental and NLOS/LOS experienced by
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Fig. 7 Three-tier power reduction scheme applied to coordinate and uncoordinated LTE subframes
at base-stations [43]

the users. From Fig. 6 it can be noted that the maximum path-loss experienced is 216
dB for ATA, 154 dB for ATG, and 255 dB for GTG link.

4.2 Inter-cell Interference Management in Aerial-HetNet

PBS and UABS illustrated in Fig. 1 are the small cell base-stations that have low
transmission power and therefore can schedule fewer users compared to high-power
MBSs. Applying positive REB specified in 3GPP Release 8, small cells can increase
the cell capacity by extending the cell coverage and offloading traffic from over-
crowded neighboring cell sites. However, applying REB also increases the SIR and
interference at users located in the expanded cell region and at the cell edge. This issue
of inter-cell interference is addressed by considering the ICIC mititgation schemes
specified in 3GPP Release 10 and Release 11 [41, 43]. Using the ICIC at both MBS
and PBS, the power levels of transmitting radio frames are reduced, as illustrated in
Fig. 7.

Given the radio frames design in Fig. 7, the radio subframes transmitting with
full power are tagged as uncoordinated subframes (USF) and radio subframes trans-
mitting with reduced power as termed coordinated subframes (CSF). αmbs is the
power reduction factor applied to radio subframes at MBS and αpbs at PBS. Specifi-
cally, when the power reduction factor αpbs = 0 and αmbs = 0 corresponds to eICIC
specified in 3GPP Release 10, and the radio frames are referred to as almost blank
subframes (ABS). The power reduction factor αmbs = αpbs = 1 corresponds to an
absence of interference mitigation. Whereas, for [0,1] open interval values i.e.,
0 < αmbs < 1 and 0 < αpbs < 1, the power reduction factor corresponds to FeICIC
specified in 3GPP Release 11 and radio frames are referred as reduced power sub-
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frames. The reduced power subframes defined in Fig. 7 are designed to guard specific
UABS radio subframes against transmit power from all other base stations and guard
specific PBS subframes against MBS transmit power. The duty cycle of USF, and
CSF radio subframes are coordinated using βpbs and (1 − βpbs) at PBS and βmbs and
(1 − βmbs) at MBS. The user scheduling information, radio subframes’ duty cycle,
and power reduction strategy are shared over the X2 interconnecting interface.

The implementation of interference mitigation using ICIC techniques at every
base-station reduces the interference into neighboring cell sites; however, it decreases
the desired SIR at the users scheduled on cell-edge or in range expanded region. Con-
sequently, to increase the desired SIR at these scheduled users, 3DBF is considered
at all transmitting base-station to narrow the beamforming and restrict the power
transmission at scheduled users [36].

4.3 Cell Selection, User Association, and Handover

Using the knowledge of interferencemitigation using ICIC techniques defined across
all 3GPPReleases and the design for reduced power CSF andUSF specified in Fig. 7,
the SIR experienced by the arbitrary nth user scheduled in either CSF or USF of base-
stations of interest is defined in Table6. Let �mbs

usf , �
mbs
csf , �

pbs
usf , �

pbs
csf , �

uabs
usf , and �uabs

csf
be the SIRs experienced by the users scheduled in the CSF or USF radio subframes
of base-station of interest. In Table6, Iagg is the aggregate interference experienced
at scheduled users from all base stations, except the base-stations of interest.

The process of cell selection uses the SIR definition given in Table6 for each
BOI and positive REB ϒuabs at UABSs and ϒpbs at PBSs. The positive REB ϒuabs at
UABSs and ϒpbs at PBSs is applied to increase the SIR coverage. A user is always
scheduled in the BOI that guarantees the best SIR experience during the cell selection
process. After the cell selection process, an UABS-UE (UUE), PBS-UE (PUE), and
MBS-UE (MUE) would be scheduled in either coordinated or uncoordinated radio
subframes based on the scheduling threshold ρuabs, ρpbs, and ρpbs at UABS, PBS, and

Table 6 Shannon capacity definitions in terms of SIR and RSRP for USF/CSF radio frames

SIR ratio Shannon capacity

�mbs
usf = Rmbs(don)

Rpbs(dpn )+Ruabs(dun )+Iagg
Cmbs
usf = βmbslog2(1+�mbs

usf )

Nmbs
usf

�mbs
csf = αRmbs(don )

αpbsRpbs(dpn )+Ruabs(dun)+Iagg
Cmbs
csf = (1−βmbs)log2(1+�mbs

csf )

Nmbs
csf

�
pbs
usf = Rpbs(dpn )

Rmbs(don )+Ruabs(dun )+Iagg
Cpbs
usf = βpbslog2(1+�

pbs
usf )

Npbs
usf

�
pbs
csf = αpbsRpbs(dpn )

αRmbs(don)+Ruabs(dun )+Iagg
Cuabs
csf = (1−βpbs)log2(1+�uabs

csf )

Npue
csf

�uabs
usf = Ruabs(dun )

Rmbs(don)+Rpbs(dpn )+Iagg
Cmbs
usf = (βmbs+βpbs)log2(1+�uabs

usf )

Nuue
usf

�uabs
csf = Ruabs(dun)

αRmbs(don)+αpbsRpbs(dpn )+Iagg
Cuabs
csf = (2−(βmbs+βpbs))log2(1+�uabs

csf )

Nuue
csf
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Fig. 8 Cell selection, association, and handover of users in coordinate and uncoordinated radio
subframes at base-stations in Aerial-HetNet

MBS, respectively. This course of cell selection and user scheduling in CSF or USF
and user handover to base-station of interest are summarized in Fig. 8.

Once the nth arbitrary user is scheduled in BOI i.e., either UOI, POI, or MOI and
is assigned in USF or CSF radio subframes. Then using the SIR definitions, Shannon
capacity of a user scheduled in the CSF and USF subframes is given by Cmbs

usf , C
mbs
csf ,

Cpbs
usf , C

pbs
csf , C

uabs
usf , and Cuabs

csf . In Table6, N uue
usf , N

uue
csf , N

pue
usf , N

pue
csf , N

mue
usf , and Nmue

csf are
the number of UUEs, PUEs, andMUEs scheduled in CSF or USF of the UABS, PBS,
and PBS, respectively. Finally, the definition of these capacity equation are given in
Table6.

5 Simulation Results

The following section of the chapter reviews and compares the performance of the
KPIs when UABSs are deployed on different practical altitudes of 50 m, 36 m,
and 25 m. Additionally, the comparative analysis of the two KPIs is extended to
Aerial-HetNet applying ICIC and without ICIC while considering eHSGA, GA, and
brute-force algorithms. To this end, KPIs are evaluated usingMatlab-based computer
simulation, and the system parameters values specified in Table7.

5.1 Brute Force for KPI Evaluation

Aerial-HetNet performance when the UABS are deployed on fixed hexagonal loca-
tions and at altitudes of 50m, 36m, and 25m is plotted in Figs. 11, 10, and 9. The
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Table 7 System parameters and the values considered during simulation

System parameter Value/Range

PSC broadband frequency 763MHz (downlink)

Area of Simulation 100 km2

Base station densities MBS 4km2

Base station densities PBS 12km2

Number of UABS 60

User densities AUE 1.8 per km2

User densities GUE 100km2

Transmission power P tx
mbs 46 dBm

Transmission power P tx
pbs 30 dBm

Transmission power P tx
uabs 26 dBm

UABS deployment altitude 25, 36, and 50m

Base station altitude PBS 15m

Base station altitude MBS 36m

AUE altitude 22.5m

GUE altitude 1.5m

Power reduction at MBS αmbs closed interval [0, 1]
Power reduction at PBS αpbs closed interval [0, 1]
Duty cycle for uncoordinated subframe βmbs closed interval [0%, 100%]
Duty cycle for uncoordinated subframe βpbs closed interval [0%, 100%]
UUEs scheduling threshold ρuabs −5 dB to 5 dB

PUEs scheduling threshold ρpbs −10 dB to 10 dB

MUEs scheduling threshold ρmbs 20 dB to 40 dB

REB ϒpbs at PBS, ϒuabs at UABS 0 dB to 12 dB

GA (SZGA) and eHSGA (SZHM) population
size

60

GA crossover(cxr ) and mutation (mr )
probabilities

0.7 and 0.1

GA generation number 100

HM fret ( f r ) 1

HM consideration rate (RHMC) max = 0.8, min = 0.2

HM pitch adjustment rate (par ) max = 0.8, min = 0.4

plotted results show the influence of positive REB at PBSs along the x-axis, UABSs
along the y-axis, and KPI outcome along the z-axis.

Given the UABSs deployment at an altitude of 25m lower than MBS altitude,
36m same altitude as MBS altitude, and 50m higher than MBS altitude, the Aerial-
HetNet with FeICIC experiences minor improvement in coverage probability and a
significant improvement in 5pSE over other ICIC techniques and in the absence of
ICIC as seen in Figs. 9c, 10c, and 11c. In particular, from Figs. 9, 10 and 11, it can
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(a) Coverage probability vs. REB. (b) 5pSE vs. REB.

(c) KPI performance comparison.

Fig. 9 Aerial-HetNet performance when the UABS deployment locations are fixed on hexagonal
locations and at an altitude of 25m

be concluded that the overall peak performance of the Aerial-HetNet is when the
UABS deployment is at a low altitude of 25m. Increasing the positive REB at UABS
and PBS increases the users associated with these small cells but also increases the
interference. Therefore the applying optimal REB values at these small base stations
is the key. Using the brute-force approach, the improved coverage probability is
observed when UABS considers moderate to higher REB values between 3 and 12
dB, but low to moderate REB values of 0−6 dB is observed at PBS. Similarly, the
peak values of 5pSE are observed for moderate to higher REB values between 3 and
12 dB at UABS and lower to moderate REB values between 3 and 6 dB at PBS.
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(a) Coverage vs. REB. (b) 5pSE vs. REB.

(c) KPI performance comparison.

Fig. 10 Aerial-HetNet performance when the UABS deployment locations are fixed on hexagonal
locations and at an altitude of 36m

5.2 Genetic Algorithm for KPI Evaluation

Aerial-HetNet performance is outlined in Fig. 12; the results demonstrate the influ-
ence of positive REB at PBSs along the x-axis, and UABSs along the y-axis, and KPI
outcome along the z-axis. In particular, the result analysis was done when ICIC sys-
temparameters andUABS2D locations are jointly optimized using theGAapproach.
The critical remarks are presented when the UABSs are deployed at an altitude of
25m lower than MBS altitude, 36m similar altitude as MBS elevation, and 50m
higher than MBS altitude.

In the following, Fig. 12b, d, f capturing the comparative analysis from results
in Fig. 12a, c, e, the Aerial-HetNet with FeICIC experiences modest improvement
in coverage probability and a significant improvement in 5pSE over other ICIC
techniques and in the absence of ICIC. In particular, from Fig. 12a, c, e, it can be
concluded that the overall peak performance of the Aerial-HetNet is when the UABS
deployment altitude is 25 m. Furthermore, increasing the positive REB at UABS
and PBS increases the users associated with these small cells but also increases
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(a) Coverage vs. REB. (b) 5pSE vs. REB.

(c) KPI performance comparison.

Fig. 11 Aerial-HetNet performance when the UABS deployment locations are fixed on hexagonal
locations and at an altitude of 50m

the interference. Therefore the applying optimal REB values at these small base
stations is the key. Using GA, the improved coverage probability is noted when
UABS considers moderate REB values between 3 and 6 dB, but REB at PBS varies
significantly between 0 and 12 dB. Similarly, the peak values of 5pSE are observed
for moderate REB values between 3 and 6 dB at UABS and lower REB values
between 0 and 3 dB at PBS.
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(a) Peak KPI value when UABS
altitude is 25m.

(b) KPI performance comparison
when UABS altitude is 25m.

(c) Peak KPI value when UABS
altitude is 36m.

(d) KPI performance comparison
when UABS altitude is 36m.

(e) Peak KPI value when UABS
altitude is 50m.

(f) KPI performance comparison
when UABS altitude is 50m.

Fig. 12 Aerial-HetNet performance when the UABS deployment altitude is manually varied to 50
m, 36 m, and 25 m, and their locations are optimized in 2D using GA
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(a) Peak KPI value when UABS
altitude is 25m.

(b) KPI performance comparison when
UABS altitude is 25m.

(c) Peak KPI value when UABS
altitude is 36m.

(d) KPI performance comparison when
UABS altitude is 36m.

(e) Peak KPI value when UABS
altitude is 50m.

(f) KPI performance comparison when
UABS altitude is 50m.

Fig. 13 Aerial-HetNet performance when the UABS deployment altitude is manually varied to 50
m, 36 m, and 25 m, and their locations are optimized in 2D using eHSGA
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5.3 eHSGA for KPI Evaluation

Aerial-HetNet performance outlined in Fig. 13, the results demonstrate the influence
of positive REB at PBSs along the x-axis, and UABSs along the y-axis, and KPI
outcome along the z-axis. In particular, the result analysis was done when ICIC
system parameters and UABS 2D locations are jointly optimized using the eHSGA
approach. The key observations aremadewhen theUABSs are deployed at an altitude
of 25m lower than MBS altitude, at 36m, i.e., the same altitude as MBS, and 50m,
which is higher than MBS.

In the following, Fig. 13b, d, f capturing the comparative analysis from results
in Fig. 13a, c, e, the Aerial-HetNet with FeICIC experiences modest improvement
in coverage probability and a significant improvement in 5pSE over other ICIC
techniques and in the absence of ICIC. In particular, from Fig. 13a, c, e, it can be
concluded that the overall peak performance of the Aerial-HetNet is when the UABS
deployment altitude is 25 m. Furthermore, increasing the positive REB at UABS and
PBS increases the users associated with these small cells but also increases the
interference. Therefore the applying optimal REB values at these small base stations
is the key. Using eHSGA, the improved coverage probability is noted when UABS
considers higher REB values between 9 and 12 dB butmoderate REB values between
3 − 9dB at PBS. Similarly, for the peak values of 5pSE, the REB at UABS values
vary significantly between 0 and 12 dB, and lower REB values between 3 and 6 dB
at PBS are considered.

5.4 Comparative Analysis of KPIs

From the analysis of Figs. 9, 10, 11, 12, and 13 given in Sects. 5.1, 5.2, and 5.3, the
Aerial-HetNet with reduced power FeICIC in 3GPP Release 11 is seen to surpass
other ICIC techniques and in the absence of ICIC with respect to overall coverage
probability and 5pSE. Furthermore, closer inspection of Figs. 9, 10, 11, 12, and 13
and the results captured in Tables9, and 8 confirms that the eHSGA and GA heuristic
techniques outperform the brute-force approach and show significant improvement
in 5pSE and coverage probability. Furthermore, the GA meta-heuristic technique
achieved a marginal gains of up to 3% in 5pSE and coverage probability over the
hybrid eHSGA optimization technique.

Using the optimization approach considered in this chapter, the Aerial-HetNet
demonstrates peak performance when UABSs deployment altitude is 25 m, i.e.,
lower than any terrestrial base-station altitude. As the UABS deployment altitude is
increased to 36m and 50m, which is higher than any terrestrial base-station altitude
considered in Table7, there is a gradual decrease in performance of coverage prob-
ability and 5pSE of the Aerial-HetNet. This is because a higher deployment altitude
of UABS improves LOS and also the ability to associate more users. However, the
improved LOS also increases the possibility of interference with users on cell-edge
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Table 8 Summary of peak coverage probability in%, for differentUABSs altitudes and interference
coordination approaches

Brute-force GA eHSGA

UABS Altitude UABS Altitude UABS Altitude

ICIC 50m 36m 25m 50m 36m 25m 50m 36m 25m

FeICIC 96.72 96.99 97.18 99.89 99.92 99.94 98.78 98.90 99.14

eICIC 94.52 95.62 95.85 98.06 98.24 98.58 97.17 97.69 97.89

No
ICIC

92.71 92.86 93.15 93.64 93.83 93.95 92.19 92.54 93.19

Table 9 Summary of peak 5pSE values in bps/kHz, for different UABSs altitudes and interference
coordination approaches

Brute force Genetic algorithm eHSGA

UABS Altitude UABS Altitude UABS Altitude

ICIC 50m 36m 25m 50m 36m 25m 50m 36m 25m

FeICIC 0.23e −
3

0.24e −
3

0.27e −
3

1.41e −
2

1.46e −
2

1.48e −
2

1.40e −
2

1.41e −
2

1.46e −
2

eICIC 0.55e −
4

0.69e −
4

0.70e −
4

0.98e −
2

1.06e −
2

1.26e −
2

0.96e −
2

1.02e −
2

1.22e −
2

No
ICIC

1.92e −
5

2.21e −
5

2.45e −
5

3.44e −
5

3.53e −
5

4.01e −
5

1.98e −
5

2.30e −
5

2.63e −
5

and in range expanded region, which could degrade the network level performance
of the Aerial-HetNet.

Finally, in Tables9 and 8, the peak 5pSE values in bps/kHz and coverage prob-
ability in % have been summarized for different UABSs deployment altitudes and
interference mitigation schemes; while considering elitist hybridization harmonic
search genetic algorithm, genetic algorithm, and brute force.

5.5 Computational Complexity Gain Analysis

Given the best state (BSKPI) definition in (3), algorithms given inAlgorithms 1–3, and
the simulation values specified in Table7; a Matlab-based simulation is used to eval-
uate an individual KPI. Then the mean runtime is calculated from the Monte-Carlo
simulation to determine the computational complexity gains. The comparative anal-
ysis of computational complexity gains is presented when the UABSs are deployed
at different altitudes of 50m, 36m, and 25m, using eHSGA, GA, and brute-force
approach, and in the presence of ICIC and absence of ICIC. Themean runtime needed
for computing the peak KPI values with global maxima values of ICIC parameters
and optimal 2D UABS locations is plotted in Fig. 14.
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Fig. 14 Summary of KPI
computational time, for
different UABS altitudes and
when 2D locations are
optimized using different
techniques

An initial review of Fig. 14 suggested that UABS deployed at a higher altitude of
50m require sparse to slightly higher computational time when compared to deploy-
ment altitude of 25 and 36. This higher computational time is needed to address the
interference effects of better LOS from 50m altitude. Additional analysis of Fig. 14
reveals that joint optimization of 2D UABS locations and ICIC system parameters
using the heuristic approach (eHSGA and GA) requires significantly higher com-
putational time compared to the brute-force approach. This higher computational
time is required for determining the best set of UABS locations Luabs within a large
search space Asim. Whereas, the brute approach considers optimizing only the ICIC
parameters while the UABS locations were fixed on a hexagonal grid. Similar obser-
vations were deduced while employing the reduced power FeICIC technique, which
requires significantly higher computational time when compared to other ICIC tech-
niques and in the absence of any ICIC. This increased computational time is mainly
due to the step size of αmbs and αpbs within the closed interval as seen in Table5,
which expands the scope of the search space during simulation.

Finally, the computational complexity required to determine the optimal values to
search parameters defined in the Table5 is higher using heuristic algorithms (eHSGA
and GA) but is capable of delivering broadband rates that could support mission-
critical voice and data. The stringent requirement of 95% terrestrial coverage with
broadband rates [49] for the public safety network could be met using the heuristic
algorithms as reported in Table8. From Fig. 14, Tables8, and 9, it is observed that
3D optimal placement of UABS in the Aerial-HetNet is critical to improving the
overall gains. Further analysis from Fig. 14, Tables8, and 9, shown that eHSGA
gives limited computational complexity gain over GA. Whereas GA has displayed
marginal improvement in KPI gains over eHSGA. Therefore it becomes crucial to
determine a suitable algorithm that could minimize the computational complexity
and find the near-global maxima of the search problem in the real world.
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Table 10 Summary of problem definition, application, and convergence KPI of various heuristic
algorithms

Heuristic algorithm Problem definition Convergence characteristics

Nearest-neighbor Data routing in D2D Networks Accuracy [6]

Genetic algorithm Terrestrial base-station
deployment planning

Accuracy [43]

Elitist harmony search genetic
algorithm

Restoring cellular
infrastructure

Execution time [43]

Swarm intelligence Search and localization of a
mobile RF source

Accuracy and execution
time [38]

Tabu search Real-time dispatch of
first-responders

Accuracy and execution
time [24]

Genetic algorithm Real-time dispatch of
first-responders

Accuracy [13]

Hybrid genetic-simulated
annealing

Data routing in D2D Networks Accuracy and execution
time [57]

Random Forest Post-disaster localization and
mapping of survivors

Accuracy and execution
time [3]

Support Vector Machines Post-disaster localization and
mapping of survivors

Accuracy and execution
time [73]

The entire postulation of proposing a heuristic algorithm is based on trade-offs,
basically trading accuracy for computation time and vice-versa. However, given the
problem definition and applications, convergence KPI of a heuristics can be adjusted
to suit the requirements accordingly. The following Table10 summarizes the problem
definition, application, and convergence KPI of a heuristic algorithm.

6 Conclusion

This chapter investigated the fitness of different algorithms for finding optimal or
close to the optimal 2D UAV locations. Based on the comparative analysis of the
brute-force approach and the heuristic algorithm considered, it becomes essential
to determine a suitable algorithm that could address the trade-off of minimizing the
computational complexity and finding the near-globalmaxima of the search problem.

Using the system-level insight into designing the 5G Aerial-HetNet, low-altitude
aerial vehicles were integrated into an existing terrestrial network as aerial users
and aerial base stations. The UABS altitude variation contributed towards important
design considerations such as interference mitigation, antenna 3D beamforming, and
practical path loss model based on the type of user and base-station communication
link.Using these design considerations and theMonte-Carlo approach, the simulation
goal was to improve the coverage probability and 5pSE of the Aerial-HetNet using
brute-force and heuristics algorithms.
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Simulation and comparative analysis of results concluded that the Aerial-HetNet
with UABS deployment altitude of 25m performed sparely better than deployment
altitudes of 36m and 50m. The interference mitigation mechanisms considered for
Aerial-HetNet attested that the reduced power subframes FeICIC generated better
network 5pSE and coverage experiences than the other ICIC techniques and in the
absence of ICIC. Lastly, the simulations results confirmed that the heuristic algo-
rithms (eHSGA and GA) surpassed the brute force approach to accomplish practical
peak values of 5pSE and coverage.
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Power-Efficient UAV Placement in Relay
Assisted Heterogeneous Public Safety
Networks

Yasir Iqbal, Ayaz Ahmad, and Zeeshan Kaleem

Abstract During the disaster situation, there is a vital need for public safety com-
munications to enable mission-critical search and rescue operations. In public safety
networks, key challenge is to provide reliable and flexible wireless coverage to the
affected areas. Unmanned aerial vehicles (UAVs) can act as aerial base station (BS)
to provide the emergency communication services. Battery life of UAVs is a scarce
resource that requires UAV BS tranmit power optimization. To overcome this issue,
a model which consist of fixed BS, observation UAV and relay UAV is adopted to
enable long distance communication. The optimal placement of relay UAV becomes
requisite for reliable connectivity between observation UAV and ground BS. In this
chapter, our objective is to minimize the sum-power of observation and relay UAVs
by using the optimal placement of relay UAV. The optimized power ensure through-
put requirement for real-time communication. The proposed formulated non-convex
problem is transformed into convex optimization problem, and the optimal solution
is acquired using interior point method. The simulation result shows that the required
targeted link-rate between relay UAV and observation UAV and also between relay
UAV and ground BS is achieved at minimum sum power.
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1 Introduction

Public safety networks have attracted researchers’ attention because of their numer-
ous applications during natural disasters such as earthquakes, tsunami, and floods
[1–3]. To enable emergency services, unmanned air vehicles act as an aerial base sta-
tion (ABS) as it can easily meet the requirements of mobility, reliability, flexibility,
and adaptive altitude [4]. Specifically, UAVs are emerging as a promising technology
to monitor the disastrous areas by enhancing the coverage and capacity of wireless
cellular networks [5].

To ensure a sustainable data rate for broadband real-time pervasive communica-
tions, efficient UAV placement is required to minimize the total transmit power of
UAVs [6, 7]. In [8], the authors minimize the number of ABS required to provide
wireless coverage for a group of distributed ground terminals, while ensuring that
each terminal is within the communication range of at least one UAV. In [9], the main
goal was to serve the maximum number of users by ABS with minimum transmit
power to reduce the traffic demands of malfunctioned macro base station (BS). In
[10], backhaul-aware optimal 3D placement of UAV is achieved by two approaches;
user-centric and network-centric. In [11], the author proposed a heuristic algorithm
that guarantees the quality-of-service (QoS) requirements of the targeted users by
maximizing the minimum number of UAVs.

In [12], the authors proposed a 3D placement of UAVs that jointly optimize
the height and path loss compensation factor. The proposed algorithm successfully
reduces co-channel interference by varying UAV heights. In [13] author introduced
attractive features of UAVs and their promising on-demand applications in the field
of public safety communication. The author proposed a multi-layered network archi-
tecture that incorporates UAVs in public safety communication. In [14], UAV-aided
disaster emergency communications is considered and a framework for joint opti-
misation of resource allocation and real-time UAV deployment has been proposed.
The work in [15], proposes a deep reinforcement learning based approach for real-
time energy harvesting aided scheduling in UAV-Assisted D2D Networks. In [16],
UAV-empowered disaster-resilient edge architecture for delay-sensitive communica-
tion has been devised. In [17], particle swarm optimization algorithm is employed to
perform 3D optimal surveillance trajectory Planning for multiple UAVs while taking
the surveillance area priority into account. In [18] author describes the systemmodel
for UAV-enabled coordinate multipoint (CoMP) where the users may move on the
ground, therefore the UAVs need to adjust their locations with respect to the user
locations over time to maximize the network throughput. The work in [19] proposes
an optimal 3D deployment of three UAV-base stations, these UAVs BS act as aerial
access points for energy-efficient uplink communication in a given urban area.

The authors of [20] used an iterative method to jointly optimize the transmission
power of Internet-of-things (IoT) devices and the altitudes of UAVs. The author also
proposed an algorithm based on an improved k-means clusteringmethod, where each
cluster subgroup should have roughly the same number of IoT devices. In [21] author
considered a system model of a cellular network consisting of an ABS coexisting
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with multiple terrestrial base stations. A probabilistic channel-based model is used
to design the 3D placement for the ABS and the transmit power allocation for all the
nodes in the uplink (UL), downlink (DL), and combined UL and DL operations.

In [22], a latency aware drone BS placement is carried to enhance theQoS in a het-
erogeneous communication network. In [23], the authors formulate an optimization
problem to connect multiple UAVs to the small BSs to enhance the sum rate of the
overall network. The authors in [24] propose an architecture to form a composite het-
erogeneous network made up of several homogeneous networks. The basic purpose
is to exploit drones to facilitate connectivity in a composite heterogeneous network.
In [25], the mobility of UAV is catered for data gathering of sensor devices. It jointly
optimizes the uplink power of sensors due to the optimal placement of UAVs.

The authors in [26] aim to deploy a robust system consist of quadcopter for
environment remote monitoring to measure the fluctuating parameters. The authors
in [27] model an optimization problem to minimize the number of deployed UAVs
for gathering critical information from environmental sensors, and deliver it to the
ground BS.

The main focus of this work is to ensure reliable wireless connectivity in disas-
trous areas. In that area, to establish a ground-based network in a short period is a
difficult task. Therefore, our system model presents a UAV network that consists of
observation UAV, relay UAV, and ground BS to provide connectivity of users in the
affected area. In this heterogeneous network, relay UAV connects observation UAV
and ground BS for real-time data transmission over longer distances. In a dynamic
propagation environment, relay placement must be optimized to ensure end-to-end
reliable communications. We propose an efficient algorithm for optimal placement
of relay UAVs. This placement will be utilized to minimize the total power consump-
tion of observation and relay UAVs. The parameters related to the observation area
(e.g., area size, the distance between observation UAV and ground BS) and signal
attenuation due to obstacles are also considered in the system model.

We performed the network performance evaluation by comprehensive simulations
and analysis by varying different network parameters such as area size, the distance
between a base station and observation area, and signal attenuation by obstacles (e.g.,
buildings, trees).

The rest of the chapter is organized as follows: We presented the system model
of the proposed heterogeneous network in Sect. 2. Section3 presents the proposed
methodology for the optimal placement of relay UAVs for heterogeneous public
safety communication networks. Section4 highlights system parameters, numerical
results, and analysis. Finally, we conclude and present future directions in Sect. 5.

2 System Model

In disaster-hit areas, the existing communication networks are damaged or even dev-
astated which creates communication holes. Therefore, it is not possible for remain-
ing ground BSs to provide cellular services in a disastrous area. It is also not feasible
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Fig. 1 System model

to install ground infrastructure in the affected area in a short time. Hence, we pro-
posed a system model that consists of UAVs to serve as ABS in the disaster-hit areas
as shown in Fig. 1. It comprises remote ground BS, observation UAV, and relay UAV.

Here, observation UAV monitors users in a circular region of radius r , termed as
the observation area. The observation UAV transmits data to the nearby functional
BS in real-time, but its communication range is limited. Therefore, to enable reliable
data transmission, we placed the relayUAVbetween the observationUAVand nearby
functional BS for reliable data transmission. The distance between ground BS and
relay UAV is labeled as x , and distance between ground BS and observation UAV
is denoted as D. The observation UAV moves in the assigned observation area to
continuously gather the required information. It then transmits the information to
the relay UAV positioned between observation UAV and ground BS. By using relay
UAV, it is possible to transmit the real-time data to a longer distance.

The location of the relay UAV is always outside the radius of the observation area.
Moreover, there are a lot of impediments between the BS, relayUAV, and observation
UAV. These obstacles relatively attenuate the transmitted signal power. Therefore,
we need to cater for this attenuation. When wireless infrastructure is malfunctioning,
UAVs’ battery life has major role in enabling communication services in the affected
areas with ample flight time. Hence, to achieve the fidelity of mission-critical infor-
mation, power consumption is the limiting factor. The link rate between the BS and
relay UAV or between relay UAV and observation UAV is calculated by Shannon
Theorem as follows:

Rr = B log2(1 + γr ), (1)



Power-Efficient UAV Placement in Relay Assisted Heterogeneous … 95

RGB = B log2(1 + γGB), (2)

where Rr is the link rate between relay UAV and observation UAV, RGB is the
link rate between nearby functional BS and relay UAV and B is the communication
bandwidth. γ is the signal-to-noise ratio (SNR). To ensure a target link rate, we obtain
the corresponding target SNR by optimizing the sum-power.

The SNR (γr ) of relay UAV and observation UAV using Friis path loss model can
be represented as

γr =
(

λ

4πx

)2 GtGr Pr
N

(3)

where λ is the wavelength of the transmitted signal, d is the transmission distance,
Gt is the transmit antenna gain,Gr is the receiver antenna gain, N is the noise power,
and Pr is the transmitted power. Let gr = ( λ

4πx )
2 GtGr

N be the gain among the relay
UAV and BS. So, Eq. (3) can be written as

γr = Prgr . (4)

Similarly, for observation UAV, we can calculate the SNR as

γobs =
(

λ

4π(D + r − x)

)2 GtGr P0
N

(1 − A), (5)

where A is the attenuation rate due to obstacles between the observation UAV
and relay UAV. Where Po is the transmitted power of observation UAV. Let g0 =(

λ
4π(D+r−x)

)2
GtGr
N (1 − A), so (5) can be represented as

γobs = Pogo, (6)

where go is the channel gain between observation UAV and relay UAV. Thus, the
achievable link rate depends upon the channel gain and SNR.

3 Power Efficient Optimal Placement of Relay UAV

3.1 Optimization Model

The main objective is to find the relay UAV optimal location that can minimize the
sum power of observation and relay UAV to achieve the targeted link data rate R
subject to various constraints. Therefore, the optimization problem is formulated as:

min (Po + Pr ) (7)
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s.t. B log2(1 + Pogo) ≥ R (8)

B log2(1 + Prgr ) ≥ B log2(1 + Pogo) (9)

x ≤ (D − r) (10)

D ≥ 10r (11)

(Po, Pr , D, x) ≥ 0 (12)

In the proposed optimization problem (7)–(12), our target is to minimize the sum
power of observation UAV and relay UAV while satisfying the constraints (8)–(12).
Constraints in (8) and (9) ensures that the link transmission rate between observation
UAV and relay UAV should be greater than or equal to the required data rate R. The
constraint in (10) guarantees that the relay UAV is placed outside the coverage area
of observation UAV. The constraint in (11) force that the network size D is 10 times
greater than the radius r of the observation area, so that network size is relatively
large as compared to the observation area. Finally, the last constraint (12) highlights
that the parameters Po, Pr , x and D are non-negative.

3.2 Proposed Methodology

To optimize the defined problem in (7), we assume that the link rates of observation
UAV and relay UAV are equal to the link rate between relay UAV and ground BS.
This allows us to convert non-convex optimization problem into convex optimization
problem. In order to determine the optimal solution, we equate the constraints in (9),
and rewrite them as:

B log2(1 + Prgr ) = B log2(1 + Pogo) (13)

By simplification, we get
Pogo = Prgr (14)

To find the received power at the relay UAV, we rearrange (14) as

Pr = Pogo
gr

(15)

Using (8), we assume that B log2(1 + Pogo) is equal to target data rate R. Thus, the
power is calculated as

Po = 2
R
B − 1

go
(16)
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Now, define Coand Cr as:

Cr =
(

λ

4π

)2 GtGr Pt
N

(17)

Co =
(

λ

4π

)2 GtGr Pt
N

(1 − A) (18)

Now Eq. (3) becomes:

gr = Co

x2
(19)

Now Eq. (5) becomes:

go = Co

(D + r − x)2
(20)

Now, put go and gr from (19) and (20) in (15) and (16) to get Po and Pr . Finally, use
Po and Pr in the objective function to get the equivalent objective function in (16).
This objective problem now becomes as given by:

min k[(Co + Cr )x
2 − 2Cr (D + x) + Cr (D + x)2] (21)

where k = 2
(R
B −1)Cr

Co
. The equivalent optimization problem in (21) is convex. This

convex problem is solved using Interior point polynomial algorithm [28]. We pro-
pose an iterative algorithm for power efficient optimal relay UAV placement as given
in Algorithm 1. As we solve the problem (21) by using Interior point polynomial
method [28], the computational complexity of Algorithm 1 is very low and the solu-
tion is suited for practical systems with limited computational resources.

Input: A, B, R, N, r, λ,Gt ,Go
Output: Pt ,Po
1 Optimal placement of relay UAV

Obtain x by solving problem (21) by
polynomial time integer point method [28]

2 Obtain gr using (19)
3 Obtain go using (20)
4 Relay UAV power calculation

Obtain Pr by using (15)
5 Observation UAV power calculation

Obtain Po by using (16)
6 Find sum power using steps 4 and 5
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Table 1 Simulation parameters

Parameter Specifications

Bandwidth (B) 20MHz

Wavelength (λ) 0.125m

Noise power (N) 1 × 10−10W

TX antenna gain (Gt ) 1

RX antenna gain (Gr ) 1

4 Simulation Results and Analysis

4.1 Simulation Settings

Table1 presents the parameters used in the simulations. For this simulation, 2.4 GHz
frequency band is used for UAV communications. Bandwidth is set to 20 MHz as
per wireless communication standards such as IEEE 802.11g/n and wavelength of
0.125 m is computed from 2.4 GHz frequency. Moreover, Noise power is fixed to
1 × 10−10 W, transmitter and receiver antenna gains are set to unity. We assume the
usage of non-directional antennas in this evaluation.

Table2 shows the analysis of optimized sum power for A = 0.3, D/r = 10 and R
= 800 kbps.

4.2 Simulation Results

Firstly, the parameters related to observation area are varied to analyze the simulation
results. Initially, network dimension parameter D is varied and D/r ratio is fixed to
10. Figure2 shows the simulation results by varying network dimensions for fixed
D/r ratio.

The performance metric in these curves is the optimized minimum power. These
results are simulated for three different attenuation factors A, as shown in this Fig. 2.
The numerical values of the results are formulated in Table2.

It can be observed from these results that optimized sum power is minimum for A
= 0.3. As parameterA increases, the optimized sumpower increases correspondingly
to achieve the target of link rate between relay UAV and observation UAV, and also
between relay UAV and ground BS.

Figure3 shows the advantage of optimal relay placement by varying network
dimensions for fixed D/r ratio set to 10. The performance metric in these curves is
the optimized minimum power. These results are simulated for A= 0.6. It is obvious
from these results that sum power is largest when no relay is employed. For fixed
relay placement, the performance of optimized sum power improves as compared
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Table 2 Analysis of sum power

Radius of observation
area
r (m)

Optimal relay position
x (m)

Network size
D (m)

Sum power
P (mW)

100 899.9998 1000 25.82978

200 1785.71 2000 102.6904

300 2500 3000 222.8173

400 3214.285 4000 393.0221

500 3928.571 5000 613.3051

Fig. 2 Optimized power for different network dimensions for A = [0.3, 0.6, 0.9]; D/r = 10; R =
800 kbps

to the case when no relay is incorporated. Best results are obtained for optimized
relay placement as compared to the other two scenarios. For instance, when the
network size is 4000m, the sum power is 1374mW (no relay), 522.3mW (fixed
relay location placed at D/2) and 393mW (optimized relay placement). It is obvious
from these results that sum power decreases significantly for optimal relay placement
as compared to the other two cases.

Figure4 shows the advantages of optimal relay placement by varying D/r ratio
from10 to 20 for fixed radius of observation area (r= 500m).Again, the performance
measure in these curves is the optimizedminimumpower. These results are simulated
for A = 0.6. It is observed from these results that sum power is largest when no relay
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Fig. 3 Effect of optimal relay placement for for A = 0.6; D/r = 10; R = 800 kbps

is employed. For fixed relay placement, the performance of optimized sum power
improves as compared to the case when no relay is incorporated. Best results are
obtained for optimized relay placement as compared to the other two scenarios. For
instance, when the D/r ratio is 15, the sum power is 4541mW (no relay), 1681mW
(fixed relay location placed at D/2) and 1298mW (optimized relay placement).

It is obvious from these results that sum power decreases significantly for optimal
relay placement as compared to the other two cases. Figure5 shows the advantages
of optimal relay placement by varying D/r ratio from 10 to 20 for fixed radius of
observation area (r = 600m)and attenuation (A = 0.9). As network size (D/r ratio)
increases, the observation area becomes far away from the ground BS. It is obvious
from these results that sum power decreases significantly for optimal relay placement
as compared to the other two cases.

5 Conclusion

In this chapter, we presented the role of UAVs in public safety communications.
The main focus of this work is to ensure reliable wireless connectivity at disastrous
areas to the remote ground BS. Therefore, our systemmodel presents a UAV network
which consists of observationUAV, relayUAVand groundBS to provide connectivity
of users at affected area. An efficient algorithm is proposed in this research work
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Fig. 4 Effect of relay UAV positions on sum power A = 0.6; r = 500; R = 800 kbps

Fig. 5 Effect of optimal relay placement by varying D/r ratio for A = 0.9; r = 600; R = 800 kbps
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for optimal placement of relay UAV. This optimal relay placement minimizes the
sum power consumption of observation UAV and relay UAV. The optimized sum
power ensures a target data rate for different network dimensions. The proposed
algorithm is validated using MATLAB simulations. Furthermore, the performance
with optimal relay placement significantly outperforms the fixed relay placement and
no relay scenarios. Also, a noticeable performance gain is obtained for optimal relay
placement for a range of D/r ratios, as compared to the fixed relay placement and
the case when no relay is deployed. A formidable extension of this research work
is to incorporate multiple relay UAVs over different network dimensions to provide
connectivity at distant areas.
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Location Prediction and Trajectory
Optimization in Multi-UAV Application
Missions

Rounak Singh, Chengyi Qu, Alicia Esquivel Morel, and Prasad Calyam

Abstract Unmanned aerial vehicles (a.k.a. drones) have a wide range of applica-
tions in e.g., aerial surveillance, mapping, imaging, monitoring, maritime operations,
parcel delivery, and disaster response management. Their operations require reli-
able networking environments and location-based services in air-to-air links with
co-operative drones, or air-to-ground links in concert with ground control stations.
When equipped with high-resolution video cameras or sensors to gain environmental
situation awareness through object detection/tracking, precise location predictions
of individual or groups of drones at any instant possible is critical for continuous
guidance. The location predictions then can be used in trajectory optimization for
achieving efficient operations (i.e., through effective resource utilization in terms of
energy or network bandwidth consumption) and safe operations (i.e., through avoid-
ance of obstacles or sudden landing) within application missions. In this chapter, we
explain a diverse set of techniques involved in drone location prediction, position
and velocity estimation and trajectory optimization involving: (i) Kalman Filtering
techniques, and (ii) Machine Learning models such as reinforcement learning and
deep-reinforcement learning. These techniques facilitate the drones to follow intel-
ligent paths and establish optimal trajectories while carrying out successful applica-
tion missions under given resource and network constraints. We detail the techniques
using three scenarios. The first scenario involves location prediction based intelli-
gent packet transfer between drones in a disaster response scenario using the various
Kalman Filtering techniques along with sensor fusion. The second scenario involves
a learning-based trajectory optimization that uses various reinforcement learning
models for maintaining high video resolution and effective network performance in
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a civil application scenario such as aerial monitoring of persons/objects. The third
scenario involves salient non-ML-based trajectory optimization techniques that can
be adopted within UAV-based applications for public safety networks. We conclude
with a list of open challenges and future works for intelligent path planning of drones
using location prediction and trajectory optimization techniques.

Keywords Drone swarms · Location-based services · Situational awareness ·
Deep reinforcement learning

1 Introduction

The use of drones has been increasing at a rapid pace for a diverse range of applica-
tions in e.g., aerial surveillance, mapping, imaging, monitoring, maritime operations,
parcel delivery, and disaster responsemanagement.Many applications involvemulti-
UAV configurations [1], wherein several drones act as either carrier devices to carry
supplies [2], or are used for aerial surveillance for intelligent information gather-
ing [3]. They also are deployed as aerial base stations to provide bandwidth and
network coverage for ground users in certain applications [4]. An example of air-
to-air links with co-operative drones surveying over a designated area is shown in
Fig. 1. These operations require location-aided drone movement and optimal drone
paths for reduced energy consumption and efficient resource allocation. We discuss
salient challenges in realizing these drone location prediction and trajectory opti-
mization techniques and show their advantages through two scenarios involving: (i)
network and video analytics orchestration, and (ii) intelligent packet transfer in a
disaster response management scenario. This chapter will illustrate how various pre-
dicted location information and intelligent path planning schemes help in achieving
efficient performance of application missions.

1.1 How Can Drone’s Location Prediction Be Useful in
Networking Environments and Application Scenarios?

To explain the significance of drone location prediction in real-time applications, we
consider a multi-drone co-ordination and networking system for a critical applica-
tion mission such as e.g., a disaster response scenario (DRS) [5, 6]. This scenario
involves critical tasks such asmonitoring the disaster affected area, search and rescue
operations, and providing supplies to victims. This system features a Flying Ad-Hoc
Network Topology (FANET) [7] to support air-to-air, as well as air-to-ground links.
The ground control station (GCS) sends requests to the drones to execute certain
tasks and the drones send back situational awareness information to the GCS. Such
a scenario, however involves challenges related to drone positioning and path plan-
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Fig. 1 Overview of multi-drone setup based on air-to-air and air-to-ground links

ning. Particularly, the location estimation of drones is necessary for multi-drone
co-operation in order to stay on-course and avoid mid-air collisions. Furthermore,
trajectory planning and optimization is required to efficiently carry out the appli-
cation mission considering the limitations of energy and resources. To explicitly
understand how these two essential methods impact the performance of drones in
application missions, we elaborate them in the following:

1. Location Estimation and Prediction: Tracking and predicting the locations of
drones is important in order to get real-time estimates of drone positions for
autonomous control and to improve the accuracy of delivery tasks execution in
a specific application scenario. It measures how closely the drones are being
monitored and also measures the reliability of the path computation algorithm
performance. This can be achieved by using motion models of the drone move-
ments, and by using such models within a tracking algorithm or a recursive filter.
To get the near-optimal estimates with the motion model, prior works use the
Kalman Filter [8] technique which is widely-used for estimation purposes. The
popularity of Kalman Filter is due to the fact that this technique takes in the
current values as input data (i.e., measurement) along with noises (i.e., measure-
ment noise and process noise) to produce unbiased estimates of system states [9].
Leveraging this state estimation technique can help achieve predicted positions
of drones.

2. Trajectory Optimization The path that a drone follows during its operation is
crucial for effective communication, computation offloading [10], energy con-
sumption and information transfer. A drone’s trajectory design unquestionably
plays an important role in the application performance enhancement and effective-
ness. During its operation, the drone flies over areas which are prone to network
and communication vulnerabilities such as signal-loss, cyber-attacks, coverage
and range limitations that could severely impact the drones’ performance and put
the application mission at risk. Machine learning techniques such as model-free
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reinforcement learning [11] and deep reinforcement learning [12] provide effec-
tive reliable solutions for tackling these implications. They use trial-and-error
path learning techniques for a drone to establish optimal and intelligent trajectory
during its overall flight time during an application mission.

1.2 Chapter Organization

This book chapter aims to address the concepts of drone position and trajectory
optimization techniques related to intelligent path planning. The chapter will first
discuss the challenges related to drone location prediction and trajectory optimiza-
tion. Next, methods for location prediction will be discussed that involve various
Kalman filtering techniques and methods of trajectory optimization using reinforce-
ment and deep reinforcement learning techniques. In this context, we also discuss
non-ML-based methods for trajectory optimization. They together provide motiva-
tion for localization and intelligent path planning of drones for a given application
scenario. Furthermore, we discuss how trajectory optimization of UAVs can aid the
operations of public safety networks. These techniques are based on the theoretical
and experimental research conducted by the authors in the Virtualization, Multi-
media and Networking (VIMAN) Lab at University of Missouri Columbia. Lastly,
we discuss the main findings of this chapter and list out the open challenges and
future works that can be implemented using our approaches to carry out drone-based
application missions effectively and efficiently.

2 Challenges in Drone Location Prediction and Trajectory
Optimization

Since drones are classified under unmanned aerial vehicles, it can be presumed that
the navigation, operation and controlling is carried out externally by a ground con-
trol station or a ground (human) pilot. In most of the applications today, however
the drones flight is increasingly becoming autonomous and may require minimal or
almost no external (human) guidance. This is possible due to the variety of sensors
on-board that constitute the inertial measurement unit (IMU), global positioning sys-
tem (GPS), inertial navigation system (INS), gyroscope, accelerometer, barometer
and high resolution cameras. These sensors facilitate the autonomous drone flights
with high accuracy. Nevertheless, these sensors are prone to external noises that can
cause inaccuracies malfunctioning. Anther critical elements on which a drone’s fight
is dependent is the battery that powers the drones flying mechanism, its flight con-
troller and the above-mentioned sensors. Some of the major challenges pertaining to
localization and path-planning relating to the above issues are:
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Collision avoidance: Real-world application missions are carried out in complex
environments and sometimes, civil applications involving drones are conducted in
urban areas. The UAVs are only dependent on their on-board sensor capabilities
for their traversal through these environments. It is not always feasible to rely on
these sensor readings for navigation and the drones may run into obstacles, hit trees,
buildings or other drones mid-operation. Many techniques have been proposed for
collision avoidance using decentralized control [13, 14]. The drone has to be aware of
the location of its neighbor (drone) and itself at any given instant of time. Leveraging
this information can help tackle the problem of mid-air collisions. Object detection
using computer vision can help in identifying certain objects by training on datasets
of images of common environment obstacles [15]. However, drone’s system reliance
and communication within the network is usually difficult and challenging in large-
scale application missions involving complex environments.

System Security: A wide range of drone-based applications are carried out by
the military that operate on highly confidential information gathering within classi-
fied missions. Also, many civil applications involve sensitive data collection when
drones are deployed as aerial base stations or network providers that handle ground
user data (e.g., faces and postures of individuals in crowds). Drones are at risk of
cyber-attacks and can be hacked, without the drone being physically captured. The
information gathered can become vulnerable and exposed to hackers. Mostly, the
camera modules are targeted and video captured is received by hackers which may
expose the operations that are carried out in the surveillance area. The work in [16]
uses Blockchain technology that encrypts the data being transmitted to base stations.
An approach for threat analysis of drone based systems is described in [17]. Coun-
termeasures to security issues in professional drone based networks are shown in [18].

Energy Limitations: Drones require energy for total flight time including hov-
ering over an area for surveillance and data transmission. Additionally, the on-board
sensors constantly consume energy to function properly and provide localization of
the drones. Energy consumption can also be increased due to attached payloads [19],
wind resistance [20] and network issues [21]. The total energy on a drone is limited
thus restricting the flight-time of the application mission. The work in [22] provides
an energy-aware approach that uses trajectory planning of drones used as mobile
anchors to save energy.

Location Awareness and Blockage of Line-of-Sight: In the context of location
estimation of drones, blockage of line-of-sight for drones is a very trivial problem
that surfaces in the rarest of times [23]. As drones tend to fly long distances based
on their application missions, the location awareness becomes essential in order for
them to remain in their trajectory and under a predefined network connection for
information transfer. It is necessary that they avoid collisions and interference. It
becomes a problem if a drone’s flight is affected due to external factors and it might
become susceptible to unknown attacks. In the worst case scenario, the drone can be
thrown off-path and after consuming all its power, it can land or fall in an unknown
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territory. Thus, it can render itself and the information collected vulnerable, and any
expensive sensors or video camera components are subject to expensive damage or
loss. Various types of research is being conducted by many groups to realize location
awareness [24] of drones.

3 Methods for Drone Location Estimation and Prediction

In our DRS application the drone environment is considered to be a 2D dynamic and
non-linear horizontal plane. As discussed in Sect. 1.1, we assume that all the drones
are connected forming a FANET. They communicate the mapping and monitoring
information over the same network to the delivery drones in order to carry out a
delivery task. Consequently, the network topology of the multi-drone system keeps
on changing based on the mobility of the drones. The position estimation of the
drones must be performed in very short intervals of time using the new coordinates
being updated rapidly within the FANET. Each drone in the FANET is considered
to have a GPS module and an IMU to record its current location. This information
is broadcast to the FANET so that the other drones in the vicinity are recognized for
packet or information transfers when needed. We get the initial measurement data
of the drone using GPS and other on-board sensors such as gyroscope, barometer,
accelerometer and magnetometer that are all part of the IMU. The drone’s rotational
movement angles observed and controlled by a gyroscope and rotary movements,
for stability are shown in Fig. 2. The accelerations and rotations of the drone can be
observed over time to give an estimated position by learning the next measurement
values for different time-steps.

The position, velocity, acceleration and heading of a UAV are considered as
dynamic states at a given time-step. In order to get the location prediction of an
UAV, a state estimator is required to get the true values along with a prediction of
these states for the next time-step. Kalman filter can be used to observe state esti-
mates over time along with process noise and measurement noise from sensors to
give estimates on which drone position state estimates are closer to true values that
cannot be calculated directly [25]. Since the inception of Kalman filter in 1960, it
has evolved over time, and the most popular Kalman filters for UAV location esti-

Fig. 2 Motion angles of a
drone responsible for
movement with six degrees
of freedom controlled by the
gyroscope and flight
controller
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mation are the original Kalman filter, the extended Kalman filter (EKF) [26] and the
unscented Kalman filter (UKF) [27].

3.1 State Estimation of Drone Parameters Using Original
Kalman Filter

The functionality of Kalman filter relies on consecutive iterations of prediction and
filtering i.e., it follows a sequence of prediction and update equations. Along with
the inertial navigation system (INS) data, a predefined motion model of the drones’
movement is given as input to the Kalman filter. The motion model is basically a
state transition matrix having time-periods of the states i.e., x and y coordinate,
acceleration and angular velocity. The prediction equations give priori estimates
and the update equations give posterior estimates. The update equations take up the
previous state’s mean and noise covariance and produce the updated mean and noise
covariance values for the next state. The filter then combines the predicted states and
noisy measurements to produce unbiased estimates of drone system states. In this
process, datawith process noise andmeasurement noise from sensors is used as input,
and the Kalman filter produces a statistically optimal estimate of the underlying state
by recursively acting on the series of observed inputs.

For simplicity, theKalman Filter can be used to get position and velocity estimates
of UAVs but only in a 2D plane, assuming it us flying at a fixed altitude. Other
applications of Kalman filter include guidance and navigation systems, tracking of
maneuvering targets, dynamic positioning, sensor data fusion and signal processing.
An approach for path planning of UAV using a Kalman filter is given in [28].

3.2 Extended Kalman Filter for Non-linear Drone State
Estimation

The major limitation of a Kalman filter is that it can only process estimates of linear
systems, and it suffers from linearization when operated on nonlinear models. Drone
flight operation is generally non-linear and time varying and system parameters
with a dynamic motion model cannot be measured directly with on-board sensors
because they may be subject to noise and malfunctioning. To overcome this non-
linearity issue of drone position estimation, one of the widely used filter for non-
linear state estimation, i.e. the extended Kalman filter (EKF) is used. It uses Taylor
series expansion and linearizes and approximates the state estimates of a non-linear
function around the conditionalmean. EKF can be reliablewhile estimating the drone
positions using the drones’ dynamic state parameters.

The dynamic motion model is solved by learning the non-linear transition of
measurement noise covariance and process noise covariance along with the change
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in states to give an optimal estimate of the UAV position. The EKF also follows a
series of prediction and update equations. The priori estimates calculated during the
prediction process are updated to give the posterior estimates and their covariance.
Additionally, Jacobians of dynamic functions are used with respect to system state
of the UAV to map its states to observations. Additionally, by recursive operations,
the covariance of the estimated error is minimized. Hence, the EKF can be used to
get the more accurate positions of the drones through prediction of future positions
with insignificant errors, when compared to the original Kalman filter.

Thework in [29] shows the non-linear estimation of drone’s state alongwith sensor
data for localization and [30] shows an approach for determining the locations of
drones using inter-drone distances in 2D co-ordinates.

3.3 Unscented Kalman Filter for Improved Position
Estimation and Orientation Tracking of UAVs

The EKF is computationally complex and takes longer to produce estimates, also its
accuracy is reliable in real-time but can still be improved. The unscentedKalmanfilter
(UKF) is used for the same applications requiring higher accuracy. It is a deterministic
sampling approach involving sampling of distributions using a Gaussian random
variable. It employs the unscented transform method to select a set of samples called
sigma points around the mean to calculate the mean and covariance of the estimation
that eradicates the requirement of using Jacobians, as in the EKF. This preserves
the linear update structure of the original Kalman of estimates filter unlike the EKF.
Table1 shows the comparison of various Kalman filtering schemes used for location
estimation of UAVs; for a detailed comparison, readers can refer to [31].

In drone localization application, the system dynamics is expanded as the drone’s
cartesian location i.e., position, velocity and acceleration. These provide a non-liner
relationship between the system states andmeasurements, and thereby the implemen-
tation becomes simpler. The orientation tracking of a drone is also carried out using
the UKF [32] by considering rigid body dynamics using various types of measure-
ments like acceleration, angular velocity and magnetic field strength. It uses quater-
nions and UKF, thus proving its computational effectiveness of tracking. Another
approach for position estimation using UKF samples images uses a visual target. It
uses weights (difference of observed value and estimated value of vision sensor) for
observations to prevent divergence in estimated values by UKF [33].

3.4 Sensor Fusion for UAV Localization

Multi-sensor fusion is another technique that shows the importance of using data
from distinct sensors to predict the dynamic state estimates of drones for aerial
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Table 1 Comparison of Kalman filtering scheme variants for location estimation and prediction of
UAVs

Type of filter Type of system Accuracy Model design

Kalman Filter Linear Least accurate Least complex

Linearized Kalman
Filter

Non-linear Moderately accurate Moderately complex

Extended Kalman
Filter (EKF)

Non-linear Accurate Most complex

Unscented Kalman
Filter (UKF)

Non-linear Most accurate Complex

applications. The work in [34] shows how data collected from the GPS, IMU, and
INS are fused together for UAV localization using state-dependent Riccati-equation
non-linear filter alongwith aUKF.Drone path planning involves navigating the drone
to a desired destination travelling over a predefined path that constitutes obstacles and
other environment constraints. The work in [35] shows how the sensor fusion along
with real-time kinematic GPS sensors is used to accurately calculate the altitude and
position of the drone. They generate a data-set using instantaneous positions of the
drone in different directions along with the roll, pitch and yaw angles. Further, they
compare this data with the output of the sensor fusion model estimations that are
carried out using an EKF to produce position and altitude estimates of drones.

3.5 Location Prediction Based Intelligent Packet Transfer

The location prediction algorithm embedded with the above drone position models
along with the position and velocity estimation by Kalman filter and location predic-
tion by EKF, can be run online to make advance decisions by using future location
information of the mapping drones, monitoring drones and the delivery drones in
the FANET. UKF along with sensor fusion methods can alleviate potential inconsis-
tencies in the dynamic state estimation and can help the algorithm produce accurate
results. Thus, the FANET in the DRS scenario can utilize theses location estimation
techniques to facilitate efficient packet transfer.

Table2 summarizes how different methods of location prediction of drones have
been proposed in prior works to achieve goals in different application missions.
The details of the salient methods used to perform drone location prediction while
operating in an application are described in the following:
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Table 2 Methods and applications of location estimation of drones

Case study Method Solution Application Goal

Xiong et al. [25] Kalman Filter Linear estimation State estimation Autonomous
flight

Mao et al. [30] Extended Kalman
Filter

Non-linear
estimation

Localization of
UAVs

Localization
without GPS

Kraft et al. [32] Unscented
Kalman Filter

Linearized
estimation

Localization of
UAVs

Orientation
computation

Abdelfatah et al.
[35]

Sensor Fusion Non-linear
estimation

Localization of
UAVs

Altitude, position
estimation

4 Methods for Drone Trajectory Optimization Using
Machine Learning

In context of drone trajectory optimization, we consider an area that is prone to
signal-losses, cyber-attacks and potential obstacles like trees, buildings, tall-standing
structures which affect the drones’ performance and cause hindrance in the appli-
cation mission. An overview of a drone’s trajectory during an application is shown
in Fig. 3. To overcome these problems there is a need for intelligent path planning
that can enable the drones follow an optimal trajectory, flying in areas free of all the
impediments and attacks.

The details of the salient methods used to optimize the drones’ trajectories while
operating in an application are described in the following:

Fig. 3 Overview of drone’s trajectory in a learning based environment comprising of potential
obstacles
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Reinforcement Learning: Path planning of drones is a crucial aspect of research
in drone-based applications because the efficiency of missions is dependent on the
traversal of the drones in a given area. It correlates with autonomy and has a profound
impact on guidance, operation and endurance of the drones. Most drone based appli-
cation missions are defined in unknown environments. Therefore, Markov Decision
Process (MDP) is employed to solve such environments and the Q-Learning algo-
rithm is used that follows the Markov property [36]. It is a model-free reinforcement
learning algorithm that puts emphasis on an agent to learn actions under given cir-
cumstances to handle problems with stochastic transitions. For any finite MDP, the
Q-learning algorithm finds an optimal policy by maximizing the expected value of
cumulative rewards over successive actions taken in given states, starting from a
current state. There has been a wide usage of reinforcement learning algorithms in
varied areas of drone-based application research where drones are allowed to directly
and continuously interact with the environment.

Deep Reinforcement learning (DRL): This concept can be considered as a com-
bination of deep learning and reinforcement learning. It employs a deep neural net-
work (DNN) to estimate the Q function Q(s, a) for a given set of state-action pairs.
Often reinforcement learning requires the state space and the action space to be
fixed and discrete, and the agent learns to make decisions by using a trial and error
method. It basically involves employing a Q learning algorithm that maintains a
record of values of what actions have been taken in given state spaces and also the
rewards associated with the corresponding states and actions in a limited format
where the state space is predefined. The DRL method allows the agent to act in an
environment that has a continuous and mostly undefined state space. It also uses a set
of discrete or continuous actions which are given as a stack of inputs in contrast to
the single inputs in case of a simple reinforcement learning. In other words, the DRL
makes sure that the agent performs well with extensive input data coming from a
large state space to optimize the given objective of any application e.g., it uses pixels
as input data in Atari games [37]. The DNN approximates the Q function which
estimates the cumulative reward for each state-action pair. A DNN may often suffer
with divergence, so it uses a set of experience replay memory and target network to
overcome this issue. DQN based RL solutions for drones are necessary because a
drone’s operation in a given environment is considered as a continuous state space
and multi drone scenarios require more robust algorithms such as the multi-agent
DQN [38] and the actor-critic [39] networks, which also employ DNNs to generate
an optimal policy solution.

4.1 Q-Learning

Q-learning is a type of model-free reinforcement learning as described in [40], which
is used to solve MDP based problems with dynamic programming. The Q-learning
algorithm creates a table (i.e., Q-table) containing the corresponding values of each
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Fig. 4 Overview of
Reinforcement learning
showing the agent’s
interaction with the
environment corresponding
to given states and actions to
generate a policy

Action 
(At)State

(St)

Environment

Agent

Policy
Reward 

(Rt)

Observations

state-action pair and keeps updating them along with the reward values. The scores
obtained in the Q-table are represented as the values of the Q-function Q(st , at ), and
are given by -

Q(st , at ) = E

[∑
k

γ k Rt+k+1|(st , at )
]

(1)

where t is the time step and k is the episode. The Q-function is updated for each
episode when the agent performs certain actions in a given state to maximize its
cumulative reward using the Bellman’s equation [41], which is given as -

Q(st+1, at+1) ←− (1 − α)Q(st , at )

+ α[Rt + γ.maxaQ(st+1, at+1) − Q(st , at )]; (2)

The algorithm converges when maximum reward is reached. The policy encour-
ages the agent to choose optimal actions and receive greater scores in an iterative
fashion, which results in the model rendering high Q-values. The interaction of the
agent with the environment to generate rewards and to establish a policy is shown in
Fig. 4. The output of the Q-learning is the drone trajectory update guidance that is
used to keep the drones as much as possible in the optimal trajectory.

Ensuing the design of the drone’s optimal trajectory selection scenario using an
MDP, we can evaluate the overall performance by tuning the values of the discount
factor γ for obtaining the optimal policy π∗

t : St → At, which maps the state space
with best suitable actions.
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4.2 Deep Q-Network

To implement the Q-Learning based algorithm that render optimal trajectories of the
drones, we choose a DQN that allows formaximum exploration and exploitation [42]
of the learning environment by the agent. The actions in this case are dependent on
theweights of the primaryDNN,which adds flexibility in the overall learning process
i.e., as the weights update, the rewards update accordingly. The intelligent trajectory
learning application for DRS scenario renders network performance in terms of
throughput and the video quality scores (i.e., rewards) obtained in the process of
learning. The DQN is trained using a experience replay, which is memory buffer
that stores the sequence of state-action pairs from previous episodes. The process of
utilizing replay memory to gain experience by random sampling is called experience
replay.

The DQN utilizes the mini-batch from experience replay with the observed state
transition samples to update its DNNs after each episode during the training process.
Thereby, it breaks any correlation made using sequential state-action pairs in the
previous episodes.Sometimes, drones are used as swarms in application missions
that are connected via wireless links. For any broken link, the drones have to position
themselves to make up the broken link to maintain the same QoS requirements. The
work in [43] gives an approach that uses DQN to determine optimal links between
drones in swarms and to localize the drones to improve overall network performance
of the swarm’s wireless network.

4.3 Double Deep Q Network

The Deep Q Network has a single action value function and while updating the
primary DNN, same values are used for selection and evaluation of actions. This in
turn leads to overestimation that renders over optimistic action value estimates. To
avoid this issue, Double Deep Q Learning decouples the selection and evaluation
of value function using two separate DNNs (primary and target). It employs two
value functions that learn by selecting random experiences that produce two set of
weights [44]. It aims to get the most out of Double Q learning with slight increase
in computation. For civil and military based application missions, Double Deep Q
Network (DDQN) is used for 3 Dimensional path planning of drones using greedy
exploitation strategy to improve learning in complex environments [45].

4.4 Dueling Deep Q Network

The Dueling Deep Q Network (Dueling DQN) is another form of a deep reinforce-
ment learning algorithm. It consists of two separate estimators (DNNs) for state value
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function and action value function. It is used to overcome the impact caused by similar
action values in multiple episodes [46]. Some application missions involve multi-
drone connections using cellular networkswith each drone acting as a base station. To
improve the connectivity over the cellular network, Dueling DQN is used to provide
trajectory optimization and coverage-aware navigation for radio mapping [47]. Also
in other dynamic environments with unrealized threats, Dueling DQN can provide
intelligent path-planning using epsilon greedy policy to render optimal trajectories
of the drones [48].

4.5 Actor Critic Networks

Some of the most recent and popular reinforcement learning algorithms are the actor
critic networks that aim to achieve optimal policies using low-gradient estimates.
The actor network is a DNN that takes in the current environment state and com-
putes continuous actions and the critic judges the performance of the actor network
with respect to the input states. It also provides feedback to determine the best
possible actions that render higher rewards [49, 50]. An approach to achieve effi-
cient communication and band allocation in the drone network involves determining
their 3D trajectory under energy constraints using deep deterministic policy gradient
(DDPG) [51] actor-critic networks as shown in [52].

4.6 Orchestration Motivation for Online Learning

The performance in the network links acrossmulti-drone FANETs vary due to certain
factors such as, application requirements, weather conditions, obstacles in the path,
etc. that cause frequent or intermittent outages in transmission and receptionof crucial
information inside the FANET. This could also affect the drone’s video analytics,
when used for civil applications for aerial surveillance. Our proposed orchestration
process solves the network links and video analytics disruption by employing an
online learning based technique. It analyzes the trajectory during the drone flight,
and find ways to optimize the drone’s path and even the video quality by selection
of pertinent network protocol and video properties during the drone flight.

The Q-learning algorithm forms the basis of the trajectory learning of the drones
in different areas and can be applied across all the drones in the FANET. An approach
for path planning and obstacle avoidance is shown here [53]. However, Q-learning
cannot be used for complex learning environments as it would not allow exploration
and exploitation [54] of the total area that the drones are covering during their flights.

To achieve intelligent trajectory learning, we propose a Deep Q-Network based
method. The path selection aids the drones to learn and make necessary sequence
of decisions under uncertainty in FANET conditions. The learning involved in path
selection by the drones can be represented as aMarkov Decision Process (MDP) [39]
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which forms the basis for the DQN algorithm and is defined as a tuple containing
the following-

M=(st, at, pt, rt, s
′
t) (3)

where st is the state space,at is the action space, rt is the reward, pt is the probability of
transition of states and s

′
t is the next state. TheMDP aims tomaximize the cumulative

rewards that are received by the drones along their trajectories during the operation
over a surveillance area. The drones are assumed to be fully charged before they enter
the initial state. The learning environment comprises of all the states and actions.
(1) States: For any MDP, the states used are the current state st and the next state s

′
t .

(2) Actions: These are the actions that the drone chooses to perform during its flight
operation.
(3) Reward: It is a feedback parameter, received either as an award or penalty which
is a consequence of taking certain actions in the learning environment state-space.
(4) Probability of State Transition: It is defined as the probability distribution of the
next state s

′
t given the current state st and current action at .

The video and network analytics of drones can be formulated as states st ,
actions at along with corresponding reward functions in a civil application based
on requirements. A DQNwith pre-defined weights can take state space values (st ) of
drones as input, forward pass the values and generate optimal action value function
Q(st , at ), and compare it with optimal action value function Q∗

π (st , at ). Through
back-propagation, it can perform updates to the weights of the neurons so that in the
later iterations the output values come close to the optimal value. The DQN algo-
rithm converges when an optimal value is reached. The DQN model can be further
extended to Double DQN, Dueling DQN and Actor-Critic network using the same
learning environment based on the requirements for network and video orchestration.

An approach that uses deep reinforcement learning for optimizing UAV trajecto-
ries is detailed in [55] and uses flow-Level modeling for UAV base station deploy-
ments. A similar approach in [56] uses a deterministic policy gradient (DPG) on a
model-free reinforcement learning scenario to obtain intelligent UAV trajectories.
Deep reinforcement learning can also be applied to more complex scenarios involv-
ing tedious tasks such as real-time resource-allocation in multi-UAV scenarios [57].
We consider a scenario that aims to achieve optimal solution for ‘energy harvest
time scheduling’ in a UAV assisted device-to-device (D2D) communications setup
by conceiving a systemmodel that can reflect dynamic positions of UAVs along with
unknown channel state information. The system model also uses the deep determin-
istic policy gradient (DDPG) algorithm to solve the energy efficient optimization
game for the D2D communications scenario.
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5 Non-ML-Based Trajectory Optimization Techniques for
Drones

Although machine learning is gaining traction in solutions for autonomous vehi-
cles, trajectory optimization of UAVs in real-time scenarios is challenging because
it is a non-convex optimization problem. There have been advances in drone trajec-
tory planning and optimization techniques for single-UAV, dual-UAVandmulti-UAV
based applications. A survey for long-distance trajectory optimization of small UAVs
is given in [58], and a survey of techniques involving joint trajectory optimization
with resource allocation is given in [59]. An approach to perform joint trajectory and
communication co-design can be found in [60]. Advances in path-planning tech-
niques feature techniques that are quite different from learning-based methods. To
provide high-mobility and flexibility in FANETs, many techniques have been pro-
posed. However, there are several open challenges when it comes to path planning
of UAVs. A series of latest works that try to solve the open challenges are as follows.

5.1 Trajectory Optimization Using Quantization Theory-
Lagrangian Approach

An approach to provide optimal UAV positions in static networks under spatial user
density is described in [61]. This approach uses uniform distribution of ground termi-
nals at zero altitude anddetermines optimal placement ofUAVs in static environments
along with ways to reduce power consumption. The optimizations for the static case
are done by considering the UAVs at varying altitudes, followed by characterizing
optimal UAV deployments in dynamic scenarios. These optimizations are performed
by varying ground terminal density in any given dimension for a fixed number of
UAVs which are placed at moderate distances from each other. Two two cases are
considered: (i) UAVs with no movement, and (ii) UAVs with unlimited movement.
This approach aims to achieve lowest possible average power consumption followed
by providing a Lagrangian-based descent trajectory optimization technique. The
Lagrangian technique is similar to Voronoi based coverage control algorithms and
is based on time discretization.

5.2 Joint Optimization of UAV 3D Placement and Path Loss
Factor

An approach in [62] aims to fill the gaps of joint aerial base station (ABS) deploy-
ments and path loss compensation forABSplacements at certain heights. It puts stress
on the power control mechanism needed to establish reliable communication, and on
the propagation path-loss that hinders the overall communication performance. The
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3D UAV placement procedure involves altitude optimization for maximum coverage
along with horizontal position optimization for 2D placement that uses a modified
K-means algorithm for aerial base station height with a compensation factor.

5.3 Flexible Path Discretization and Path Compression

This technique considers a piecewise-linear continuous trajectory of a UAV whose
path comprises of consecutive line segments connected through a finite number of
points in 3D called way-points. It provides a solution to render an optimal path
by using a flexible path discretization technique to optimize number of way-points
in the path to reduce the complexity in the design of the UAV trajectory [63]. The
variables that tend to solve the path-planning are considered in two sets of design-able
and non-design-able way-points. The way-points are generated using their sub-path
representations that ensure a desired trajectory discretization accuracy. They also
help to obtain utility and constraint functions that retain accuracy in e.g., aerial data
harvesting using distributed sensors. Following this, a path compression technique is
performed that takes the 3D UAV trajectory and decomposes it into a 1D (sub-path)
signal to further reduce the path-design complexity.

5.4 Connectivity Constrained Trajectory Optimization

This technique provides a solution to optimize an UAV’s trajectory in an energy
and connectivity constrained application to reduce the overall mission completion
time. It uses graph theory and convex optimizations to achieve high-quality solutions
in various scenarios involving: (i) altitude mask constraints, (ii) coordinated multi
point (CoMP)-based cellular enabled UAV communications, (iii) QoS requirements
based communication using UAVs, and (iv) non-LoS channel model. The degree of
freedom of UAV movement is exploited to increase the design flexibility of UAV
trajectories with respect to the locations of GCS, and ground users for effective
communication. By applying structural properties, effective bounding and approx-
imation techniques, the non-convex trajectory problem is converted into a simple
shortest path problem between two vertices and solved using two graph theory based
algorithms [64]. A similar technique involving effective trajectory planning under
connectivity constraints using graph theory is shown in [65].

5.5 3D Optimal Surveillance and Trajectory Planning

Public safety is another crucial application domain for designing drone based com-
munication systems. Prior works such as [66] have proposed approaches to solve
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Table 3 Methods and applications of trajectory optimization of drones

Case study Objective Solution Method Performance

Koushik
et al. [43]

Node Positioning MHQ-PRP
Queuing

Deep Q-Network Increased
throughput of
dynamic UAV
swarming
network

Zhao et al. [45] 3D Path Planning Greedy
Exploration
(DRL)

Double Deep
Q-Network

Better
convergence
compared to
DQN and DDQN

Yan et al. [48] Real-time path
planning

STAGE scenario Dueling DDQN Efficient dynamic
environment path
planning

Ding et al. [52] 3D Trajectory
Planning

DDPG (DRL) Actor-Critic
Network

Increased
throughput under
fairness
conditions

Saxena et al. [55] Traffic-aware
UAV trajectories

Leveraging UAV
Base Station
Network
(UAVBSN)

Deep
Reinforcement
Learning

Three fold
increase in
throughput of
UAVBSN

Nguyen et al. [57] UAV Trajectory
Optimization

Energy
Harvesting Time
Scheduling

Deep
Deterministic
Policy Gradient

Efficient resource
allocation under
energy and
flight-time
constraints

Xu et al. [60] 2D Trajectory
Planning

Semi-definite
Programming

Monotonic
Optimization
(various)

Significant power
saving

Koyuncu
et al. [61]

Multi-UAV
Trajectory
Optimization

Lagrangian
Approach (1D)

Quantization
Theory

Minimized power
consumption

Shakoor et
al. [62]

3D Placement
and Path-Loss

Placement
Compensation
Factor

Various
Optimization
techniques

Improved
coverage and
performance

Guo et al. [63] 3D Trajectory
Design

Flexible Path
Discretization
and Path
Compression

Graph Theory
(Shortest path)

Reduced path
design
complexity

Zhang et al. [64] 3D UAV
Trajectory Design

Graph Theory Optimization -
(various)

Improved
connectivity

Yang et al. [65] 3D UAV
Trajectory Design

Graph Theory,
Inequality
property

Optimization -
(various)

Improved
connectivity

Teng et al. [66] 3D Optimal
Trajectory
Planning

Particle Swarm
Optimization

Trajectory
Planner

Improved
dynamic
environment
adaptability
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challenges for the public safety application domain. Specifically, a swarm optimiza-
tion based trajectory planner is provided with surveillance-area-importance updating
apparatus. The apparatus aims to derive 3D surveillance trajectories of several mon-
itoring drones along with a multi-objective fitness function. The fitness function is
used as a metric for various factors of the trajectories generated by the planner such
as energy consumption, area priority and flight risk. This approach renders collision-
free UAV trajectories with high fitness values and exhibits dynamic environment
adaptability and preferential important area selection for multiple drones. Table3
summarizes how different methods of trajectory estimation and optimization have
been proposed to achieve certain goals in various applications.

6 How Can Trajectory Optimization Aid UAV-Assisted
Public Safety Networks?

Public safety networks (PSNs) are established for public welfare and safety. They are
essential means of communication for first responders, security agencies and health-
care facilities. Nowadays, PSNs have been widely relying on wireless technologies
such as long range WiFi networks, mobile communication and broadband services
that use satellite-aided communication links. In addition, PSNs operate extensively
during natural disasters, during times when there is a threat to national security such
as terrorist attacks, and any large-scale hazards caused due to human activities. As
wireless communication is the backbone of PSNs, advanced and efficient communi-
cation technologies such as LTE and 5G-based communications can help establish
broadband services that provide improved situational awareness with security and
reliability characteristics in the network. In this section, we will discuss how UAVs
could be a choice for public safety networks in terms of various use cases, provide
case studies on trajectory optimization and localization for UAV-assisted PSNs, and
discuss open challenges in UAV-assisted PSNs. Figure5 provides an overview of
multi-UAV operations spanning diverse applications ranging from civil applications
to public safety networks.

6.1 UAV-Assisted Public Safety Networks

Since wireless communications play a fundamental role in PSN operations, their
effectiveness and responsiveness to emergency situations becomes critical [67]. A
few issues that affect the functioning of PSNs include: communication equipment
deployment costs, spectrum availability, network coverage and quality of service
(QoS). A few of these issues can be solved by improving the ground-based com-
munication systems by fully exploiting the potential of situational awareness and
enabling advanced tracking, navigation and localization services [68]. However, to
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Fig. 5 Overview of
multi-UAV operations across
various applications ranging
from civil applications to
public safety networks
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eradicate these issues of PSNs as a whole, UAVs with enhanced functionalities that
can operate as aerial base stations with high-end communication equipment can be
used to amplify the effectiveness of communication, improve coverage, reliability,
and energy efficiency of wireless networks. In such UAV-assisted PSNS, UAVs are
operated by acting as flying mobile terminals within a cellular network or broadband
service while monitoring the area, simultaneously. The other advantage on UAV-
assisted PSNs is that the UAV base stations are faster and easier to deploy, which
provides effectively on cost and can be flexibly reconfigured based on mobility.

6.2 Trajectory Optimization and Path-Planning for
UAV-Assisted PSNs

Trajectory Optimization and localization of UAVs can significantly impact the 3D-
deployment of the aerial base-stations serving non-stationary users. Optimal path
planning can help strengthen the carrier channel transmitting and receiving charac-
teristics. The cellular networks involving aerial base stations can be converted to
FANETs, which can help to establish efficient wireless communication in the PSNs.
A case study in [69] used path-planning for UAVs in a disaster resilient network.
They showed how drones can be used in an wireless infrastructure, allowing a large
number of users to establish line-of-sight links for communication.Another approach
in [70] uses fast K-means based user cluster model for joint optimization of UAV
deployment and resource allocation along with joint optimal power and time transfer
allocation for restoring network connectivity during a disaster response scenario.
Similarly, research in [71] discusses the role of UAVs in PSNs in terms of energy
efficiency and provides a multi-layered architecture that involves UAVs to establish
efficient communication by considering the energy consumption considerations.
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6.3 Open Challenges in UAV-Assisted PSNs

As we can observe from the previous subsections, UAVs when used as aerial base
stations can significantly improve the performance and operation of PSNs. However,
there are sill open challenges that need to be resolved. For example, the monitor-
ing of moving objects/target-users becomes an issue after deployment in a disaster
scenario. Few challenges such as traffic estimation, frequency allocation and cell
association are addressed in [72]. An approach in [73] propose a disaster resilient
communications architecture that facilitates edge-computing by providing a UAV
cloudlet layer to aid emergency services communication links. Another approach
in [74] has a uplink/downlink architecture for a Full-Duplex UAV relay to facilitate
ground base stations around the UAVs. The UAVs communicate to distant ground
users using non-orthogonal multiple access (NOMA) assisted networks.

Another important concern raised with UAV-based PSNs is security (see Sect. 2).
In most cases, These PSNs are handling confidential information and may become
vulnerable. They can also be subject to cyber and physical attacks. A variety of
security concerns and challenges in drone-assisted PSNs are addressed in [75] such
as: WiFi attacks, channel-jams, grey hole attacks, GPS spoofing and other issues
relating to interruption, modification, interception and fabrication of information
along with procedures to handle them.

7 Conclusion and Future Outlook

In this chapter,wehavepresentedmulti-UAVco-operation applications and explained
howdrone location prediction and trajectory optimization can be performed.We have
learnt how location estimation prediction and trajectory optimization of drones can
be beneficial in diverse application missions such as disaster response and other civil
applications relating e.g., transportation. Various challenges in drone localization,
path-planning and trajectory prediction were detailed.

To cope up with the challenges of localization of drones in application scenarios,
we studied how techniques such as non-linear dynamic parameter state estimation
of drones using distinct Kalman filtering techniques and sensor fusion can solve the
drone localization and position prediction problem. We have also seen how Kalman
filter can be used for position and velocity estimation of drones followed by location
prediction with inter-drone distances and sensory measurements using the Extended
Kalman filter. To cope up with sensory malfunctions and other inconsistencies of
the filtering techniques, we detailed various machine learning techniques such as
reinforcement learning and deep reinforcement learning. Furthermore, to cope up
with the challenges of collision avoidance, trajectory optimization and path planning
aswell as handling of energy constraints,we have seen howavariety of reinforcement
and deep reinforcement learning techniques can be used to realize the potential of
multi-UAV co-operation.
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Further, we presented a scenario corresponding to online orchestration and learn-
ing of network and video analytics for civil applications using multi-agent reinforce-
ment learning techniques. These techniques feature prominent mechanisms that can
be used for the 2-D and 3-D path-planning of UAVs along with network and resource
allocation under bandwidth and energy constraints.Moreover,wediscussed non-ML-
based trajectory optimization techniques and explained howUAV-based applications
can aid public safety networks.

The Road Ahead to More Open Challenges: We conclude this chapter with a
list of more open challenges for multi-drone co-ordination in application missions.
Addressing these challenges is essential for a variety of multi-drone applications
such as aerial surveillance, deployment of UAVs as base stations and aerial mapping
and monitoring that are relevant for location estimation and path planning. Few
approaches such as [76] shows how joint positioning of UAVs as aerial base stations
is done to provide a smart backhaul-fronthaul connectivity network. Other issues are
shown in the following-

– Excessive movements during flight with no hovering: When the drones are in
complex environments or unknown territories with unrealized threats, they tend
to fly more rapidly and in different directions in a short span of time. This may be
a result of collision avoidance of obstacles in the path or ineffectual attempts to
explore the environment to learn threats. This leads to increased energy consump-
tion and affects the battery capacity of drones, thus shortening their overall flight
time. To avoid this issue, dynamic programming and scheduling algorithm could
be useful if the drone flight plan in the mission is known apriori. The work in [77]
provides two cases that show how data services using UAVs is maximized using
hover time management for resource allocation, where the optimal hover time can
be derived using service load requirements of ground users.

– Air-resistance due to strong winds: Severe wind gusts can throw the drones
off-course and deviate a drone from following its optimal path. The on-board
sensors are subject to vibrations during severe wind conditions and can produce
noisy data that may lead to inaccurate estimates of drones parameters. Unexpected
wind resistance can also hinder the trajectory learning of the drone using DRL
techniques. This hindrance is possible when the drone traversing in optimal path
may change course due to the impacts wind. Further research on EKF and UKF
based state estimation of gyroscope readings to study the effects of wind could
help in developing suitable solutions. The approach in [78] addresses the altitude
control problem of UAVs in presence of wind gusts and proposes a control strategy
along with stability analysis to solve the issue of air-resistance.

– Combining LSTMs with Kalman Filters and DQN: The non-linear state esti-
mation of drone’s dynamic parameters is done using individual time-steps of data
by on-board sensors and use of the Kalman filter. Also, for the DRL techniques,
the drone (agent) takes actions in a given state in independent episodes. Long short
term memorys (LSTMs) can be used to utilize the information of previous time-
steps of drones instead of just one time step or one episode to make predictions.
This way LSTM based Kalman Filtering mechanisms and LSTMs based DRL
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mechanisms can use past information of the drone(s) and make much accurate
predictions. There are works that show how coupling a Kalman Filter with LSTM
network improves performance and provides faster convergence of algorithms for
various application purposes [79, 80].

– Multi-drone Co-ordination under energy constraints: In missions involving
a drone swarm or a fleet of drones, it is difficult to monitor each of the drones’
parameters. Factors such as malfunctioning or loss of one drone due to total bat-
tery utilization can affect the operation of other drones and compromise the overall
application mission. Off-line path planning along with online path-planning can
help UAVs find the nearest base stations with recharge units and help alleviate
this issue and support multi-drone co-ordination even under available energy lim-
itations. One such approach to solve the issue of multi-drone coordination under
energy constraints is detailed in [81].
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Abstract Unmanned aerial vehicles (UAVs) evolution has shown potential in many
applications of wireless communication because of their high coverage, promising
rates, and flexible installation. Owing to the drastic increase of this technology, one
of the major challenges is the availability of on-board energy levels to UAVs to stay
aloft for a prolonged time. Due to their limited on-board energy, many of the UAVs
can go down, and as a result, many associated ground users can face coverage issues
etc. Considering this problem, in this study, we give an idea of collecting the uplink
traffic from these disaster-points (where active UAVs were serving previously) with
the objective of minimizing the Age-of-Information (AoI) of the entire network.
Specifically, we address the optimum trajectory of a UAV for collecting data so
that the timely delivery of information to the destination can be possible, which
will ultimately reduce the overall AoI. We use three different kinds of trajectories
namely, random trajectory, travelling salesman problem (TSP)-based trajectory, and
proposed trajectory. Simulations show that the proposed trajectory outperforms in
the scenario, where disaster-points are less. Additionally, unsupervised learning-
based UAVs distribution helps in reducing the AoI as compared to Matern type-I
hard-core process-based UAVs distribution. Furthermore, the proposed trajectory is
computationally less expensive than TSP-based trajectory; thus, it can be viable in
many applications, e.g., Internet of Things (IoT).
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1 Introduction

Within a short span of time, unmanned aerial vehicles (UAVs) communication
emerged as a new paradigm shift because of their instant deployment, flexible to
change position and high probability of line-of-sight (LoS); thus, improving the cov-
erage and rate performances [1–8]. Seeing the popularity of UAV communications,
[9] address the real-time deployment of UAVs and a resource allocation scheme.
By utilizing deep reinforcement learning, [10] propose a solution for energy har-
vesting time scheduling in a UAV-aided device-to-device communication. The non-
orthogonal multiple access (NOMA)-based UAV network is evaluated in [11], where
a detailed theoretical analysis is provided with simulation-based results. Teng et al.
[12] propose a particle swarm optimization (PSO)-based UAV trajectory algorithm,
where priority is given to surveillance areas.Motivated by the inaccurate channel state
information (CSI) at the transmitter side [13–15] address a twin-channel prediction-
based CSI acquisition algorithm for UAV communications. Recently, a scalable idea
of replacing terrestrial backhaul networkwith an aerial network is proposed, inwhich
small cell base stations (SBs) will be routing the uplink/downlink traffic of cellular
users via UAV-hubs to the ground core-network [16].

In [6, 17–19], the association (serving a group of network entities) of SBs with the
UAVs is addressed for the idea given in [16].On the one hand, on-demanddeployment
of UAVs in this kind of backhaul network will result in saving deployment cost
constraints and time; however, on the other hand, their limited battery life or on-
board energy levels cannot help them stay aloft for a prolonged time [20]. Therefore,
notably, the UAVs will be replaced with the new ones when there is battery depletion
in the older ones. This replacement of UAVs will greatly affect the overall network’s
performance in terms of delay for the ground users or SBs.

Considering such kind of network, in which UAVs are unable to provide the
services to ground SBs due to their limited on-board energy levels, we propose an
idea of collecting the information from the disaster-points (where a few UAVs went
down or unavailable to provide services) with the help of one UAV in the uplink
scenario of the network discussed in [6, 17–19]. This collection of information from
ground SBs shall be delivered timely to the destination to avoid mismatch and is
proposed as Age-of-Information (AoI) in the literature, which is defined as “the
measure of the freshness of data” [21, 22]. AoI metric has become more important
in the network, where live updates are needed to be delivered without any delay from
the source (SBs) to the destination (ground core-network). Hence, in such kinds of
scenarios, the trajectory of the UAV for the collection of data from different disaster-
points plays a vital role.

In this book chapter, the optimum trajectory of a UAV is addressed to minimize
the AoI within the context of our work discussed in [19]. Nevertheless, it is impor-
tant to note that our proposed trajectory is also useful in the Internet of Things (IoT)
environment [23, 24] for the collection of data from various IoT-based devices (e.g.,
smart transportation systems, smart homes and buildings). Specifically, we use three
different kinds of trajectories to minimize the values of AoI metric. Firstly, we use
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Fig. 1 Pictorial representation of a wireless backhaul network, where multiple UAVs are serving
different SBs. Failure of different UAVs is marked with the cross sign

random trajectory for the collection of data, then we give the idea of using famous
travelling salesman problem (TSP) as a UAV trajectory. Finally, we address pro-
posed trajectory to meet the objective of minimizing AoI. Simulations show that for
a smaller network, having few disaster-points, proposed trajectory gives better per-
formance in terms of minimizing AoI and computation cost. Also, UAVs distribution
used in [19] outperforms the one used in [17].

The remainder of the book chapter is organized as follows: In Sect. 2, we describe
disaster scenario and path-loss model. In the same section, we also elaborate AoI
and the algorithms tominimize AoI. Section3 focuses on the outcomes of algorithms
discussed in Sect. 2 and their computation cost. Additionally, it compares AoI with
the types of UAVs distributions used in [17, 19]. The conclusion is given in Sect. 4
with some future outlooks.

2 System Model

2.1 Scenario

Consider the uplink scenario of a UAV-assisted heterogeneous network (HetNet), as
shown in Fig. 1, where C child-UAVs are flying at an altitude H from the ground
level to collect the uplink traffic of S ground SBs. A parent-UAV P is flying at an
altitude higher than the child-UAVs, and it is connected with the child-UAVs via a
free-space optical (FSO) link. The purpose of placing parent-UAV at a higher altitude
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is to make an LoS connection with the child-UAVs and the ground core-network.
Each child-UAV will directly send the collected information from its associated SBs
to the parent-UAV. Further, parent-UAV is connected through a single-hop FSO link
with ground core-network. Let us denote the set of child-UAVs as C =Δ {1, ...,C}
and set of ground SBs as S =Δ {1, ..., S}. Moreover, c ∈ C has horizontal coordinate
uc = (sc, tc), with H altitude, and s ∈ S has vs = (xs, ys), with zero altitude.

We assume that in such a network, all the child-UAVs will not be providing the
services all the time because of their low on-board energy levels. Therefore, we
assume that C − 1 child-UAVs go down and the remaining only one child-UAV
c ∈ C has to collect the data from the rest of the points called as disaster-points,
where C − 1 child-UAVs were serving previously. In the rest of the book chapter,
we model our system by considering only one chid-UAV c ∈ C.

2.2 Path-Loss Model

In the considered case, the distance from child-UAV c, which will collect the data
from the disaster-points, to the SB s is

dc,s =
√
H 2 + ‖(uc − vs)‖2 , c ∈ C, s ∈ S . (1)

In addition, the probability of LoS, denoted by PLoS, presented in [25, 26], is given
as

PLoS = 1

1 + α · exp { − β(ϕ − α)
} , (2)

where the values of α and β depend on the operational environment. Also, the
elevation angle (measured in degrees) is represented by ϕ. It is important to note that
PNLoS = 1 − PLoS.

Next, we consider the wireless channel between child-UAVs and SBs; therefore,
we use the air-to-ground (ATG) path-loss model presented in [25, 26]. The total
path-loss is written as

Ψc,s = FSPL + PLoS · ζLoS + PNLoS · ζNLoS , c ∈ C, s ∈ S , (3)

where free-space-path-loss (FSPL) is obtained as FSPL = 20 log10
(
4π·dc,s

λ

)
, ζLoS

and ζNLoS are the attenuation factors for the LoS and NLoS links, respectively.
The signal-to-noise ratio (ψ) of the sth SB at the c child-UAV is written as

ψc,s = μ

σ2
, s ∈ S, c ∈ C , (4)
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where μs,c = Ωt − Ψc,s is the received power at child-UAV c from sth SB, Ωt is the
transmit power of each SB, and σ2 is the noise power between their communication
link.

The outage probability (Pout) of each SB at child-UAV c can be calculated by
comparing the received power with predefined threshold τ , which is formulated as

Pout = P{μ < τ } . (5)

The uplink data rate is given by

Rc,s = w · log2(1 + ψc,s) , s ∈ S, c ∈ C . (6)

where w is the available bandwidth to each SB to upload their data.

2.3 Age-of-Information (AoI)

AoI is the measure of the freshness of data at a particular base station. In other
words, it means that how much collected information at time t is old after t + 1
time. Within the scope of our problem, we consider two types of AoI. The one
because of movement of UAV from one disaster-point to other and here we call it as
Age-of-Information due to the movement (AoIM) and is calculated as

AoIM = 1

v

∑
c∈C

dc, j , (7)

where dc, j is the distance from the location of c child-UAV to j th disaster point, v
is the speed of child-UAV with which it moves from one disaster-point to the other,
and C is the set of all disaster points to be visited. The other Age-of-Information is
called as AoIC, which is the age to collect the data, from sth SB by c child-UAV at
a particular disaster-point and is defined as

AoIC = L
∑
s∈S

1

Rs,c
. (8)

It can be observed that the second age is dependent on the rate of each SB with
which it sends the data to child-UAV and the size of the transmitted packet L of that
SB. Therefore, our focus would be to minimize the first age in the rest of the book
chapter.

The total Age-of-Information (AoIT) by adding (7) and (8) is, therefore, given as

AoIT = AoIM + AoIC . (9)



138 M. K. Shehzad et al.

2.4 Algorithms for AoI Minimization

In the disaster scenario, where only one child-UAV is left to collect the uplink traffic
of SBs, child-UAV c moves to the first disaster-point and associates the SB with
itself by using Equation (5). Afterwards, it collects the data from associated SBs and
then moves to the next disaster-point. Our objective is to minimize AoIM. Therefore,
below we describe three algorithms to minimize this age.

2.4.1 Random Trajectory

In this algorithm, once the disaster has occurred, child-UAV c moves to collect the
information to the disaster-point next to it. In this method, child-UAV does not calcu-
late distances to take its next turn; it simply moves to the next point and collects the
information and from there to next and so on. Hence, in this way, child-UAV collects
the data from all disaster-points and handovers to the parent-UAV P . Therefore, this
trajectory of child-UAV for collection of data is called as random trajectory.

2.4.2 Travelling Salesman Problem’s Trajectory

The travelling salesman problem (TSP)-based trajectory is the way in which child-
UAV computes the minimum cost (distance) to its all disaster-points before starting
the walk. In other words, it calculates the minimum cost in which child-UAV can
cover all disaster-points. Therefore, in this trajectory, child-UAV makes intelligent
decisions to collect the data from its disaster-points before leaving, which is com-
monly known as TSP [27].

2.4.3 Proposed Trajectory

In the proposed trajectory, we use the idea of minimum distance-based planning to
meet the objective of minimizing AoI. In this trajectory, child-UAV calculates the
distance from its initial point Pinit to its disaster-points and then moves to the nearest
neighboring point Pinit+1 to collect the data and after collecting the data from Pinit+1,
the child-UAV again measures the distance at Pinit+1 from un-visited disaster points;
therefore, moves to the nearest neighbor, which is at the minimum distance from
Pinit+1. This is how the algorithm works until it visits all the disaster-points to collect
the information, and at the last disaster-point, child-UAV handovers the collected
information from all SBs to its parent-UAV P . Later on, parent-UAV sends the data
to the ground core-network, which we do not consider in our work.
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3 Simulation Results and Discussion

The area of 16km2 is considered, where the distribution of SBs is considered using
Matern type-I hard-core process [28]. The intensity of SB and the distance between
two SBs is ς and dmin (in meters), respectively [19]. Next, in scenario-1, the child-
UAVs are distributed using Matern type-I hard-core process used in [17], and in
scenario-2, utilizing unsupervised learning used in [19]. Then one child-UAV c is
kept, and the rest of them are removed because of the assumption that they went out
of battery, and hence one remaining child-UAV c has to collect the data from the rest
of the positions (disaster-points) where C − 1 child-UAVs were collecting the data
previously. Table1 shows the simulation parameters. The results are scrutinized using
three trajectories, i.e., random trajectory, TSP trajectory, and proposed trajectory.

Figure2 shows the 3D view of the distribution of disaster-points using an unsu-
pervised learning-based algorithm and the optimal path is represented by using TSP
trajectory. The disaster points are depicted by integers, where 1 represents the start
position of a UAV. It can be observed that by using TSP trajectory, the optimal
trajectory of a UAV for data collection is 9, 1, 4, and so on.

Table 1 Simulation parameters

Parameter Value Parameter Value

λ 0.15m τ −120dB

α 9.61 σ −125dB

β 0.16 μLoS 1dB

μNLoS 20dB L 100Kb

ς 2 × 10−6/m2 dmin 250m

v 20Kmph Ωt 5W
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Fig. 2 Three dimensional (3D) view of distribution of disaster-points using unsupervised learning
and optimal path of UAV for data collection using TSP trajectory
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Fig. 3 Age-of-Information due to movement versus disaster-points in all trajectories

Figure3 depicts that as more number of UAVs go into outage, then AoIM for the
collection of data increases, for one UAV. However, in the case of random trajectory,
AoIM increases exponentially, which means that data collected by this trajectory will
be very old. On the other hand, AoIM for the proposed and TSP trajectory increases
very slowly, which is almost constant. However, there is a little difference in both
the trajectories, which we evaluate in the next figure.

Figure4 reveals that as the number of tours for the collection of data increases,
TSP trajectory performs better in both types of UAVs distribution. However, for a
smaller number of tours (up to 6), proposed trajectory has a smaller value of AoIM,
for both types of UAVs distribution, which is good if we consider the scenario of
[19], where only four UAVs are present (and we assume that three are not serving
because of battery depletion). Later in this section, we also evaluate the computation
cost of both the trajectories to see the positive side of the proposed trajectory.

Figure5 uncovers the positive side of using unsupervised learning-based UAVs
distribution when the packet size is varied. The trend shows that as the uploading
packet size L of SBs increases, AoIC increases as well. However, AoIC increases
slowly in unsupervised learning-based distribution; on the other hand, it increases
gradually inMatern type-I hard-core process-based UAVs distribution.

Finally, in Fig. 6, the trend for AoIT can be observed, for both types of trajectories
i.e., TSP-based trajectory and the proposed trajectory. It can be noticed that total
Age-of-Information, AoIT for the proposed trajectory is very less, which means that
received data at the destination will be fresher. Conversely, TSP trajectory has higher
value of AoIT. Nonetheless, the curves for both the trajectories are almost constant,
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Fig. 6 Total AoI versus packet size using two trajectories. (Disaster-Points 3)

which is due to the reason that we kept disaster-points to three, and there is a very
small increase (in milliseconds) in AoIC; therefore, when AoIC adds up with a bigger
value of AoIM, then it does not make any big difference. Thus, curves are constant. In
a nutshell, unsupervised learning-based UAVs distribution used in [19] gives better
results for minimizing the overall AoI.

3.1 Computational Complexity

The computational complexity of both the trajectories is analyzed using the elapsed
time for three disaster-points, which is a perfect fit in the worst-case scenario for the
network used in [19]. Importantly, both the trajectories are implemented on MAT-
LAB R2018a (Windows 10 platform). The laptop, core 2, had 4 logical processors
clocked at 1GHz and having RAM = 4GB. It can be observed from Table2 that
unsupervised learning-based UAVs distribution achieves the better AoI, for both
kinds of trajectories. Additionally, the proposed trajectory results in saving compu-
tation time up to 1.85s. Similarly, in Matern type-I hard-core process-based UAVs
distribution, firstly, the proposed trajectory saves AoI due to movement (AoIM) up to
90 s. Secondly, the computational time of the proposed trajectory is also very little,
which makes a difference of 1.3s. In short, the proposed trajectory is beneficial in
saving computation cost and AoIM when we use unsupervised learning-based UAVs
distribution and with Matern type-I process-based distribution, proposed trajectory
not only saves the computation time but also AoIM.
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Table 2 Computational complexity of TSP and the proposed trajectory using 3 disaster-points

Method AoIC (S) AoI M (S) Elapsed time (S)

Unsupervised
learning: Proposed

1.6 × 10−3 0.787 × 103 0.69

Unsupervised
learning: TSP

1.6 × 10−3 0.884 × 103 2.54

Matern type-I process:
Proposed

2.9 × 10−3 0.560 × 103 0.88

Matern type-I process:
TSP

2.9 × 10−3 0.654 × 103 2.18

4 Conclusions and Future Directions

In this bookchapter,AoIminimization inUAV-assistedbackhaul network is addressed.
Initially, a few UAVs are collecting the uplink traffic of SBs, but due to battery deple-
tion, three UAVs go in outage, we have one UAV to cover the entire region. Hence,
in such kind of scenario, we tried to collect the information by using one UAV with
the aim of minimizing AoI of the entire network. To minimize AoI, three different
trajectories are used, that is, random trajectory, travelling salesman problem’s-based
trajectory, and the proposed trajectory. Numerical results showed that the unsuper-
vised learning-based UAVs distribution resulted in saving AoI than using theMatern
type-I based UAVs distribution. Additionally, the proposed trajectory is computa-
tionally less expensive than the TSP trajectory. Further, the proposed trajectory has
given better values of AoI due to mobility for a fewer number of visits.

In this book chapter, focus was solely on the minimization of age due to the
mobility of a UAV. In the future, we will also address minimization of age due to the
collection of data. In addition to this, we will focus on providing a comprehensive
analysis of different UAV trajectories proposed in the literature, e.g., PSO.
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Enhancing UAV-Based Public Safety
Networks with Reconfigurable Intelligent
Surfaces

Wael Jaafar, Lina Bariah, Sami Muhaidat, and Halim Yanikomeroglu

Abstract Recently, reconfigurable intelligent surface (RIS) has emerged as a 6G
enabling technology, which is capable of enhancing communication reliability,
extending coverage, and improving security, while maintaining high energy and
spectral efficiency. RIS comprises a number of artificially engineered meta-atoms
that achieve diverse functionalities, including beam shaping, signal splitting, reflec-
tion, absorption, and polarization. These functionalities shed the light on the advan-
tageous integration of RIS into future wireless networks. Specifically, integrating
RIS into unmanned aerial vehicle (UAV) networks can be attractive, in the sense
that RIS and UAV networks are intertwined, i.e., being enabled by each other. In
fact, RIS-equipped UAVs can flexibly move in the 3D space to achieve panoramic
full-angle signals manipulation, while UAV users may rely on the available RISs
within the environment in order to operate securely, at extended ranges, and with
reduced communication and energy costs. Consequently, the integration of RIS with
UAV networks is advocated as a key enabler for critical public safety services, where
highly resilient, reliable, secure, and low latency communications are mandatory. In
this chapter, we aim to articulate the fundamentals, design aspects, and applications
of RIS as an enabling technology for future wireless networks. Furthermore, we will
present an in-depth discussion about the integration of RIS into UAV networks, with
emphasis on the mechanisms, advantages, and related challenges. Finally, practical
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public safety related use cases will be studied, providing performance insights and
future research directions.

Keywords Reconfigurable intelligent surface · RIS · Unmanned aerial vehicle ·
UAV · Phase-shift · Public safety

1 Introduction

The speculative vision of future sixth-generation (6G) wireless networks is tailored
for provisioning massive-scale ubiquitous connectivity, with the aim to cater for the
massive increase in the number of connected devices. This explosive growth is a con-
sequence of the emergence of novel data-hungry applications, which require seam-
less on-demand wireless connectivity, with guaranteed high-reliability and ultra-low
latency requirements [1]. Such applications call for the development of efficient
technologies to provide enhanced connectivity, in order to cover wider areas at the
earth, from urban and suburban to rural areas, and therefore, support a wider range
of new use cases. Over the last decade, unmanned aerial vehicle (UAV) networks has
attracted a considerable attention from the research and industrial communities. This
stimulated from the evolution of aerial-based applications that are supported by UAV
networks, including security inspection, packet delivery, traffic control, as well as
connectivity support to rural and disaster-hit areas [2]. The ability of UAVs to fly in
a three-dimensional (3D) space with flexible altitudes, in the range of few hundred
meters, enables them to realize a 360◦ panoramic full-angle communication, and
hence, provide on-demand backhaul connectivity to ground nodes, fronthaul links
for aerial nodes, and an interface between satellite and ground networks. Energy effi-
ciency constitutes a major limiting factor in the design of efficient UAV networks,
given their limited on-board battery capacity, which limits the flying time between a
few minutes and a few hours. This is particularly pronounced when the UAV acts as
a flying base station (BS) or an amplify-and-forward (AF) relay, due to the increased
amount of consumed power needed for signals generation, transmission, and pro-
cessing. Extensive research efforts have approached the energy efficiency issue, with
the aim to enable UAVs to enjoy uninterrupted long flying time and to widen the
range of functionalities supported by flying BSs and relays.

Motivated by the recent advancement in the field of reconfigurable intelligent
surfaces (RISs), RIS-enabled UAV networks have emerged as a promising candidate
in order to realize energy-efficient, reliable, cost effective, and low-complex wire-
less communication at the sky [3]. In addition to the earlier mentioned features, the
integration of RIS into aerial networks was motivated by other several advantages
offered by these intelligent surfaces. Inspired by their basic operational principle,
RISs promise to offer enhanced reliability to UAV-supported ground communica-
tion, by ensuring the availability of a line-of-sight (LoS) link between the UAV and
terrestrial nodes. It is worth recalling that the existence of a LoS is essential for the
realization of efficient aerial-ground communication. Such links might be unavail-
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able or blocked by an obstacle, particularly in crowded urban areas. Furthermore,
the utilization of an RIS, mounted at the UAV, enables the UAV to extend its cov-
erage area, by employing a number of functionalities supported by the RIS, e.g.,
wave focusing and splitting. This attractive property can be significantly boosted by
the employment of a larger number o reflective elements (REs), which are the main
building blocks of an RIS [4].

1.1 RIS-Enabled UAVs for Public Safety Networks

Public safety networks are a critical type of wireless networks that are essential for
emergency scenarios such as, fires or natural disasters, and are characterized by their
fast deployment, guaranteed coverage and energy supply, availability, low latency,
and adaptivity. UAV networks have been extensively studied in the literature as key
enablers for public safety networks. This is motivated by the swift deployment, the
availability of a line-of-sight (LoS) communication, the availability of on-demand
360◦ panoramic full-angle communication, and the scalability features offered by
UAV systems, which perfectly fit the needs of public safety networks. Nevertheless,
the limited battery capabilities and the short communication distances constitute a
limiting factor in the deployment of UAV networks for public safety communica-
tions. In this regard, the integration of RIS into UAV networks represents an appeal-
ing solution for public safety systems. This is motivated by the seamless, flexible,
wide-coverage, and reliable communication that can be offered by RIS-aided UAV
networks to the first responders (FRs) when an emergency occurs, either in urban
or rural areas. Furthermore, various RIS functionalities can be exploited to enable
enhanced signal strength and hence, longer communication distances. Inspired by
this, the aim of this chapter is to lay down the fundamentals of RIS-enabled UAV
networks, as an enabler for resilient and low-latency communication in public safety
networks. In particular, themain chapter contributions can be summarized as follows:

– Articulate the fundamentals of RIS-enabled wireless networks, in addition to a
thorough discussion on metasurfaces, trade-offs between RIS and relaying sys-
tems, and path-loss modeling. In the latter, we investigated the 3GPP models for
terrestrial and non-terrestrial networks.

– Study the integration of RIS into UAV wireless networks. In particular, we will
shed lights on the fundamentals, advantages, andmajor limitations of RIS-assisted
and RIS-equipped UAV systems.

– To demonstrate the performance of RIS-assisted and RIS-equipped UAV commu-
nications, we present two case studies as enablers for surveillance and search-and-
rescue applications, where we investigate the related achievable data rate perfor-
mance.

– We highlight potential limitations of RIS-enabled UAV networks and sketch the
road-map toward future research directions.
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2 Chapter Outline

This chapter is organized as the following. In Sect. 3, we present the fundamen-
tals of RIS technology, an in-depth discussion about metasurfaces, and a thorough
comparison between RIS-enabled and relaying networks. We further present the
path-loss modeling, including the 3GPP model, of RIS-assisted wireless networks,
for terrestrial and non-terrestrial scenarios. Section 4 extensively presents the basic
principles, advantages, and limitations of the integration of RIS into UAV networks,
with considering two scenarios, namely, RIS-assisted and RIS-equipped. The effi-
ciency of adopting RIS-enabled UAVs as an enabler for public safety networks is
demonstrated in Sect. 4, in which simulation results are presented. The chapter is
concluded in Sect. 5 in which we highlight major challenges in RIS-enabled UAVs
for public safety networks, and point out potential future research directions.

3 Reconfigurable Intelligent Surface

The ongoing deployment of the fifth generation (5G) wireless networks has raised
serious debates on whether 5G networks will be capable of delivering the promis-
ing vision built over the last few years. Particularly, it has become evident that the
advancements offered by 5G networks follow similar trends as the ones brought by
their predecessors [1]. This means that, albeit the remarkable performance enhance-
ment introduced, in terms of data rate, spectral and energy efficiency, connected
devices, coverage, and capacity, to name a few, 5G wireless networks have failed to
realize breakthrough technological trends that promised to capture the ever-growing
stringent requirements of future wireless networks, which aim to enable ubiquitous,
secure, unified, self-sustainable, and fully-intelligent platforms. Through the solid-
ification process of the 5G standardization and commercialization, the lights were
shed on the development of enhancing technologies for improved signals transmis-
sion and reception, with emphasis on the design of novel transmitters and receivers.
Meanwhile, due to the highly stochastic nature of wireless channels, the propaga-
tion environments remain unlikely amenable to control. However, such randomness
causes severe signal fluctuation and uncontrollable interference attributed to signals
scattering, reflection, and diffraction, rendering it a critical limiting factor in the
design of future wireless networks. In light of this, academic and industrial efforts
have been initiated in order to explore the potentials of 6G wireless networks, which
are envisioned to enable two main principles, namely, softwarization and virtualiza-
tion, with the aim to conceptualize smart and adaptive radio environment paradigms
[5]. In smart radio scenarios, the propagation environment are anticipated to be aware
of the undergoing signals transmission, enabling self-optimization and adaptation
functionalities.

With the revolutionary solid-state progression and the visualization of software-
defined networks (SDNs), RISs, a.k.a intelligent reflective surfaces, have recently
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Fig. 1 Enabled functionalities by an RIS

emerged as a disruptive energy and spectrally efficient technology and an appeal-
ing candidate for 6G wireless networks [6–8]. In particular, RIS has been promoted
as an innovative paradigm that is capable of offering a programmable control over
the wireless propagation environment. Such features can be realized by employing
an array of reconfigurable elements, referred as Metasurfaces, which enjoy unique
electromagnetic (EM) properties, allowing them to enable desirable reactions when
interacting with incident wireless signals. Specifically, based on the system require-
ments, the RIS can enable a number of engineered functionalities, including beam
focusing, absorption, imaging, scattering, and polarization [9], as depicted in Fig. 1.
These functionalities can be exploited to achieve particular network goals. For exam-
ple, beam splitting can be utilized to enable multi-user support, while beam blocking
can assist with enhancing the security and maintaining a controlled level of inter-
ference. Furthermore, beam focusing and steering can play a role in enhancing the
received signal strength, mitigating interference, and enabling wireless power trans-
fer. Extended coverage and controlled random signals reflection can be achieved by
beam polarization functionality. Owing to these proactive features, RIS has become
an attractive point of interest, which, according to research, can offer the following
advantages. (i) Simple and flexible deployment, due to the exploitation of near-
passive elements and given the fact that these smart surfaces can be mounted on
building facades, aerial platforms, vehicles, etc. (ii) Spectral efficiency, (iii) energy
efficiency, and (iv) compatibility [10].

3.1 Metasurfaces: The Building Block of Intelligent Surfaces

While signals reflection through a regular reflective surface follows Snell’s law, the
key principle ofRIS follows the generalizedSnell’s law,where the angles of reflection
do not necessarilymatch the angles of arrival. Rather, anRISmanipulates the incident
signal phase in order to direct/split/polarize/focus the impinging signal into a desired
directionwith an adjusted amplitude [6]. Such alteration in theEMproperties ofwire-
less signals establishes a novel link between the physical dimension and the digital
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world, rendering RIS an attractive technology for future wireless communications.
In the following, we detail the fundamentals that enable such intelligent surfaces to
manipulate the wireless signals in a man-made manner. Reconfigurable intelligent
surfaces are made of a number of metasurfaces, which enjoy sub-wavelength thick-
ness and can potentially function over a wide range of frequencies, spanning from
the microwave band to the visible light [11]. A metasurface is regarded as a two-
dimensional artificially structured array of metallic or dielectric substrates, enabling
them to exhibit unique EM behavior, at the macroscopic level, and therefore, trans-
form the impinging EM signals in various ways [5]. In particular, the RIS interaction
with the incident EM waves relies on the design of the meta-atoms (which are the
basis of metasurfaces), as well as the arrangement of the substrates, in which they
can be organized in patches, strips, or crosses. In more details, meta-atoms expe-
rience customized and featured permittivity and permeability characteristics, that
are not observed in materials found in the nature. Meta-atoms can be classified into
static and dynamic designs, where the latter is equipped with an external switch-
ing element. Note that even with a simple ON/OFF switches, dynamic meta-atoms
architecture is still capable of enabling an attractive range of functions. In general,
the response of the meta-atoms is determined based on the inducted current when
an EM wave arrives at the metasurface. In a static architecture, the resultant current
pattern at the metasurface is defined by the meta-atoms geometry and composition.
Similar factors affect the current patterns in dynamic architectures, in addition to the
switches states [12]. Therefore, a more adaptive and fully controllable metasurface
can be realized by the dynamic design of the meta-atoms, which can be achieved by
properly adjusting the switches, in order to manipulate the meta-atoms permittivity
and permeability, and hence, achieve the required macroscopic EM behavior [12].

3.2 RIS Versus Relaying Systems

Generally speaking, RIS can be regarded as an enhanced AF relay, in which power
amplifiers are eliminated, and therefore, incident signals can be amplified/adjusted
without consuming high energy, rather, by employing a large number of REs. In
particular, from an energy efficiency perspective, it was proven that RIS can act as a
full-duplex multiple-input multiple-output (MIMO) relay, whereas from the spectral
efficiency angle, the performance of RIS is comparable with a half-duplex relay.
However, self-interference experienced in full-duplex relays does not exist in the
RIS, rendering RIS as an energy efficient alternative to relaying networks [13]. On a
different note, by recalling that RISs comprise passive or semi-passive elements, RIS
enjoys higher deployment flexibility, compared to relaying networks. Furthermore, it
was demonstrated that, under the assumption that the LoS component is unavailable,
the RIS outperforms AF relays, in terms of average signal-to-noise ratio (SNR),
outage probability, and ergodic capacity, even when employing a few number of REs
[14]. Nevertheless, with respect to average error rate, the performance of an RIS and
AF relay was shown to be comparable, when employing a single RE. For a significant
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enhancement to the system reliability, a larger number of REs can be leveraged with
the aim to improve the achievable diversity order, and hence, remarkably reduce the
average error rate.

On a differentmanner, it was revealed that a decode-and-forward (DF) relaywould
require less transmission power in order to achieve low rate, compared to an RIS.
This is particularly observed when the RIS has a low number of REs [15]. Yet, as the
number of REs increases and the receiver becomes closer to the transmitter or the
RIS, the required transmit power for RIS-enabled networks becomes comparable to
the DF relay scenario. On the other hand, in order to achieve higher rates when the
transmitter-receiver distance is short, theDF relay consumeshigher energy, compared
to an RIS. Therefore, it can be concluded that for the case of a DF relay, the key
is the number of reconfigurable elements. In specific, an RIS can outperform a DF
relay when hundreds of reconfigurable elements are employed. In this regard, it is
worth highlighting that, even with hundreds of elements, the RIS will be physically
small, given that each element has a sub-wavelength size [15].

3.3 Path Loss Modeling in RIS-Enabled Systems

Theutilization ofRIS is particularly appealing for the caseswhendirect links between
transmitters and receivers are blocked or weak. Therefore, the employment of a RIS
introduces a reliable link to support and strengthen direct transmissions or to establish
a reliable communication when the direct link is unavailable.

Recent research studies have demonstrated that large-scale fading in RIS-assisted
networks can be modeled as free-space path-loss, in which the effect of scattering,
reflection, and shadowing are neglected [10], and under the assumption that the
RIS is either electrically large or small, i.e., the size of the RIS with respect to the
wavelength [16–18]. In particular, the proposed models in the literature are intended
to capture the relationship between the path-loss and the RIS size and distance from
the transmit/receive nodes. In the following, we present the path-loss model of two
scenarios, namely, near-field and far-field. Note that near-field scenario represents
the case when the RIS is close to both the transmitter and receiver, or its dimensions
are relatively large, i.e., width and length are 10 times larger than the wavelength
(λ). On the other hand, far-field denotes a small RIS scenario, or when both the
transmitter and receiver or one of them is far from the RIS. Hence, assuming W and
L denote the width and the length of an RIS comprises N REs, the nth end-to-end
path-loss for a near-field scenario, with respect to the RIS dimensions, can be given
by [18]

PLnear = √
GtGr

(
λ

4πd0

)[(
d0
dtr

) α
2

+
(

d0
dtn + dnr

) α
2

ρn exp [− j (θi + θr )]

]

(1)
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where Gt and Gr denote the transmit and receive antennas gains, and d0 and α

account for the reference distance and path-loss exponent, respectively. Also, dtr , dtn
and dnr represent the transmitter-receiver, transmitter-nth RE and nth RE-receiver
distances, respectively. The nth RE response is represented by the gain ρn , while the
incident and reflection angles are given by θi and θr , respectively. Assuming perfect
signal reflection with ideal phase-shift, the nth RE reflection gain can be normalized
to unity, i.e., ρn = 1, while the nth phase-shift can be set to zero, θi + θr = 0. Note
that for the near-field scenario, the RIS acts as an anomalous reflector, and therefore,
the path-loss is affected by the summation of the traveling distances of the two links.
On the other hand, for the the far-field scenario, in which each RE acts as a scatterer,
the end-to-end path-loss is affected by the cascaded distances over the two links. The
far-field path-loss through the nth RE can be modeled as the following

PL far = √
GtGr

(
λ

4πd0

)2

dα
0

(
ρn exp [− j (θi + θr + φn)]

(dtndnr)
α/2

)
(2)

where φn denotes the adjusted phase-shift at the nth RE.

3GPP Path-Loss Model In RIS-assisted wireless networks, the RIS can be placed
at the building facades, advertisement signs, traffic signals, etc. Therefore, in the fol-
lowing, we present the 3GPP path-loss model of RIS-assisted wireless transmission
in urban environments. The total path-loss experienced over the BS-RIS link can be
evaluated as the following [19]

PL i−j = PLoSPLLoS
i− j + (1 − PLoS)PLNLoS

i− j , (3)

where PLoS is the LoS probability, PLLoS
i− j and PLNLoS

i− j are the associated losses in
the LoS and NLoS conditions between communicating devices i and j , such that
(i, j) ∈ {(BS,RIS)}.

Assuming that the RIS devices equipping the building are installed below 23m
(i.e., up to 7 floors buildings), the LoS probability between devices i and j can be
expressed by [19, Table7.4.2-1]

PLoS =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if d2Di−j ≤ 18m(
18

d2D
i− j

+ exp

(

−d2D
i− j

63

)(

1 − 18

d2D
i− j

))

×
(
1 + f (h j )

5
4

(
d2D
i− j

100

)3
exp

(
− d2D

i− j

150

))
if d2Di−j > 18m,

(4)

where d2D
i− j is the 2D separating distance (projected on the ground) between devices

i and j in m, (i, j) ∈ {(BS,RIS)}, and f (h j ) is given by



Enhancing UAV-Based Public Safety Networks … 153

f (h j ) =
⎧
⎨

⎩

0 if hj ≤ 13m
(
h j−13
10

)1.5
if 13m < hj ≤ 23m,

(5)

while the path-loss for LoS and NLoS communication links are written by [19,
Table7.4.1-1]:

PLLoS = 28 + 22 log(di− j ) + 20 log( f ) + X (6)

and
PLNLoS = max

(
PLLoS, P̄ L

NLoS
)

(7)

where

P̄ L
NLoS = 13.54 + 39.08 log(di− j ) + 20 log( f ) − 0.6 (h j − 1.5) + X, (8)

di− j is the 3D distance between devices i and j in m, f is the carrier frequency in
GHz, and h j is the RIS altitude (measured from the middle point for RIS). Also, X
represents a log-normal random variable denoting the shadow fading, with standard
deviation equals to σ = 4 dB and σ = 7.8 dB for LoS and NLoS, respectively.

Finally, assuming that the UAV flying altitude is regulated under 150m, the link
between the RIS and the UAV can be represented by the air-to-ground 3GPP model
[20]

PLRIS−UAV = 28 + 22 log10(dRIS−UAV) + 20 log10( f ) + XUAV, (9)

where XUAV is the normally distributed shadow fading with deviation σ =
4.64 e−0.0066 hUAV in the urban environment.

4 Integration of RIS into UAV Networks: A Review

As studied in [8], RIS is capable of improving the received SNR and the latter
increases quadratically when the number of RIS reflecting elements doubles. Such
interesting performances, combinedwith the small payload ofRIS compared to active
communication equipment has motivated the integration of RIS in aerial platforms,
in particular with UAVs. This integration can be identified in two types: First, RIS-
assisted UAVs, where RIS mounted on objects, such as buildings facades, vehicle
roofs, and towers, can be used to assist UAVs to sustain their beyond visible LoS
(BVLoS) communications, i.e., UAVs are controlled without a direct command and
control (C&C) link between the pilot and the UAV, to bypass obstacles in their
communications with ground users/devices, or to secure such communication links
[21–23]. Second, A UAV can be equipped with an RIS in order to reduce on-board
payload and save battery usage, while providing efficient communications to ground
devices [18, 24–26]. These types are further explained below.
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4.1 RIS-Assisted UAV Systems

Assisting UAV communications through RIS has received a lot of attention recently.
In [21], the authors investigated the joint problem of UAV trajectory and RIS’s pas-
sive beamforming design aiming to maximize the average received data rate at a
ground user served through the RIS and UAV in a multi-hop fashion. As in [21],
the authors of [27] focused on UAV trajectory design and phase shifts optimiza-
tion, targeting to maximize the sum data rate of a group of ground users. Due to
the non-convexity of the problem, an alternating optimization (AO) method, which
decomposes the problem into two sub-problems, is developed. Given optimal phase
shifting, UAV trajectory design is solved using the successive convex approxima-
tion method. Results validate the superiority of the proposed approach compared
to benchmarks. Moreover, Yang et al. studied in [22] a similar system, where they
derived the analytical expressions of outage probability and average bit error rate
(BER). Obtained results demonstrate the advantageous use of the RIS to improve the
coverage and reliability of the UAV communication system. Also, authors of [28]
extended the previous works to the use of multiple RIS devices and in the mmWave
frequency band. Given predefined UAV flying trajectory and minimumQoS require-
ments, they jointly optimized the deployment, user scheduling, and phase shifting of
RIS. An AO-based approach is developed, which is shown to provide superior sum
data rate performance than deployments without RIS/UAV optimization. In addi-
tion to communication purposes, RIS can be used to assist mobile edge computing
(MEC) services in the sky, i.e., by allowing MEC-enabled UAVs to provide com-
putation to ground users through the RIS. In that matter, Mei et al. investigated in
[29] the related problem of joint UAV-trajectory, task/cache design, and phase shifts
optimization, aiming to maximize the energy-efficiency of the MEC system. The
non-convex problem is solved using a sub-optimal successive convex approximation
(SCA), and numerical results showed a substantial performance increase compared to
benchmarks. Liu et al. developed in [30] an RIS/UAV integration framework, where
RIS is deployed to assist a UAV in serving ground users through the non-orthogonal
multiple access (NOMA) scheme. Energy minimization problem was formulated,
where UAV trajectory, RIS phase shifting, and NOMA power allocation are jointly
optimized. Due the non-convexity of the problem, the authors proposed a reinforce-
ment learning solution, based on decaying deep-Q-network. Through simulations,
they demonstrated that their method converges faster that conventional Q-learning.
Also, UAV’s energy consumption is significantly reduced by integrating RIS into
the system. Finally, dynamically optimizing the NOMA decoding order and power
allocation allows to decrease energy consumption by 11.7% compare to the bench-
mark without NOMA. Finally, from the security perspective, Li et al. investigated
in [23] the maximization of the average worst-case secrecy rate, defined as the dif-
ference in data rates between the communication of a legitimate user and that of
an eavesdropper. The authors studied the joint design of the UAV trajectory, RIS
phase shifting, and transmit powers of legitimate ground users. Due to the non-
convexity of this problem, an AO approach is proposed, where three sub-problems
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were formulated and solved using the SCA, S-Procedure, and semi-definite relax-
ation (SDR), respectively. Obtained results confirmed the robustness of the proposed
solution, and showed its significant average secrecy rate gain compared to baseline
algorithms. These works are summarized in Table1.

4.2 RIS-Equipped UAV Systems

The idea of equipping UAVs with RIS, called RIS-UAV, is mainly driven by the
UAV motion flexibility to establish strong LoS links with ground devices, thus sav-
ing transmit power. Also, due to the typically limited payload and power of UAVs,
which may not be able to carry and operate efficiently heavy radio-frequency (RF)
transceivers, using RIS instead allows to reduce energy costs. This vision has been
first proposed in [25] where it was demonstrated that an RIS-UAV can extend the
coverage area of terrestrial BSs, thus filling the coverage holes and meeting users’
high-speed broadband needs. In such scenarios, a ground control station is respon-
sible for sending the required configurations allowing the onboard RIS controller to
configure RIS phase shifts and direct signals towards the targeted receivers. The same
authors conducted in [18] a rigorous link budget analysis for RIS-mounted aerial plat-
forms, including UAVs, high-altitude platforms (HAPS), and low-earth orbit (LEO)
satellites. Their results draw insights and guidelines about the use of RIS in aerial
platforms. Specifically, it was shown that (1) the RIS-UAV performance is indepen-
dent from the operating frequency when maximal number of REs is used, (2) with
high receiver antenna gain, RIS-UAV data rate is close to that of other platforms,
and (3) best data rates are achieved when the RIS-UAV is close to the ground trans-
mitter or receiver. The RIS-UAV vision has been further studied in [31, 32], where
novel use cases, challenges, and opportunities were identified and explained. In [26],
the authors used the RIS-UAV to maximize cellular coverage within a geographical
area. Specifically, they jointly optimize RIS-UAV phase shifting and BS beamform-
ing problem, aiming to maximize the worst received SNR, while taking into account
practical flight effects, i.e., undesired RIS-UAV oscillations due to adverse atmo-
spheric conditions. Results proved the robustness and reliability of the flight effects
combatingmethod, and its gain of about 25 dB over state-of-the-art schemes. Finally,
regarding such systems’ security, the authors of [24] proposed to use an RIS-UAV to
secure the uplink communications between ground users and a BS. They focused on
maximizing the secrecy energy efficiency, defined as the ratio of the secrecy rate and
consumed power, through the joint optimization of UAV trajectory, RIS phase shift-
ing, user association, and transmit power. The problem is tackled with an AO-based
approach, then, simpler schemes were proposed to solve the RIS phase shifting and
UAV trajectory sub-problems. Simulation results illustrated the fast convergence of
the proposed method, and the improvement in the secrecy energy efficiency by up to
38% compared to schemes without RIS. Alternatively, RIS has been used in [33] to
mitigate jamming signals by accurately optimizing the phase shifts and RIS-UAV
location. The aforementioned works are summarized in Table2.
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Table 1 Related works (RIS-assisted UAV systems)

References Focus Objective Findings

[21] Joint UAV trajectory and
RIS phase-shift design

Max. avg. achievable rate – Locally optimal
solution obtained using
SCA
– Proposed algorithm
increases avg. achievable
rate compared to heuristic
benchmarks

[27] Joint UAV trajectory and
RIS phase-shift design

Max. sum data rate of
ground users

– Optimal solution
obtained using AO
– RIS enhances the
quality of UAV
communications
– Proposed approach
outperforms heuristic
UAV trajectory designs

[22] Analytical modeling of
RIS-assisted UAV
communication links

Derivation of outage
probability and avg. BER
expressions

– RIS improves coverage
probability, avg. capacity,
and system reliability

[28] Joint optimization of
multiple RIS deployment,
user scheduling, and
phase shifting

Max. sum data rate of
ground users

– Sub-optimal solution
obtained using AO
– Proposed solution is
superior to benchmarks
without RIS
phase-shifting and/or
UAV trajectory
optimization

[29] Joint UAV trajectory,
task/cache placement, and
RIS phase shift design

Max. energy efficiency of
RIS-assisted
MEC-enabled UAV
system

– Sub-optimal solution
obtained using SCA
– Proposed solution is
superior to static
cache/task placement and
non-optimized RIS
designs

[30] Joint optimization of
UAV trajectory, RIS
phase shifts, and NOMA
power

Min. energy consumption
of RIS-assisted UAV
NOMA downlink

– A reinforcement
learning based solution is
developed
– Dynamic optimization
of NOMA order/power
reduces energy
consumption compared to
non NOMA benchmarks

[23] Joint design of UAV
trajectory, RIS phase
shifts, and legitimate
users’ transmit power

Max. avg. secrecy rate – Sub-optimal solution
obtained using AO
– Proposed approach is
robust against channel
uncertainties and
outperforms heuristic
baselines
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Table 2 Related works (RIS-equipped UAV systems)

References Focus Objective Findings

[25] Control architecture
design and case studies of
RSS-equipped aerial
platforms

Extend coverage of
terrestrial BSs

– Proposed control
architecture is viable
– With a fixed number of
reflectors, the UAV
achieves the best receive
power performance

[18] Link budget analysis of
RIS-equipped UAV
communication links

Derivation of receive
power expressions and
maximal achievable data
rates

– RIS-equipped UAV
performance is
independent from the
operating frequency
– With high receive
antenna gain,
RIS-equipped UAV’s data
rate is close to that of
other platforms
– The best performance is
obtained when the
RIS-equipped UAV is
close to the ground
transmitter or receiver

[31, 32] Case studies and
challenges discussion of
RIS-equipped UAV
systems

Shedding light on
potential uses and
opportunities of
RIS-equipped UAV
systems

– Overview of
applications enabled by
RIS-equipped UAV
systems
– Introduction of
research, implementation,
and experimentation
guidelines for
RIS-equipped UAV
systems

[26] Joint optimization of BS
beamforming and RIS
phase shifting

Max. worst received SNR – Proposed approach is
guarantees robust
coverage against UAV
oscillations and
outperforms the agnostic
benchmark

[24] Joint optimization of
UAV trajectory, RIS
phase shifts, user
association, and transmit
power

Max. secrecy energy
efficiency

– Sub-optimal solution
obtained using AO
– Proposed method
converges fast and is
superior by 38% to
non-RIS baselines

[33] Joint optimization of
UAV location and RIS
phase shifts

Max. legitimate user data
rate

– An AO-based solution
is proposed
– Proposed method
effectively compensates
jamming and outperforms
the non-RIS benchmark
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4.3 Use Cases and Performance Evaluation

Clearly, RIS-assisted and RIS-equipped UAV communications have a significant
potential use in public safety networks. For instance, by relying on the RIS over
building facades or other objects, and on the motion flexibility of UAVs, FR com-
munications can benefit from frequent LoS links, and thus sustain communications
while dealing with emergency situations. Moreover, in a hard-to-reach area, the con-
current use of dedicated emergency communication channels from the closest BS
combined with an accurate deployment of an RIS-UAV enables temporary com-
munication/computing services for the time to deal with the emergency. Such a
deployment can be punctual, recurrent, or periodic in order to ensure surveillance of
critical assets.

In order to acquire an understanding about the potential use of RIS-assisted and
RIS-mounted UAV systems, we present below public safety use cases with their
corresponding link budget analysis and performances.

RIS-Assisted UAV Systems Assisting UAVs with RIS is an interesting feature that
would allow extended coverage, higher capacity, and flexible spectrum sharing, for
public safety services such as search and rescue, disaster response, and surveillance.
For instance, by relyingonmultipleRISdevices along the path separating theBS from
the controlled UAV, the action area of the latter can be significantly increased, which
allows for fast and efficient response to threatening incidents within the covered
region.

In linewith the aforementioned example, we consider aUAVdeployed for surveil-
lance purposes in a predefined region. Due to the lack of cellular coverage due to
blockages or weak signals, we assume that K RIS devices are deployed in the area to
strengthen signals incoming from a BS in a multi-hop fashion, i.e., the BS’s signals
are forwarded among RIS devices until they reach the UAV, as depicted in Fig. 2.
Also, we assume that the RIS devices are numbered from 1 to K , such that RIS1 is the
closest to theBS,whileRISK is the closest to theUAV, and that RIS k is equippedwith
Nk reflecting elements, k = 1, . . . , K . In terrestrial environments, an RIS is typically
installed on a facade of a building, mainly in an urban environment. Subsequently,
the 3GPP model presented in (3)–(5) can be used to model path-loss. Given that in
this section we consider K RISs, nodes i and j are set such that (i, j) ∈ {(BS,RIS1),
(RISk ,RISk+1); k = 1, . . . , K − 1}.

Subsequently, assuming perfect phase shifting, the link budget of the RIS-assisted
UAV communication can be given by

Pr = Pt + Gt + Gr − PLBS−RIS1 −
K−1∑

k=1

PLRISk−RISk+1 − PLRI SK−U AV

+20
K∑

k=1

log (Nk), (10)



Enhancing UAV-Based Public Safety Networks … 159

Monitored
area

Wireless
communication

Surveillance
UAV

RIS

Building

BS

Fig. 2 RIS-assisted UAV communication for surveillance

where Pr is the received power at UAV, Pt is the transmit power of the BS, and Gt

and Gr are the transmit and receive gains of the BS and UAV respectively.
The related data rate can be expressed by

R = B log2

(
1 + Pr

Pn

)
, (11)

where B is the transmission bandwidth and Pn is the noise power, defined as

PN = kT BF, (12)

where k = 1.38 × 10−23J.◦K−1 is the Boltzmann constant, T is the temperature in
◦K, and F is the noise figure.



160 W. Jaafar et al.

BS

RIS-UAV

Covered
area

Incident
signal

Reflected
signal

Emergency
incident

Obstacles
FR

Fig. 3 RIS-UAV assisted communication for search and rescue

RIS-Equipped UAV Systems Unlike the previous use case, an RIS can be mounted
on a UAV, thus providing more placement flexibility, which is expected to improve
communications’ quality of service. Assuming a search and rescue where FR teams
(FRs) have to reach an endangered area where victims have been located, RIS-UAVs
can be deployed over selected areas to provide connectivity to ground teams. For the
sake of simplicity, we consider that a BS communicates with the FR in the targeted
area via one RIS-UAV, deployed for the occasion, as illustrated in Fig. 3.

Assuming the 3GPP air-to-ground channel model, it is plausible to assume that
communication links are all in LoS. Hence, path-loss in rural and urban environments
can be expressed by [20]

PL rural
BS−UAV = max

(
23.9 − 1.8 log10(hUAV), 20

)
log10(dBS−UAV)

+20 log10(
40π f

3
) + XUAV, (13)

PL rural
UAV−FR = max

(
23.9 − 1.8 log10(hFR), 20

)
log10(dUAV−FR)

+20 log10(
40π f

3
) + XFR, (14)

PLurban
BS−UAV = 28 + 22 log10(dBS−UAV) + 20 log10( f ) + XUAV, (15)

and
PLurban

UAV−FR = 28 + 22 log10(dUAV−FR) + 20 log10( f ) + XFR, (16)

where hi , di− j , and XUAV are defined as in the previous subsection, while X j is the
normally distributed shadow fadingwith deviation as in (8) for the urban environment
and with deviation σ = 4.2 e−0.0046 hj for the rural environment.
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Fig. 4 Impact of the
location of the RIS on the
data rate (K = 1)

Given ideal phase shifting, the link budget of the RIS-UAV assisted communica-
tion can be given by [18]

Pk
r = Pt + Gt + Gr − PLk

BS−U AV − PLk
U AV−FR + 20 log (N ), k ∈ {rural, urban}

(17)
where Pk

r is the received power at FR in the urban or rural environment. Finally, the
data rate can be expressed using (11).

Performance Evaluation We evaluate here the achieved data rate performance for
the describeduse cases above,where the impact of keyparameters is also investigated.

For the first use case (RIS-assisted UAV surveillance), we assume that the system
parameters are set as follows: The altitudes of the BS, RIS devices on buildings’
facades, and UAV are set to hBS = 25 m, hRISk = 10 m, ∀k = 1, . . . , K , and hUAV =
100 m, respectively. Also, the transmit power of the BS is Pt = 35 dBm, the transmit
and receive gains Gt = 8 dBi, and Gr = 5 dBi, the frequency f = 2.4 GHz, and the
bandwidth B = 20 MHz [19]. Finally, the area of RIS devices is Ak = 3 × 3 m2,
∀k = 1, . . . , K and the number of hosted reflecting elements in the RIS is calculated
by [18]

Nk = Ak f 2

(0.2v)2
,∀k = 1, . . . , K , (18)

where v = 3 × 108 m/s is the speed of light, and 0.2 is the minimal separation
between reflecting elements, considering the scattering paradigm [18].

In Fig. 4, given K = 1, we depict the data rate performance as a function of the
2D distance between the BS and RIS. As it can be seen, the best performance is
achieved when the RIS is the closest to the BS. When the RIS is located about half-
way from the UAV, the performance is the lowest due to the degraded incident and
reflected signals through theRIS.However, when theRIS is close to theUAV, the data
rate slightly increases. This is due to the improved quality of the RIS-UAV channel.
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Fig. 5 Impact of the number
of RIS devices on the data
rate

Also, we notice that the performance is insensitive to the used frequency band, for the
same RIS area. For instance, given RIS with A = 9 m2 and f = 2.4 GHz, the RIS is
equipped with N = 14.4k reflecting elements according to (18), while N = 1, 960k
reflecting elements for B = 28 GHz within the same RIS area. It means that the RIS
compensates the use of a higher frequency band, which degrades the transmission
performance, by the deployment of a larger number of reflecting elements. Finally,
when the same number of reflecting elements is used for different frequencies, we
found that the higher the frequency, the worst is the data rate performance. This is
expected since higher frequencies experience significant environment attenuation,
which reduces its efficacy.

Clearly, assisting UAVs in their operation with high data rates would require the
use of a sufficiently large RIS regardless of the operating frequency. Nevertheless,
the best performances are obtained when placing the RIS closer to the BS.

Figure5 shows the performance of the multi-hop system, where several RIS
devices are used to forward the signals from the BS to the UAV. We distinguish
three different cases, where each one corresponds to clustered RIS devices close to
either the BS, the middle point between BS-UAV, or close to the UAV. First, we see
that forwarding signals in a multi-hop fashion does improve significantly the data
rate, conditioned on the same distribution of RIS devices. However, if the RIS loca-
tions are inadequate, one would strategically forward the signal through a single or
at most two optimally located RIS devices in order to enhance the data rate. Finally,
the best performance is achieved for RIS devices close to the BS, which agrees with
the results of the previous Figure. Consequently, it is recommended to have RIS
devices deployed on the facades of buildings close to the BS, which allows to bypass
blockages within the surroundings.

For the second use case (RIS-UAV search and rescue), we consider the follow-
ing parameters values: Altitudes of BS, RIS-UAV, and FR are set to hBS = 25 m,
hRI S−U AV = 100 m or 150 m, and hFR = 1.5 m, respectively. Also, the transmit
power, transmit and receive gains, frequency, and bandwidth are set exactly as in



Enhancing UAV-Based Public Safety Networks … 163

Fig. 6 Impact of the
location of the RIS-UAV on
the data rate

the previous use case. Finally, the area of the RIS device mounted on the RIS-UAV
is ARI S−U AV = 0.25 × 0.25 m2, thus the number of hosted reflecting elements is
NRI S−U AV = 100 [18].

In Fig. 6, we present the data rate performance as a function of the 2D distance
between the BS and RIS-UAV, and for different RIS-UAV altitudes. Moreover, we
compare the proposed RIS-UAV system to the conventional amplify-and-forward
UAV relay, denoted R-UAV [34]. Clearly, the best performance is achieved when the
UAV (either RIS-UAV or R-UAV) is the closest to the BS, while the worst is obtained
at or close to) the midpoint between the BS and FR. When the RIS-UAV is close to
the FR, the data rate enhances significantly, but remains at a lower level than in the
case of RIS-UAV close to the BS. Also, for the same RIS-UAV altitude, the achieved
data rate is better in the rural environment than in the urban one. This is mainly due
to stronger communication links with better LoS conditions, which strengthens the
received signal at the FR. However, for the same environment conditions, the RIS-
UAValtitude has an important impact on the performance. Specifically,we notice that
a lower hRI S−U AV achieves better performances when deployed close to the BS or to
the FR. In contrast, a higher altitude provides better data rates when the RIS-UAV is
located somewhere between the BS and the FR. Indeed, a higher altitude would favor
more LoS links, which compensates for the degraded communications to/from the
RIS-UAV when located in-between the BS and FR. Clearly, as a RIS-UAV would be
deployed and handled by the FR team on the ground, it is more likely that it would
achieve a satisfying data rate. Nevertheless, a careful altitude optimization would
be needed to obtain the best performance When compared to the R-UAV system at
hU AV = 150 m, we notice that in the rural environment the RIS-UAV and R-UAV
performances are almost the same for a UAV placed very close to the BS (under
100m), while RIS-UAV outperforms R-UAV when the UAV is placed farther. In the
urban environment, RIS-UAV is superior to R-UAV only when it is away from the BS
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by at least 650m. We conclude that the use of RIS-UAV is mostly relevant for rural
long range communications, as the case in wide areas search-and-rescue missions.

4.4 Limitations of RIS-Enabled UAV Networks

Despite the promising potentials realized when integrating RIS into UAV networks,
the performance of such integration is constrained by several factors. First, although
higher number of REs implies enhanced performance and improved coverage, due
to the limited size of UAVs, and in order to guarantee flexible and stable flight,
particularly in turbulence scenarios, several constraints are imposed on the sizes of
RISs implemented on UAVs. Furthermore, the relatively high mobility and wob-
bling effect of UAVs requires frequent channel state information (CSI) acquisition
and, hence, continuous RIS reconfiguration. Therefore, an increased overhead is
resulted, imposing new challenges on the deployment of on-demand and fast RIS-
enabled UAV communications in public safety networks. Moreover, joint trajectory
design and resource allocation optimization represents a challenging factor in the
implementation of RIS-enabled UAVs for public safety networks. Specifically, the
joint optimization is required to ensure maximized coverage while maintaining high
energy efficiency, in order to meet the needs of public safety networks under the
limitations imposed by the constrained UAV capabilities.

5 Challenges and Future Directions

In this section, we outline the main challenges and the associated potential future
research opportunities, with the aim to pave the way for the successful realization of
efficient public safety networks thorough the utilization of RIS-enabled UAVs.

– RIS response optimization:Given that UAVs hover at relatively high speeds, this
necessitatesmore frequent CSI acquisition, and subsequently, an increased number
of RIS re-configuration rounds. These extensive operations introduce additional
signaling overhead on the flying UAVs, in order to achieve the optimum RIS con-
figuration, and therefore, efficiently accomplish the assigned missions pertaining
to emergency cases in public safety networks. This calls for the design of reliable
CSI estimation and RIS configuration in RIS-empowered UAVs for public safety
networks.

– Constrained RIS size in RIS-equipped UAVs: In order to leverage the flight
flexibility, as well as to maintain a stable UAVmotion, the size of an RIS mounted
on a UAV is limited by several constraints. Such constraints might have direct
impact on the performance of the RIS, and can potentially limit the functionalities
applied by the RIS. This is particularly pronounced when the UAVs are experienc-
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ing turbulence. This constraint can be loosen for RIS-assisted UAVs, depending
on the considered use case and the underlying system model.

– Channel Modeling: Although large-scale and small-scale channel modeling has
been extensively tackled in the literature, and a number of authors have proposed
diverse channel modeling frameworks for near-field and far-field scenarios, the
available models in the literature are still lack the comprehension. In more details,
most of the reported results have primarily focused on the characterization of large-
scale and small-scale fading under ideal unrealistic assumptions. There is still a
compelling need for a comprehensive framework to demonstrate the RIS-enabled
UAV channel models under practical scenarios, including high mobility as well
as UAV wobbling. It should be highlighted that UAV wobbling constitute a major
challenge on the design of accurate channel models, as it has a high impact on the
quality of the UAV-RIS links, rendering channel modeling for RIS-enabled UAVs
an open research topic.

– IncorporatingMachine Learning Algorithms: It is foreseen that the integration
of RIS and UAV networks for the sake of accomplishing resilient public safety
communication would necessitate a sophisticated level of organization, in order
to coordinate the UAV trajectory, flying time, energy consumption, as well as
optimizing the RIS configuration. In this regard, machine learning is deemed as an
enabler for such networks, in which advanced machine learning algorithms can be
developed and utilized in order to orchestrate the operation in RIS-enabled UAVs
for public safety network. It is worth highlighting that such topic is barely touched
in the literature, hence, it represents a potential future research direction.

– Physical Layer Security of Public Safety Communications As the significance
of the physical layer security (PLS) is more pronounced in highly dynamic net-
works, such as UAV networks, it is essential to develop enhanced PLS schemes for
RIS-enabled UAV networks that fulfill the security requirements of public safety
networks. It is worth highlighting that public safety networks are vulnerable to
several physical layer attacks, particularly jamming and spoofing attackS, which
have critical impact on such networks, resulting on serious consequences, includ-
ing humans death. Motivated by this, it is of paramount importance to introduce
novel PLSmechanisms to ensure reliable and secure public safety communication,
in the context of RIS-enabled UAVs.

– Integration with other Non-terrestrial Networks The emergence of the con-
cept of integrated satellite-aerial-terrestrial (SAT) networks was inspired by the
several advantages offered by such networks, including enhanced throughput, cov-
erage, and resilience, which are key components in realizing efficient public safety
communications. Yet, the adoption of integrated SAT networks introduces novel
challenges pertaining to the heterogeneity and the time-variability nature of these
networks. Therefore, to realize the full potential of integrated SAT networks as
a key enabler for efficient public safety communication, thorough investigation
should be conducted to quantify the performance of such networks, and to point
out the major limitations for the development of resilient solutions.
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6 Conclusion

In this chapter, we overviewed the fundamentals, design aspects, and applications
of RIS as an enabling technology of future wireless services. Specifically, we stud-
ied the integration of RIS into UAV technology by focusing on RIS-assisted UAV
networks andRIS-equippedUAVsystems. Todemonstrate their feasibility andpoten-
tial, we developed two use cases related to public safety, namely aerial surveillance
and search-and-rescue UAV missions. Through analysis and simulation results, we
illustrated the achievable data rate performances, which validate the relevance of
RIS-enabled UAV networks. Finally, we listed the current limitations of this inte-
gration and provided valuable insights about the future research directions to further
develop RIS-enabled UAV systems.
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UAVs Path Planning by Particle Swarm
Optimization Based on Visual-SLAM
Algorithm

Umair Ahmad Mughal, Ishtiaq Ahmad, Chaitali J. Pawase,
and KyungHi Chang

Abstract Intelligent 3-D path planning is a crucial aspect of an unmanned aerial
vehicle’s (UAVs) autonomous flight system. In this chapter, we propose a two-step
centralized system for developing a 3-Dpath-planning for a swarmofUAVs.We trace
the UAV position while simultaneously constructing an incremental and progressive
map of the environment using visual simultaneous localization and mapping (V-
SLAM) method. We introduce a corner-edge points matching mechanism for stabi-
lizing the V-SLAM system in the least extracted map points. In this instance, a single
UAV performs the function using monocular vision for mapping an area of interest.
We use the particle swarm optimization (PSO) algorithm to optimize paths for multi-
UAVs. We also propose a path updating mechanism based on region sensitivity (RS)
to avoid sensitive areas if any hazardous events are detected during the execution of
the final path. Moreover, the dynamic fitness function (DFF) is developed to eval-
uate path planning performance while considering various optimization parameters
such as flight risk estimation, energy consumption, and operation completion time.
This system achieves high fitness value and safely arrives at the destination while
avoiding collisions and restricted areas, which validates the efficiency of proposed
PSO-VSLAM system as demonstrated by simulation results.

Keywords Visual-SLAM · PSO · Path planning · Autonomous aerial vehicles ·
UAV

1 Introduction

The ability of an autonomous aerial vehicle to navigate in an unknown environment
while simultaneously building a progressive map and localizing itself is a prominent
research topic in robotics. Because of the practical uses of simultaneous localization
and mapping (SLAM), research has been conducted [1]. Advances in vision-based
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SLAM algorithms assess the robot’s position and generate the terrain as the robot
of interest moves [2]. Many SLAM systems in the literature include a diverse set of
sensors, including Laser Range Finders (LRF), inertial measurement units (IMU),
GNSS receivers, magnetometers, optical flow sensors (OFS), barometers, and Light
Detection and Ranging (LiDAR) [3, 4]. Single camera SLAM systems, on the other
hand, have gained in popularity in recent years due to their light weight, low cost,
and variety of applications in complex environments [5, 6]. In this regard, monoc-
ular visual-SLAM has gotten attention for UAV applications since it provides fully
autonomous systems in a range of challenging settings without the usage of external
positioning systems.UAVs are commonly used for trafficmonitoring, health services,
search and rescue, security, and surveillance [7–9]. UAVs enhance wireless network
coverage, capacity, and efficiency by serving as base stations [10].

Path planning algorithms are designed to find the optimum path based on a set of
constraints and objectives (such as terrain constraints and collision avoidance, energy
consumption, flight risk, etc.). As a result, path planning must take into account not
only limitations and objectives, but also the possibility of dangerous events that
occurred unexpectedly along the UAV’s path. We propose the region sensitivity
(RS) to reduce unconditional hazards by allowing the UAV to recognize an unsafe
region and optimize its path to the destination. The focus of this research is to provide
a framework for determining the best path to take using monocular vision maps. A
visual-SLAM (VSLAM) approach builds an incremental map of the environment
while continuously tracking the camera’s position. Following that, the resulting map
is analyzed and used as input for an optimization algorithm.

The PSO framework is easier to implement and requires less time to compute than
other metaheuristic search algorithms. It is also better at handling nonlinear chal-
lenges than other heuristic algorithms like ant colony optimization (ACO), Genetic
algorithm (GA), and an evolutionary technique (EA). Because the GA is fundamen-
tally discrete, i.e., it encodes to design discrete variables, it has a high computing
cost, whereas the PSO is inherently continuous and can be easily modified to handle
discrete design variables. As a result, we utilize PSO since it converges efficiently in
a dynamic environment. The particle is treated as an integrated individual in the PSO
framework, representing a candidate solution. As a result, the performance of all
particles defines the global best particle. To analyze a feasible path, the PSO planner
evaluates the quality of the entire path rather than a single waypoint.

1.1 Main Contributions

This chapter aims to develop a system that generates the best paths for multiple
UAVs to safely arrive at their destinations, even when GPS is unavailable. To build
an incremental and progressive map of the surrounding environment, we designed
a two-step centralized system based on visual-SLAM. The constructed terrain map
in the form of a points cloud is loaded into the proposed multiple-path UAVs opti-
mization planner. To stabilize the system in the least textured environment, we use
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the Canny and Harris detectors at the same time. We proposed a dynamic fitness
function (DFF) as a joint cost determinant, which contains multiple optimization
indexes, such as flight risk estimation, energy consumption, operation completion
time, and numerous constraints, such as UAV constraints, which consider the phys-
ical limitations of the UAVs, and environmental constraints, which also consider the
surrounding conditions. To address unexpected hazardous events, we’ve presented a
path-updating system based on the RS, which allows the UAV to identify an unstable
location and optimize its path accordingly. Based on the RS and DFF, the proposed
optimization planner utilizes the PSO to compute the fitness of each path. All of these
factors contribute to the practicality of our proposed methodology for path planning
of multiple UAVs.

1.2 Related Work

SLAM and PSO technologies are often used in research involving underwater, inte-
rior, andoutdoor environments. The authors of [11] utilize activeSLAMfor deep rein-
forcement learning-based robot path planning. The convolutional residual network
is used to detect obstacles in the path. The suggested approach employs the Dueling
DQN algorithm for obstacle avoidance while also employing the FastSLAM tech-
nique to create a 2D map of the surrounding area. Similarly, the authors of [12] use
stereo vision-based active SLAM to locate, navigate, and map their environment.
To avoid obstacles and complete the task effectively, the cognitive-based adaptive
optimization algorithm is introduced. The main focus of the approaches in [11, 12] is
on the complete robot task while detecting and avoiding the environment’s obstacles.

In [13], the author recommends using a visual-SLAM technique to build an incre-
mental map of the terrain for surveillance. For path planning, the author offers
the Cognitive-based Adaptive Optimization (CAO) algorithm. A monocular-inertial
SLAM is proposed in [14]. To augment the monocular camera’s sensing cues with
inertial measurement unit (IMU). PSO method was used in a hazard exploration
scenario for a network of UAVs in [15]. The new and improved PSO is proposed
as dynamic PSO for UAV networks (dPSO-U). UAVs use delay tolerant networking
(DTN) for sharing information. The solution simply evaluates the optimum UAV
combinations to thoroughly explore the environment. The 5G network is enhanced
with multiple UAVs in [16]. The UAVs serve as a link between the users and the
cellular base station. The designed approach’s major goal is to position the UAVs
in the best possible position to maximize the communication coverage ratio. The
authors offer per-drone iterated PSO (DI-PSO) system that utilizes PSO to find the
optimum position for each drone. In our method, the UAVs function as individual
PSO particle. A group of unmanned aerial vehicles (UAVs) tackles a forest fire in
[17]. Before the mission begins, the target locations are assumed to be known. Using
an auction-based algorithm, the UAVs were assigned to the various fire areas. The
UAVs then employ the centralized PSO algorithm, as well as the parametrization and
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time discretization (CPTD) algorithm, to compute the best paths to the designated
fire sites.

In [18], an improved PSO algorithm is used for real-time path planning of a
single UAV.Work falls under the low-level category of trajectory planning because it
involves avoiding moving obstacles. The NBVP [19] is relevant to this paper. Within
the planning loop, it employs the RRT technique. A tree node is used to retrieve
visual data from the depth sensor. During planning, a small fraction of the best view
is executed in each iteration, enabling the trajectory to be adapted to the plan between
iterations as a new explored map.

Our previous work [20] examined the environmental and physical characteristics
of the surroundings. However, we present a dynamic fitness function (DFF), which
involves various optimization factors to handle environmental constraints including
terrain limitations, restricted areas, collision avoidance, etc. Moreover, we propose
RS to tackle any unexpected hazardous event during UAV flight. To find the optimal
DFF and RS system designs, we employ a monocular vision-based SLAM tech-
nique. In [21] authors developed an enhanced PSO (IPSO) for robot path planning.
The authors evaluate three alternatives in two different environments: PSO, artifi-
cial potential field (APF), and IPSO. In [22], the authors developed the adaptive
selection mutation limited differential evolution method for path planning in disaster
environments. A single objective evolutionary technique, based on reference points,
is presented in [23]. The author also developed a hybrid grey wolf optimization tech-
nique for UAV path planning in [24]. In the literature, different system parameters
were generated from various system philosophies and objectives [25].

Challenges of 3-D UAV placement, such as resource and power allocation, trajec-
tory optimization, and user association are discussed in [26]. This challenge becomes
considerably more complicated as the height of the UAV changes, changing the
channel conditions and reducing coverage due to severe co-channel interference.
The authors proposed optimizing the 3-D UAV placement and path-loss compensa-
tion factor for various UAV deployment heights in the suburban setting in order to
provide a solution. The authors of [27] suggested a rapid K-means-based user clus-
tering model and jointly optimum power and time transfer-ring allocation that can
be used in the real system by deploying UAVs as flying base stations for real-time
network recovery and maintenance during and after disasters. Nguyen et al. [28]
presented a unique approach based on deep reinforcement learning for finding the
best solution for energy-harvesting time scheduling in UAV-assisted D2D commu-
nications. The article [29] investigated wireless systems by using a full-duplex
(FD) unmanned aerial vehicle (UAV) relay to allow two adjacent base stations to
communicate with users and are far distant. In order to increase user performance,
non-orthogonal multiple access (NOMA) aided networks and multiple-antenna user
design are also investigated. For delay-sensitive communication in UAVs, a disaster
resilient three-layered architecture for PS-LTE (DR-PSLTE) is presented in [30].
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2 Visual-SLAM Framework

Most vision-based SLAM systems employ a corner features detector, such as the
Harris corner detector. In a non-textured scene, the corner detector cannot identify
enough feature points. As a solution, we present the corner-edge point system, which
employs edgepoints aswell. The edge-point is the detectedpoint on the edge segment.
Our method recognizes corner and edge points by comparing the 3D points of the
next image and estimating the camera’s position by comparing the 3D points of the
next image. In this method, the camera’s trajectory and a 3D map are produced.
In addition to robustness, it provides a detailed representation of the object, which
improves the modeling process of surface detection and reconstruction.

2.1 Approach

Correspondence between the points may lead tomultiplematches, including outliers.
Random sampling consensus (RANSAC) [31] handles inliers, outliers, dividing data
using perspective projection [32]. The large matching errors are eliminated by the
progressive sample consensusPROSACalgorithm [33]. In the beginning,we estimate
the trajectory of the camera with small detected points, and afterwards, we use a
coarse-to-fine approach to refine the trajectory and feature point correspondence by
progressively increasing the points. The overall approach to constructing amap using
the visual- SLAM system can be seen in Fig. 1.

2.1.1 Keypoint Matching

Most computer vision applications require Structure from Motion (SfM), Multi-
view Stereo (MvS), image registration, and image retrieval. The technique begins
with keypoint detection and description and then proceeds on to keypoint matching.
A descriptor is a multidimensional vector that denotes the keypoints in space. As
a result, the keypoint is identified, which is then projected on the images from two
different perspectives. First, we apply acceleration segment characteristics to find
keypoints (FAST). The edge locations are then determined using the well-known
Harris Corner detector [34] and Canny edge detector [35]. To eliminate outliers, the
robust independent elementary features (BRIEF) descriptor is oriented around the
gradient. Due to their lower processing complexity and higher accuracy compared to
other detectors and descriptors [36]. The SIFT has the lowest matching rate of 31.8%
in 0.25 s, while the ORB combines FAST and BRIEF to have the highest matching
rate of 49.5% in 0.02 s.
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Fig. 1 Flowchart of map construction using Visual-SLAM

2.1.2 Keypoint Reconstruction

A 3D point from consecutive images is calculated using the following equation:

Pe =
(
b(x1 + xr )

2(x1 − xr )
,

by

(x1 − xr )
,

b f

(x1 − xr )

)T

(1)

where, b indicates baseline, and f is the focal length, y = y1 = yr, while (x1, y1)
represents the points on one image, and (xr, yr) represents the point on the consecutive
next image. We set u = (x1, y1, xr , yr) and Pc = S(u), and therefore, the covariance
of the edge point (Pc) is calculated as

∑
Pe = δS

δu

∑
u

δST

δu
(2)

Now, we assume (
∑

u = diagσ2
x1, σ

2
yr , σ

2
yr ) and, for the implementation, we take

σxr = σy1 = σyr = 0 : 5[Pixels]. The correlation between σy1 and σyr is assumed to
be very strong.
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2.1.3 Camera Motion Estimation

The trajectory of the camera can be estimated by successfully matching the points
from time t-1 to t when the points are reconstructed in frame It −1, and the points are
detected at frame It. Let vt be a camera pose at time t,where Pi

t−1 is a i-th reconstructed
3D point at t − 1. Similarly, Pi

t−1 is a point that was taken as a projection of Pi
t−1

on the image at It. The point Pi
t−1 is termed a map point because it is stored for

map generation, and therefore, point Pi
t−1 can be represented as P

i
t−1 = k(Pi

t−1, vt ),
where k indicates the function of perspective projection:

K = N−1
t

(
Pi
t−1 − Mt

)

k
(
Pi
t−1, vt

) =
(
f
Kx

Kz
, f

Ky

Kz

)T

(3)

where, Mt and Nt are the translation and rotation matrices of vectorvt . Let git is a
point on the image corresponding to Pi

t−1, so the cost function, C can be defined as

C(vt ) =
n∑

i=1

q
(
git , P

i
t−1

)
(4)

where q
(
git , P

i
t−1

)
represents the penalty that depends on the Euclidean distance

between points git and Pi
t−1. We use the perpendicular distance between the point

Pi
t−1 and the segment containing the point git in image [37, 38]. We estimate the

motion using pose vector vt at time t, and the correspondence between the points
from decreasing cost function C(vt ). This can be achieved by utilizing the gradient
descent method, setting the initial value of vector vt to vt−1, and setting closest point
git to its closest corresponding point, Pi

t−1, by calculating the Euclidean distance.
This process of point matching repeats, which decreases C(vt ), and the optimal pose
vector vt , and thus, point correspondences are achieved.

2.1.4 Map Construction

We build an incremental 3D map of the environment based on camera pose vector vt
by transforming the 3D points into world coordinates from the camera coordinates.
Let us take the camera coordinates and Pi

e as the i-th 3D point, so the location of this
point in the camera coordinates can be represented as follows:

Pi = c
(
Pi
e , vt

) = Nt P
i
e + Mt (5)
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We integrate the identified 3D points based on their correspondences, which
decreases the depth error. Based on the covariance, we integrate the location of
all the identified 3D points. We take the average location of the identified 3D points
between the keyframes,which increases the efficiency. The created 3Dpoints indicate
the map, and estimate the trajectory of the camera, between the keyframes.

2.1.5 Camera Motion Update

Camera motion is updated by extracting the keyframe from the sequence of images
with interval d, and then, we refine themotion using the RANSAC algorithm between
the keyframes. As expected, the camera motion is relatively large between the
keyframes, so to avoid the local minima, we initialize the value of a keyframe to
Id from the estimated camera motion by each keyframe It + 1. Every 3D point Pi

t−d
taken upto keyframe It-d is supposed to project onto keyframe It and match to the 3D
point qi

t in the image [39].
Uncertainty is evaluated by calculating the covariancematrix of camera poses.We

usevt and
∑

vt
to represent themean and covariance, inwhichvt is calculated from the

keyframe, whereas
∑

vt
is calculated with the followingmechanism. Let st represents

the vector of multiple points in the image at time t where wt indicates the vector of
3D points, which are matched with st. We can indicate st as st = h(wt , vt ) + nt ,
where nt is noise having zero mean and zero covariance,

∑
nt
, and st can be obtained

with the Taylor expansion, as follows:

st ≈ k(wt , vt ) + δk

δwt
(wt − wt ) + δk

δvt
(vt − vt ) + nt (6)

We can calculate the covariance of camera trajectory utilizing Eq. 6, as follows:

∑
vt =

(
J T
vt

(∑
nt

+Jwt

∑
wt

J T
wt

)−1
Jvt

)−1

(7)

where, Jvt = δk
δvt

(wt , vt ), Jwt = δk
δwt (wt , rt ) and

∑
wt represents the covariance

matrix of the 3D points that match st. The size of the
∑

wt depends on the number
of 3D points and if the number of points is large, which makes

∑
wt computation

intractable.
We assume that the location of all the 3D points that are reconstructed from the

same frame have a strong correlation. To overcome the complexity, we divide all 3D
points into two parts, wa and wb, where wa indicates the 3D points reconstructed
from the last keyframe, It-d, and wb represents the reconstructed 3D points from the
past key frames, I1 to It-2d. we can approximate each group covariance to the mean
covariance of all 3D points. Considering all the assumptions, we have the following:
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Jwt

∑
wt
J T
wt = 1

|wa|
∑
P∈wa

JP
∑

P
J T
P + 1

|wb|
∑
P∈wb

JP
∑

P
J T
P

JP = δk

δP

(
P, vt

)
(8)

where, JP and
∑

P represent the Jacobian and covariance matrix of a 3D point,
respectively. This supposition decreases the computational complexity of the system.

2.1.6 Map Update

We construct the 3D map according to section II-A4. We fuse the matched 3D points
with weights according to their covariance. The 3D point explained in section II-A4
can also be expressed as

Pi
t = c

(
Pi
e,t , vt

)
(9)

As mentioned above, we are ignoring correlation term
∑

wt , and therefore, we

calculate the covariance matrix of each 3D point. Let Pi
t and

∑
Pi
t
represent the mean

and covariance of a 3D point, respectively. Using the Taylor expansion, we have the
following:

Pi
t ≈ c

(
Pi
e,t , vt

)
+ δc

δPi
e,t

(
Pi
e,t − Pi

e,t

)
+ δc

δvt
(vt − vt ) (10)

The covariance of 3D point Pi
t can be calculated using Eq. 10 as follows:

∑
Pi
t

= δc

δPi
e,t

∑
Pi
e,t

δc

δPi
e,t

T

+ δc

δvt

∑
vt

δc

δvt

T

(11)

We update the location and covariance of a 3D point by fusing Eq. 11 with the
point at t−d, as follows:

Pi
t = Pi

t−d +
∑

Pi
t−d

(∑
Pi
t−d

+
∑

Pi
t

)−1(
Pi
t − Pi

t−d

)

∑
Pi
t =

(∑−1

Pi
t−d

+
∑−1

Pi
t

)−1

(12)
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3 Swarm-Based Path Planning Approach

In this section, we introduce the proposed path planning scheme based on particle
swarm optimization. The elevation map generated by the visual-SLAM algorithm is
used as input terrain information for the optimization algorithm to plan the optimum
path. The data set we used in our system is very diverse, and provides information
on the terrain. There are multiple system constraints, which must be satisfied before
planning the path from source to destination and meeting the multiple objectives we
desire in order to obtain the maximum value. In this regard, we propose the DFF to
derive the optimal trajectory of the UAVs while considering all the constraints and
objectives of the system.

3.1 Working Principle of Particle Swarm Optimization

PSO is a heuristic search algorithm. It was first developed by Kennedy and Eberhart
in 1995 to introduce a method for optimization of a nonlinear function [40]. It is a
nature-inspired set of computational methodologies to resolve complex real-world
problems. PSO computes the number of particles to look for the best solution. Each
particle moves in accordance with both its previous best particle in the group and
the swarm’s global best particle. Each particle changes its velocity and location in
real time using information from the prior velocity and best position obtained by any
particle in the group, as well as the global swarm’s best position.

3.2 PSO Formulation

The mathematical formulation for each particle’s velocity and position are stated as
follows. Let the total number of particles in a swarm be P, the total iterations is N,
and the 3D dimension of each particle is D. Therefore, for the particle, position x
and velocity v can be represented as:

xi = (xi1, xi2, . . . , xiD)

vi = (vi1, vi2, . . . , vi D) (13)

The position for the best particle, pi,best , in the group and the global best swarm
paticle, sbest , can be computed as follows:

pi,best = (
pi1,best , pi2,best , . . . , piD,best

)
sbest = (

s1,best , v2,best , . . . , vD,best
)

(14)
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Because pbest and sbest are termed cost values for PSO, once a cost function is
defined, then the position and velocity are updated as follows:

xt+1
i j = xti j + vt+1

i j

vt+1
i j = χvt

i j + ar1
(
pi, j,best − xti j

) + br2
(
s j,best − xti j

)
For i = 1, 2, 3, . . . P j = 1, 2, 3 . . .D t = 1, 2, 3, . . .N (15)

where, a and b are the self-cognitive acceleration property and the social knowledge
parameter of the swarm, respectively, which represent the inheritance characteristics
of the personal particle and the whole swarm; and are random values in the range
[0–1], and χ represents the inertia of an individual particle, which induces an effect
on the velocity from one iteration to next iteration. The authors in [41] suggested
optimum values of a = b = 1:496 and χ = 0:7298 for PSO performance.

4 Proposed Dynamic Fitness Function

In order to derive the optimal trajectories, the DFF computes the fitness of the trajec-
tory considering optimization parameters,which are divided into two groups, namely,
objectives and constraints. The former consist of risk estimation, energy consump-
tion, and operation completion time; the latter are further divided into two parts
depending upon the UAV’s physical constraints (flying slope and turning angle) and
the physical limitations of the environment (region sensitivity, restricted areas, and
terrain constraints). The working flow of the DFF can be observed in Fig. 2. The
DFF can be formulated as seen in equation:

DFFf itness = Fobjectives + Fconstraints (16)

where, Fobjectives indicates the objectives function on which we focus to gain the
maximum value, whereas Fconstraints indicates the UAV physical and environmental
restrictions, which must be fulfilled before planning the trajectory.

4.1 Objectives Design

We have set optimization parameters, and the objectives were constructed to improve
the quality of path planning. The objectives can be represented as weighted compo-
nents of risk estimation, energy consumption, and operation completion time, as
follows:

Fobjectives = w1ORE + w2OEC + w3OOT (17)
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Fig. 2 Flowchart to
compute dynamic fitness
function

Initialize the parameters

Compute constraint functions value

Compute objective function value

Compute the fitness functions value

Output the fitness value of the 
particle

Calculate Nw = 8

For i = 1:Nw 

Nw = 8 ?

YES

NO

where, w1, w2, w3 denote the weights of the objective components [39], which are
chosen to derive the importance of each component while planning the path, and
ORE , OEC , OOT are functions from which values are taken in the range [0, 1]. We
aim to derive the optimum path with less risk, energy, and time.

4.1.1 Risk Estimation

Some flight restrictions should be implemented. In harsher weather conditions, such
rain, snow, or strong winds, small UAVs are susceptible to damage. The UAV altitude
while doing the work should be moderate; winds at higher altitudes are stronger. The
UAV also faces risks because of dense clouds that impede its ability to focus. Based
on the above risks, we identify the following two types of risk.

1. Environmental Risk

The environment has a wide range of characteristics, and therefore, it is difficult
to make a model that precisely measures the environmental risk. Therefore, for
simplicity, an environmental value is generated randomly, rei,i+t , that represents the
risk from the i-th waypoint to waypoint (i + 1). The summation of the risk values
would be considered the environmental risk.

2. Altitude Risk
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The altitude risk is actually an absolute difference in altitude between twowaypoints,
and therefore, we formulate altitude risk rai,i+t as follows:

rai,i+t = k ∗ (zi+1 − zi ) (18)

where, k represents a constant parameter for control. Because risk analysis depends
on location, it will change according to weather conditions and the UAV’s altitude at
the same instant during flight. Therefore, the total risk can be formulated as follows:

ORE =
∑Nw−1

i=1 REi

max RE
(19)

REi = wE Rr
e
i,i+t + wARr

a
i,i+t (20)

REi shows the total risk from the i-th waypoint to waypoint (i + 1), while wER

and wAR are the weight factors of the environmental and altitude risks, respectively.
Nw denotes the total number of waypoints from source to destination, and maxRE
is a normalized value of the risk, which can be computed as follows:

maxRE = (Nw − 1) ∗ [
wER ∗ Z ∗ wAR

(
2 ∗ maxre

)]
(21)

where, maxre indicates the maximum value instigated by the environment risk, and
Z is the altitude of the UAV during flight.

4.1.2 Energy Consumption

Fuel is essential to UAV missions. If the UAV does not arrive on time, the mission is
said to have failed. A simple method that uses less energy (EC) should be the priority.
We assume the UAV velocity stays constant during flight. We define EC as follows:

OEC =
∑Nw−1

i=1 FCi

maxFC
(22)

FCi = Pu ∗ ti,i+1 (23)

ti,i+1 = di,i+1

v
(24)

di,i+1 =
√

(xi+1 − xi )
2 + (yi+1 − yi )

2 + (zi+1 − zi )
2 (25)
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where, FCi represents the fuel burned in flying from the i-th waypoint to waypoint
(i + 1). Pu is the power of the UAV at velocity v, while ti,i+1 is the total time taken
by the UAV to fly from the i-th waypoint to waypoint (1 + i); di,i+1 indicates the
Cartesian distance of a flight from the i-th waypoint to waypoint (1+ i), andmaxFC
is a normalized value for fuel consumption, which can be formulated as follows:

maxFC = (Nw − 1) ∗ Pu ∗ dmax

v
(26)

where, dmax = √
X2 + Y 2 + Z2 where X, Y, Z indicate the three dimensions of the

UAV, i.e., the X-axis, Y-axis, and Z-axis, respectively, during flight time.

4.2 Constraints Design

To optimize possible flight paths Constraints are 0when satisfied, otherwise a penalty
is applied. Applying a penalty Q assures that the path from source to destina-
tion is always feasible. Considering the physical restrictions on the UAV and the
environment’s limits, we can formulate the constraints as follows:

FConstraints = U AVconstraints + Environmentconstraints (27)

4.2.1 UAV Constraints

The UAVs have physical properties that cause these constraints. The UAV’s behavior
during maneuvering should be treated as a priority, as it offers smoothness in flight.
In this regard, we care for the most crucial aspects of a UAV: slope and rotation. UAV
limitations are therefore defined as follows:

U AVconstarints = T A + FS (28)

1. Turning Angle

The turning angle indicates a UAV’s maneuverability in the horizontal direction, i.e.
the angle taken during flight from the previous and current directions. The turning
angle should be less than the maximum tolerable threshold for turning, thus we
calculate it as follows:

T A = 0, T A =
Nw−1∑
i=2

T Ai
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where,

T Ai =
{
Q, i f θ > θmax

0, otherwise
(29)

where, θ defines the turning angle of the UAV in 3D directions (xi, yi, zi), and θmax

maximum tolerable angle. The authors in [34] provided the formulation to calculate
turning angle θi as follows:

θ = arccos

( (
pxi , pyi

)(
pxi+1, pyi+1

)T
∥∥pxi , pyi∥∥2

∥∥pxi+1, pyi+1

∥∥
2

)
(30)

where, pxi = xi − xi−1, Pxi+1 = xi+1 − xi , pyi = yi − yi−1, Pyi+1 = yi+1 − yi and
‖x‖2 is a vector norm for a vector x .

2. Flying Slope

The flying slope is defined as themobility of aUAVwhile gliding andwhile climbing.
During flight, the UAV’s slope is along the horizontal from one waypoint to the next.
Given the permissible gliding and ascending angles, the slope of a UAV is derived
as:

FS = 0, FS =
Nw∑
i=2

FSi

where,

FSi =
{
Q, i f fi /∈ [tan(αmax ), tan(βmax )]

0, otherwise
(31)

where, FSi is the flying slope from one waypoint to the i-th waypoint; αmax and
βmax represent the maximum tolerable gliding and climbing angles, and fi can be
formulated, according to [34], as follows:

fi = zi − zi−1

‖xi − xi−1, yi − yi−1‖2 (32)

where, fi is the flying slope taken by the UAV from the i-th waypoint (xi; yi; zi).
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4.2.2 Environment Constraints

Due to the external environment, the UAV must follow specific rules. Restricted
areas such as military sites, key government institutions, etc., should be taken into
consideration. Therefore, a system should be planned to avoid these limited locations.
Likewise, unforeseen events can occur in which the UAV encounters a flying toy, for
example, an unregistered aerial vehicle, or birds in flight. Regional sensitivity is used
to handle these types of circumstances. This deals with randomly generated sensitive
regions where the UAV recognizes a threat and computes a safe path to avoid them.
Furthermore, the terrain restricts flight. Environmental constraints can be expressed
as follows. We divide the path into a 20 × 20 grid, and the UAV can sense four cells
around itself.

Environmentconstraints = RA + RS + T L + ML + CA (33)

1. Restricted Area

There are some specific areas that UAVs are not permitted to fly through due to
restrictions, such as cantonments, restricted government territories, and so on, and
hence the feasible path to the destination should be a legal one that avoid those
regions. For simplicity, we consider a restricted area to be a rectangle. Formulation
of a restricted region as follows:

RA = 0, RA =
Nw∑
i=1

RACi (34)

where,

RACi =
{
Q, i f waypoint in Range(xr , yr )
0, otherwise

where, Range
(
xr , yr

) = {mx ≤ xr ≤ nx } ∩ {
my ≤ yr ≤ ny

}
and mx and nx repre-

sent the lower and upper bounds, respectively, for x coordinates of the r-th restricted
area at the i-th waypoint, whereas my and ny indicate the lower and upper bounds,
respectively, of y coordinates of the r-th restricted area at the i-th waypoint.

2. Region Sensitivity

Unconditional and unexpected events might occur during flight. Thus, all hazardous
events in the path of a UAV are randomly generated. It notices the hazard and
constructs a path to avoid them. This can be formulated as follows:

Rs = 0, Rs =
Nw∑
i=1

Rsi (t) (35)
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where

Rsi =
∑

cellx∈N (i)

vcellx (t)

Rsi =
{
Q, i f Rsi > Rsth
0, otherwise

(36)

where, Rsi (t) is the value for sensitivity at the i-th waypoint during the flight at time
t, and vcellx (t) is the cell value at flight time t. N(i) is the set of neighbor cells for
the i-th waypoint. The UAV checks the values of the cells at every waypoint, and if
any cell has a sensitivity value greater than the threshold, penalty Q will be given. It
checks the values of the set of neighbor cells for N(i) to avoid that region to satisfy
the constraint.

3. Terrain Limits

During flight, a UAV should take into consideration the limitations of the terrain so
that the UAV always flies above it and avoids collisions (for example, with moun-
tains). To adhere to a terrain constraint, the algorithm gives penalty Q to provide the
feasible path. This constraint can be formulated as follows:

T L = 0, T L =
Nw∑
i=1

T Li (37)

where,

T Li =
{
Q, i f zi ≤ map(xi , yi )

0, otherwise

where, map(xi , yi ) is a function that returns the altitude of the terrain location at
point (xi , yi ), which finds the number of points inside that location.

4. Map Limits

For a feasible path, theUAVmust stay inside themission space to avoid uncertainties.
Therefore, the algorithm applies penalty Q to the points of a trajectory that are off
the map limits. This constraint ensures the space of a mission can be formulated as
follows:

ML =
Nw∑
i=1

MLi (38)

where,
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MLi =
{
0, I nmap(xi , yi )
Q, Otherwise

I nmap(xi , yi ) = (
xml ≤ xi ≤ xmu

)
�

(
yml ≤ yi ≤ ymu

)
(39)

where, xml and xmu are the lower and upper bounds, respectively, for the x coordinate,
and yml and ymu are the lower and upper bounds, respectively, for the y coordinate.
The minimum value to satisfy the map constraint is ML = 0.

5. UAV Collision Avoidance

When calculating paths for multiple UAVs, the planner must ensure that the UAVs do
not get too close to each other, increasing the possibility of a collisionwhile following
their individual paths. To keep a safe distance between them, the limitation can be
expressed as follows:

CA =
Nu

w∑
i=1

Nu
w∑

j=1

CAi (40)

where,

CAi =
{
Q, i f duv

i j < dmin

Q, otherwise

duv
min =

√(
xui − xv

j

)2 +
(
yui − yv

j

)2 +
(
zui − zv

j

)2
(41)

where, dmin is the minimum distance between the UAVs to avoid a collision, and
duv
i j is the distance between the i-th waypoint and the j-th waypoint of the u-th UAV
trajectory and the j-th UAV trajectory, respectively.

5 Operation of the Proposed Path Planner

In this section, we explain the working mechanism of the proposed multiple UAV–
path planner, which is based on visual-SLAM, PSO, and the DFF explained in Sects.
2, 3, and 4, respectively. The proposed planner first utilizes the elevation map gener-
ated by visual-SLAM and fed into the PSO planning algorithm to derive the optimum
trajectory for each UAV to the defined destinations, in which the DFF optimizes all
the possible waypoint sequences to reach destinations considering all constraints and
objectives, along with satisfying the collision avoidance condition. If all conditions
are satisfied, the planner will output the optimum trajectory for each UAV to its
destination.
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In our proposed system, the path from source to destination consists of waypoints
and line segments. We opted for an eight-waypoint trajectory-generation system. For
clear understanding, we divided the whole operation area into cells and determine
the estimated flight time to the destination. Next, we initialize the PSO algorithm to
plan the optimum path for each UAV, which can be seen in Fig. 3 from step 5–33. In
the quest to attain the optimum trajectory for each UAV, at first, the planner randomly
generates the velocity and position vectors of particle PN. Next, using Eq. (15), the
velocity and position vectors of each particle are updated.

After that, the proposed DFF is applied to the updated particle as shown the
working flowchart of theDFF in Fig. 2. Considering all the constraints and objectives,

Fig. 3 Pseudocode of the proposed path planner
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the DFF optimizes each particle and finally outputs the best particle, pibest and the
global best particle in the swarm, sbest, which is explained in Sect. 4. TheDFF output
is based on the fitness value acquired by each particle. Then, we store the optimum
path for the first UAV and set the iteration number to Nt. Before initializing the
other UAVs, we aim to derive a collision-free path, and therefore, we check collision
avoidance condition CA. If CA is satisfied, the planner outputs optimum trajectories
for all UAVs; otherwise, it goes back to step 5 if the CA is not satisfied. Finally, when
the flight time reaches, the planner will output the optimum paths for all UAVs to
their respective destinations. The process of the proposed planner is represented in
the pseudocode algorithm shown in Fig. 3.

6 Simulation Results

In this section, we develop a Matlab-based operational environment to evaluate the
working performance of the proposed two-step UAV path–planning system. The
main simulation parameters are listed in Table 1. In our implementation, we used a
data set [42] that was collected by a monocular camera installed at the quad-copter,
in different environments. The data set is publicly available, and more details can
be found at midair.ulg.ac.be. The data set was utilized as input to the optimization
algorithm for multiple-UAV path planning algorithm. We used different types of test
sequences, which can be seen in Figs. 4 and 5 in our system to construct an online
map of the environment. Figure 6a indicates the features in the consecutive scenes
that were matched to simultaneously build an incremental map, which can be seen
in Fig. 6b. The points cloud map contains information on the x, y, z positions and
normal at every point. The terrain representations from the points cloud can be seen
in Fig. 7. We utilized a triangulation algorithm [43] to reconstruct the terrain from

Table 1 Simulation
parameters

Parameter Value

No. of UAVs 2

Speed 10 m/s

Power 20

Iteration number 32, 64, 128, 256, 512

Sensitivity threshold 10

Turning angle threshold 85°

Gliding angle threshold −30°

Climbing angle threshold 30°

Minimum distance threshold 0.2

Initial environmental risk 1–5

Flight time threshold 2

Grid size 20 × 20
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Fig. 4 Flight path (sequence 0005)

Fig. 5 Flight path (sequence 0012)

(a) Matching Features (sequence 0005)                         (b) Points cloud Map (sequence 0005)

(a) Matching Features (sequence 0012)                          (b) Points Cloud map (sequence 0012)

Fig. 6 a Image registration between consecutive scenes and bMap construction by VSLAM to be
used for path planning
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Fig. 7 Terrain representation from the points cloud of sequence 0012

the points cloud.
Figure 8 shows the effect of different numbers of particles on the optimal fitness

value of the proposed DFF. We can clearly see that the fitness value of the proposed
DFF converges to a stable value faster as the number of particles and iterations

Fig. 8 Optimal fitness values for different numbers of optimization particles
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(a) (b)
No. of Iteration No. of Iteration

Fig. 9 Optimization of the PSO path planner performance in terms of a risk estimation and b
energy consumption

increases. The optimization performance of the path planner in terms of energy
consumption and flight risk estimation can be observed in Fig. 9. We utilized 128
particles in our system. As the number of iterations increased, the values of energy
consumption and flight risk estimation converged to a stable value. Moreover, the
difference between the optimum value of energy consumption, where both UAVs
converge, is less than five, and the values of flight risk estimation for both UAVs
is similar, which depicts the effectiveness of the proposed path planner by ensuring
fairness between the generated paths for both UAVs.

Figure 10 shows the optimal paths followed by UAV 1 and UAV 2 from source
to destination while avoiding sensitive regions and restricted areas, respectively, for
the first three flights. The small red 1 × 1 rectangles have a sensitivity greater than
the threshold, while the black 2 × 2 rectangles indicate restricted areas where UAVs
are not allowed to fly.

The sensitive regions generate randomly, indicating a hazardous event, so the
proposed planner optimizes the path until hazardous free paths to the destinations

(a) First Flight                          (b) Second Flight                            (c) Third Flight

Fig. 10 Optimal trajectories of the UAVs from source to destination using proposed algorithm
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Fig. 11 a Optimal fitness values attained and, b UAVs Flight using Conventional PSO Algorithm

are determined. We can observe that the trajectories generated for each flight time
avoids all the sensitive regions and reach the destination safely.

The proposed algorithm also ensures that the multiple UAVs do not collide with
each other. The green 1 × 1 rectangles represent the source and destination. In
Fig. 10, the yellow highlighted areas are high elevations. We can also see that the
trajectory waypoints generated do not overlap, and a UAV reaches the destination
by following the shortest path, which indicates the high efficiency of the proposed
planner. Therefore, Fig. 11a indicates the high fitness value attained by each UAV
driven by the proposed path planner.

Figure 11b indicates the trajectories generated by the conventional PSO. As the
defined environment is dynamically complex due to which conventional PSO is
incompatible with adapting the situation; therefore, it takes very high computational
time to converge. Considering the incompatibility of the conventional PSO in our
environment, we choose tomake the environment less complicated and convenient to
converge. The computational time for the conventional PSO for the simple environ-
ment is higher than our proposed algorithm in the dynamic and complex environment.
The conventional PSO takes 1,767 s while our proposed algorithm takes 739.8 s.

The same computer is used to run the both algorithms. The Table 2 indicates the
flight statistics of both algorithms for the first flight. The conventional PSO algorithm
for both UAVs reaches the destination following the long path. It takes more travel
time while our proposed algorithm reaches the destination for both UAVs following
the shortest path and in optimal travel time in a highly complex environment. The
distance covered from one waypoint to another and the corresponding flight times
for both UAVs can be seen in Fig. 12a, b.

The total distances from the source to destination covered by UAVs during the
first flight were 3,062.4369 m and 3,065.0706 m. Likewise, the times taken to reach
the destinations for both UAVs were almost the same i.e., 307 s. Similarly, Fig. 12c,
d indicates the distance covered and corresponding flight time for both UAVs from
one waypoint to another using the conventional PSO algorithm. We can observe that
the distance and time taken at each waypoint is greater than the proposed algorithm.
The total distance covered by the UAVs for the first flight is 5,571.9591 (m) and
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Table 2 Distance and Time
comparison with the
conventional PSO

Parameter Value

(a) Flight dynamics of first flight using proposed algorithm

Distance covered by UAV 1 3,062.4369 (m)

Distance covered by UAV 2 3,065.0706 (m)

Travel time by UAV 1 307.2542 (s)

Travel time by UAV 2 307.4481 (s)

(b) Flight dynamics of first flight using conventional PSO
algorithm

Parameter Value

Distance covered by UAV 1 3,062.4369 (m)

Distance covered by UAV 2 3,065.0706 (m)

Travel time by UAV 1 307.2542 (s)

Travel time by UAV 2 307.4481 (s)

(a)                                                             (b)

(c)                          (d)

Fig. 12 UAV flight dynamics in terms of distance and time using proposed algorithm for a UAV 1
and b UAV 2 and using conventional PSO algorithm c UAV 1 and d UAV 2
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Fig. 13 Fitness values
attained at each waypoint
during the flight by proposed
algorithm

6,065.0706 (m). Similarly, the total time consumed by UAV1and UAVs is 551.6796
(s) and 549.7633 (s), respectively. In Fig. 13, we show the fitness values attained
at each waypoint by both UAVs during their flights. We sum up the optimal fitness
values of all waypoints for UAV 1 and UAV 2. The total optimal fitness for all the
waypoints of UAV 1 and UAV 2were 5.52 and 5.51, respectively, which are virtually
the same and which depict the fairness of our proposed twostep path planner.

7 Conclusions

In this paper, we designed a two-step, centralized system to construct a map using
state-of-the-art visual-SLAM.We introduce corner-edge pointsmatchingmechanism
to stabilize the system with the least extracted map points. The proposed algorithm
effectively detects the keypoints in different environments and successfully regis-
tered the features. The constructed map is processed as an input mean for the particle
swarm optimization algorithm to plan UAVs’ optimum path.We proposed a dynamic
fitness function considering different optimization objectives and constraints in terms
of UAVflight risk estimation, energy consumption, andmaneuverability for the oper-
ational time.We also proposed a path updatingmechanismbased on region sensitivity
to avoid sensitive regions if any hazardous and unexpected event detects in UAVs’
paths. The system effectively avoids the sensitive regions and returns collision-free
paths to reachUAVto thedestinations safely.The simulation results validate the effec-
tiveness of our proposedPSO-VSLAMsystem.Wecurrently consider twoUAVsover
different flight times to evaluate our proposed PSO-VSLAM system’s performance,
and it successfully outputs the collision-free trajectories and proves high adaptability
towards the complex dynamic environment. Therefore, we plan to considermore than
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two UAVs in our future work and implement machine learning algorithms because
our proposed system effectively achieves the collision-free trajectories for two UAVs
while adapting to the highly dynamic and complex environment.
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UAV-Assisted Cooperative Routing
Scheme for Dense Vehicular Ad hoc
Network

Omer Chughtai, Muhammad Naeem, and Kishwer Abdul Khaliq

Abstract Intelligent transportation system (ITS) has enormous potential and has
been able to extend the transportation systems to more sustainable, secure, and man-
ageable communicating systems. Particularly, a Vehicular ad hoc network (VANET)
plays an imperative part to preserve and oversee the features of ITS. Since VANET
provides a highly dynamic environment, where disseminating messages to the
intended destination in a scenario with high node-density without any interrup-
tion is a critical strategy. Existing data dissemination techniques using single-radio
devices do face degradation in terms of an increase in end-to-end (ETE) delay and
decrease in throughput because of the inefficient spectrum utilization. To deal with
this, techniques that use assistance from other channels that are generally referred
to as dual-radio multi-channel have been proposed, which can efficiently use the
spectrum in a cooperative manner; however, due to the cross-channel interference in
the same band, the network performance degrades. Considering these facts, getting
assistance from another network is one of the solutions to increase the performance
of the network. Therefore, a UAV-assisted Cooperative Routing Scheme (UCRS)
has been proposed, where a Flying ad hoc network (FANET) aids VANET. Each
node in UCRS creates an Allied Node Table (ANT) based on the vehicles in the
forwarding zone. The best node among several nodes available in ANT is selected in
an ETE route through which the data traffic is forwarded to the intended destination.
With connection/communication disturbance due to congestion or gap between the
vehicles during data exchange, UCRS attempts local repair up to two hops; in case
of failure to recover the route, assistance from UAV is carried out. The performance
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evaluation is performed using the network simulator (ns-2.31) and the analysis shows
that UCRS achieved better performance as compared to U2RV and AODV with an
increase in node density.

Keywords Routing · UAV-assistance · Vehicular Ad hoc Network · Dense
environment · Cooperative routing

1 Introduction

Vehicular Ad hoc Network (VANET) empowers vehicles to communicate with each
other with any central control through various wireless communication technologies.
One of the main issues with respect to the expanded utilization of private vehicles
is an increase in the number of fatalities that happen due to mishaps on the roads
and related threats which have been recognized as genuine issues being stood up
in modern societies. One of the solutions is to have a coordination with other net-
works to get assistance e.g., FANET. FANET and VANET support different routing
algorithms thanMANET. Primarily, VANET provides Vehicle-to-vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communications. One of its goals is to optimize data
transmission with increased throughput and reduced delays. VANET protocols are
generally designed to address variable traffic density with rapid topological changes.
To cater to the new wireless communication with respect to vehicles, IEEE has stan-
dardized vehicular communication as the IEEE 802.11p standard.

The IEEE 802.11p of VANET is also referred to as WAVE (Wireless Access
for Vehicular Environments) and DSRC (Dedicated Short Range Communication).
VANET is the integral technology of an Intelligent transportation system (ITS) and
is capable to provide services for high-speed data dissemination and autonomous
driving [1]. The rapid increase in vehicles and their technical growth has become
dynamic [2]. In order to meet the Quality of service (QoS) requirements and to have
a reliable connection, the vehicular network has been amalgamated with emerg-
ing technologies like fifth generation (5G) networks, software-defined networks
(SDN), and Internet of things (IoT), which generally referred as the Internet of Vehi-
cles (IoV). These emerging technologies are integrated with VANET to enhance
the overall functionality, quality, scalability, versatility, and adaptability. However,
due to issues of security, exorbitant cost, and heterogeneity, the performance of the
SDN controller still needs improvement. Additionally, the automobile manufactur-
ing industries have deployed Wi-Fi-based DSRC in their recent vehicles and are
looking forward to 5G and (D2D) device-to-device communication technology as
discussed in [3]. Along with the aforementioned technologies, which have been inte-
grated with VANET, another emerging concept, that considers multi-dimensional
integrated systems which are capable to control processes and integrate information,
and along with this, it provides real-time monitoring with high reliability, security
and efficiency are vehicular to anything (V2X). V2X is also an important entity in
emerging technologies of ITS and has numerous advantages over conventional ITS.
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Fig. 1 V2X Communication in an ad hoc manner with available entities in the network

For example, V2X communication is operated in a dynamic environment, with high
mobility and low latency.

With V2X communication, communicating nodes can exchange real-time and
secure information with the capacity to upgrade for future assistance. There are
various types of wireless communications that can be carried out by vehicles in V2X
communication, i.e.,V2V (vehicle to vehicle),V2R (vehicle to the roadside unit),V2I
(vehicle to infrastructure), V2P (vehicle to pedestrian), and V2U (vehicle to UAV)
as depicted in Fig. 1 and discussed in [4]. V2X communication requires extremely
low end-to-end delay and very high reliability, which cannot be achieved by using
the conventional cellular network [5]. The problem of dis-connectivity and untimely
dissemination of data traffic in VANET is due to the gap between the vehicles.
Additionally, the problem might be due to the inefficient spectrum utilization and
alternately switching among various service channels using the single-radio device.
This increases the ETE delay and decreases throughput. In contrary to this, the dual-
radio devices can efficiently use the spectrum; however, due to the cross-channel
interference of the same band, the network performance degrades. Furthermore, the
network performance deteriorates because of the inappropriate selection of path or
next-hop node in the network. By considering the above-stated problems, VANET
requires an efficient routingmechanismandmayneed to have assistance fromanother
network with a distinctive band, which might help to increase the connectivity and
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may route the desired information reliably to the intended destination in a timely
manner.

The rest of the paper is organized as follows: Sect. 2 of this research presents
the background knowledge of V2X communication and the effectiveness of getting
assistance from another channel or from another network. Section3 discusses the
proposed mechanism of routing in UAV-assisted VANET. Section4 presents the
simulation results with a detailed analysis and Sect. 5 contains the conclusion.

2 Literature Review

VANET mainly consists of Roadside Units (RSUs) and On-Board Units (OBUs).
OBUs are installed on vehicles while RSUs are deployed by the trusted authority.
RSU deployment schemes can influence OBU’s short time certificate update [6].
Location and density of RSU estimate the effectiveness of VANETs [7]. In order to
deploy the RSUs, several features are taken into consideration to achieve an optimal
solution. Different techniques can be used i.e., BIP (Binary integer programming)
and BEH (Balloon expansion heuristic). Multi channels i.e., control channel CCH
and service channels SCH are supported by IEEE standard 1609.4. CCH is respon-
sible to transmit control information as well as safety, while SCH is responsible to
transmit service data [8]. However, data exchange among heterogeneous networks
can be very complicated, where the issues like security, privacy, authenticity, data
transmission rate, and latency can rise, and need to be addressed well in time. In the
literature, there are notable examples from the works of [9–11] regarding the mobil-
ity model, channel characterization model, and routing protocols in heterogeneous
networks. V2X communication intended to be one of the indispensable modes of
communication for future self-sufficient vehicles, which are getting closer to reality
with every passing day. Diverse communication technologies have been consolidated
to frame a heterogeneous V2X system to help data merger. However, data reliance
models are yet intended to cater for single-use cases [12] which are not covered by
Cooperative Intelligent Transport Systems (C-ITS). Car applications incorporate a
wide arrangement of utilization cases, going fromcrash avoidance to high platooning,
and to exceptionally self-governing driving; each having various prerequisites as far
as network types and traffic designs are concerned. Specifically, the advancements in
V2X communication should be backward-compatible with a vehicle to infrastructure
(V2I), vehicle to vehicle (V2V), vehicle to pedestrian (V2P), and vehicle to UAV.

UAVs are viewed as a significant component of IoT, which are furnished with
dedicated sensors with specialized communication gadgets. UAVs offer different
administrative tasks, for example, low height reconnaissance, post-catastrophe sal-
vage, coordination, and communication. In addition, the abilities of drones to assist
broadband remote communication, particularly shaping FANETs by communicating
with ground nodes, have been evaluated by simulations and approved through field
tests in [13]. Compared with vehicles and their structures, drones fly in the sky with
a higher likelihood to interface ground vehicles and with different UAVs by means
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of a line of sight (LOS), which encourages profoundly reliable transmission [14].
In [15], the author presents theUAV (drone) assisted vehicular networksDVN,which
gives a pervasive connection with vehicles by integrating network technologies and
communication of UAVs with associated vehicles. In particular, the author initially
proposed the architecture of the DVN and highlighted its services. It has been accen-
tuated that by coordinating with infrastructure and vehicles, UAVs are capable to
improve vehicle-to-vehicle communication, data collection ability, coverage, and
interworking efficiency of the network.

One of the most important subjects in the field of communication in ad hoc net-
works is the increasing demand of available routes [16]. All Key point indicators
(KPIs) in routing depend upon the basic algorithm of a routing protocol. FANET is
one of the desired solutions and is used as a relay between disconnected VNs [17].
Moreover, UAVs with high stability and effective residual energy can increase net-
work life by selecting efficient routes using artificial intelligence (AI) based algo-
rithms that adopt a reinforced learning approach [18]. An adaptive UAV-assisted
geographic routing with Q-Learning is presented in [19]. Here, the presented rout-
ing scheme is divided into aerial component and depth-first search (DFS) algorithm.
The first part is used to determine the global routing path using the fuzzy logic and
the second component is used to gather information like the global road traffic. The
gathered information is then forwarded to the ground requesting vehicle. In order to
improve the quality of service (QoS) of each end-user (EU) UAV can select its trajec-
tory based on the location of EU [20]. Looking into the needs of the future, the author
in [21] has proposed the Internet of UAVs over a cellular network with 6G to facil-
itate UAVs to everything U2X using dynamic routing protocols and reinforcement
learning.

To enhance communication inVANETbymeans of optimization,UAVs have been
utilized in order to investigate the relay selection problem in [22, 23]. In [10], the
author has also selected FANET to assist VANETs, whenever disconnection occurs.
Due to the flexible mobility of UAVs, they immediately act as a relay to re-establish
the connection. However, the protocol used by the author cannot tolerate even a few
seconds of disconnection. To overcome this issue another author in [24] has pro-
posed a protocol that built the routing paths gradually combining three parameters
i.e. traffic density, connectivity, and distance between connecting nodes. Neverthe-
less, this protocol lacks the information about the location of vehicles in the routing
path. In [4], the authors overcome the drawbacks of [24] and exploited UAVs to
calculate the exact location of vehicles by the exchange of HELLO messages. How-
ever, UAVs are under-utilized as they are only used when the other routing paths
between vehicles are disconnected. In urban cities, UAVs are considered to be a suit-
able choice to provide VANET connectivity [25]. To get the assistance from UAV in
an area where either the disaster takes place or public safety missions are required,
a work presented in [26] was considered, that uses the resource allocation scheme
in emergency scenarios for UAV-aided relay systems. UAVs can avoid obstacles to
ensure the reliable delivery of data. Therefore in [27, 28], the process of route dis-
covery is based on flooding and on-demand route request. While route reply (RREP)
is sent back by the destination including information of all discovered paths to the



204 O. Chughtai et al.

source node. However, the destination node needs to wait for multiple paths in [27];
this creates a high end-to-end (ETE) delay. In [29], it has been highlighted that the
usage of just V2V communication does not perform well in a high mobility scenario
with intermittent connections. Therefore, the authors have proposed a mechanism to
increase the network scalability through a 3D-routing concept for VANETs, using a
position-based routing to improve the routing performance in VANET.

3 UAV-Assisted Cooperative Routing Scheme (UCRS)

The Vehicular Ad hoc Network (VANET) considered in this research work consists
of a set of wireless nodes that are deployed randomly on a flat surface along with the
road structure. Each vehicle in the network has built-in wireless transceivers and is
pre-programmed to identify itself through a unique node identifier. All the vehicles
are assumed to have equal characteristics in terms of processing capabilities, sensing
range, and memory. However, the destination is assumed to have higher capabilities
and is considered as a base/ground station. Additionally, each node (Vehicle/UAV)
is equipped with the Global positioning system (GPS) to monitor the geographical
position and is capable to maintain its own tables used to perform routing. Energy
constraint is neglected in this model, and it is supposed that each node is equipped
with enough battery.

In the model depicted in Fig. 2, communication among vehicles is shown which
can take assistance fromFlying ad hoc network (FANET). A dense vehicular network
environment has been considered, which may reflect the scenario of congestion.
UAVsdeployed in a dense urban environment can act as a relay node between vehicles
whenever a disconnection in VANET is predicted [30]. UAVs receive commands
from ground stations regarding the disconnected areas, the nearest UAV will move
toward the desired location, the vehicle will take assistance from the UAV and will
provide information about the destination location. UAVs present in the FANET will
transmit the data packet to the final destination. This is how a UAV assisted VANET
is established. Each vehicle in VANET determines two different zones based on
the position of its neighboring nodes. All vehicles which are available in front of a
particular vehicle based on its vicinity are retained in the front-zone and all those
nodes which are behind a particular vehicle and are within the vicinity of a particular
node are retained in the behind-zone. The less congested vehicles amongst the nodes
available in the front-zone are stored in Allied Node Table (ANT). All the nodes in
ANT have enough resources to be part of the reliable route. However, the best node
or vehicle among all the nodes in ANT is selected based on the composite metric
during the route reply procedure.

Whenever a particular vehicle along the route fromsource to a destinationbecomes
congested or link failure occurs during the course of data communication, it needs
to take assistance. For that purpose, FANET has been used and each node (UAV) in
FANET covers a larger coverage area as compared to the vehicles used in VANET.
Thus, assistance from FANET provides an extra benefit of coverage enhancement
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as well as reduces the latency with a smaller number of hop count. It is assumed
that UAVs fly at low altitudes. Low altitude restriction ensures the safety and avoids
collision with other aircraft [31].

3.1 Direction Towards Destination

It is assumed that every node is well aware of the destination node and its geo-
graphical position. With the consideration of this assumption, the direction towards
a destination can be estimated easily. Additionally, certain criteria are established for
categorizing front and behind zones. The nodes in the front zone of a specific node
are selected by considering the relative speed and direction towards the destination.
The forwarding angle is computed as follows and is also used in [28].

θ = cos−1 drn_d − dlh−rn√(
dlh_d − dlh−rn

)2 −
√(

drn_d − dlh−rn
)2 , ∴ θ ≤ 180◦ (1)

where; drn_d is the distance of reference node from destination node. dlh−rn is the
distance of last hop from reference node dlh_d is the distance of last hop from desti-
nation node. The forward angle is used to determine the nodes in the front-zone as
well as behind zone. If the angle between the last hop (lh) and reference nodes (rn)
is less than 180◦. Then the reference node is in the forward zone of the last hop in
the direction towards the destination node (d).

3.2 Speed of Node

The speed of a node is computed in relevance with the speed of other nodes present
in the front zone. Whenever a node selects the next-hop node, its speed is also taken
into account. Node with comparable relevant speed is allowed to be the part of the
route from source to destination and is computed below:

Vi = Vlh − Vrn

Vmax
(2)

In Eq. (2), Vi is the relative velocity of node “i”, Vlh is the speed of forwarding
node, Vrn is the speed of next hop node, while Vmax is the maximum speed of the
node in the vicinity, which is assumed as 120km/h.
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3.3 Traffic Load or Congestion-Level

Each node in the networkmaintains the traffic flows that are passing through the node.
These flows are identified through the flooding ID, which is determined through the
source and the broadcast identifiers. The nodeswhich accommodate a greater number
of flows are more prone to congestion so that is why such nodes are represented
as congested nodes. Currently, it is assumed that an intermediate node can have a
maximum of seven flows in the network.

3.4 Composite Metric

Composite metric comprises of three different parameters, i.e., relative speed, signal
strength, and congestion level. Using this composite metric, the best node among the
available nodes from ANT is selected. Composite metric is calculated at each hop
during Cooperative Route Response (CRRS) along the way from destination towards
the source. However, while disseminating the Cooperative Route Request (CRRQ)
message, if Time to live (TTL) value approaches 32 hops, which is also used in
AODV [32], then further, CRRQwill not be disseminated in the network. Composite
metric uses the weighted sum of unit-less quantities that are relative speed, signal
strength, and congestion level, as shown below;

CM = α × Vi + β × Srx_thi + γ × T f i (3)

In Eq. (3), α, β and γ are constants with equal weights.
To establish a cooperative route from source to destination in VANET, along

with the periodic messages to populate the ANT, a broadcast message, which is
referred to as Cooperative Route Request (CRRQ)—generated by the source node to
discover the destination in the network. Additionally, if the destination found through
the dissemination of CRRQ messages received by the nodes, then the destination
requires to send the response by generating a Cooperative Route Response (CRRS)
towards the source. The following text shows the description of ANT, CRRQ, and
CRRS. In UCRS, the Allied node table (ANT) is populated based on the entries
received during the 1-hop Hello broadcast message dissemination. As each node in
the network periodically sends the 1-Hop Hello messages. In this message, three
important parameters aforementioned above are included.

3.5 Working Principle of UCRS

The working principle of the proposed work is depicted through a flow chart in Fig. 3
and elaborated with the scenario shown in Fig. 4a. Initially, all the nodes in vehicular
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Fig. 3 UCRS working based on flow chart to populate allied node table and route discovery along
with data traffic transmission

(a) Periodic 1-Hop HELLO message
broadcast

(b) Cooperative route request (CRRQ)
dissemination procedure in VANET

(c) Cooperative route response (CRRS)
dissemination procedure in VANET

(d) End-to-End (ETE) Cooperative Route
from Source to Destination

Fig. 4 A scenario depicting the working principle of UCRS
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network broadcast 1-HopHellomessages, periodically, and share a set of information
including node position, number of traffic flows as congestion-level, relative speed,
and angle—to determine the front and behind zone. In contrast to this, the node
when receives a Hello message, calculates a signal strength. All the information that
is received and determined in 1-Hop Hello message is maintained in the table. Each
node segregates its neighbors in front zone and behind zone and populate allied node
table based on uncongested suitable nodes. Source or the originator node broadcasts
the CRRQ packet to all the nodes in its vicinity, if it does not have the route to
the destination; and the nodes in the front zone shall further rebroadcast the request
based on ANT entries. Nodes that are not in the front zone or moving away from
destination will simply discard the CRRQ message as shown in Fig. 4b. Once the
Cooperative route request reaches the destination, it will select the best node out of
allied nodes based on the unicast Cooperative route response message (CRRS).

Destination Node, when receives the first CRRQ, sends a unicast reply to the node
from where it receives the CRRQ as depicted in Fig. 4c. The node that receives the
CRRS needs to compute the best node from ANT based on the value of composite
metric. This procedure continues until the CRRS reaches to the source node. At this
stage, the ETE cooperative route is discovered as shown in Fig. 4d. Once the CRRS
packet reaches the main originator node for a particular flow, it starts to transmit data
packets to the discovered route.During the course of data communication,whenever a
disconnection occurs or link failure detected between the nodes which are available
in the active route, the node that discovers this failure, initiates a local recovery
procedure to re-establish the path. In case local recovery could not resolve the issue,
the node then tries to seek assistance from the other network i.e., FANET, and shown
in Fig. 5. Now data will travel via aerial nodes until it reaches the destination node.

Fig. 5 Getting assistance from UAVs during the course of data communication in VANET
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Table 1 Simulation parameters used to evaluate and compare with state-of-the-art techniques

Simulation parameter Value

Frequency 2.4GHz

CS_Thresh_ 5.01E-12

RX_Thresh_ 3.65E-10

Channel type Wireless channel

Propagation model Two ray ground (VANET)
Free space (FANET)

MAC type IEEE 802.11p

Interface queue type DropTail

Max packet in queue 50

Routing protocol AODV
U2RV
UCRS

4 Simulation Results and Discussion

The simulation model is designed to describe the UCRS protocol in comparison with
various routing protocols likeAODVandU2RV.Simulation parameters are defined in
Table1 and the algorithmofUCRS is already described in previous section.However,
the performance evaluation of UCRS in comparisonwithAODVandU2RV is carried
out based on varying node density.

Impact of Varying Node Density
The node density generally refers to the number of neighbors of a particular node
in the network. With a higher node density, the channel acquisition time to send the
traffic increases. This increases the delay to forward the data packets. Figure6 shows

Fig. 6 Impact of node density on ETE Delay with 7 different number of sources
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Fig. 7 Impact of node density on packet delivery ratio with 7 different number of sources

that ETE delay as compared to an increase in the node density. It has been observed
that with a smaller number of neighboring nodes, the ETE delay is less in all the
protocols. However, with the increase in the node density, UCRS shows 35% less
ETE delay as compared to AODV while 16% less ETE delay as compared to U2RV.
This is because, in UCRS, only allied nodes within the front zone are allowed to
grab the channel so the nodes have a high probability to acquire the channel for data
packets. In contrary to this, in U2RV and in AODV, all the neighboring nodes are
required to acquire the channel for route discovery messages so the probability of
acquiring the channel for data packets decreases. This decreases the ETE delay as
the nodes need to queue the packets.

In Fig. 7, the PDR shows a decreasing trend with the increase in the number of
neighboring nodes in the network. It has been observed that with 2 node-density, the
PDR is 100% in a network with 100 nodes. However, as the node density increases,

Fig. 8 Impact of node density on control message overhead with 7 different number of sources
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the PDR decreases. This decrease is smaller in UCRS as compared to U2RV and
AODV because of the selection of those nodes which are towards the destination
and are uncongested. In contrary to this, U2RV and AODV, show a higher decrease
in PDR. This is because, with higher node density, the nodes become congested,
and due to congestion, the packet loss increases, and this decreases the PDR in
the network. Additionally, with the increases in node density, the control message
overhead increases in U2RV and AODV. Figure8 shows that the control message
overhead in UCRS is 36% less than AODV while 31% less than U2RV.

5 Conclusions

Routing in VANET is one of the major aspects to increase the performance of the
network. Albeit the highly dynamic environment in VANET, where disseminating
messages with high node density to the intended destination without any interruption
is a critical task. Existing data dissemination techniques using single-radio devices do
face degradation in network performance especially with the increase in end-to-end
(ETE) delay and decreased throughput because of the inefficient spectrumutilization.
To deal with this, techniques that used assistance from other channels that generally
referred as dual-radio multi-channel have been proposed, which can efficiently use
the spectrum; however, due to the cross-channel interference in the same band, the
network performance degrades. Therefore, in this work, a UAV-assisted Cooperative
Routing Scheme (UCRS) has been proposed, where Flying ad hoc network (FANET)
provides assistance to VANET. The simulation analysis showed that UCRS experi-
enced 35% less ETE delay as compared to AODV while 16% less ETE delay as
compared to U2RV. Additionally, the control message overhead in UCRS is 36%
less than AODV while 31% less than U2RV.
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