
Early-Phase Performance-Driven Design Using
Generative Models

Spyridon Ampanavos1,2(B) and Ali Malkawi1,2

1 Harvard Graduate School of Design, Cambridge, MA 02138, USA
{sampanavos,amalkawi}@gsd.harvard.edu

2 Harvard Center for Green Buildings and Cities, Cambridge, MA 02138, USA

Abstract. Current performance-driven building design methods are not widely
adopted outside the research field for several reasons that make them difficult to
integrate into a typical design process. In the early design phase, in particular,
the time intensity and the cognitive load associated with optimization and form
parametrization are incompatible with design exploration, which requires quick
iteration. This research introduces a novel method for performance-driven geome-
try generation that can afford interaction directly in the 3d modeling environment,
eliminating the need for explicit parametrization, and is multiple orders faster than
the equivalent form optimization. The method uses Machine Learning techniques
to train a generative model offline. The generative model learns a distribution of
optimal performing geometries and their simulation contexts based on a dataset
that addresses the performance(s) of interest. By navigating the generativemodel’s
latent space, geometries with the desired characteristics can be quickly generated.
A case study is presented, demonstrating the generation of a synthetic dataset and
the use of a Variational Autoencoder (VAE) as a generative model for geome-
tries with optimal solar gain. The results show that the VAE-generated geometries
perform on average at least as well as the optimized ones, suggesting that the
introduced method shows a feasible path towards more intuitive and interactive
early-phase performance-driven design assistance.
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1 Introduction

During the design process, an architect strives to reconcile several qualitative and quan-
titative objectives. Performance-driven design aims to assist in meeting the quantifiable
objectives related to a building’s performance, most commonly through the use of opti-
mization. To maximize its impact, the performance-driven design methodology needs
to be applied from the early design phase1. Contrary to its original purpose as a precise
problem-solving tool, optimization is increasingly gaining traction as an exploratory

1 Paulson and MacLeamy have both elaborated on the impact of changes along the different
phases of design [1, 2]. Similarly, Morbitzer argues that simulation should be used throughout
the design process [3].
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tool in the early design phase [4–10]. However, outside of the research field, the use of
optimization in the early design phase has been limited for reasons that relate to: i) time
intensity, ii) interpretability, iii) inherent limitations of the required parametric models,
and iv) the elusive nature of performance goals in architectural design.

Time Intensity. One major limitation for applying optimization in architecture is the
time intensity of the processes involved [6, 11–14]. Environmental or structural simu-
lations can be computationally expensive. Combined with an optimization process that
employs a stochastic search method, such as evolutionary algorithms, the calculation
time increases by multiple orders of magnitude. In the early design phase, where it is
essential to consider multiple design alternatives quickly, the slow speed of optimization
disrupts the exploratory process.

Interpretability. When it comes to interpreting multi-objective optimization results,
architects can have difficulties in understanding the solution space [15, 16]. Optimiza-
tion returns a set of high-performing solutions with their corresponding performances;
however, the connection between design parameters and performance tradeoffs is not
always apparent [16], offering little intuition to the designer.

Limitations of Parametric Models. Parametric models are widely adopted in architec-
ture; however, their applicability in the early designphase has beenquestioned [4, 17–19].
Davis offers an extensive analysis of how parametric models have certain limits on the
changes they can afford before breaking [20]. To accommodate a major change, such as
those that often happen during the conceptual phase, the parametric model would need to
be replaced by a newone [9, 21, 22].However, optimization operates on a pre-determined
parametric model, and as a result, it conflicts with the nature of the conceptual design
stage.

Nature of Performance Goals in Design. Carrara et al. describes the design process as
consisting of three operations [23]: i) definition of the desired set of performance criteria,
ii) production of design solutions, and iii) evaluation of expected performance. However,
they stress that these operations relate in a non-linear way and coevolve during the
design process. Others have also discussed the co-evolution of the problem definition
and solution in the design process [11, 12, 16, 18, 24, 25]. Therefore, it is expected
that the performance goals, parameters, and constraints will be redefined multiple times
during the design process.

Consequently, as long as optimization requires from the designer a high investment
in terms of time and cognitive effort to create the parametric abstractions and interpret
the results, it cannot seamlessly integrate into the early design phase.

This research suggests an alternative method of providing early-phase performance-
drivendesign assistance for optimally performinggeometries in real-time andwithout the
need for parametrization. The method makes use of Machine Learning (ML) generative
models. It relies on the navigation of a latent space where the results of a series of
optimization processes have been encoded in advance.

This paper describes the suggested method and presents a case study where a Varia-
tional Auto-Encoder (VAE) is introduced for the generation of geometries with optimal
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solar gain properties and pre-determined size. The results show that the VAEwas able to
generate geometries with optimal or close-to-optimal performance for most simulation
contexts from the test set, in a fraction of the corresponding optimization time.

This work makes the following contributions to the area of computational design. A
novel method for real-time early-phase performance-driven design assistance is intro-
duced, which does not require parametric models. The use of generative models is
suggested for the novel task of generating geometries with optimal performance proper-
ties. Empirical evidence is provided, suggesting that a VAE can be used as a generative
model for optimally performing geometries.

2 Related Work

2.1 Performance-Driven Design

Simulation. Simulations form the basis of performance-driven design. However, a sin-
gle or a limited number of simulations is not enough to guide design improvements.
Systematic simulations [26] attempted to address this subject, but the complex rela-
tionship between performance and parameters related to form, together with the time
intensity of the calculations, make this an impractical solution. Some template-based
tools attempted to give a solution by enabling quick evaluation of alternatives [3, 27,
28], however, they imposed severe restrictions to the range of supported forms and thus
were not adopted by the architectural community. Finally, real-time simulations were
found to be helpful during the performance-driven form-finding process [29], however,
in cases with large design spaces and multiple performance criteria, further guidance is
necessary [30].

Sensitivity Analysis. Sensitivity analysis methods can be used to guide exploration
based on a single parametric model [31, 32] or to evaluate multiple alternative para-
metric models [33–35]. However, it has been argued that they do not provide adequate
information to lead to optimally performing solutions [13, 36].

Optimization. Optimization processes identify the parameters of a model that result
in optimally performing solutions. They have successfully solved engineering or build-
ing science problems [5, 6, 37]. However, despite extensive research on optimization
for performance-driven design, such methods have not been widely adopted in the
architecture practice [5, 6].

Form Exploration. In order to reconcile the engineering nature of optimizationwith the
more exploratory role that designers tend to give to it [4], some research has suggested
interactive optimization [8, 9] for integrating performance with designer preferences.
Other work has focused on simulation speed, interactivity, and results visualization [16]
through the use of surrogatemodeling. Last, some recent work has suggested eliminating
the parametric modeling overhead by deploying automatic parametrization and data
analysis [17].
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2.2 Generative Models

Definition. A generative model is a type of ML model that can learn an estimate of
a distribution by observing a set of examples from that distribution, i.e., a training set
[38]. Once fully trained, sampling a generative model approximates sampling from the
original data distribution. For example, a generative model trained on a dataset of faces
will generate new faces when sampled2.

Latent Space. Some generative models work by learning a mapping of the original
data to a lower-dimensional space, called the latent space. For example, the Variational
Auto-Encoder [41] (VAE) explicitly learns an encoder and a decoder function that maps
the original data to and from a latent space. Naturally, similar data points will be located
close in the latent space. This characteristic allows for smooth interpolation of data
samples by traversing the latent space or even for the composition of new data with
specified properties through latent space vector arithmetic, as demonstrated byWu et al.
in the domain of three-dimensional objects [42].

Applications. In the field of architecture, several attempts have been made to use gen-
erative models in the creative phase [43–46]. Most such works used Generative Adver-
sarial Networks [47] (GANs), motivated by some impressive results in the field of com-
puter vision [39, 47–49]. However, the subject of performance has not been previously
addressed directly in research related to generative models.

3 Approach

Current practices and previous research reveal a lack of support for performance-
driven design in the early form-finding process. Almost all related research approaches
performance-driven design through the scope of parametric modeling, which imposes
severe restrictions of time-intensity, cognitive load, and premature commitment to
specific graph topologies [19, 22] to the creative process.

This research suggests that optimal form-finding can be achieved by navigating the
latent space of a generative model. A generative model that addresses a specific set
of performance metrics can be trained on a dataset where each data point represents
both the problem definition and an optimal solution to the problem. When the trained
model is sampled, it will generate a new problem definition and an optimal solution
following the learned data distribution. In order to generate an optimal solution to a
specific problem definition, a sample can be retrieved from the model, constrained by
the problem definition of interest. In practice, this can be achieved through search or
navigation of the model’s latent space. In addition to generating optimal geometric
forms from scratch, the same generative model can also be used to suggest optimally
performing alternatives that are as close as possible to user-generated forms. For this
task, the user-generated geometry becomes part of the constraints that drive the latent
space search.

2 See for example the Progressive GAN model [39] trained on the CelebA dataset [40].
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The proposed method addresses the current limitation of time intensity associated
with performance-driven design. In addition, the ability of ML methods to deal with
high dimensional data is used to work directly with geometries from the modeling
environment, eliminating the need for geometry parametrization. Last, themethod opens
up the potential for intuitive, real-time interactivity in a user-guided search for optimal
geometries.

The dataset required to train such a model needs to include a diverse set of optimally
performing geometries for awide range of problemdefinitions. Such datasets do not exist
at the moment and are impossible to collect from the real world, so synthetic datasets
with the desired characteristics should be created using existing optimization methods.
Since a specific model only addresses a pre-determined set of performance metrics, the
term “problem definition” refers to the simulation context that drives the optimization
process.

Next, a case study is presented, where the performance of interest is related to the
solar gain and the size of the building. The case study allows a detailed development
and evaluation of the suggested techniques.

4 Case Study

4.1 Problem Scope

In a typical scenario for the designof a newbuilding, the architectwould have information
including the location, the plot shape and size, the surroundingbuildings, and the program
of the building. In performance-driven design, maximizing the performance of interest is
of primary concern. Then, in the early design phase, where the focus is on form finding,
the problem would be expressed as finding a geometry for the building that maximizes
the desired performance, given the simulation context (Fig. 1).

Fig. 1. Optimization: context and expectation for the design of a new building.

In this case study the goal was to generate a geometric form for a building that
maximizes the average solar radiation gain during wintertime while keeping the size
as close as possible to a predefined target. In more detail, the solar gain objective was



92 S. Ampanavos and A. Malkawi

defined as the average of the received radiation per area unit of all the mesh faces of a
generated geometry. The size was represented by the geometry volume. The location of
the building was Boston. Wintertime for the environmental simulation purposes of this
case study was defined as any time when the temperature is below 12 C. The plot shape
was a square with a side of 10m. In addition, a maximum height of 10m for any building
was set.

In this problem, the term boundary condition refers to the configuration of the sur-
rounding buildings, as this was the only part of the solar simulation’s boundary condition
that varied. The range of the boundary condition was up to one obstructing building on
each of the east, south, and west sides of the plot, and up to three total obstructing
buildings (Fig. 2). With all obstructions having the same width and height, a total of 342
unique boundary conditions were used.

Fig. 2. Range of variable boundary conditions of the simulation. Each of the three parallelepipeds
can move on the outlined locations or be omitted.

4.2 Data Generation

Geometry Representation. An optimization algorithm was used during the data gen-
eration phase together with a parametric model that generated the geometry. In archi-
tectural design, it is common for a parametric model to be created using high-level
concepts, such as box or tower, and their transformations, such as scale or twist angle.
However, a more neutral and low-level geometry representation is more suitable when
no conceptual decisions are assumed. Therefore, a heightmap was used as the geometry
generation model. Each parameter of the model controls the height of a point on a two-
dimensional grid. This representation provides a simple and intuitive way to describe
geometries, with a fair amount of flexibility. One limitation is that it cannot describe
certain three-dimensional forms. For example, a height map cannot encode information
about cantilevers.

Optimization. Objective.As described in the problem definition, the performance goal
was to maximize the solar gain during the winter months. At the same time, the total
volumewas constrained to remain as close as possible to a predefined target (v= 100m3).
The volume constraint was used as a proxy for the architectural program, which would
prescribe the total surface area in a real-life scenario. In practice, the volume constraint
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was transformed to a minimization objective, calculated as the squared difference of the
target volume from the current geometry volume.

Whenoptimizing aproblemwithmultiple objectives, there are twomajor approaches.
The first is to use scalarization with a single objective algorithm; the second is to use a
multi-objective algorithm. This case study used scalarization, combining the two objec-
tives into a single, minimization objective as described in Eq. (1), where a geometry
is a mesh instance, J is the minimization objective, AvgRadiation(geometry) evaluates
the average of the wintertime incident radiation on all the faces of the geometry mesh,
Vol_target is the desired volume, andVol(geometry) calculates the volume of a geometry.

J(geometry) = − AvgRadiation(geometry) + (Vol_target − Vol(geometry))2∗10−3

(1)

Optimal Solutions Selection. When solving a problem with multiple objectives, the
Pareto front, i.e., the set of non-dominated solutions, has been commonly used to identify
the best-performing solutions [15, 50–55]. Therefore, the individual objectives on each
step of the optimization were recorded, and after the optimization was complete, the
Pareto front was calculated, as suggested in relevant work [56]. For each optimization
problem, i.e., for each of the 342 boundary conditions, a total of 10 optimal results were
selected to form a dataset.

Implementation. The solar radiation calculation was performed using the open-
source plugin Ladybug [57], inside the visual programming platform Grasshopper3d in
McNeel’s Rhinoceros 3d modeling software. A communication module for Grasshop-
per was developed using web sockets, connecting the parametric model and the solar
simulations to an external optimization algorithm. The optimization algorithmwas a cus-
tomized implementation of Simulated Annealing (SA). The whole workflow was con-
trolled by a command-line program that called the optimization algorithm and obtained
the performance results from Grasshopper.

The 342 optimizations were run on a desktop computer for a fixed number of opti-
mization steps (n = 3000). Each optimization required an average of approximately
20 min to complete. After selecting the ten best solutions for each boundary condition
(Fig. 3), a dataset of 3420 pairs of boundary condition – optimal geometry was created.

Fig. 3. Example of a boundary condition and the selected Pareto optimal geometries.
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4.3 Learning

Generative Models. Two popular types of generative models in ML are the Generative
Adversarial Networks (GAN) and the Variational Auto-encoders (VAE). While either
type could be used with the suggested method, this case study focuses on the use of a
VAE because of the simpler setup and its natural ability to model a latent space. This last
feature is essential since it is the navigation of this latent space that enables sampling
optimal geometries for specific boundary conditions.

Data Format. In order to use the generated data with an ML model they first had to be
converted to vectors. Since the boundary conditions in this problem are geometric, both
boundary conditions and optimal geometries were incorporated into a single geometric
representation. In ML, there are three primary ways to describe geometric data [58]: i)
image-based (single or multi-view), ii) voxel-based, and iii) point clouds. Image-based
methods are currently the most robust and well-developed methods and compared to
the original parametric description of the geometries, they allow better modeling of
the spatial relationships between the individual parameters of the vector representation
through the use of convolutions in the learning model.

Since all geometries in the dataset were created using a heightmap, a single depth
map from a top view was used to describe the data (Fig. 4). Multiple different image
resolutions were considered for the depth map before a resolution of 16X16 pixels was
selected based on initial results when using the VAE.

Fig. 4. From left to right: i) optimized geometry with solar radiation colors – SE Isometric, ii)
optimized geometry with depth map – SE Isometric, iii) top view projection of (ii) – final format
of data.

Using the Variational Auto-encoder (VAE). A VAE is a probabilistic model that
learns an encoder function E(x) and a decoder function D(z), mapping from the original
data to a lower-dimensional latent space and back to the original data by training on
a reconstruction task. The objective is defined as the reconstruction loss with a regu-
larizer. The reconstruction loss encourages the decoder to learn to reconstruct the data.
The regularizer is the Kullback-Leibler divergence of the approximate posterior (i.e.,
the encoder’s distribution) from the prior (commonly chosen as a Gaussian distribution)
[41]. Equations (2) and (3) provide a simplified description of the VAE in terms of the
encoder and decoder functions, where x is an input vector, z is the mapping of x in the
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latent space, gϕ is a reparametrization function3, and y is the reconstruction of x.

z = E(x), z’ = gφ(z), y = D(z’) (2)

y = D(gϕ(E(x))) (3)

After a VAE has been trained, the decoder function can be isolated and used as a
generative model that samples the latent space and generates data instances from the
original distribution. In this work, the decoder is used to generate images (depth maps)
of boundary conditions and corresponding optimal geometries.

The retrieval of data instances for a specific boundary condition was achieved as fol-
lows. First, a loss functionLbwas defined as the distance of a generated instance’s bound-
ary condition from the desired boundary condition, described in (4). Next, the boundary
condition – i.e., the surrounding buildings abstracted to simple parallelepipeds – was
translated to a depth map, following the same data format on which the VAEwas trained,
but without any corresponding optimal geometry. The desired geometries were found
by solving the optimization problem (5) of finding the sample z in the latent space, for
which the decoder produces a depth map that minimizes the boundary condition loss Lb.

Lb(target_boundary, y) = Distance(target_boundary, Boundary_Condition(y)) (4)

J(z) = Lb(target_boundary, D(z)) (5)

Since the decoder – and consequently the loss Lb – is a differentiable function,
problem (5) can be solved using gradient descent. Vector z is initialized as a random
sample of the latent space. The loss Lb is calculated, and its gradient is backpropa-
gated to the decoder’s input, resulting in an update of z. Several updates are performed,
until convergence. Using gradient descent in this process is of particular importance
because it enables high-speed retrieval of the appropriate latent space vector, in contrast
to alternative search methods such as stochastic sampling.

Model Architecture. Training. TheVAEwas implemented as a convolutional neural net
(Fig. 5). The encoder consists of two convolutional layers followed by a fully connected
layer with output size 32. This output corresponds to the mean and standard deviation
of a normal distribution of dimension 16, so the latent space is 16-dimensional. The
decoder – or generative model – follows a mirrored structure of the encoder. The input-
output of the VAE is a 16 × 16 grayscale image. The reconstruction loss was defined as
the L2 distance (squared difference) of the input-output images.

Inference.For the process of finding appropriate boundary condition – optimal geom-
etry instances for a specific boundary condition, a boundary condition loss function was
defined. This function calculates how close a generated image’s boundary condition is
to the desired boundary condition. The generated image is first masked to only leave the
boundary condition visible. Then, the masked image is compared to the desired bound-
ary condition image (Fig. 6). The distance of the two images was calculated using the
sigmoid cross-entropy.

3 The reparametrization is an essential component of the VAE, but only mentioned here for
reasons of completeness. For details we direct the interested reader to [41].
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Fig. 5. VAE architecture used for training.

Training. The total dataset was split into two parts, a training set containing 90% of the
data (3,080 data points that belong to 308 boundary conditions) and a test set containing
the rest 10% of the data (340 data points that belong to 34 unique boundary conditions).
The split was done through random selection and care to place all ten data points from
the same boundary condition in the same group, ensuring that the boundary conditions
found in the test dataset have not been encountered during the training. The VAE model
was implemented using the Python library TensorFlow [59] and trained for 1000 epochs,
using the Adam optimizer [60] and batch size 32. The loss function was implemented as
the single sampleMonte Carlo estimate of the expectation [61], where the reconstruction
loss is the squared difference of the input-output images. Only minor improvements in
the loss were gained between 200 and 1000 epochs. At 1000 epochs, a validation loss
of 9.3 was achieved.

Inference. Inferred geometries were generated for the 34 unique boundary conditions
of the test set using gradient descent. Due to the random initialization of the process
and the non-convex shape of the latent space, different geometries can be obtained for
the same boundary condition through repeated optimizations. For each of the boundary
conditions, 100 geometries were generated. The optimization algorithm Adamwas used
with a learning rate of 0.02 for 400 iterations. Convergence was typically observed in
less than 200 iterations.
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Fig. 6. Inference using the decoder part of the VAE.

5 Results

The method introduced for predicting optimal geometries for specific boundary condi-
tions relies on the two underlying processes: i) a high-quality mapping of the data to a
latent space, and ii) the successful navigation of this low-dimensional space.

The first process requires a mapping function that can encode all the critical infor-
mation, as well as a well-structured latent space that enables the generation of new data
through successful interpolations. Both processes are evaluated by assessing the qual-
ity of reconstructions that the VAE produces for the test set. If the VAE was used for
a visual task, the reconstruction quality would refer to the similarity of the input and
output images. However, since the overall goal of this problem relates to building per-
formance, the evaluation was performed with respect to the specific performance goals
of solar radiation and volume compliance, as they have been detailed in Sect. 4.2. The
geometries derived from the VAE-reconstructed depth maps are expected to perform
close to the optimization-derived geometries.

Similarly, the navigation of the latent space is evaluated based on the performance of
the geometries generated, constrained by the boundary conditions in the test set, using
the process described in Sect. 4.3.

Potential inaccuracies in the actual performancemetrics of the dataset may have been
introduced during the resampling process, when meshes based on a 5 × 5 heightmap
were encoded to 16 × 16 depth map images. To avoid this issue when comparing SA-
optimized with VAE-generated geometries, the reported performance of both the test
set ground truth and the test set inferences was calculated following a common process
based on the 16 × 16 depth map encodings of the geometry.

5.1 Reconstruction Performance

The reconstruction results for all 34 boundary conditions of the test set were coded
into three categories after careful observation of the per-boundary condition scatterplots
and a comparison of the mean performances. The results for 5 boundary conditions
were coded as type a: performance very close to the test set, 27 were coded as type b:
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performance on one axis similar to the test set and the other axis better than the test set,
and 2 were coded as type c: performance better than the test set. Diagrams a, b, and c of
Fig. 7 show a representative sample from each type. While some individual geometries
with bad overall performance were generated, for each boundary condition, the mean
performance of the generated geometries was similar or better than that of the test set.

In more detail, in Fig. 7, the performance of the test set samples is plotted against
the performance of their VAE-reconstructions. The diagrams a, b, and c each correspond
to a different boundary condition. In the top row, each geometry instance corresponds
to a point on the scatterplot. In the bottom row, the mean and standard deviation of
each group of geometries are plotted. The best overall performance would be located in
the bottom left corner of the plot. A well-trained VAE should produce reconstructions
with performances close to those of the test set. Because the VAE is a probabilistic
model, multiple reconstructions were sampled for each instance of the test set (n =
100). Additionally, the scatterplot includes the performance of two random geometry
generators as baselines for comparison: one uniform random and one Gaussian (μ =
5 m, σ = 1.5 m). Two more baselines are included, coming from simple heuristics: a
geometry with a flat horizontal roof and volume equal to the target (optimal volume
deviation) and a geometry with a tilted roof at 42° facing south (optimal solar gain).

Fig. 7. Performance of geometries for three representative cases. Each column a, b, c includes
results for a single boundary condition. Geometries from the test set, VAE-reconstructions,
baselines, and random generators.

Figure 7a indicates that most reconstructions perform close to the test set or along
a curve close to the Pareto front line as implied by the test set samples. The mean per-
formance of the reconstructed geometries is very close to that of the test set geometries.
However, in Fig. 7b, the distribution of the reconstructions does not follow the one of
the test set. The mean solar radiation performance of the reconstructions is better than
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that of the test set, while the mean volume deviation is approximately the same. Last, in
Fig. 7c, the performance of the reconstructions is superior in both axes.

5.2 Inference Performance

To evaluate the process of navigating the latent space, the performance of the inferred
geometries is compared against the performance of the reconstructed geometries.
Figure 8 shows representative examples of optimal geometry inference for three dif-
ferent boundary conditions, with varying success. In Fig. 8a, the inferred geometries
overlapwith the reconstructed ones, whichmeans that the optimal geometries as encoded
through the VAE were successfully found. For other boundary conditions, such as the
one in Fig. 8b, the inference is not successful: there is a wide spread of performance
for the inferred geometries, with their mean performance located far from that of the
reconstructions. Last, in Fig. 8c, the performance of many inferred geometries is better
than the one of the reconstructions.

Fig. 8. Performance of geometries for three representative cases. Each column a, b, c includes
results for a single boundary condition. Geometries from the test set, VAE-inferences, VAE-
reconstructions, baselines, and random generators.

The results for all 34 boundary conditions of the test set were coded in the three
representative types. Results for 28 boundary conditions were similar to Fig. 8a, i.e.,
successful, 5 were found to be similar to Fig. 8b, i.e., not successful, and Fig. 8c is the
only case of this type.



100 S. Ampanavos and A. Malkawi

5.3 Hypervolumes

To further evaluate the generated geometries’ performances for both the volume and
the solar radiation objectives, the hypervolumes of the Pareto fronts were calculated,
as shown in Fig. 9. For each boundary condition, three Pareto fronts are compared:
the ground truth (test set), the Pareto front of the reconstructed geometries, and the
Pareto front of the inferred geometries. The hypervolumes of all three Pareto fronts
were calculated using the Python library pymoo [62], using a common reference point
for each boundary condition.

Fig. 9. The hypervolumes of the Pareto front of the VAE-reconstructions and the VAE-inferences
are plotted against the hypervolume of the test set for each of the 34 unique boundary conditions
in the test set.

The bar graph in Fig. 9 shows that for most boundary conditions, the hypervolume
of the reconstructions is higher than that of the test set. VAE-generated geometries for
boundary condition no. 14 have a significantly higher hypervolume than the test set. This
is the same boundary condition as in Fig. 7c and Fig. 8c. The reason is that the test set
geometries for boundary condition 14 are far from optimal. The mean performance of
the volume objective is close to random, as the optimization process that generated these
geometries got stuck to some local optimum. However, the VAE was able to general-
ize correctly from higher-quality examples and generated better performing geometries
than those found through optimization. These results indicate that the VAE has success-
fully interpolated the training data, allowing the model to generalize from the training
examples to new cases.

Finally, the inferred geometries Pareto front has a hypervolume close to that of the
reconstructed ones for most boundary conditions. This confirms that the latent space
navigation method, using gradient descent, can successfully find the latent vectors that
generate optimally performing geometries.

6 Discussion

6.1 VAE Sampling for Optimal Solar Gain Performance

The results suggest that a VAE trained on optimally performing geometries can gen-
erate geometries with similar performance properties for new simulation contexts. To
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that extent, the VAE can potentially replace a computationally expensive optimization
process, offering a drastic speed improvement. For reference, a single geometry in the
dataset typically took approximately 20 min to get optimized, while the introduced
method used less than 5 s.

In the case study, the VAE-generated geometries through the latent space search had
a higher hypervolume than those generated through simulated annealing optimization for
most boundary conditions. This suggests that, in general, the proposedML-basedmethod
generated higher and more consistent quality results than the optimization method. A
potential reason is that during training, as the VAE learns to compress the inputs to
a lower-dimensional space, it identifies the essential features to prioritize during the
compression. As a result, the higher frequencies – or the noisy information – tend to
get lost. On the other hand, a stochastic optimization process such as the SA tends to
generate noisy results. Through this process, and by generalizing from all of the training
data, the VAE may have filtered out noisy geometric features that were decreasing the
solar performances. Finally, the results of the VAE model could be further improved
using more extensive and higher quality datasets and hyperparameter tuning.

6.2 Beyond Quick Optimization

Apart from quick automatic optimization, the suggested method opens up the potential
for optimizing interactively, directly inside the 3d modeling environment. The way that
the generative model has been used frees it from any tie to a specific parametric model
and any associated limitations. Designer intentions regarding geometric form can be
indicated through modeling and used to guide the generation process. For example, a
user-designed geometry can easily be encoded as a depth map and guide the latent space
search with an appropriate modification of the loss function Lb.

6.3 Generalizability

The case study demonstrated how a VAE can generate geometries with optimal solar
gain and predefined size. However, the suggested method of optimal geometry gen-
eration through latent space navigation of a generative model can be used with any
performance metric of interest. The optimization workflow described in Sect. 4.2 could
be followed, but individual components such as the geometry representation or the
optimization algorithm may be updated to match the needs of each specific problem.

Furthermore, the suggested method is not limited to a single performance objective.
The case study already hints at the use of multiple objectives, using the volume target.

6.4 Limitations

Concerning the case study, the problem has been simplified and limited in scope in order
to facilitate the evaluation of the overall method as well as its individual components. In
order to address problems of real-world complexity, a different geometry representation
and a more extensive dataset may be needed.

One overall limitation of the suggested method is that the generative model may
generate unpredictable results for simulation contexts that are entirely outside of the
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range of the training set. Appropriate coding of the boundary conditions may alleviate
this issue. Additionally, similar to an optimization process, the performance objectives
must be specified in advance, i.e., during the training process. The adaptability of the
suggested method to changing objectives remains an open question.

7 Conclusion

This research introduced a novel method for optimal geometry generation that does not
require the designer to use a parametric model. The method aims to provide a more
intuitive and interactive alternative for guiding the early phase of performance-driven
design than currently available tools. The case study demonstrated the feasibility of
using a VAE as a generative model for optimally performing geometries. Future work
can focus on expanding the range of the problem variables with real-world problem
definition complexity and datasets.

In order to take advantage of the full potential of the suggested method and meet the
promise for early-phase design support, future work will also focus on different ways of
presenting the results and modes of interactivity inside the modeling environment.
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