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Abstract. Population growth in cities negatively affects global climate problems
regarding environmental impact and energy demand of building stock. Thus, build-
ings should be examined for energy efficiency by reaching acceptable internal ther-
mal comfort levels to take precautions against climate disasters. Although building
energy simulations (BES) are widely used to examine retrofitting processes, the
computational cost of urban-scale simulations is high. The use ofmachine learning
techniques can decrease the cost of the process for the applicability of quantitative
simulation-based analyses with high accuracy. This study presents the implemen-
tation of the k-means clustering algorithm in an Urban Building Energy Modeling
(UBEM) framework to reduce the total computational cost of the simulation pro-
cess.Within the scope of the work, two comparative analyses are performed to test
the feasibility of the k-means clustering algorithm for UBEM. First, the perfor-
mance of the k-means clustering algorithmwas tested by using the observations on
the training data set with design parameters and performance objectives. The sec-
ond analysis tests the prediction accuracy under different selection rates (5% and
10%) from the clusters partitioned by the k-means clustering algorithm. The pre-
dicted and simulation-based calculated results of the selected observations were
comparatively analyzed. Analyses show that the k-means clustering algorithm
can effectively build performance prediction with archetype characterization for
UBEM.

Keywords: Urban building energy modeling · Archetype characterization ·
K-means clustering

1 Introduction

More than 50% of the total world population lives in urban areas. However, intensive
urbanization has severe consequences on climate change regarding the high energy use
and environmental impact [13]. As a result, cities are under transformation to decrease
the environmental impact due to climate change. Local governments have already started
to reduce greenhouse gas emissions (GHGs) goals by enforcing necessary regulations.
For instance, the City of New York committed to decreasing its GHGs by 80% until
2050 [8]. However, the transformation should begin with the quantitative analysis of the
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current state and possible intervention actions to improve performance and reduce the
environmental footprint in the built environment [6].

City managements started to form datasets for the built environment related to exam-
ining the effect of climate change regulations [18]. These datasets are digital representa-
tions of the characteristics of the urban building stock, and they can support identifying
and analyzing opportunities and corrective actions for sustainable transformation. How-
ever, the limitations to data collection make it challenging to analyze retrofit scenarios
[14]. For instance, the data sharing process is limited in Turkey [20]. Thus, alternatives
are needed for access to urban datasets.

Urban-scale retrofit of buildings is among the climate change adaptation and mit-
igation strategies. In various studies, high-resolution analyses were applied on urban
building stockwith different scales and objectives [27], e.g., human-building interaction,
micro-climate observation, and building archetype characterization. Because building
retrofit scenarios should be evaluated from different perspectives for realistic evalua-
tion application of retrofitting process [11, 22], however, a multi-objective approach can
be challenging for the consideration of all retrofit alternatives. The evaluation process
can be complex, mainly due to the computational cost and a high number of parame-
ters. Therefore, there is a need to examine the urban multi-objective retrofit scenario
evaluation process by developing new computational approaches.

The urban-scale retrofit process is evaluated with urban building energy modeling
(UBEM) using different approaches such as bottom-up building energy simulations and
top-down data-driven algorithms [19, 32]. Data-driven algorithms are preferred in the
UBEM process due to their ease of application and evaluation capacity. In particular,
one of the critical data-driven approaches in UBEM is archetype characterization, which
is realized by grouping the building stock according to similar physical and thermal
properties [30]. For instance, the grouping criteria can be energy demand values of
building units as performance objectives or construction dates as parameters. Although
such approaches are preferred in the literature, clustering over a single parameter may
be insufficient in evaluating many building stocks in cities. For this reason, the number
of evaluation criteria should be increased to understand building stock’s properties as
explanatory indicators and facilitate the neighborhood analysis with efficient clustering
[1, 28].

The data framework in the UBEM compose of different datasets., thus, the anal-
ysis process can be laborious for reaching valuable results. Various studies have pre-
ferred machine learning (ML) algorithms because of their ability to manage large and
heterogeneous data sets [32, 33]. Archetype identification, energy demand prediction,
and occupancy pattern detection are purposes for the usage area of ML [16, 17, 19].
Among these methods, clustering algorithms are effective for building archetype char-
acterization, which is a suitable approach for pre-processing heterogeneous data [10].
The algorithm can provide acceleration for urban building energy modeling analysis by
determining the archetype characterization for the building stock in the neighborhood
scale.

The clustering algorithm’s performance is essential. It can also bemodified according
to the selection of feature types of training data because the selection of the features is
related to the clustering algorithm’ performance. There are examples in the literature that
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propose statistical sensitivity analysis to evaluate the building features’ impact on the
building performance criteria [26, 38]. The analysis ranks critical parameters. Sensitivity
analysis is commonly applied in building energy modeling to quantify the impact of
design parameters on the performance objectives [25]. On the other hand, the calculation
cost can be reduced by fixing the features that do not affect the model outputs with the
analysis.

This study proposes an approach to predict building performance objectives, which
can accelerate the neighborhood-scale building energy simulation process with high
accuracy. K-means clustering algorithm is used for the partitioning of the residential
building stock based on their (a) physical/thermal properties and (b) performance objec-
tives. Building simulations were conducted for the whole neighborhood model to calcu-
late the latter dataset. The main reason for choosing the clustering technique is to predict
energy use and indoor thermal comfort on the neighborhood scale rapidly by selecting
from the partitioned clusters using different selection rates (5% and 10%). This method
can provide advantages for analyzing the current condition of the building stock and the
quantitative performance evaluation of retrofit alternatives. Since the k-means cluster-
ing algorithm is sensitive to data distribution (particularly to outliers), two comparative
analyses were performed to understand the performance of the clustering algorithm for
archetype characterization. In the first analysis, two clustering models were separately
trained using physical/thermal properties and performance objectives. The first analysis
indicates that the selected design parameters can be used to characterize archetypes using
clustering, which can be used for the performance objective prediction. In the second
analysis, the performance objectives were used as input features of the training data
for the k-means clustering algorithm. Random selection was applied from the clusters
formed previously, then two different selection rates (5% and 10%) were applied from
these representative clusters. These selections were simulated and were compared with
full model simulation results for the prediction accuracy of the clustering algorithmwith
the selections from the partitioned clusters. Consequently, the results of the analyses
indicated that the random selections from these clusters successfully represent the per-
formance of the studied neighborhood. Thus, clustering algorithm preference before the
neighborhood simulation could contribute to the acceleration of the neighborhood-scale
building energy simulations.

2 Materials

The archetype characterizationwith the k-means algorithmwas tested inmultiple neigh-
borhoods to measure the success of the process. Bahçelievler, Yukarı Bahçelievler, and
Emek neighborhoods in Ankara’s Çankaya district were included as the study area.
Ankara generally has a cold and arid climate, so the ASHRAE climate zone is included
in the 4B classification (CDD10oC ≤ 250, HDD18oC (Heating Degree Days) ≤ 3000)
[3]. Heating energy demand (QH ) has a high proportion of total energy demand in the
building stock of a region. Therefore, cooling energy demand was not calculated for the
simulation process.
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Fig. 1. SelectedNeighborhoods inAnkara (left) and 2614Buildings Based onBuilding Functions
and number of floors.

In Fig. 1, the boundary of the three neighborhoods is shown on the left, and a
color-coded representation for the building function with the number of floors is shown
on the right. 93% of the study area buildings are residential units, and the remaining
buildings are commercial buildings in which are generally located on the ground floors
of the buildings. Since occupancy information is not among the data provided by official
institutions, it has been obtained from national and city statistical reports by adapting it to
the region [35]. During the field visits, the total number of floors and window-wall ratio
values of the buildings were collected and entered into the physical properties datasets.
Consequently, the building’s energy simulations generated the residents’ daily energy
usage patterns with building energy and comfort standards [4, 5, 34].

3 Methodology

This section presents the proposed methodology of UBEM for the building stock in the
selected neighborhoods. The process includes geometrical operations, building simula-
tion (i.e., energy and comfort performance results generation), clustering with machine
learningwith hyper-parameter tuning, and two-step comparative analysis (i.e., clustering
for archetype characterization) (Fig. 2).

Fig. 2. Flowchart of the proposed method
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3.1 Thermal Modeling

The workflow starts by importing the building physical (e.g., layout, # of floors) data
to the algorithm. The building footprint curves were simplified into four-edged con-
vex polylines to decrease the building energy simulations’ computing cost based on the
energy modeling standards defined in [21]. The 2-dimensional building footprints trans-
form to the 3-dimensional thermal zones with the knowledge of the number of floors
(Fig. 3).

Fig. 3. Geometry correction for thermal modeling

The spatial layout of residential units affects buildings’ thermal balance; therefore, it
is essential to model in detail. However, the layout data of all buildings in the neighbor-
hood cannot be available in the study regions. For that reason, authors have developed
three different types of layouts for units that consist of one, two, and four thermal zones
(Fig. 1). The simulation units were divided into different zone types, e.g., bedroom
(B), living room (L), service (S). According to the building function, living rooms and
bedrooms are the default for all the units. Service areas in which include hallways and
bathrooms, do not have external windows (Fig. 4). Each unit has different thermal loads
and occupancy schedules compatible with its usage. The distribution of layouts for the
building stock was developed by random distribution in parallel with the data obtained
from national statistics to the study area.

Fig. 4. Zone division of simulated units

More than 25000 residential units were simulated, the simulation results were used
for the training data in the clustering algorithm. Three performance objectives are calcu-
lated annually by building performance simulations (Fig. 4). These are heating energy
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demand (QH ) and lighting energy demand (QL), and degrees of overheating (OHD). The
heating and lighting demand are two parts of the total energy use calculation that vary
according to different design parameter values (Table 1). Since there is no mechanical
cooling system, natural ventilation through windows is the only way to cool the zones
in residential units. Overheating ratings (OHD) are used to measure thermal disturbance
in the summer season. OHD is calculated using a fixed upper-temperature limit for each
zone type. The threshold of OHD is 28 °C for the living room and 26 °C for the bedroom
[9].

Table 1. Design parameters and performance objectives of the training data

Thermal and physical properties

Property Value Unit Type

U-value, Wall* {0.60, 1.88} W/m2-K Pre-defined

U-value, Roof* {1.88, 3.12} W/m2-K Pre-defined

U-value, Floor* {0.93, 1.92} W/m2-K Pre-defined

U-value, Window* {5.1, 2.1} W/m2-K Pre-defined

Heating set point/set back 25.0, 20.0 °C [6]

Ventilation type only natural, one-sided – Pre-defined

Ventilation limits 21.0, 24.0 °C Pre-defined

Infiltration 0.0002, 0.0003 m3/s-m2 Extra

Window opening ratio [0.25–0.5] – Pre-defined

Occupancy schedule 29 types,1 to 5 people – [26]

Window-to-wall-ratio [0.15–0.30] – Extra

Equipment load {2, 3, 5} W/m2 Pre-defined

Lighting density {5, 7, 10} W/m2 Extra

Performance objectives

Property Unit Type

Heating demand (QH) kWh/m2 Pre-defined

Lighting demand (QL) kWh/m2 Pre-defined

Overheating degrees (OHD) °C Pre-defined

*Before/after 1980

A residential archetype unit can be characterized as related to building physical,
thermal, or occupancy properties. A part of the residential unit features is obtained from
official institutions for this study [24], e.g., building footprint or per floor unit number.
The rest of the building features were generated to the extent specified by national
statistics and building energy modeling standards [4, 5], [42], for instance, occupancy
properties. However, in several cases, the number of building parameters in the training
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data may not be sufficient for the clustering algorithm; therefore, the authors added extra
parameters to the simulation algorithm.

The extra design parameters are included in the data pool by performing sensitiv-
ity analysis according to their impact on energy use performance objectives. Within the
scope of this study, the calculation of impact was achievedwith sensitivity analysis.Mor-
ris’s analysis is used as a sensitivity analysis. Morris Sensitivity analysis is a screening
local sensitivity analysis with the elementary-effect method based on a finite distribution
of input parameters. The analysis works to rank the input factors’ relative importance,
namely the first-order main effect (Si), by influencing the output parameters [22].

Table 2. Results of Morris sensitivity analysis

Parameter Range mu* Type

U-value, wall {0.6, 1.2, 1.8, 2.4} 33.386 Pre-defined

Window-to-wall ratio {0.1, 0.2, 0.3, 0.4} 31.844 Extra

Infiltration rate {0.0002, 0.0003, 0.0004, 0.0005} 28.452 Extra

Lighting density {5, 7.5, 10, 12.5} 22.252 Extra

Morris sensitivity analysis was applied to test a pre-defined and three extra design
parameters regarding the influence (mu*) on a performance objective, which is selected
as theheatingdemand (Table 2). TheU-value Construction is a pre-defineddesignparam-
eter, and it was included in the analysis to compare the impact of the three extra design
parameters as a proxy [34]. The authors manually defined ranges for these parameters in
the building energy simulations (Table 1). Based on the first-order (Si) main effect index
results, window-to-wall ratio, infiltration rate, and lighting density for zone parameters
were highly influential on QH . Consequently, these design parameters were added to the
training dataset.

3.2 Occupancy Modeling

Occupancy modeling for residential buildings is one of the critical features for building
performance. The subject previously studied residential buildings to monitor occupant
actions and cluster activity schedules from performance objectives [7, 12]. Many uncer-
tainties exist with a high degree of influence for energy demand and indoor thermal
comfort as occupants interact with building systems (e.g., heating setpoints, natural ven-
tilation) [41]. Nevertheless, mostmodeling approaches use default occupancy schedules,
and they ignore the different occupant profiles and their specific ways of space use and
system interaction. The writers of this study have proposed to use a new method for
realistic occupancy modeling. The process is a combination of datasets from different
resources and different statistical techniques (Fig. 5).
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Fig. 5. Occupancy by national statistics

The proposed approach consists of national statistics for occupancy and location-
based address registrations for unit information [24]. For the selected neighborhoods,
occupancy scenarios are modeled based on three different statistical information and
different unit layout modeling, where is mentioned in Sect. 3.1 (Fig. 5). The statistical
data were used to map the daily occupant activities for residential units, i.e., household
size, labor status, age [36, 37]. The simulation units were divided into different zone
types, i.e., bedroom (B), living room (L), service (S). Thirty-one occupancy schedules
were matched with the simulation zones based on occupant preferences. Each schedule
was assigned randomly to the units, which helped to produce randomly distributed
objective performance results in the training dataset.

3.3 Building Energy Simulation

The selected district’s digital models were built according to Turkish TS-825, ASHRAE
55, ASHRAE 90.1 standards [4, 5, 34]. Ladybug/Honeybee Visual Coding tools were
the simulation tools for the building energy simulations with the EnergyPlus engine [29,
39]. All residential unit simulations were separately simulated. For each simulation,
random construction, internal load, and occupancy schedules were assigned (Fig. 6).

Fig. 6. Unit selection and surface adjacency
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Surface types differ for vertical and horizontal positions based on the residential
unit position. The internal walls are adjacent, and they are set to adiabatic surfaces. The
surrounding geometries were introduced as environmental context surfaces. They are
essential due to solar radiation reflections.

3.4 Clustering

Clustering is an unsupervised machine learning algorithm that works for unlabeled data
structures—the algorithm search for similarity between the values of parameters. The
similarity is a valuable measure for the qualitative data features. However, the distance
calculation works better to recognize the numeric data’s relationship. The algorithm
defines the distances of the instances from each other according to their similarities or
dissimilarities [40].

The process starts with the selection of features and feature extraction from training
data. Then, the algorithm proceeds with the design of the clustering algorithm suited
explicitly to the problem. It evaluates the results to improve the algorithm’s performance.
Lastly, it completes with the realization and comparison of the results based on statistical
formulas [31].

3.5 Partial Clustering

The partitional clustering algorithm defines the center points in the data for non-
overlapping clusters [23], e.g., k-means, k-medoids. The k-means approach begins with
the random selection of k-different center points for each cluster [2]. The k-means
algorithm updates the center points by iterative computation. At the same time, the
expectation-maximization step repeats until the centroid positions reach a pre-defined
convergence value. While the expectation step arranges each point for its nearest center
point of the cluster, the maximization step computes all the points for each group and
sets the new centroid.

In clustering, there is a trade-off between prediction accuracy and cluster stability
[10, 15]. Therefore, the tuning process is essential for the algorithm’s performance in
terms of accuracy. The process of parameter tuning consists of sequentially altering
one of the algorithm’s parameters’ input values. The elbow method and the silhouette
coefficient are implemented during tuning. Lastly, k-means clustering algorithms are
sensitive to the data type. Thus, two different input data types are tested for this study,
i.e., physical and thermal design parameters vs. performance objectives.

4 Results

In this section, the k-means clustering algorithm was tested in two different ways for
UBEM. The first test was to compare the k-means clustering with two different training
data types, i.e., design parameters and performance objectives. The second test was real-
ized with a different amount of training data (5% and 10%) from the clusters partitioned
by the k-means clustering algorithm. The training data sets were taken from the same
generated data of the selected built environment for each step.
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Fig. 7. Spatial distribution of the performance objectives; (left) heating demand (kWh/m2), (right)
overheating degrees

Figure 7 shows the spatial distribution of the two performance objectives in the
clustering algorithm’s training data for the selected region, i.e., QH and OHD. The
colors represent the region-based the generated data that is the average results of all
buildings inside the area. The spatial distribution of the two performance objectives has
resulted differently.

4.1 Comparative Analysis for the Qualities of Training Data for Clustering
Algorithm

In this section, the k-means clustering algorithm is trained with two different data types
for the training dataset. Firstly, design parameters were introduced in the k-means algo-
rithm, e.g., the residential units’ physical and thermal properties and occupancy data
(Table 1). The number of clusters resulted in seven clusters using elbow and silhouette
coefficient tuning techniques. Secondly, performance objectives were introduced, and
after the tuning process, the number of clusters was four.

Fig. 8. Energy demand (kWh/m2) averages for cluster outputs of two clustering processes; Per-
formance objective-based clusters (left, red), Design parameter-based clusters (right, blue) (Color
figure online)
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Figure 8 shows the box plot values of energy demand averages for two clustering
processes in terms of mean and distribution. The number of features of the training
dataset was more than the objectives, and the algorithm performed more segmentation
for the training dataset. While the energy demand averages of the clustering algorithm
groups trained with the training data containing the performance objectives were similar,
the clustering results trained with the design parameter differed.

4.2 Partitional Clustering for Facilitation of UBEM

In this part, the model was used in a comparative study to validate how the k-means per-
form with a lower number of selections of residential units. The metrics of comparative
analysis were the average and standard deviation for objectives QH , QL, and OHD. The
clustering algorithm was coded with the sckit-learn library of Python 3.6. The number
of clusters was seven clusters after the hyper-parameter tuning. Finally, the complete
model (i.e., brute-force simulations) in Table 3 is the simulation results of all residential
units in the selected neighborhoods.

Table 3. The comparative analysis of different selection rates (5% and 10%) from clusters and
complete model simulation

Metrics Five percent
sample

Percentage
change

Ten percent
sample

Percentage
change

Complete
model

xQH 124.97
∓ 43.70 SD

%5.87 120.1
∓ 45.00 SD

%1.75 118.04
∓ 44.36 SD

xQL 14.97
∓ 5.54 SD

%0.00 14.8
∓ 5.60 SD

%1.14 14.97
∓ 5.69 SD

xOHD 14986
∓ 6882 SD

%2.75 15699
∓ 7096 SD

%1.88 15410
∓ 7150 SD

Five-percent and ten-percent selections were the ratios of the random selection data
instances from seven clusters. These selected instances were simulated to generate per-
formance objectives. Then, they have compared with the complete model results in
terms of the percentage change. The k-means algorithm divided the dataset of generated
objectives into different clusters. As seen in Table 3, three performance objectives were
compared with average, standard deviation, mean percent ratio. Ten-percent sample per-
formedmore accurately compared to five-percent sample for all performance objectives.
However, the values were close to less than a 5% confidence interval ratio even for five-
percent sample of clustering. In conclusion, the performance of the clustering algorithm
showed that it could be used for UBEM to decrease the computation time.

5 Discussion

In this study, comparative analyses were carried out to observe the performance of the
k-means algorithm for archetype characterization of the UBEM performance dataset.
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The k-means clustering models were separately trained with performance objectives
(e.g., energy demand and overheating degrees) and design parameters (e.g., physical
and thermal properties of building stock). Even though the number of instances was
the same in the two training datasets, the training performed with the parameter-based
dataset consisted of more features with higher accuracy. The k-means has achieved
more clusters with the design parameters included training dataset, and each cluster
was reliable to differentiate itself from other clusters according to their dissimilarities
(Fig. 8). According to these results, it was seen that the design parameters of residential
building stock can play significant role for the building performance prediction in the
archetype characterization processwithout simulating all residential units in the selected
urban regions. Because building energy simulation is an expensive method in terms of
computational cost, and the real building performance data may not always be available
for building stock analysis.

Secondly, the performance of k-means was tested with different selection ratios from
the clusters partitioned by the k-means clustering, i.e., complete model vs. two different
sampling ratios (five-percent and ten-percent).Ten-percent selection resultedmore accu-
rately to predict to cluster the energy demand and overheating degree values. However,
five-percent selection ratio also can be used as an alternative instead of simulating all
residential units in the selected region. Thus, it has been seen that the partitions formed
by the k-means clustering algorithm are successful in representing the performance data
of the entire study area. Nevertheless, each clustering process should be tuned to reach an
optimal number of clusters with high accuracy. Elbow and silhouette coefficients were
applied and tested multiple times as hyperparameter tuning. Because centroid position-
ing of clusters may result differently between trials due to random initiation. Otherwise,
this situation may cause false interpretations during the use of the clustering algorithm.

6 Conclusion

UBEM has capacity for analyzing the urban building stock’s performance objectives by
collecting, managing, and producing large amounts of real or synthetic data. In addi-
tion, advanced machine learning algorithms can be suitable for clustering or estimating
these performance objectives. This study proposes a methodology to apply the k-means
clustering algorithm for the UBEM process. Instead of simulating the entire building
stock in the neighborhoods, the clustering method was applied for the clusters of similar
features of the building stock. However, the qualities of training data are essential in
clustering algorithms. Therefore, two different comparative analyzes were realized for
the qualities of training data and the prediction performance of clustering algorithm. For
the first analysis, two clustering models were trained with the training data consists of
design parameters and performance objectives, separately. The clustering algorithm split
the design parameters included training dataset into more groups than the performance
objective-based training dataset with high accuracy. The comparative analyses results
indicated that physical and thermal parameters of residential building stock could be
used as training data content in the clustering process for the UBEM archetype charac-
terization. In the second analysis, the methodology consists of the comparative analysis
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for the energy simulation with the different selection ratios from the cluster of build-
ings partitioned by k-means clustering algorithm—energy demand averages were com-
pared between the different number of samples from clusters and complete model. The
results showed that the clustering algorithm might be suitable for urban building energy
modeling to reduce simulations’ computational costs. For further studies, the proposed
methodology will be tested in an automated process for different climatic zones without
simulating entire settlements.

Acknowledgements. This research is supported by the Scientific and Technological Research
Council of Turkey (TUBITAK), Grant No. 120M997.

References

1. Aksoezen, M., et al.: Building age as an indicator for energy consumption. Energy Build. 87,
74–86 (2015). https://doi.org/10.1016/j.enbuild.2014.10.074

2. Arvai, K.: K-Means Clustering in Python: A Practical Guide – Real Python
3. ASHRAE: ASHRAE climatic design conditions 2009/2013/2017
4. ASHRAE: ASHRAE Standard 55-2004 – Thermal Comfort (2004). https://doi.org/10.1007/

s11926-011-0203-9
5. ASHRAE: ASHRAE Standard 90.1-2013 – Energy Standard For Buildings Except Low-rise

Residential Buildings (2013)
6. World Bank: Cities and climate change: an urgent agenda. Urban development series

knowledge papers. World Bank, Washington DC (2010)
7. Bedir, M.: Occupant behaviour and energy consumption in dwellings: an analysis of

behavioral models and actual energy consumption in the Dutch housing stock (2017)
8. Chen, Y., et al.: Automatic generation and simulation of urban building energy models based

on city datasets for city-scale building retrofit analysis. Appl. Energy. 205, 323–335 (2017).
https://doi.org/10.1016/j.apenergy.2017.07.128

9. CIBSE: Guide a - Environmental design. The Chartered Institution of Building Services
Engineers (2006)

10. Deb, C., Lee, S.E.: Determining key variables influencing energy consumption in office
buildings through cluster analysis of pre- and post-retrofit building data. Energy Build. 159,
228–245 (2018). https://doi.org/10.1016/j.enbuild.2017.11.007

11. El Gindi, S., Abdin, A.R., Hassan, A.: Building integrated Photovoltaic Retrofitting in
office buildings. Energy Procedia 115, 239–252 (2017). https://doi.org/10.1016/j.egypro.
2017.05.022

12. Guerra-Santin, O.: Relationship between building technologies, energy performance and
occupancy in domestic buildings. In: Keyson, D.V., Guerra-Santin, O., Lockton, D. (eds.)
Living Labs, pp. 333–344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-33527-
8_26

13. Hong, T., et al.: CityBES: a web-based platform to support city-scale building energy
efficiency (2016)

14. Hong, T., et al.: Ten questions concerning occupant behavior in buildings: the big picture.
Build. Environ. 114, 518–530 (2017). https://doi.org/10.1016/j.buildenv.2016.12.006

15. Hsu, D.: Comparison of integrated clustering methods for accurate and stable prediction of
building energy consumption data. Appl. Energy. 160, 153–163 (2015). https://doi.org/10.
1016/j.apenergy.2015.08.126

https://doi.org/10.1016/j.enbuild.2014.10.074
https://doi.org/10.1007/s11926-011-0203-9
https://doi.org/10.1016/j.apenergy.2017.07.128
https://doi.org/10.1016/j.enbuild.2017.11.007
https://doi.org/10.1016/j.egypro.2017.05.022
https://doi.org/10.1007/978-3-319-33527-8_26
https://doi.org/10.1016/j.buildenv.2016.12.006
https://doi.org/10.1016/j.apenergy.2015.08.126


Building Archetype Characterization Using K-Means Clustering 235

16. El Kontar, R., Rakha, T.: Profiling occupancy patterns to calibrate urban building energy
models (UBEMs) usingmeasured data clustering. Technol.Archit. Des. 2(2), 206–217 (2018).
https://doi.org/10.1080/24751448.2018.1497369

17. Kontokosta, C.E., et al.: A dynamic spatial-temporal model of urban carbon emissions for
data-driven climate action by cities (2018)

18. Kontokosta, C.E.: Energy disclosure, market behavior, and the building data ecosystem. Ann.
N. Y. Acad. Sci. 1295(1), 34–43 (2013). https://doi.org/10.1111/nyas.12163

19. Kordas, O., et al.: Data-driven building archetypes for urban building energy modelling.
Energy 181, 360–377 (2019). https://doi.org/10.1016/j.energy.2019.04.197
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35. TÜİK: TÜRKİYE İSTATİSTİK KURUMU Turkish Statistical Institute (2010)
36. TUIK, T.S.I.: Employment status and participation rate (2020)
37. TUIK, T.S.I.: Indicators related with disability and old age, 2012, 2014, 2016, 2019 (2019)
38. Westermann, P., Evins, R.: Surrogate modelling for sustainable building design – a review.

Energy Build. 198, 170–186 (2019). https://doi.org/10.1016/j.enbuild.2019.05.057

https://doi.org/10.1080/24751448.2018.1497369
https://doi.org/10.1111/nyas.12163
https://doi.org/10.1016/j.energy.2019.04.197
https://doi.org/10.1016/j.enbuild.2012.08.018
https://doi.org/10.1016/j.rser.2016.03.045
https://doi.org/10.1016/j.buildenv.2015.12.001
https://doi.org/10.1016/j.scs.2017.12.038
https://doi.org/10.1016/j.enbuild.2016.10.050
https://doi.org/10.3390/en11123269
https://doi.org/10.1016/j.rser.2008.09.033
https://doi.org/10.1016/j.buildenv.2018.05.035
https://doi.org/10.1016/j.enbuild.2019.05.057
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