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Abstract. The paper presents a computational methodology to quantify the dif-
ferences in visual perception of originality of the rotating tower typology between
architects and non-architects.Aparametric definition of theAbsoluteTowerBuild-
ing D with twelve variables is used to generate 250 design variants. Subsequently,
sixty architects and sixty non-architects were asked to rate the design variants,
in comparison to the original design, on a Likert scale of ‘Plagiarised’ to ‘Orig-
inal’. With the crowd-sourced evaluation data, two neural networks - one each
for architects and non-architects - were trained to predict the originality score
of 15,000 design variants. The results indicate that architects are more lenient at
seeing design variants as original. The average originality score by architects is
27.74% higher than the average originality score by non-architects. Compared to a
non-architect, an architect is 1.93 times likelier to see a design variant as original.
In 92.01% of the cases, architects’ originality score is higher than non-architects’.
The methodology can be used to quantify and predict any subjective opinion.

Keywords: Originality · Tower typology · Visual perception · Crowd-sourced ·
Subjective evaluation · Deep learning · Neural network

1 Introduction

Architecture is a unique discipline where art and engineering meet subjective demands.
Architects offer design solution to their clients (predominantly non-architects), but these
two groups may not always have the same aesthetic sensibilities. Multiple studies [1–3]
have shown that architects and non-architects have different preferences. Jeffrey and
Reynolds [4] studied the differences in aesthetic “code” of architects and non-architects,
and argued that buildings constructed according to the “code” of architects is less likely
to receive popular acclaim. Another study [5] focused on the decision-making in pur-
chasing residential properties. It found that non-architects ranked a property perceived
as “family home” higher than a property perceived as “light and outward facing”. This
finding indicates that subjective factors tend to be more relevant to non-architects than
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objective design goals. Moreover, Brown and Gifford [6] concluded that typically, archi-
tects cannot predict the non-architect’s aesthetic evaluation of architecture. Therefore, a
potential conflict exists between architects and non-architects, who may have different
expectations from a building. This research investigates the differences between archi-
tects and non-architects with regard to the visual perception of originality of design of
the tower typology.

Fig. 1. Absolute tower d on the right. Clicked by Sarbjit Bahga, reproduced under CC license.

Throughout the history of architecture, the tower typology has been a symbol of
power and wealth, the identity of city skylines, and iconoclastic landmarks for human
navigation [7]. In many ways; by combining vertical mobility, material innovation,
mechanical heating, speed of construction, wind and earthquake resistance, evacua-
tion planning, and service automation [8]; towers (or skyscrapers) exhibit the pinnacle
of architectural and engineering design [9]. During the design of a tower, architects
are progressively moving away from the extruded box towards non-orthogonal designs
[10]. Simple shapes such as rectangle and ellipse are often transformed and varied in the
z-axis to conceive complex geometries. Vollers [10] explains that: “Twisted geometries
with repetition of elements are applied not so much for economic gain as for semiotic
connotation”.

This research uses the design of Absolute Tower D designed by MAD Architects
(see Fig. 1) - a twisting tower with elliptical floor plan [11] - as the original design
against which architects and non-architects are asked to evaluate the originality of design
variants. The following sections elaborate the background, the research methodology,
the use of deep learning for quantification, the results, and the future scope of work.

2 Background

2.1 Originality in Design

Thedefinitionof originality in the context of design is rather subjective andopen-ended. It
is often conflated with innovation, novelty and creativity. Being innovative, novel and/or
creative independently may not necessarily mean that a design, a work of art, a theory, or



Quantifying Differences Between Architects’ and Non-architects’ 205

a discovery is original. The phenomenon of simultaneous invention explains that most
scientific advancements are made independently and more or less simultaneously by
multiple scientists [12], exemplified as early as in 1774 by the simultaneous discovery of
oxygen by Scheele and Priestley. In the context of art, Lamb and Easton [13] have argued
that science and art are not dissimilar in this regard. The way papers of simultaneous
discoveries are same in terms of the core idea, but not sameword-for-word; likewise, two
painters may independently paint about the same core theme, but their paintings may not
be identical stroke-for-stroke. Therefore, originality cannot be independently absolute.
It can only be reviewed in comparison to reference(s). Since originality is relative, being
innovative, novel and/or creative cannot be linked causally to originality. Instead, they
are better understood as features of originality.

The emphasis on originality and individuality as a way of life has been propagated by
popular ad campaigns in the twentieth and twenty-first centuries; exemplified byApple’s
1997 ad campaign slogan “Think different”. Reinartz and Saffert [14] studied 437 ad
campaigns and concluded that the combination of originality and elaboration is the most
effective way (96% more than median) to inspire people to view a product favourably
and buy it. It is followed by the combination of originality and artistic value (89% more
than median). It would be safe to conclude that the perception of originality - be it visual,
audio, tactile, or spatial – subliminally plays a significant role in one’s appreciation of
a product or an act of creativity. However, a universal definition of originality in the
context of design is difficult to establish because of the fact that originality in design can
be discerned in several ways – in the process, function, and form. Originality of a process
may be defined as a byproduct of creativity that makes an idea evolve into a system and
then into an artefact [15]. Originality may be sought in the function of a design which
typically manifests itself through transformation of scientific or technical research into
a product [16]. Originality may also be sought in the form of a design. Often times form
is explored with structural performance [17] and/or energy performance [18] in mind.
Originality may also accessed as an antonym of plagiarism, i.e., from the perspective of
copyright laws. However, existence of copyright laws, their structure (state vs federal),
and the extent of the law’s ambit varies from one country to the other. The processes
to detect and the legal implications of violating originality (or copyright) of design are
beyond the scope of this research.

Non-architects are typically not privy to the process of architectural design. Their
sense of originality in architecture is primarily derived from visual stimuli [19]. The aim
of this research is to compare the visual perception of originality between architects and
non-architects. In other words, this research aims to quantify the originality of forms.
Evaluating the originality of a given form without an explicit reference would require
the evaluator to subliminally conjure all the forms ever seen, and then compare the given
form with the conjured forms that act as reference. Therefore, understanding originality
of form, similar to understanding the originality of scientific discoveries, is an exercise
of (visual) comparison with one’s experiences as the reference. For the purpose of this
research, instead of relying on visual comparisonwith the sub-conscious, forms of design
variants will be compared to the form of the original (reference) design of the Absolute
Tower D.
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It is to be noted that non-architects associatedwith other design fieldsmay understand
architecture beyond visual stimuli. It may be argued that “non-architect designers”, as
a group, sits between “architects” and “non-architects non-designers”, with respect to
holistic understanding of the process of architectural design. In the context of this paper,
the phrase “non-architect(s)” excludes the sub-group of people that are associated with
any design field – both as context and in selection of participants for evaluation of
originality.

2.2 Machine Learning in Architecture

Artificial intelligence, and in particular machine learning, has become a popular topic
in all computational processes across industries. Since the 2010s it has been incorpo-
rated in various researches in architectural design as well. Machine intelligence can be
utilised to support creativity [20], automate housing layout generation [21], automate
implicit design iteration through discretisation [22], transfer 3D style of a geometry to
another geometry [23], appropriate performance simulation [24], and calculate urban
space perception [25].

Traditional programming requires the programmer to explicitly define rules to (sub-
sequently) generate output. Deep learning is a departure from such a system. It is a
subset of machine learning that uses deep neural network with multiple hidden layers to
statistically appropriate the entire solution space (see Fig. 2). It does so by training on
discrete sample dataset with known input variables (independent variables or features),
and known output (dependent variable(s) or label(s)). On completion of training, i.e.,
after statistically mapping the relationship between the independent and dependent vari-
ables (see Fig. 2b), the neural network is capable of predicting output for any new set of
input variables. Consequently, with the use of deep learning, the number of data samples
that need to be explicitly evaluated by survey participants reduces significantly (from
thousands to hundreds). The evaluation of additional data samples can subsequently be
predicted with a neural network that is trained with the explicit evaluations (see Fig. 2c).

Fig. 2. Training and prediction by neural network
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3 Research Methodology

This research uses a computational methodology that can be used to quantify (see
Fig. 3) and predict any kind of subjective evaluation of design. The methodology com-
bines crowd-sourced design evaluation with the statistical power of deep learning. The
methodology has four key steps mentioned as following –

1. Defining design variants: The first step in the process is to collect or generate design
variants that can be evaluated. For example, if urban streetscapes are to be evaluated
for beauty, images of urban streetscapes need to be collected for evaluation. If a
parametric definition is being used for design, design variants need to be generated
by varying the parameters (independent variables).

2. Crowd-sourced evaluation: The second step in the process is to get the design variants
evaluated by relevant group(s). The evaluation data is discrete in nature and does not
truly represent the solution space (see Fig. 2a). Therefore, it is not directly used for
comparative study.

3. Neural network training: The third step in the process is to train a deep neural network
with the evaluation data (output or dependent variable) and the design parameters
(input or independent variable) that define the design variants. Through training, the
neural network learns to appropriate the solution space (see Fig. 2b).

4. Predicting subjective evaluation: On the completion of training of the neural network
with sufficient accuracy, the fourth step is to predict subjective evaluations of a larger
new set of design variants. Since neural networks learn the solution space during
training, they can predict the evaluation of new variants by virtue of interpolation
(see Fig. 2c). Finally, the predicted values are used for comparative analysis.

The following sub-sections discuss the four steps in detail with respect to this research,
along with discussing the preliminary analysis of the evaluation data and the limitations
in the process of quantification.

Fig. 3. Computational methodology for training a neural network to quantify and predict crowd-
sourced subjective evaluation.
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3.1 Step 1: Defining Design Variants

Design variants of Absolute Tower D were defined and generated by a parametric
Grasshopper definition of the original design. The original design [11] can be para-
metrically represented by only five parameters – the two radii of the elliptical floor plan,
total number of floors, floor to floor height (or total height) and total rotation (or floor to
floor rotation). In order to have design variants of similar visual weightage, total number
of floors and floor to floor height are not varied to generate design variants. In addition
to the three other parameters of the original design, nine additional parameters are added
to the parametric definition. These additional parameters change the shape of the floor
plan from ellipse to a four-legged star to a square and to a rhombus, control the nature of
the rotation of floor plates (linear or bezier), change the state of the balconies (present
or absent), and scale the floor plates towards the top and the bottom of the tower. The
floor plan is represented by a NURBS curve instead of an ellipse, and the corner point
weights of the control polygon and the position of the mid-points of the control polygon
are varied to morph the floor plan into the four shapes. The parameters (see Table 1) are
elaborated as following -

• (x1) Radius 1 of the floor plan (plan_r1): Controls the length of the bounding box of
the floor plan. When the floor plan is elliptical, it represents one of the radii of the
ellipse.

• (x2) Radius 2 of floor plan (plan_r2): Controls the width of the bounding box of the
floor plan. When the floor plan is elliptical, it represents one of the radii of the ellipse.

• (x3) Floor plan corner point weight (crpt_weight): Controls the weightage of the
corner points of the control polygon of the floor plan. When all the other parameters
are kept constant at the values of the original design, crpt_weight = 0.0 yields a
rhombus floor plan, crpt_weight = 0.5 yields the original design, and crpt_weight =
1.0 yields a rectangular floor plan (see the first row in Fig. 4).

• (x4) Floor plan mid-point movement (midpt_move): Controls the displacement of the
mid-points of the control polygon of the floor plan towards the centre of the floor plan.
When all the other parameters are kept constant at the values of the original design,
midpt_move = 0.0 yields the original design, and midpt_move = 1.0 yields a blunt
four-legged star floor plan (see the second row in Fig. 4). When all parameters except
crpt_weight and midpt_move are kept constant at the values of the original design,
crpt_weight = 1.0 and midpt_move = 0.5 yield a sharp four-legged star floor plan
(see the third row in Fig. 4).

• (x5) Total rotation (tot_rot): Controls the total angle of rotation between the bottom
and the top floor plates.

• (x6–x9) Distribution of the rotation values (rotstart_x, rotstart_y, rotend_x, rotend_y):
The four parameters control the nature of the distribution of the rotation values of
floor plates. The distribution is calculated by a bezier S-curve. Therefore, the four
parameters are the two anchor points (rotstart_y and rotend_y) and the two handles
(rotstart_x and rotend_x) of the S-curve. When all of the four parameters have a value
of zero, the S-curve takes the shape of a straight line, thereby making the distribution
linear in nature.
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• (x10) Presence or absence of balcony (bal_state): Controls the presence or absence
of balcony projections using a discrete boolean value. When bal_state is zero, the
balconies are replaced by glazed facade.

• (x11–x12) Scaling values of the floor plates (scale_top, scale_bottom): Controls the
amount of scaling in the top three quarters (scale_top) and the bottom quarter of the
tower (scale_bottom). The scaling of the floor plates start from the top of the bottom
quarter towards both the directions.

Fig. 4. Variation in floor plan with crpt_weight and midpt_move

Table 1. Domains of the parameters (independent variables) of the design variants.

Parameters Minimum Maximum Tower D Number of possible values

plan_r1 10.00 15.00 13.70 500

plan_r2 15.00 25.00 18.50 1000

crpt_weight 0.000 1.000 0.500 1000

midpt_move 0.000 0.500 0.000 500

tot_rot 0 720 208 720

rotstart_x 0.000 0.750 0.535 750

rotstart_y 0.000 0.750 0.000 750

rotend_x 0.000 0.750 0.395 750

rotend_y 0.000 0.750 0.000 750

bal_state 0 1 1 2

scale_top 0.010 1.000 1.000 990

scale_bottom 0.500 1.000 1.000 500
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In multivariate studies such as this research, the minimum number of data samples
needed to train a neural network can be determined using few industry accepted rules of
thumb. Sekaran and Bougie [26] prescribe the 10x rule which states that the number of
data samples should be at least ten times the number of independent variables. To test
the correlations of independent variables, Green [27] recommends a minimum sample
size of 50 + 8k, where k is the number of independent variables. To conclusively make
predictions, Green [27] recommends a minimum sample size of 104 + k, where k is
the number of independent variables. Given that the number of independent variables
is twelve in this research, the rules of thumb recommend a minimum of 120, 146 and
116 data samples respectively. To accommodate additional testing data to measure the
accuracy of neural network, this research has used 250 data samples (design variations)
for crowd-sourced evaluation. Figure 5 shows 84 out of the 250 design variants.

3.2 Step 2: Crowd-Sourced Evaluation

The second step in the process of quantifying subjective evaluations is to evaluate the
design variants. To facilitate interpolation of the extreme cases, fifty of the 250 design
variants were generated by combining the minimum, maximum and original design val-
ues of the independent variables. The rest of the 200 design variants were generated using
random values. Similar to the calculation of minimum number of data variants needed
for evaluation, the minimum number of participants needed in the process of evaluation
also needs to be ascertained. As a rule of thumb, Clark and Watson [28] recommend
ten participants per item on the rating scale, whereas DeVellis [29] recommends fifteen
participants per item on the rating scale. This research has used a Likert scale of four
items for crowd-sourced evaluation. Thus, following the latter rule of thumb, sixty par-
ticipants were needed for evaluation. Since this research compares the evaluations of
two groups, i.e., architects and non-architects, the 250 design variants are evaluated by
sixty architects as well as sixty non-architects. The lowest age amongst the architects
was 23. Consequently, all the selected non-architect participants were older than 22. As
mentioned in Sect. 2.2 “Originality in Design”, the non-architect participants exclude
people associated with other design fields. The quantification of the visual perception
of originality of the excluded sub-group is not part of this research.

Since the evaluations are comparative in nature, to acquaint the participants to the
extremities of the design variants, all the design variants were shown to each of them
before the process of evaluation. The architects and the non-architects were asked to rate
the design variants against the following question –

“How would you rate the visual relationship of the displayed designs with respect
to the reference design?”

A Likert scale was used to collect the evaluations. The design of a Likert scale
has two variables – the number of categories in the scale and the description of the
categories in the scale. Given that 250 design variants were to be evaluated, six or above
categories could lead to decision fatigue [30]. A four-category scale was selected over a
five-category scale to reduce the risk of participants avoiding the process of evaluation
by selecting the ‘Neutral’ category. Agree-disagree descriptions yield lower quality data
as they suffer from acquiescence response bias [31]. Therefore, qualitative labels of
‘Plagiarised’, ‘Similar’, ‘Different’, and ‘Original’ were used as categories.
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Fig. 5. 84 of the 250 design variants used for crowd-sourced evaluation; top left is the original
design, bottom left is a rectangular extrusion variant without balcony.



212 J. Mondal

The design variantswere shown alongside the reference design (original design). The
order of the design variants was randomised for each participant. The participants were
not informed that the design variants are derived from a universal parametric representa-
tion. This information was skipped to understand the visual perception of originality of
the design variants as an explicit artefact, without any connection to the process of gener-
ation of the design variants. Parametric representationmay be self-evident to some of the
participating architects. The quantification of the difference in visual perception of orig-
inality between architects that recognise the underlying parametric logic and architects
that do not recognise the underlying parametric logic is not part of this research.

For every design variant i, the originality score is calculated by Eq. 1 as follows -

Originality score(i)=
(∑r

n = 1
L(i)(n) × W

)
/ r (1)

where,

i = Design variant identifier
r = Number of Likert evaluations per design variant
L = Likert evaluation
L = Likert evaluation
W = 0.00, if L(i)(n) is ‘Plagiarised’
0.33, if L(i)(n) is ‘Similar’
0.67, if L(i)(n) is ‘Different’
1.00, if L(i)(n) is ‘Orginal’

If all the evaluations of a design variant are ‘Plagiarised’, the originality score of the
design variant becomes 0. If all the evaluations of a design variant are ‘Original’, the
originality score of the design variant becomes 1. In other words, originality score of
0 implies that the particular design variant is visually perceived as ‘Plagiarised’ by
everyone, and originality score of 1 implies that the particular design variant is visually
perceived as ‘Original’ by everyone. Each design variant has two originality scores –
one for architects (Originality score (ar)) and one for non-architects (Originality score
(non_ar)). As a result, two tables (one each for architect’s and non-architect’s originality
scores) of data with 250 rows and thirteen columns were compiled to train two neural
networks. The rows represent the design variants. The first twelve columns represent
the independent variables that define the design variants. These are common for both
the tables. The last column stores the respective dependent variable, i.e., the originality
scores of the respective design variants by architects in one and by non-architects in the
other.

3.3 Preliminary Analysis of Evaluation Data

Correlation matrices (see Fig. 6) were generated to understand the intra-relationships
between all the variables (independent and dependent). Depending on the correlation
values, independent variables are excluded from deep learning. Additionally, the cor-
relation values indicate which independent variables play a major role in the visual
perception of originality.
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Fig. 6. Intra-correlation matrices of all variables in crowd-sourced data

Exclusion of Independent Variables. Independent variables with high intra-
correlation (r > 0.75) are typically excluded from training neural network because they
tend to supply the same information to the neural network. Consequently, by including
both the independent variables, one adds noise instead of incremental information. As
the colour-coded matrices reveal, none of the independent variables have high intra-
correlation (r > 0.75). Therefore, all the independent variables are to be included in
the training. Additionally, none of the independent variables have high correlation (r >

0.75) to either of the dependent variables. This is a typical feature of data sets that are
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compiled from subjective observations. The lack of strong correlation makes it almost
impossible for traditional statistical methods to appropriate such a data set with a high
degree of accuracy (~75% or above).

Significant Independent Variables. The analysis of the correlations of the independent
and the dependent variables (see Table 2) reveals that seven out of the twelve independent
variables are inversely correlated to the dependent variables. Floor planmid-point move-
ment (midpt_move) exhibits highest correlations with the originality scores of architects
(r = 0.29) and non-architects (r = 0.22). As shown in Fig. 7 (see Fig. 4 for 2D plans),
this independent variable changes the shape of the plan from an ellipse to a four-legged
star.

Fig. 7. Visual effect of varying midpt_move on the 3D of tower D

Radius 2 of floor plan (plan_r2) exhibits the second highest correlations with the
originality scores of architects (r = 0.16) and non-architects (r = 0.21). As shown in
Fig. 8, this independent variable controls the horizontality of design variants, thereby
reducing slenderness with increase in value. The nature of the two independent variables
with highest correlations with dependent variables (midpt_move and plan_r2) indicates
that when visually comparing towers (or design variants) of the same height, both archi-
tects and non-architects tend to subliminally concentrate more on visual features that
horizontally control the overall silhouette of the towers.

Presence or absence of balcony (bal_state) has the highest inverse correlations with
the originality scores of architects (r = −0.50) and non-architects (r = −0.49). Addi-
tionally, it exhibits the lowest absolute difference in correlations (|�r| = 0.01) between
architects and non-architects. This suggests that when visually comparing towers for
originality (or plagiarism), both architects and non-architects tend to ignore features
that affect local surface articulation (see Fig. 9).



Quantifying Differences Between Architects’ and Non-architects’ 215

Table 2. Correlations of independent and dependent variables in crowd-sourced data.

Independent
variables

Originality score (ar) Originality score (non_ar) Absolute difference

plan_r1 −0.10 −0.07 0.03

plan_r2 0.16 0.21 0.05

crpt_weight 0.03 0.00 0.04

midpt_move 0.29 0.22 0.07

tot_rot −0.17 −0.37 0.20

rotstart_x −0.22 −0.17 0.05

rotstart_y −0.06 −0.11 0.05

rotend_x 0.01 −0.01 0.02

rotend_y 0.08 0.04 0.04

bal_state −0.50 −0.49 0.01

scale_top −0.17 −0.06 0.11

scale_bottom −0.12 −0.02 0.10

Fig. 8. Visual effect of varying plan_r2 on the 3D of tower D

Fig. 9. Visual effect of varying bal_state on the 3D of tower D
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Total rotation (tot_rot) exhibits the highest absolute difference in correlations (|�r|
= 0.20) between the originality scores of architects (r= − 0.17) and non-architects (r=
− 0.37). This would appear to indicate that architects tend to be more visually sensitive
towards rotation of floor plates. Conversely, non-architects tend to see rotated towers as
a visually homogeneous group without much regard to finer differences in the amount
of rotation.

3.4 Steps 3 and 4: Neural Network Training and Predicting Originality Score

The third step in the process of quantifying subjective evaluations using deep learning
is to train a neural network with the evaluation data. On the completion of training
of the neural network with sufficient accuracy, the fourth step is to predict subjective
evaluations of a larger set of design variants.

Google Colab was used to write, edit and execute the code for steps 3 and 4. Scikit-
learn machine learning library was used for greater flexibility and control over the neural
network models. Choosing the hyper-parameters of a neural network (e.g., the number
of hidden layers, the number of neurons in each layer, activation function, loss function,
batch size, and number of epochs) is a complex process, that affects the network’s
efficiency. Scikit-learn’s ‘GridSearchCV’ class was used to iteratively train the two
neural networks with varied hyper-parameters, until best results were attained.

The two neural networks were trained on 200 design variants. The effectiveness of
the two neural networks was tested on the remaining fifty design variants. The select
neural network model for architects can predict originality score of design variants with
root mean square error of 0.08, R2 score of 0.81 and accuracy of 91.35%. The select
neural network model for non-architects can predict originality score of design variants
with root mean square error of 0.07, R2 score of 0.83 and accuracy of 90.04%.

As part of step 4, the two trained neural networks were used to predict the originality
scores of 15,000 design variants. The values of the independent variables required to
generate the 15,000 design variants were calculated by combining equidistant interpola-
tion of the domains of each independent variable. Finally, the 15,000 originality scores
by architects as well as non-architects were tabulated to quantify the differences.

3.5 Limitations of Quantification

Each step of the methodology and each aspect of each step of the methodology have
intrinsic as well as extrinsic limitations which may affect the quantification of the orig-
inality scores. Given the variance in absolute differences between the correlations of
independent and dependent variables between architects and non-architects (see Table
2), changes in the selection of parameters to be varied and the range in which they are to
be varied to generate the design variants will yield different originality scores. The form
used in step 2 of the process, i.e., collection of crowd-sourced evaluation has intrinsic
limitations. Changing the perspective from which design variants are seen in the form,
and changing the medium of seeing the design variants (rendered, diagrammatic, pic-
tures of model, animated, vs mounted on VR set etc.) will affect the visual perception
of objects or buildings. Collection of such comparative data sparks questions about the
extrinsic influences, e.g., is the visual perception of architecture by non-architects who
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are either designers or are trained in artistic fields more correlated to architects instead of
non-architects not trained in creative fields? Additionally, the data used to train the neu-
ral networks is reflective of the socio-cultural bias of the volunteers. This feature of the
nature of crowd-sourced data can be utilised to analyse and predict design preferences
specific to groups of people (see section “Conclusion”).

4 Result and Discussion

The percentage distribution of the originality scores of 15,000 design variants by archi-
tects as well as non-architects are shown in Fig. 10 through ten bins with bin-width
of 0.10. Table 3 shows the numerical summary of the predicted originality scores. To
understand the nature of the respective originality scores, Fig. 10 and Table 3 are to be
read in conjunction. The nature of the percentage distribution bins indicates two differ-
entiators between architects and non-architects. Firstly, the tallest bins of architects are
closer to ‘Original’ (1.00) than the tallest bins of non-architects. It implies that archi-
tects tend to be more lenient than non-architects at seeing design variants as original.
This observation is corroborated by the higher mean (0.76) andmedian (0.83) originality
scores by architects compared to the mean (0.59) andmedian (0.62) originality scores by
non-architects. In fact, the mean and median originality scores by architects are between
the ‘Different’ and ‘Original’ categories in the Likert scale, whereas for non-architects
they are between the ‘Similar’ and ‘Different’ categories.

The second differentiator is that the tallest bins of architects are taller than the
tallest bins of non-architects. It implies that architects tend to have a higher consensus
than non-architects at reading the visual perception of originality. This observation is
corroborated by the lower coefficient of variation (0.22) of the originality scores by
architects compared to the coefficient of variation (0.39) of the originality scores by
non-architects. In fact, in the case of non-architects, the coefficient of variation is higher
than the step value (0.33) of the Likert categories. Additionally, the numerical analysis
of the originality scores (see Table 3) reveals that an architect is 17.14 times likely to
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Fig. 10. Percentage distribution of predicted originality scores by architects and non-architects
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see a design variant as ‘Original’ instead of ‘Plagiarised’, whereas, for a non-architect,
the likelihood drops down to 5.26 times.

Table 3. Numerical summary of the predicted originality scores.

Description Originality score (ar) Originality score
(non_ar)

Mean 0.76 0.59

Median 0.83 0.62

Standard deviation 0.17 0.23

Coefficient of
variation

0.22 0.39

Original/Plagiarised
ratio

17.14 5.26

Subsequently, the comparative relation between the originality scores by architects
and non-architects was ascertained (see Table 4). The average originality score by archi-
tects (0.76) is 0.16 higher than the average originality score by non-architects (0.59).
In other words, the average originality score by architects is 27.74% higher than the
average originality score by non-architects. The mean difference of corresponding orig-
inality scores by architects and non-architects is 0.18. In other words, on an average,
each originality score by architects is 38.94% higher than the corresponding originality
score by non-architects. In as many as 92.01% of the 15,000 design variants, architects’
originality score is higher than non-architects’. When the data distribution of the origi-
nality scores by architects and non-architects is analysed with respect to the Likert scale
categories, the finer differences become clear. Compared to an architect, a non-architect
is 1.71 times likelier to see a design variant as ‘Plagiarised’, and 3.14 times likelier
to see a design variant as ‘Similar’ or ‘Different’. On the other end of the spectrum,

Table 4. Numerical summary of the comparative relation of predicted originality scores.

Description Value

Mean originality score (ar-non_ar) 0.16

Mean originality score percentage ((ar-non_ar)/non_ar) 27.74%

Mean difference (ar-non_ar) 0.18

Mean difference Percentage ((ar-non_ar)/non_ar) 38.94%

Originality score (ar > non_ar) 92.01%

Plagiarised rating occurrence (non_ar/ar) 1.71

Similar & Different ratings occurrence (non_ar/ar) 3.14

Original rating occurrence (ar/non_ar) 1.93
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non-architects display the same propensity for being less lenient at labelling a design
variant as original. Compared to a non-architect, an architect is 1.93 times likelier to see
a design variant as ‘Original’.

All of these observations reiterate that architects tend to be more lenient than non-
architects at seeing design variants as original. It may be argued that architects are
trained to observe the nuances of visual difference between artefacts. Consequently, what
may seem like same artefacts to non-architects will look more varied (~ comparatively
original) to architects. The other takeaway is that architects have a higher consensus
than non-architects at evaluating the originality of design variants. This phenomenon
may be attributed to similar rigour of academics and training of architects compared to a
more diverse academic and professional background of non-architects. It is to be noted
that the reasons speculated behind the varied observations are rather anecdotal in nature.
Anecdotal correlations are often not causal.Apsychological and/or neuro-response study
is needed to explain the subliminal reasons for the observed variance.

The outcome of this study has implications on the decision-making of cityscape
preservation and on the architect-client interaction. The decision to preserve or facelift
properties and precincts in cities are usually taken by architects, planners, art histori-
ans and politicians. The quantitative difference in visual perception of design between
architects and non-architects indicates that without direct representation of residents,
such a decision making body may miss out on properties and/or precincts that may have
sentimental value for the residents. Secondly, the methodology used in this paper can
be used to better understand the aesthetic sensibilities of a client. The client may be
asked to rate few design options generated by the parametric definition of a design con-
cept. The options may be rated for a variety of keyword-driven subjective opinions, e.g.,
originality, beauty, appropriateness, etc. Subsequent to training a neural network with
the collected data, design may be optimised in tune with the client’s subjective opin-
ion(s) along with the regular objective design goals of energy consumption reduction
and daylighting.

5 Conclusion

Subjective evaluation of the visual perception of originality of the rotating tower typology
by architects and non-architects is predicted by training two deep neural networks with
crowd-sourced data of 250 data samples. Use of neural network allows the appropriation
of the entire solution space by using limited number of training data samples. Predictions
of 15,000 design variants are tabulated to quantify the differences of originality scores
between architects and non-architects. It is concluded that the average originality score
by architects is 27.74% higher than the average originality score by non-architects.
Compared to a non-architect, an architect is 1.93 times likelier to see a design variant
as original. In fact, in 92.01% of the cases, architects’ originality score is higher than
non-architects’. Within themselves, architects tend to have a higher consensus than non-
architects at reading the visual perception of originality. Analysis of the correlations
of the independent variables revealed that both architects and non-architects tend to
subliminally concentrate more on visual features that horizontally control the overall
silhouette of towers (such as the shape of floor plan). Additionally, architects tend to
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be more visually sensitive towards rotation of floor plates, whereas non-architects tend
to see rotated towers as a visually homogeneous group without much regard to the
amount of rotation. Interestingly, both architects and non-architects tend to ignore local
articulation of surfaces when comparing the overall shapes of design variants.

The methodology of training a neural network on crowd-sourced data marks a depar-
ture from the top down evaluative guidelines published by experts to a more inclusive
bottom up evaluation by end users. The methodology can be used to quantify subjective
evaluation of any kind. Beauty or safety perception of urban streetscapes can be predicted
as a part of urban design aid by training a neural network with crowd-sourced ratings of
photographs of urban streetscapes. The independent variables for such an exercise can
be calculated by applying image segmentation [32] on the photographs to extract the
areas and mutual positions of roads, signage, greenery, sky, vehicles, etc. Subsequently,
the trained network can be used to calculate the fitness function of an evolutionary algo-
rithm to optimise design proposals. The socio-cultural bias embedded in crowd-sourced
evaluation can be utilised to analyse and predict design preferences specific to groups
of people. For example, in the case of predicting beauty or safety perception of urban
streetscapes, evaluation data may be categorised by the cities of residence of the partic-
ipants. Consequently, the same design proposal will have different predicted scores not
only depending on its location, but also on the basis of how it is perceived by different
age groups, race, gender, etc.

The future scope of this research is twofold. Firstly, the subjective evaluations by
architects and non-architects are to be repeatedwith the extruded glass box design variant
as the reference design. This exercise will establish the effect (if any) of changing the
reference design on the visual perception of originality. Secondly, the methodology
discussed in this paper is to be applied to different building typologies. A summation
of results of multiple typologies will comprehensively quantify the differences of visual
perception of originality of design between architects and non-architects in global terms.
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