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Abstract. Structural engineering knowledge can be of significant importance to
the architectural design team during the early design phase. However, architects
and engineers do not typically work together during the conceptual phase; in fact,
structural engineers are often called late into the process. As a result, updates
in the design are more difficult and time-consuming to complete. At the same
time, there is a lost opportunity for better design exploration guided by structural
feedback. In general, the earlier in the design process the iteration happens, the
greater the benefits in cost efficiency and informed design exploration, which can
lead to higher quality creative results.

In order to facilitate an informed exploration in the early design stage, we
suggest the automation of fundamental structural engineering tasks and introduce
ApproxiFramer, a Machine Learning-based system for the automatic generation
of structural layouts from building plan sketches in real-time. The system aims to
assist architects by presenting them with feasible structural solutions during the
conceptual phase so that they proceed with their design with adequate knowledge
of its structural implications.

In this paper, we describe the system and evaluate the performance of a proof-
of-concept implementation in the domain of orthogonal, metal, rigid structures.
We trained a Convolutional Neural Net to iteratively generate structural design
solutions for sketch-level building plans using a synthetic dataset and achieved an
average error of 2.2% in the predicted positions of the columns.

Keywords: Machine learning · Structure approximation · Convolutional neural
net · Design assistance

1 Introduction

Structure is a fundamental element of a building design. When the structural design is
developed in parallel and in coordination with the architectural design, it can inform an
architect’s decisions and lead to a harmonious integration of the two. However, when
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structure is not taken into account during the early phase of design, reconciling archi-
tectural and structural design can be a cause of delays, conflicts between architects and
engineers, and undesirable design compromises.

A study investigating the collaboration between architects and structural engineers
conducted in New Zealand in 2009 found that among the primary points of friction are
the limited understanding of structural engineering from the side of architects and the
late involvement of structural engineers in the project [1]. On the other hand, it has been
repeatedly argued that the cost of design changes increases the later they are introduced
in the process [2, 3]. The term ‘cost’ is not limited to monetary expenses but can be
generalized to the ability of a change to impact the design [4].

Parametric modeling and BIM software have been used by practitioners and
researchers to address such collaboration conflicts [4], and specialized software has been
used in research and educational settings to facilitate and promote a better understanding
between architects and structural engineers [5]. While such solutions have significantly
benefited the field, they do not specifically address the conceptual stage of the design.

The conceptual stage of design is commonly described as a divergent process. It is
characterized by quick iteration, and often happens outside of a CAD environment, in
the form of sketching. In order to achieve a smoother integration of architectural and
structural design, structural feedback should be easily available during the conceptual
stage. Such feedback cannot and does not need to be precise, as the design itself in this
phase lacks precision. In contrast, approximate and directional feedback can be useful
for improving a design towards a better solution with respect to its structure.

In this paper, we introduce ApproxiFramer, an automated system with the ability
to generate structural design recommendations during the conceptual phase of architec-
tural design. The goal of such recommendations, indicating potential/optimal structural
solutions, is to inform the architects’ design decisions and ultimately reduce conflicts
with the structural engineers when they get involved in the project at a later stage.

A tool targeting the conceptual design phase has to respond to two main challenges.
First, the feedback needs to be generated in real-time. Second, the tool should be able
to directly handle conceptual sketches without requiring the user to translate them into
different software. Recent advances in the field of Machine Learning (ML) have demon-
strated an increasing ability to handle irregular types of input data, such as images or
sketches. In addition, ML methods have been previously used to successfully acceler-
ate structural design tasks [6–9]. ApproxiFramer employs a machine learning model to
tackle both the speed and the integration challenges.

In this paper, we develop and evaluate ApproxiFramer by focusing on a specific
structural domain, rigid metal structures. We trained a neural net on a synthetic dataset
consisting of sketch-level single floor building plans and their corresponding structural
layouts. The neural net generated structural layouts in real-time while achieving an
average percentage error of 2.21% in the positions of the structural elements of the test
set, confirming the potential of the method for early phase design assistance.

We make two contributions in the area of early-phase design decision support. First,
we introduce a method for generating approximate structural solutions for architectural
sketches in real-time. Second, we report on the results of an experiment and demonstrate
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that a machine learning-based system can successfully learn to generalize a consistent
set of structural principles.

2 Related Work

Some previous work seeking to assist architects in designing buildings that better con-
form to various performance criteria has employed various forms of optimization [10].
Such works that focus on the early design phase typically combine procedural model-
ing and simulation software, with the parameters of the generative model being tuned
through an optimization algorithm [11, 12]. Shea et al. elaborate on how parametric
modeling and engineering performance feedback can be used to improve architectural
designs [13]. Optimization is not necessarily the end goal of these processes but rather
a tool to automatically construct solutions that can guide the architect towards design
improvements [14, 15]. Other work has focused on integrating designers’ preferences
through interactive optimization [16, 17]. More recently, Hamidavi et al. proposed a sys-
tem that uses multiple types of structural optimization and BIMmodeling to improve the
collaboration of architects and structural engineers [18]. However, setting up a good pro-
cedural model for an optimization process is non-trivial, and an optimization framework
to guide this process has been suggested as well [19].

In practice, optimization and the performance simulations that it relies on are often
too time-consuming to be employed in the early design phase. The use of surrogate
models has been suggested as a way to accelerate simulations [20]. Tseranidis et al.
provide an overview of multiple ML algorithms for the approximation of structural
engineering calculations [21]. While most surrogate models are trained to only work
with specific parametric models and structural topologies, some research has addressed
generalizable models that work with multiple topologies of 3d trusses [9].

Other work has used machine learning to directly approximate optimal solutions.
Support Vector Machines have been trained to optimally solve individual modules of a
space frame [6], Bayesian nets have been used for bi-directional inference with the goal
of identifying the most promising areas of a design space with respect to structural per-
formance [22], and neural nets have been used to predict optimal parameters describing
the bracing of a metal frame [8].

In contrast to previous research that has targeted design using parametric models
of the geometry, we are proposing a method for structural design approximation that
directly uses sketch-level plans. The goal is to provide real-time guidance in the early
design exploration during the actual sketching before an idea is formalized into a CAD
drawing.

3 Method

3.1 Approach

ApproxiFramer aims to inform the early phase design exploration in a sketch-based
environment through the real-time generation of structural designs. Figure 1 describes
howApproxiFramer can be integrated into such an environment. A user-generated sketch
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first passes through a pre-processing step that converts a noisy and imprecise input to a
clean drawing so that it can be used with our predictive system. This kind of processing
is common in commercial design graphics software, so this research considers it given,
and further technical elaboration is out of scope.

Consequently, we propose the use of a neural net to solve the problem of real-
time structural layout predictions from building plans. Inspired by previous work that
suggests the decomposition of structural problems into sub-problems that are easier
and more generalizable [8, 23], we do not attempt to estimate the complete structure
at once. Instead, we use an iterative approach, only locally solving the problem and
predicting a partial structure, gradually extending the solution until no more extensions
are necessary.Weexpect that the neural netwill havemore chances of identifying patterns
when focusing on a small area of the given building at each step, even if every observed
building is unique. In order to evaluate and further develop the proposed method, we
conducted an experiment where the scope of the problem has been limited, as described
in the next section.

Fig. 1. Sketch-based interaction and structural predictions. The user designs a sketch of a plan
(a.), the system converts the noisy sketch to a clean drawing (b.) and passes it to ApproxiFramer
that predicts the placement of the structural elements (c.). The structural solution is superimposed
on the user’s initial sketch (d.).

3.2 Problem Scope

In general, the design of a structure is informed by a series of specifications and con-
straints. The type of structural system, materials, available structural members, regula-
tion, and others will all affect the solution of the design, so that the same building design
may lead to very different structural designs based on these parameters. The current
experiment operates in a constrained space where these parameters are assumed to have
fixed values.

In this paper, we focus on rigid metal frames, always connected at right angles.
No bracing is typically required for such structures. Selection of the appropriate cross-
sections and sizing of the structural elements are outside of the scope of this study
and are typically of minor importance during the conceptual design phase. As such,
the structures that we design can be easily abstracted to a diagrammatic level. A set of
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coordinates that indicate the locations of the columns is then a sufficient description of
such a frame.

The developed system generates structural layouts for orthogonal, sketch-level,
single-floor plans. These plans include exterior and interior walls of the building, both
represented by single straight lines that are either horizontal or vertical.

3.3 System Architecture

The input of the system is in image format, providing significant flexibility to the user in
the selection of design software or medium. In the core of the system lies a convolutional
neural net (CNN) that we trained to take an image of a sketch, representing a plan of
a building layout, and predict the position of a group of columns. In each iteration, the
newly predicted columns are added to the solution, and a new image is rendered that
contains both the initial sketch and the columns that have been placed so far. This newly
rendered image is then used as the input of the next iteration. Algorithm 1 describes this
iterative process.

Fig. 2. Representative examples of iterative predictions for a smaller structure in four steps (top)
and a larger structure in seven steps (bottom).

Each iteration solves a local sub-problem, scanning the building from left to right
and from top to bottom, and adding a fixed number1 of columns to the solution. The

1 The last iteration will add any number of columns between 0 and that fixed number, as needed.
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columns are assumed in a specific order as well: left to right and top to bottom. The
model was trained to output a zero vector when there are no more columns to be placed.

The number of columns for each iterationwas defined as n= 4, based on initial results
after considering alternatives between 1 and 8. Figure 2 demonstrates two examples of
structures being predicted in 4 and 7 iterations.

The CNN takes as input an image of 128 × 128 pixels with four channels. Two
channels contain the building layout and the already placed columns, and two contain
the pixel coordinates, as suggested in [24]. The image passes through three convolutional
layerswith kernel sizes 7, 3, 3 and strides 2, 2, 2 and aResNet block [25], followed by two
fully connected layers, an LSTM layer [26], and two output layers which are also fully
connected. The first output layer (4 × 2) contains the coordinates of the four predicted
columns. The second output layer (4× 3) contains the type classification for each of the
predicted columns. The possible types are free-standing, column on corner, or column
on wall. All layers use ReLu activation functions, except for the ResNet and the output
layers. The ResNet uses linear activations and is followed by batch normalization and
leaky ReLu. The coordinates output layer uses sigmoid activation since the coordinates
are normalized in the range [−1, 1], and the type output layer uses softmax to convert
the output to class probabilities. The number of filters is shown in Fig. 3, which depicts
the structure of the neural net in detail.

Fig. 3. CNN Architecture.
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3.4 Dataset

An appropriate dataset can be sourced from historical or synthetic data. In general,
we expect that given a number of buildings and their corresponding structures that
follow a specific set of principles, we can train a CNN to abstract these principles and
iteratively generate similar structures for more buildings of the same type. In this work,
wegenerated a synthetic dataset of buildings on an orthogonal grid. The structural layouts
were generated using heuristics. While this is not the ideal scenario to demonstrate the
power of our system, our focus here is to demonstrate the ability of the system to
approximate a set of structural designs, which is expected to generalize to other, more
sophisticated datasets as well.

We created 35 building layouts, each building including both exterior and interior
walls. This initial set of buildings was augmented through 90-degree rotations, scaling,
and translations. For each building, we designed a structural layout using the same
heuristics: fitting a grid of columns with a predefined maximum span. The resulting
dataset contains 10,000 pairs of buildings and structural layouts. Out of these, we used
9,000 for training and validation, and 1,000 for testing. In order to use the training data
with the system’s iterative approach, we generated the set of all possible configurations
of incremental structural designs for each of the buildings. In the incremental structural
designs, we determine the next partial solution - i.e., the next group of columns to be
placed - by ordering the columns by x and y. After this process, we ended up with
137,644 training samples and 12,514 testing samples.

3.5 Training

In order to obtain a complete structural solution for a design layout, we need to run
the model in an iterative way, in each step adding to the observed image the predicted
columns of the previous step. However, there are a few challenges in practice. Each time
that a column is predicted, the location contains a small error (i.e., the alignment may be
one or more pixels off). When this column is added to the input image of the next step,
it contributes to a larger error in the next prediction. Eventually, the error accumulates
until the model is unable to predict the next column locations in a sensible way.

We used two methods to overcome the problem of the accumulated error. First, we
created a new dataset with added noise in the locations of the rendered columns. Adding
noise is a technique that has been used with neural nets for data augmentation [27] in
order to improve generalization and avoid overfitting. Similarly, by training our model
on noisy inputs, we aim to make it robust to inaccuracies during iterative prediction.

Second, we worked towards increasing the output size of each step and, by doing so,
reducing the number of iterations that are needed to complete a structural layout. Using
an earlier, simplermodel,we found that simply increasing the size of the output decreased
the performance dramatically when no other major changes were made. However, we
were able to get good results when we introduced a residual block and an LSTM layer
in the model.

The loss function was defined as the weighted sum of the mean absolute error of
the coordinates output layer and the categorical cross-entropy of the column type output
layer,withweights 1.0 and0.2. The networkwas trained using stochastic gradient descent
for 900 epochs.
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4 Results

On a single run, the CNN model is outputting predictions for four columns. The output
includes the column coordinates and the column type (between free-standing, column
on corner, or column on wall) (Fig. 3). While we found that training using a weighted
loss on a combination of the column coordinates and the column types improved the
model performance compared to training on column coordinates prediction alone, the
column type information is not used during inference, and therefore it is also excluded
from the following results.

4.1 Single Predictions on Perfect Observations – CNN Evaluation

First, we evaluate the model performance on single predictions (i.e., four columns). We
use as input all possible partially completed structures from the test set, with a four
columns step, and following the ordering by x and y coordinates. The partial completion
is done based on the ground truth so that the model is predicting based on a perfect
observation.

The model successfully identified when to stop adding new columns 100% of the
time. During training, we used a zero vector to indicate the stopping point of the predic-
tions. During inference, we modified the threshold to be a vector where at least one of
the x or y coordinates has a value less than 2.

Fig. 4. Left Top: Mean error for first 24 columns. Left Bottom: Mean error for first six prediction
steps, where one prediction step outputs four columns (or one “column quad”). Predictions on
clean observations. Right Top: Mean absolute error of first six quad predictions, grouped by order
inside quad – the first group is first columns of 6 quad predictions, the second group is second
columns, etc. Right Bottom: Mean absolute error of same order columns. Predictions on clean
observations.
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Our CNN achieved an average error of 2.21% in the predicted column positions.
This error corresponds to a mean distance of 1.51 pixels between the predicted column
locations and the ground truth for our dataset images of 128× 128 pixels. Figure 4 Left
shows the mean distance between predictions and ground truth in relation to the ordering
of the columns. We do not observe a significant change in performance as the size of the
observed, partially completed structures increases. However, we notice that within each
four columns (or column quads) coming from a single prediction, earlier columns tend
to have smaller error. This is better captured in Fig. 4 Right, where columns have been
put in four groups based on their order of appearance within a single prediction. The
mean absolute error increases from 1.46 pixels for the first columns of each prediction
to 2.14 pixels for the fourth columns. This behavior is attributed to the use of the LSTM
layer, which introduces a recurrent architecture in the model. Each column of a single
prediction depends on the previously estimated columns of the same prediction, and as
a result, the error accumulates.

4.2 Iterative Predictions – System Evaluation

Next, we evaluate the system performance on the goal task, which is to estimate all
columns for each building. This is accomplished by using our CNN in an iterative way,
where each step relies on the output of the previous prediction.

The system predicted the correct number of columns 95.3% of the time. Out of the
1000 buildings of the test set, 47 were solved with fewer or with more columns than
the ground truth. These buildings have been removed from the report of the rest of the
metrics described below.

Fig. 5. Top: Mean absolute error for first 24 columns. Bottom: Mean absolute error for the first
six prediction quads.
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The system achieved an average error of 2.21% in the predicted column positions.
Themean distance of the predictions from the ground truth among all iterations was 1.84
pixels. Figure 5 shows in green themean distance of the predictions from the ground truth
in relation to the ordering of the columns. We observe that the error increases for inputs
with more columns in the already completed structure. In the previous Subsect. 4.1, we
found that the size of the completed structure only has a minimal effect on the CNN
performance. Therefore, we attribute this error increase to the accumulated error from
the previously predicted columns that are used in the input of the new predictions.

5 Discussion

5.1 ML as an Approximation Means for Early Phase Structural Assistance

Ourmodel performs verywell on single predictions,maintaining a very low average error
(2.21%) and producing results that are visually coherent. The system alsomaintains a low
average error on iterative predictions (2.21%). In practice, it predicts all column positions
well on a large subset of the test set and only fails to output reasonable results while
iterating on some building designs. This happens as the model remains susceptible to
noisy observations of previous predictions. Currently, the performance tends to decrease
both with repeated iterations (Fig. 4 Left and Fig. 5), as well as with later outputs of
a single run (Fig. 4 Right). Further investigation is needed on the potential of the two
approaches and the optimal combination of them.

The results suggest that the proposed method, which relies on machine learning
techniques, constitutes a promising approach for the automatic suggestion of structural
designs for early phase architectural sketches or drawings. Once a trained model is
loaded, our system only needs a fewmilliseconds to generate such a structure. Therefore,
we believe that a system like ApproxiFramer can provide valuable design assistance
during the conceptual design phase.

Furthermore, ApproxiFramer could be combined with other ML methods that pro-
pose optimal cross sections of columns and beams [28], based on structural skeletons
similar to the ones that our system generates. It can also be used as a complementary tool
to parametrization and optimization methods such as the one introduced in SketchOpt
[29], providing early, quick estimates before a structural optimization is run.

5.2 Iterative Approach vs. End-to-End Model

TheApproxiFramer system relies on the iterative use of a neural net to predict a complete
structure. Early experimentation results, as well as the increasing error between the first
and last predictions of a single model inference (Fig. 4 Right Bottom), suggest that the
current model architecture is not appropriate for the end-to-end prediction of complete
structures.

Apart from performance considerations, we believe that the iterative approach has
other advantages, too, over a whole-structure prediction. Themodel’s ability to complete
partial structures could be potentially leveraged to interactively guide the design of
structure as well as space, following the design paradigm of interactive optimization
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[17]. Combined with a different sub-problem parsing strategy in the future, e.g., one
where subsequent iterations have increased level-of-detail, this would allow the designer
to lead the system towards a specific direction, for example, by modifying the outputs
of the initial steps of the structure prediction.

5.3 Generalizability

In this paper, we demonstrated the feasibility of the suggested method in the domain of
rigid metal frames connected at right angles. Functioning inside this domain, we were
able to simplify a structural design to a set of columns, assuming that beams can be added
in a post-processing step using simple heuristics. Even though we considered single-
floor plans, the method is easily generalizable to low-rise buildings with a typical plan
repeated in all floors above the ground.We expect that ourmethod is also generalizable to
different structural systems. However, appropriate modifications will have to be made to
accommodate the potential use of multiple types of structural elements in more complex
domains. For instance, we have already demonstrated the prediction of labels associated
with each column, and it is not difficult to imagine how such labels could be used as
classes of multiple types of structural elements.

The dataset used in this work contains orthogonal designs with heuristically gener-
ated structures; however, we expect the proposed method to be generalizable to different
datasets and human-generated or computationally optimized structures.

5.4 Limitations

The results indicate that the column positioning tends to be noisy, something that may
be easier noticeable for columns that should be placed on wall intersections. This is
not necessarily an issue in the specific context of early phase sketching since the user’s
sketches are expected to be similarly rough, and precision is not the goal at this stage.
Nevertheless, a post-processing step might be able to fine-tune the positions at a local
level.

Last, larger structures are currently more difficult to solve, mainly because of the
accumulated error. A larger dataset and different data augmentation techniques are
expected to improve this performance.

6 Conclusion

We introduced a method for early phase design assistance with respect to structure, with
the goal of promoting more informed design decisions early on and better preparing
architects for later stage collaboration with structural engineers. We described a system
that can predict structural layouts of single-story building designs from diagrammatic
sketches and trained aCNN that performs this task in an iterativeway.Whilewe achieved
satisfactory performance on our test set, our model only consists a first step to applying
this approach to the real world. Further improvements are required in terms of robustness
and the ability to take into account structural constraints and parameters.
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Future work may explore how to interactively address architectural aspects of the
structure by adding the designer in the loop between prediction iterations. Alternative
ways of parsing the overall problem into smaller sub-problems may also be investigated
in relation to different structural systems. The addition of a fine-tuning step can be
investigated as a way to reduce the impact of small inaccuracies in the positions of
previously placed columns. Finally, the use of a synthetic dataset generated through
optimization or a dataset from historical data - i.e., from a structural engineering practice
- will be a significant step towards deploying such a system in the real world.

Acknowledgements. We would like to express our gratitude to Mohammad Keshavarzi for his
help with the synthetic data preparation process.
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