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Abstract. In this paper we propose a deep learning (DL) method to investigate
existing types of high-rise buildings and to generate new ones. We collected data
comprehending diverse forms of high-rise building from major cities in the world
to train a generativeDLmodel (IntroVAE) to capturemorphological features.After
clustering the features, we can distinguish types of high-rise buildings and use that
information to generate novel high-rise building forms. This research demonstrates
that generative DL models can uncover the latent types of architectural form in
large datasets and can expand the typological interpretation of complex architec-
tural forms. Besides, we demonstrate the potential of the proposed DL method
for building massing design by developing a proposal of a high-rise building form
based on three techniques: exploration, synthesis, and interpolation.

Keywords: Deep learning · High-rise building · Typology · Form · Neural
network

1 Introduction

High-rise building is a representative architectural type of contemporary city and has its
own morphological features, which can be noticeably distinguished from other architec-
tural types such as church, residential vernacular, market, etc. These features are derived
from design principles and styles and are key to the formal and typological identity of a
high-rise building. Typically, high-rise buildings have been categorized by their major
characteristics such as their main towers shape [1], types of structural systems [2], the
position of their circulation core, their height [3], their program, or the combination of
some of these [4].

In this research, we contribute to the existing taxonomies of building types by estab-
lishing formal analysis of a large database of high-rise building. By using computational
methods to analyze and cluster a database encoding the form of high-rise buildings, we
expect to uncover latent building types and provide opportunities to expand architectural
creativity by re-interpreting and transforming their forms.

Morphological investigation of high-rise building based on the analysis of geomet-
ric features is not straightforward, because high-rise building form requires numerous
and complex variables [5] representing various features and aesthetic elements derived
from sources such as context and architectural styles. There is no standardized way to
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Fig. 1. Overall process of type investigation in the form of high-rise building and its design using
deep neural networks.

represent these variables. For example, with the adoption of parametric and geometric
modeling techniques by contemporary practitioners, the design of high-rise buildings has
adopted curvy and variational shapes that are noticeably different than the rigid shapes of
conventional design. Those difference makes more difficult to establish a representation
for comprehensive formal analysis and typological studies of high-rise buildings.

With a system that can represent complexmorphological features, we can thoroughly
examine the formof varied high-rise buildings, address new formal types by re-clustering
the features, and potentially explore the new formal identity in the design of high-rise
buildings. Therefore, this research aims to implement generative deep learning (DL)
model for grasping geometric features, discovering types of high-rise buildings, and
supporting new design practices for the massing design of high-rise buildings.

This research is constituted by three steps: data collection and pre-processing,
training, and design application (Fig. 1).

In the data collection and pre-processing step, we collected three-dimensional data
of high-rise buildings, converted each building into a series of two-dimensional images
by horizontal slicing, and stored them in a deep tensor.

We used this tensor database of high-rise building forms to train a generative DL
model called autoencoder, which contains two parts: an encoder and a decoder. This
encoder compresses the tensor representation of each building into a lower-dimensional
vector. The decoder learns how to reconstruct the original tensor based on this vector. By
reducing the tensor representation to a lower-dimensional representation (embedding)
the model also enables the discovery of the dominant morphological features in the
dataset. These embeddings can be used to categorize forms of high-rise buildings into
several representative types.
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Besides, the decoder can not only reconstruct existing buildings but also generate
new ones that are in the parameter space of the embedding. Based on the manipulation
of the embedding of a trained model, we investigate three different techniques to gen-
erate a high-rise building form: exploration, synthesis, and interpolation. We introduce
the potential of these techniques to support architectural creativity by developing the
schematic design of two high-rise buildings.

2 Machine Learning-Integrated Architectural Design

The recent innovations and increased accessibility of DL has supported the integration
of artificial intelligence technology to architectural design process. Besides, it also shed
a new light on the importance of architectural data storing, collection and processing
for decision-making in architecture. This section reviews research projects that used
generativemodels fromDLand image andvoxel-based representations for the generation
of architectural forms.

Fig. 2. (Top) Generated stylized plans with gradually changed style weights [6] and (Bottom)
Capitals automatically design with machine learning [7].

The Spire of AI [6] project created a new form of architecture using Style Transfer
[8] techniques from DL. The authors contoured building forms and obtained the images
of horizontal sections of the forms. Then, they trained a Neural Style Transfer model
with the section images. After training, users can apply a specific style to the sections
and convert the pixel values of the style-transferred sections into voxels, which is a
three-dimensional representation of pixels. By vertically stacking the voxel values, they
can reconstruct the shape of a building with the style (Fig. 2). The idea of contouring the
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sections was key to represent the three-dimensional information of the form for image-
based DL. Similar idea can be found in Fresh Eyes [9]. However, in this project, DL
is only applied to transferring a style to other images, not the process of learning the
morphological feature of buildings or synthesizing the overall form of buildings.

The automation of capital design with machine learning is introduced in the research
of Artificial Intelligence Aided Architectural Design [7]. The authors trained artificial
neural networks based on the detailed configuration of the Roman Corinthian order capi-
tals. The input data format was composed ofmatrices that includes the sample coordinate
values, surface normal vector and volume center plane deviation. The output data are
displacement values. By reconstructing a three-dimensional model of an order based
on this predicted displacement values, they can generate three-dimensional variations
of the new capital forms based on the given input parameters, both purposeful and ran-
dom (Fig. 2). This research shows the potential of integrating DL to architectural design
activities. Both repeatable and predictable design activities can be easily replaced by
machine learning tools in the first place, by teaching the system decision-making based
on the work performed by the architects.

Voxel-based representation is another way to construct form dataset. Geometric
Interpolation of Building Types project [10] illustrates a method to represent a building
within a fixed number of voxels and their vectorized connections. For investigating and
interpolating building types, this project employed voxels as scaffoldings of building
representation. By defining the connection between the voxel points, building can be
represented by its edges. The information of edges is stored in the format of tensor
which deep neural network can grasp. Using parametric augmentation, the authors create
a dataset based on two “types”: an abstract castle structure inspired by John Hejduk’s
architecture and the famous building China Central Television (CCTV) designed by
OMA.

David Newton’s high-rise building synthesis using a generative DL model [11] is
another project to use voxel-based representation of architectural form.He collected “500
building massing models located in downtown New York City” [11] and convert them
into “1 × 256 × 256 voxels” [11]. Using one of the three-dimensional deep generative
models, 3D-IWGAN, he trained the formal features of the buildings and was able to
synthesize a new building form.

These precedents show the importance of defining a specific representation to cap-
ture features of architectural form for generation. Our approach uses a novel variation
of stacked section images that considers specific aspects of our problem, such as build-
ing scale and parts. Similarly to [10], our research also emphasizes the importance of
capturing typological features in the latent space. However, instead of synthesizing the
dataset based on two building types, we use our stacked representation to explore a vast
dataset of high-rise buildings from different cities.

3 Dataset

In this section we discuss our latest method for encoding of building forms into tensors.
We collected three-dimensional data of high-rise buildings, converted them into two-
dimensional images by slicing their three-dimensional forms, and finally a deep tensor
dataset was created by stacking these sliced images.
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3.1 Data Collection

The research started with the collection of three-dimensional form data of existing high-
rise buildings from manually selected downtowns of 31 cities around the world and for
each city focused on specific areas that have a concentration of high-rise buildings: New
York City, Chicago, Atlanta, Los Angeles, Miami, Philadelphia, Pittsburgh, Boston,
Seattle, San Francisco, San Diego, Houston, Dallas, Baltimore, Detroit, Indianapolis,
Denver, Vancouver, Toronto, London, Paris, Riyadh, Dubai, Abu Dhabi, Hongkong,
Shanghai, Taipei, Bangkok, Singapore, Honolulu, Sydney.

To facilitate a large collection of data, we automated the process of scraping high-rise
building three-dimensional models from OSM (Open Street Map).

The general height threshold for high-rise building is of 25 m [12]. However, this
definition implies that almost every building with more floors than 5 stories is high-rise
building. If we naively accepted this threshold, it might be difficult to grasp the distinc-
tive morphological characteristics of a high-rise building. Considering the properties of
the collected dataset and intention to manifest the formal characteristics of a high-rise
building in this research, we set the threshold into 70 m and picked a proper value which
can provide a total of 4,956 high-rise buildings formatted as three-dimensionalOBJmod-
els. We used Rhinoceros and Grasshopper for handling and modeling three-dimensional
data.

3.2 Data Processing

In order to train the image-based generativemodel,we developed a technique to represent
each three-dimensional building as a set of two-dimensional images. The technique
involves slicing and sampling 16 floors of each building and represent them as figure-
ground diagrams. To do this, we sliced each building horizontally using the 3 m standard
floor to floor height adopted in OSM, and put all slices into three groups based on the
range of their relative heights (i.e. 0–33%, 33–66%, 60–100%). Then, we selected the
first 6 floors of the first group, the 5 floors in the middle of the second group, the first
two floors of the third group, and the last 3 floors of the third group. The sampling of the
first six floors of the first group reflects that most buildings have the “podium” typology
where their overall forms tend to have larger bases. The sampling of five floors in the
middle of the second group reflects the prevailing form typically found in the midsection
of high-rise buildings. The sampling of the first two floors of the third group reflects the
tendency for high-rise buildings to taper towards the top. The sampling of the last three
floors of the third group reflects the tendency for high-rise buildings to have a spire at
the top.

We have determined the sampling of 16 floors for encoding each building as a tensor
in this research. The sampling number can be larger to represent the original form of
three-dimensional high-rise building model more accurately.

Each slice of the high-rise building is a diagrammatic representation of a floor plan
boundary encoded as a tensor shape of shape 1×256×256. By stacking 16 of these slices,
we can establish a tensor to represent a high-rise building’s morphological features and
train a DL model with convolutional layers. The total tensor size for the entire dataset
of 4,596 buildings is 4596 × 16 × 256 × 256 (Fig. 3).
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Fig. 3. Data conversion of 3D model to tensor through image format.

4 Training

4.1 Model

One of the most popular generative DL models is Generative Adversarial Network
(GAN). According to [13]:

It consists of two networks: the generator network Gen(z) maps latent z to data space
while the discriminator network assigns probability y = Dis(x) ∈ [0,1] that x is an
actual training sample and probability 1 − y that x is generated by our model through
x = Gen(z) with z ∼ p(z). The GAN objective is to find the binary classifier that gives
the best possible discrimination between true and generated data and simultaneously
encouraging Gen to fit the true data distribution. We thus aim to maximize/minimize the
binary cross entropy:

LGAN = log(Dis(x)) + log(1 − Dis(Gen(z))) (1)

with respect to Dis/Gen with x being a training sample and z ∼ p(z).

Another of the popular generative DL models is Variational Autoencoder (VAE).
According to [13]:

It consists of two networks that encode a data sample x to a latent representation z and
decode the latent representation back to data space, respectively:

z ∼ Enc(x) = q(z|x), x ∼ Dec(z) = p(x|z) (2)

The VAE regularizes the encoder by imposing a prior over the latent distribution p(z).
Typically, z ∼ N (0, I) is chosen. The VAE loss is minus the sum of the expected log
likelihood (the reconstruction error) and a prior regularization term:

LVAE = −Eq(z|x)
[
log

p(x|z)p(Z)
q(z|x)

]
= Lpixel

llike + Lprior (3)
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With

Lpixel
llike = −Eq(z|x)

[
logp(x|z)] (4)

Lprior = DKL(q(z|x)‖p(z)) (5)

where DKL is the Kullback-Leibler divergence.

In terms of themodel selection between GAN andVAE for this experiment, our main
challenge was in the tradeoff between blurry images and trained latent space. Nowadays,
due to the tremendous development of GAN, GAN can generate sharp synthesized
images but have less freedom to explore the latent space of the model; with new input
data, the latent vector cannot be preserved, and the model must be recalculated to fit the
new data. In addition to characteristics of latent space, GANs are hard to train because
of its unstable training process and mode collapse [14]. On the other hand, VAE usually
generates blurry images, compared to the image quality generated by GAN, but it allows
for more freedom to explore the latent space. Since the latent space fits to the entire given
dataset, exploring it does not require new fitting calculation. Due to these tradeoffs, we
selected IntroVAE as a hybrid model that conciliates the consistent latent space with
high quality images from GAN (Fig. 4) [15].

Fig. 4. Architecture of IntroVAE, re-drawn illustration fit to the dataset.

This model requires two parts in training to generate an image: one part to dis-
criminate the generated samples from the training data, and another part to mislead the
discriminator. Specifically, this model has the approximate inference model of VAEs
(encoder) as the discriminator of GANs and the generator model of VAEs (decoder) as
the generator of GANs. In addition to performing adversarial learning like GANs, the
inference and generator models are trained jointly for the given training data to preserve
the advantages of VAEs [15].
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Fig. 5. Results comparison between ground truth (left) and predicted (right) images from dataset
with three channels.

Fig. 6. Results comparison between label (left) and predicted (right) image from dataset with one
channel.

4.2 Training

On the onset of the training process, we tested a dataset that included actual height
of buildings represented by background colors. This dataset has 3 channels (i.e. RGB)
instead of 1. Our initial was that color information would be helpful for easing learning
by providing more distinguished features of each building and floor. After training the
model based on this dataset for 500 epochs, based on comparison between the original
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(a) and decoded (b) images of test dataset (Fig. 5), we found too much randomness,
noise, and often incorrect colors on the images. Color information was difficult to learn,
because floor plan shape and height value did not have a strong correlation.

To overcome the challenge with colors, we switched to a grayscale representation
of the buildings and trained the model for 500 epochs. Based on comparison between
the original (a) and decoded (b) images of test dataset (Fig. 6), the decoded images were
still a little bit noisy and had minor errors, but they had higher accuracy and sharp edges.
For the final learning, the hybrid model was trained on a computer with the following
specifications: ‘Intel(R) Core (TM) i7-8700k @ 3.70 GHz’, 64 GB memory, and two
GTX-1080ti graphic processing units. It took almost 200 h to train the data for 1300
epochs. Learning rate of encoder and decoder were 2e−4, lambda for L1 loss was 100,
hidden dimension was 10, beta1 and beta2 were 0.5 and 0.999 respectively, and batch
size was 128.

Fig. 7. Losses during training process.

Figure 7 illustrates the quality of the reconstructed sample building diagrams from
the test dataset with regard to the losses of the reconstruction and the Kullback–Leibler
(KL) – divergences [16]. After almost 20 epochs, the losses started to converge to a
stable stage in which their values fluctuate slightly around a balance line [15]. KL
divergence between the latent distribution of the decoder and a normal distribution started
to converge after almost 100 epochs. After this point, the KL-divergences continuously
decreases with little fluctuation of their values. KL divergences of encoder and decoder’s
face image also decreases and converge after almost 60 epochs. Compared to these
divergences from 0 to 60 epochs, the width of fluctuation of these divergences are
drastically smaller. Encoder anddecoder’s reconstruction and real imageKL-divergences
converged to fake image’s KL-divergences.
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4.3 Typical Form of High-Rise Building Using Latent Space

Encoded vectors of each building tensor keep the morphological features of the building
with the reduced data dimension: every building can be represented with 10 floats in
the latent space by the reduced features. However, 10-dimensional space is still hard to
visualize. In order to visualize latent space which has 10 dimensions in to 3-dimensional
space, we employ t-SNE (t-distributed stochastic neighbor embedding) [17] to reduce
dimensionality. The hyper-parameters are: perplexity 35, learning rate 100, iterations
1500. All building in the dataset can be placed and represented in 3-dimensional space
as a data point. A data point in the latent space is a high-rise building. The location of
the point represents its morphological characteristics, and the distance among the points
represents the degree of morphological similarity. The shorter the distance, the more
similar form of high-rise buildings.

Fig. 8. Visualizations of the latent space of encoded high-rise dataset by cities (left) and types
(right).

We discovered a total of 14 types of high-rise buildings by clustering the data points
of the buildings in the latent spacewithDensity-Based Spatial Clustering ofApplications
with Noise (DBSCAN) [18]. Figure 8 demonstrates two different visualizations of the
latent space of encoded high-rise dataset: by cities and types.

By tracking the nearest data point of each cluster’s center, the typical form of each
type can be investigated (Fig. 9). Type 1 has a parallel configuration of a tower and
podium. Type 2 is the simplest box shape tower. Type 3 is a twin tower sharing a podium.
Type 4 is a narrow rectangular tower with many irregularities. Type 5 is a cake-shaped
tower without a podium. Type 6 is a tower with subtraction. Type 7 is a circular-shaped
tower. Type 8 has also parallel configuration of a tower and podium like type 1, but the
podium is large and tall. Type 9 is a simple slim tower. Type 10 is similar to type 5 with
a podium. Type 11 is similar to type 4 with a podium. Type 12 is like type 8 with a
podium. Type 13 is like type 4 with lower irregularities. Type 14 is a simple tween tower
without a podium (Table 1).
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Fig. 9. Typical form of each type of high-rise building.

Table 1. Feature comparison of each type.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Profile Shape Rect. 
Circle 

Vertical Shape Regular 
Irregular 

Tower Ratio 
Normal 
Narrow 
Skinny 

Number of 
Tower 

1 
2 

Podium 0 
1 

Fig. 10. Interface of Deeprise for high-rise building form analysis and generation.

5 Design Application

We developed this model as a design plug-in prototype of Grasshopper in Rhinoceros,
a popular three-dimensional modeling tool in architecture and product design. The pro-
totype, called “Deeprise”, has its own interface (Fig. 10) and deploys the trained model
with the learned high-rise building form for design and runs it in back-end to provide
three different approaches for high-rise building form generation.
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5.1 Three Different Method for Form Generation

Designers can randomly generate a building by changing the sliders in the interface. The
slider will change the seed value of random function and produce a random vector with
the same length as the hidden dimension of the model. Figure 11 shows a schematic
design example of high-rise building based on the randomly generated building forms
from Deeprise interface. After retrieving the contour lines from Deeprise, designers can
use lofting to create a buildings form.

Fig. 11. Design example using random exploration from Deeprise and its design process.

The second method to generate a high-rise building form is synthesis. Designers can
synthesize a vector in the latent space by changing slider and assigning a value to each
dimension of the latent space. This method allows designers to control the form of a
high-rise building with higher precision. After they roughly explores the latent space to
discover a proper form of a high-rise building, they can digitally sculpt the form in detail
by changing sliders a bit (Fig. 12).

The last method for generation of a high-rise building form is interpolation. Instead
of editing a form of high-rise building by manually changing values in a vector, this
method can generate a series of interpolated forms between two buildings. Through
the SLERP (Spherical Linear Interpolation) function, it generates hybrid forms of two
buildings with different combination ratios of them (Fig. 13). This method is significant
for architectural design, because designers can mix two different types of buildings
by changing the parameters of the interpolation without having to manage the larger
parameter space of the model directly. Figure 14 demonstrates a design scenario where
the form consists of 75% of a building and 25% of another.

Fig. 12. Series of synthesized forms by slight changes of Z-vectors.
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Fig. 13. Series of interpolated forms between two buildings.

Fig. 14. Design example using interpolation.

6 Conclusion

We have categorized high-rise buildings according to their morphological character-
istics, discovered typical types of them, and generate new high-rise buildings using a
generative DL model. To train the model, we used a dataset with custom representa-
tion of morphological information of high-rise buildings. Based on this, we conducted
design experiments with the trained model to explore new high-rise building forms for
schematic architectural design.

6.1 Discussion and Contribution

This research illustrates a new methodological approach for the analysis of architectural
morphology in design. The newdesign types are drawnby advanced statistical techniques
applied to databases with three-dimensional information of high-rise buildings. The
method of representation and interpretation of architectural form in this research supports
a complex and thorough analysis of the existing buildings. With this method, designers
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can expand their knowledge of architectural forms by uncovering the latent form and
types from the real world. Furthermore, this research demonstrates the potential that the
generative DLmodel can be used not only for directly creating the design results but also
for analyzing design objects. Rather than independently generating high-rise building
forms with a trained model, this research addressed the integration of formal analysis
and generation through the latent space. In this sense, DL could be developed into an
efficient tool to help designers to analyze their design problems and generate solutions
that are both creative and grounded on real-world data.

Lastly, the expanded exploration coverage of high-dimensional design solution space
throughDLcan provide vast opportunities to discover new architectural forms. Instead of
interpreting morphological features of several high-rise buildings and abstracting their
formal principles, the generation methods in this paper demonstrates the potential to
synthesize a new high-rise form by exploring the design solution space where complex
formal principles exist.

6.2 Challenges and Future Study

There are three aspects to be considered for future steps: diversity of building types,
using data that extrapolate geometry, and learning directly from a three-dimensional
representation of buildings.

This research only used high-rise buildings to capture the morphological features
of architectural form. If more architectural types, such as churches, markets, airports,
etc., are available, the potential of architectural design exploration with DL can be
expanded. For this goal, not only different DLmodels but also different ways to represent
architectural form into learnable data format should be explored.

Besides, we intend to extrapolate geometric and physical characteristics of buildings
in order to explore other criteria and relationships that affect the built form.By integrating
geometric andother social, economic, cultural, and environmental data, formcanbemore
broadly interpreted as a phenomenon of human activities. As a result, Deeprise will be
one step closer to analyze morphological principles and features related to our society.

Technically, the most challenging part of this research is converting three-
dimensional form data into stacks of two-dimensional images for learning and then
reconstructing three-dimensional forms. These conversion and reconstruction process
incur to a certain amount of loss of the original morphological features. Specifically,
since the original height information of each floor boundary image was approximated
by relative values, the reconstructed form was segmented by extruded geometries in the
modeling software.

In the recent years, deep learning research has been pushing the boundaries of rep-
resentation beyond the structured domain of images. These advancements enable the
design of deep learning workflows that do not require conversions between three and
two-dimensional data. Some of the examples include geometric representations such
as voxels [19], meshes [20], and point clouds [21], which are available in DL libraries
such as Pytorch3D [22]. Learning with these representations showed good performance
in well-structured geometric domains with small scale variance, such as in models of
bodies and faces. Applying these techniques to the domain of building morphology will
require systematic exploration and experimentation.
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