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Abstract. Floor planning is an important and difficult task in archi-
tecture. When planning office buildings, rooms that belong to the same
organisational unit should be placed close to each other. This leads to
the following NP-hard mathematical optimization problem. Given the
outline of each floor, a list of room sizes, and, for each room, the unit to
which it belongs, the aim is to compute floor plans such that each room
is placed on some floor and the total distance of the rooms within each
unit is minimized.

The problem can be formulated as an integer linear program (ILP).
Commercial ILP solvers exist, but due to the difficulty of the problem,
only small to medium instances can be solved to (near-) optimality. For
solving larger instances, we propose to split the problem into two subprob-
lems; floor assignment and planning single floors. We formulate both sub-
problems as ILPs and solve realistic problem instances. Our experimental
study shows that splitting the problem helps to reduce the computation
time considerably. Where we were able to compute the global optimum,
the solution cost of the combined approach increased very little.

Keywords: Floor planning · Proximity requirements · Integer linear
programming · NP-hard

1 Introduction

Designing architectural floor plans of an office building is a challenging endeavor
involving a multitude of tasks. Among other things, one has to draft a building out-
line, decide on the number of floors, and place rooms, stairs and elevators. At every
step of the process, the planner must meet some predefined or implicitly under-
stood requirements. Therefore, floor planning is a cumbersome process of trial and
error requiring a significant amount of human labour and time. It is thus of interest
to support such manual processes with (semi-) automated approaches [17].

We consider a simpler problem. In our variant of the problem, the planner
has already fixed the outline of each floor, and the position and width of the
corridors. This is often the case due to fixed lot sizes as well as distance and
construction rules. We further assume that the planner has a list of rooms and,
for each room, a minimum size.
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Fig. 1. Given a set of rooms, each with its size and group, and a set of empty floor
plans, the Floor Planning with Group Proximity problem asks for a placement
of the rooms such that rooms belonging to the same group are close together.

Fig. 2. The Floor Assignment problem asks for a mapping of rooms to floors such
that rooms of the same group appear, preferably, on only few and neighboring floors.

Allen and Fustfeld [2] highlighted the importance of the architectural layout
for communication. Based on their observation, some works assume that the
planner has exact information about which pairs of rooms should be placed next
to each other [23]. We model proximity relations differently. In the spirit of Allen
and Fustfeld, we aim to arrange rooms with respect to the organisational units
that will use them later. Technically, the task is to map rooms to location within
floors of the building such that the rooms that belong to the same unit or group
are placed close together; see Fig. 1. We call this problem Floor Planning
with Group Proximity and define it formally in Sect. 3.

Most variants of floor planning (including ours) are variants of basic com-
binatorial packing problems such as Knapsack or Bin Packing; hence they
are usually NP-hard. For this reason it is unlikely that efficient algorithms for
floor planning exist. Still, algorithms that support architects in this phase of the
planning process are needed since computers are usually faster than humans in
solving NP-hard optimization problems to (near-) optimality.

We show that Floor Planning with Group Proximity can be formu-
lated as an integer linear program (ILP). Commercial ILP solvers exist, but due
to the complexity of our problem, only small to medium problem instances can
be solved to (near-) optimality. For large problem instances, we propose to split
the problem into two independent subproblems. First, we map the rooms to floor
“bins” considering the proximity of rooms within their groups; see Fig. 2. For
example, it is preferable to map all rooms of one group to the same floor. If this
is not possible, they should be mapped to only few neighboring floors [2]. We
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call this problem Floor Assignment with Group Proximity. Second, we
solve Floor Planning with Group Proximity for each floor separately.

Contribution. We introduce a new type of floor planning problem that occurs
when planning office buildings. In our model, we assume that for each floor we
are given its outline, the corridor, and the stairs. Our objective is to place the
rooms into the empty floor plans such that rooms that belong to the same group
are close together. For the precise problem definition, see Sect. 3.

We formulate our floor planning problem as an ILP; see Sect. 4. According
to our computational experiments, it takes too long to find optimal solutions
of this global formulation for large instances of the problem. Thus we split the
global problem into two independent subproblems; floor assignment and (single)
floor planning, which we then solve by separate ILPs (see Sect. 5). While optimal
solutions for the subproblems do not necessarily lead to optimal solutions of the
global problem, our computational experiments show that the loss in the global
objective is acceptable and the runtime improvements are considerable. We also
test a simple greedy heuristic for the floor assignment subproblem; see Sect. 8.

While the runtime of ILP solvers is difficult to predict, linear optimization
is quite powerful and allows the user to add additional constraints (such as
“these two groups must go to the basement”) easily. If a user is dissatisfied
with a solution that is provably optimal, then it is not the algorithm to be
blamed – but the model. In other words, the objective must be changed or further
constraints must be added in order to exclude solutions with certain undesired
features. Once the model has been settled, it is possible to drop the requirement
of optimal solutions; quite often ILP solvers quickly find near-optimal or even
optimal solutions, but then need very long to prove their optimality; see Table 5.

We think that our work has the potential to support architects in finding
sustainable solutions both for themselves and the users of their designs.

2 Related Work

The literature on floor planning problems is quite diverse. On the one hand, a
panoply of different algorithmic methods have been used to tackle such problems.
They range from logic programming [16], constraint programming [7], quadratic
programming [21], over using shape rules and grammars[10,12,28] or graph-
theoretic tools [18,22,23] to evolutionary algorithms [12,15] to name just a few.
We refer the interested reader to the surveys by Del Ŕıo-Cidoncha et al. [8] and
by Lobons and Donath [17]. On the other hand, nearly every paper considers a
different problem definition. We can group these variants as being purely com-
binatorial (where only room sizes matter), more geometric (where the actual
shapes and their aspect ratios matter), or purely topological (where only adja-
cencies matter). Our problem variant includes both geometric and, with the
group proximity constraints, topological aspects.

A purely combinatorial version of floor planning is the well-known Bin Pack-
ing problem, where items of different sizes must be packed into bins, each of
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a fixed capacity, in a way that minimizes the number of bins used. Bergman
et al. [5] consider a variant called Bin Packing with Minimum Color Frag-
mentation, where each item is associated with a color. Then the goal is to find
a bin packing where items of a common color are placed in the fewest number
of bins possible. This problem is closely related to Floor Assignment with
Group Proximity though the quality of a solution is measured differently. If
rooms are set to be rectangular and their sizes are prescribed (with aspect ratios
of rooms either fixed or bounded), we are in the range of Rectangle Packing
problems [6,13].

Marson and Musse [18] showed how to generate floor plans for residential
houses where just a few adjacencies are specified. They prescribed room sizes
and used squarified treemaps to subdivide the fixed building outline. Knecht
and König [15] used an evolutionary approach to generate subdivisions of a
given rectangle into a given number of smaller rectangles (rooms). In a second
step, they used a genetic algorithm to change the topology of the resulting sub-
division and to obtain the desired adjacencies. More recently, Shi et al. [24] used
a Monte-Carlo tree search to evaluate and select promising candidates among
many floor plans that they build room by room. Due to their runtime, some of
these approaches only work for small houses, but not for large office buildings.

If all allowed room adjacencies are already prescribed, the input of a floor
planning problem takes the form of a (well-behaved) triangulated embedded pla-
nar graph. The corresponding floor plan is then called a rectangular dual [11].
Formally, a rectangular dual is a dissection of a rectangle into smaller rectangles
such that the adjacency graph of the smaller rectangles is the given embedded
graph. Upasani et al. [27] presented an iterative procedure that takes a rect-
angular dual and lower and upper bounds on the room dimensions (in x- and
y-direction) as input. The algorithm then optimizes the layout by alternatingly
computing network flows in the graphs that represent the horizontal and the
vertical contacts between the rectangular rooms. Instead of expecting an adja-
cency matrix as input, Simon [26] generated floor plans with a genetic algorithm
that minimizes traffic flow between rooms, e.g., class rooms in schools.

A problem related to floor planning is the facility layout problem where
facilities have to be arranged efficiently within an organization. In contrast to
floor planning, facility layout is less about subdividing a given building, but
about the placement of the facilities and the resulting paths between them. The
aim is to place facilities such that the paths allow for low material handling
costs, short lead time, and high productivity. We refer interested readers to the
surveys by Meller and Gau [20] and by Drira et al. [9]. Like for floor planning,
there also exist multi-floor variants where departments have to be placed on
floors and convenient positions for lifts have to be found; see a recent survey by
Ahmadi et al. [1]. Interestingly, Meller and Bozer [19] also suggest a two-stage
approach for the multi-floor facility layout problem.

Barth et al. [3] and Bekos et al. [4] considered a related problem that was
motivated by drawing semantic word clouds. Given a set of rectangular shapes
with fixed sizes and an adjacency graph defined on these shapes, place the shapes
such that no two shapes overlap. Their objective was to realize the maximum
number of desired adjacencies as side contacts of the rectangular shapes.
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Fig. 3. Three orthogonal floor plans: (a) is valid; (b) is invalid since the corridor wall e
does not overlap with the outer wall e′ (when projected to the y-axis); and (c) is invalid
since room a is not rectangular, room b shares not enough wall with the corridor for a
door, room c has no window, and room d occupies two building corners.

3 Our Model and Problem Definitions

In this section, we describe a model for floor plans, allowed room placement,
and group proximity that is tailored to our ILP approach. We then make the
problem statements precise.

Floor Plans. A floor plan (of a single floor) describes a subdivision of the floor’s
outline, a simple polygon, into smaller polygons by inner walls. Each of the
smaller polygons represents a room, the corridor, stairs, etc. Here we consider
only orthogonal floor plans, that is, each wall is drawn either horizontally or
vertically. We require that the corridor runs parallel to the outline, that is,
the polygon describing the corridor is combinatorially the same as the polygon
describing the outline; see Fig. 3(a). In particular, to keep our model simple,
each vertical or horizontal segment of the corridor must overlap vertically or
horizontally, respectively, with its combinatorial counterpart of the outline; see
Fig. 3(b) for a counterexample. For the following requirements, see Fig. 3(c). We
insist that all rooms are rectangular and stretch from the corridor to the outline.
To ensure that each room gets a door and a window, we require that the room
has a certain minimum overlap with the corridor and with the outline. To keep
the model simple a room may occupy at most one corner (but see Sect. 9).

Empty Floor Plans. Part of the input of the floor planning problem are empty
floor plans. Geometrically, we require that an empty floor plan consists of the
outline, the corridor, at least one room that represents stairs or elevators, and
potentially other blocked areas. Stairs connect the individual floors of a building
with each other. Blocked areas represent, for example, sanitary facilities, which
are often located at the same place on each floor. The capacity of an empty floor
plan is the size of the area not covered by the corridor and blocked rooms.

We model an empty floor plan as follows. We subdivide the unoccupied area
between the outline and the corridor into rectangles of two types; see Fig. 5. Each
pair that consists of a corner of the outline and the corresponding corner of the
corridor spans a corner rectangle. The rectangles that form the remaining area
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are edge rectangles. For the sake of brevity, we call corner and edge rectangles
simply corners and edges, respectively. For each corner v, its capacity κv is its
area. Similarly, for each edge e, the capacity of e is denoted by κe. The sum of
these capacities is the capacity of the empty floor plan.

Room Placement. We now describe a set of rules that define how rooms can be
placed into empty floor plans to obtain valid floor plans. Recall that each room
comes with a (minimum) size. A room placement is a mapping of rooms into the
unoccupied area, defined by the corners and edges, and their capacities. A valid
room placement satisfies the following conditions.

(P1) Each room is either mapped to an edge or to a pair consisting of a corner
and an adjacent edge.

(P2) For each corner v, at most one room may be mapped to v and this room
must occupy v fully. Moreover, the size of the room must exceed the capac-
ity of v. This excess must be enough for the room to admit a door and a
window.

(P3) For each edge e with adjacent corners v and v′, the sizes of rooms mapped
to e plus the total excess of the rooms mapped to (e, v) and (e, v′) may
not exceed the capacity of e.

Note that Item (P3) implies that a room may occupy at most one corner. Further
restrictions on room placements are possible, for example, we could forbid rooms
to be placed at an edge where its aspect ratio becomes undesirably large.

We want to point out that a room placement does not fix the positions of
rooms along an edge, but only allocates the necessary space. Hence, the exact
positions of such rooms need to be computed in a post-processing step. We return
to this matter in Sect. 8.

Group Proximity. Given a room placement, we describe how to measure the
proximity of the rooms within a group, for short, the group proximity. To this
end, let V be the set of corners and E the set of edges. Let O = V ∪E be the set
of objects (that is, vertices and edges). For two objects o, o′ ∈ O, let δo,o′ denote
the distance of o and o′. For example, δo,o′ could be the length of a path from o
to o′ along the corridor (possibly using stairs). In general, however, the planner
can set the distances as they see fit provided that, for o = o′, δo,o′ = 0. For a
group g, we then define the proximity of g as the sum of distances δo,o′ over all
pairs o, o′ ∈ O, where both o and o′ contain at least one room of g.

Problem Definitions. We now define our two problems. To this end, let G be the
set of groups, and let S be the set of room sizes. For each g ∈ G and each s ∈ S,
let ρg,s denote the number of rooms of size s that belong to group g.

First, we define the problem Floor Planning with Group Proximity.
Let V and E be the sets of corners and edges, respectively, that together with
their distance matrix δ and capacities κ describe the available empty floor plans.
A feasible solution for the problem is a valid placement of all rooms into V and E
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with respect to κ, as defined above. We say that a feasible solution is optimal if
it minimizes the sum of proximities over all groups in G with respect to δ.

Next, we define the problem Floor Assignment with Group Proximity.
Let F be the set of available floors. Each floor f in F has a capacity κf , and for
two floors f, f ′ in F , δf,f ′ denotes their distance. For example, if all floors belong
to a single building, the ith floor and jth floor could have distance |j − i|. A
feasible solution for the problem is an assignment of all rooms to the floors in F
such that no floor f ∈ F is overfilled with respect to κf . Given a feasible solution
and a group g ∈ G, let Fg ⊆ F be the set of floors that contain a room of group g.
We say that a feasible solution is optimal if it minimizes

∑
g∈G

∑
f,f ′∈Fg

δf,f ′ .
For ease of reading, we refer to these two problems from now on simply with

Floor Planning and Floor Assignment.

4 An ILP for Floor Planning

Linear programming is a popular tool to solve combinatorial optimization prob-
lems. A linear program (LP) consists of (i) real-valued variables x1, . . . , xn, (ii) a
target function that is restricted to be linear in the variables (e.g., minimize
c1x1 + · · · + cnxn for some constants c1, . . . , cn), and (iii) a set of linear con-
straints (ai,1x1 + · · · + ai,nxn ≥ bi for i = 1, . . . , m,). Linear programs can be
solved efficiently [14]. A (mixed-)integer linear program (ILP) is a generalization
of a linear program where some variables can be restricted to integer values. In
particular, binary “decision” (that is, 0–1) variables can be used. This makes it
possible to encode NP-hard combinatorial optimization problems. Consequently,
ILPs cannot be solved efficiently in general. In practice, however, small and
medium-sized instances of such problems can often be solved relatively fast [25].
For example, we can solve the below ILP formulation for Floor Planning for
a single floor with 40 rooms and three groups in under one second.

We now describe how to formulate Floor Planning as an ILP. The input
of the ILP consists of the empty floor plans given by the sets V and E of corners
and edges, respectively, their adjacency relations, their distances δ, and their
capacities κ. Let O = V ∪ E be the set of objects, that is, the corners and
edges. The ILP further gets the set G of groups, the set S of room sizes, and the
room quantities ρ as input. Note that the ILP views all numbers in the input as
constants. (Since the distances are part of the input, they hide the number of
floors from the ILP. The distances are also not restrained to the actual geometry
of the floor plans and can thus be set as desired by the planners.)

We need the following variables, all of which are binary except for the first
one, which is an integer. To help intuition, we specify the intended meaning of
the variables.

xg,s,e ≥ 0 denotes the number of group-g, size-s rooms placed at edge e.

yg,s,v,e = 1 ⇔ a group-g, size-s room occupies corner v and extends into edge e.

zg,o = 1 ⇔ a room of group g is at object o (which is an edge or a vertex).
ug,o,o′ = 1 ⇔ rooms of group g are at objects o and o′.
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If placing a room of size s into corner v along edge e would not allow this room
to have a door or a window, we set yg,s,v,e = 0 for every group g. (This partially
enforces room placement condition (P2).) Similarly, if placing a room of size s at
edge e would make the room’s aspect ratio too extreme, we could set xg,s,e = 0
for every group g.

Recall that the problem asks to minimize the sum of distances between
pairs o, o′ of objects that contain rooms from the same group g. The triples
g, o, o′ that contribute to this sum are those with ug,o,o′ = 1. Hence, the objec-
tive function of our ILP for Floor Planning (FPilp) is:

minimize
∑

g∈G,o,o′∈O

ug,o,o′ · δo,o′ ,

which is subject to the following constraints. The first three constraints enforce
the room placement conditions (P1) to (P3).

• Place all rooms (P1):
∑

e∈E

xg,s,e +
∑

v∈V
e adjacent to v

yg,s,v,e = ρg,s for g ∈ G, s ∈ S

• Place at most one room in a corner v (P2):
∑

g∈G,s∈S,
e adjacent to v

yg,s,v,e ≤ 1 for v ∈ V

• Do not overfill an edge e (P2)–(P3); that is, the sum of the sizes of all rooms
fully placed at e and those extending into e from a corner must not exceed κe:

∑

g∈G,s∈S

xg,s,e · s +
∑

g∈G,s∈S,
v adjacent to e

yg,s,v,e · (s − κv) ≤ κe for e ∈ E

Note that the room sizes in S are constants from the point of view of the
ILP. We need the following constraints to set the binary variables of types u
and z.

• Force zg,e to 1 if a room of group g is placed at edge e:

xg,s,e/ρg,s ≤ zg,e for e ∈ E, g ∈ G, s ∈ S

• Force zg,v to 1 if a room of group g is placed at corner v:

yg,s,e,v ≤ zg,v for v ∈ V, g ∈ G, s ∈ S, e incident to v

• Force ug,o,o′ to 1 if rooms of group g are placed at objects o and o′:

zg,o + zg,o′ − 1 ≤ ug,o,o′ for o, o′ ∈ O, g ∈ G



Algorithms for Floor Planning with Proximity Requirements 159

Note that we define only lower bounds for variables of types u and z here.
However, setting, for example, ug,o,o′ to 1 without rooms of group g being placed
at both objects o and o′ would increase our objective function. Hence, the ILP
solver sets ug,o,o′ to 0 in this case.

Dealing with Unsolvable Instances. Consider an instance of Floor Planning
where the empty floor plans have a total capacity K and all rooms together
require an area of A. If the rooms require more area than available (that is,
A > K), then clearly, there is no solution. However, even if enough area is
available (that is, A ≤ K) there may not necessarily exist a solution, because
the rooms placed at the same edge e may not fill up e completely and hence
available area remains unused. Moreover, there might not be enough large rooms
too occupy all corners. In general, this is more likely to happen when there is
not much spare area available. One way to deal with such unsolvable instances
is to scale down room sizes, which effectively decreases A.

5 An ILP for Floor Assignment

Due to the complexity of the Floor Planning problem, our ILP formulation
from the previous section can only be solved for instances of moderate size.
We thus propose to split large instances into smaller ones. More precisely, we
solve the respective Floor Assignment problem that splits a large multi-floor
instance into individual floors. As a result, we get single-floor instances of Floor
Planning that can usually be solved within a reasonable amount of time.

We now describe an ILP for the Floor Assignment problem. Recall that
the problem asks us to assign every room to one of the floors such that the rooms
of each group are assigned only to few floors that are close together. The input
is given by the set F of floors, their distances δ, their capacities κ, the set G of
groups, the set S of room sizes, and the room quantities ρ. Note that distances of
floors set in δ do not need to grow linearly. In particular, one may set distances
to model that people take the stairs to go up one or two floors, but take the
elevator for more floors.

We need the following variables all of which are binary except for the first
one, which is an integer.

xg,s,f ≥ 0 denotes the number of group-g, size-s rooms assigned to floor f.

zg,f = 1 ⇔ a room of group g is assigned to floor f.

ug,f,f ′ = 1 ⇔ rooms of group g are assigned to floors f and f ′.

Then our ILP for floor assignment (FAilp) is as follows.

Minimize
∑

g∈G,f,f ′∈F

ug,f,f ′ · δf,f ′

subject to the following constraints.
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• Assign all rooms:
∑

f∈F

xg,s,f = ρg,s for g ∈ G, s ∈ S

• Do not overfill any floor:
∑

g∈G,s∈S

xg,s,f · s ≤ κf for f ∈ F

• Force zg,f to 1 if a room of group g is assigned to floor f :

xg,s,f/ρg,s ≤ zg,f for f ∈ F, g ∈ G, s ∈ S

• Force ug,f,f ′ to 1 if rooms of group g are assigned to floor f and f ′:

zg,f + zg,f ′ − 1 ≤ ug,f,f ′ for f, f ′ ∈ F, g ∈ G

6 A Heuristic for Floor Assignment

In this section, we propose a heuristic for the Floor Assignment problem.
Our heuristic, which we call FAheu, tries to distribute the rooms evenly among
the floors. This is motivated by the observation that an instance of Floor
Planning with a nearly full floor is less likely to have a solution. Roughly
speaking, FAheu consists of three steps, namely, (i) reserving area on each floor,
(ii) allocating space to the groups, and (iii) distributing the rooms of each group
to the corresponding allocated space. We explain these steps now more precisely.

The first step of FAheu works as follows. Recall that F is the set of floors.
Now let K be the sum of the capacities of all floors, let A be the sum of sizes
of all rooms, and thus K − A is the excess area of the building. Then FAheu

reserves on each floor an area of size (K − A)/|F |, that is, an equal proportion
of the excess area.

Fig. 4. FAheu applied to a small problem instance (sM-3M, see Sect. 7). (a) Free space
(grey) is evenly distributed to the three floors and the four groups get area allocated
one after the other. (b) Allocated space is converted into rooms whereat at most one
room per floor uses reserved space.
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In the second step, the remaining area is allocated to the groups. To this end,
FAheu iterates through groups and floors concurrently. More precisely, suppose
that currently group g and floor f are handled. Then as much area of f is
allocated to g as either f has available or as g still requires. Accordingly, FAheu

either proceeds with the next floor or the next group. For an example, consider
Fig. 4(a), where group 1 requires 105 m2 of the unreserved 129 m2 on floor f1.
Proceeding with group 2, which requires 101 m2, the heuristic first allocates the
remaining 24 m2 of f1 to group 2 and then continues with floor f2.

In the last step, FAheu converts the allocated areas of the second step into an
assignment of rooms to floors as follows. If the whole allocated area of a group g
is on one floor, then the area can be straightforwardly partitioned into the rooms
of g (like for group 1 in Fig. 4(a–b)). Otherwise, if g is the last group that got
area allocated on a floor f (like group 2 on floor f1 in the example), then FAheu

repeatedly assigns the largest remaining (that is, unplaced) room of g on floor f
that fits inside the allocated area. If this is no longer possible, but the allocated
area of g on f is not fully used up yet, FAheu assigns the smallest remaining
room of g to f . In the example, first the largest room and then the smallest
room of group 2 are assigned to f1. In this way, FAheu processes floor after floor
and group after group.

Note that as long as the reserved area on each floor is at least as large as the
largest room size, FAheu always returns a valid solution. We always place the
smallest room at the end of a floor in order to equally distribute the excess area.

The first step takes O(|G| · |S|+ |F |) time since we need to sum the sizes of all
rooms and the capacities of all floors. For the second step, we need O(|G| + |F |)
time to greedily allocate the area of the floors to groups. The third step takes
O((|G| + |F |) · |S|) time since every room is assigned successfully once and each
size may be tried unsuccessfully once per floor. Therefore, the total runtime of
FAheu is also O((|G| + |F |) · |S|).

7 Test Data

To get a rough idea of realistic problem instances, we considered the situation
at two institutes at the University of Würzburg; Mathematics and Computer
Science. The actual floor plans of the mathematics buildings inspired the room
sizes of our instances. We mapped each type of staff, such as professors and
research assistants, to a different room size. Accordingly, we modeled the insti-
tutes’ chairs as groups, with their respective staff. Based on this data, we built
problem instances that vary in the number of groups, in the number of floors,
in the floor sizes, and in the number of different room sizes.

We first treat floor plans. We designed four different empty floor plans, fS,
fM, fL, fXL in order of increasing size; see Fig. 5. As an example, Table 1 shows
the distance matrix of fS. For all instances, we set the distance of the ith and
the jth floor to |j − i| · 20 m (seen as a penalty) and calculate the distances of
edges and vertices of different floors with their distances to the stairs.

Note that the floor capacities correlate with the floor complexities in terms
of numbers of edges and corners. We want to point out that FPilp does not
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Fig. 5. The four empty floor plans used in our problem instances.

take the actual geometry of a floor into account but only its complexity, the
capacities, and the distance matrix. In particular, our problem definition does
not insist that the same empty floor plan is used for every floor. For simplicity
and comparability of the results, in each of our test instances, we do use the
same empty floor plan for every floor.

We define the following sets of groups.

M: A set of groups based on the chairs of the Institute of Mathematics. It
contains 11 groups with a total of 122 rooms of sizes 8, 15, or 18 m2. The
exact groups are shown in Table 2.

C: A set of groups based on the chairs of the Institute of Computer Science
that contains 9 groups with a total of 177 rooms of sizes 10, 15, 20, and
25 m2; see again Table 2.

sM: A small set of groups that contains the math groups 1, 2, 4, and 11.
MC: A large set of groups; the union of the sets M and C. It thus contains 20

groups with a total of 299 rooms of six different sizes.

Finally, we can define our six problem instances. We have three medium-
sized instances that use the set M of math groups but floors of different sizes.
Furthermore, we have a small, a large, and a very large instance.

M-18S: Math groups M and 18 copies of fS.
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M-9M: Math groups M and 9 copies of fM. The problem instance is closest
to the actual situation at the Institute of Mathematics.

M-3XL: Math groups M and 3 copies of fXL.
sM-3M: Subset of math groups sM and 3 copies of fM.
C-11L: Computer science groups C and 11 copies of fL. This instance is larger

and more complex than the math instances as it has more rooms and
different room sizes.

MC-15L: Combined groups MC and 15 copies of fL.

Table 1. Distances in the empty
floor plan fS.

e1 e2 e3 e4 v1 v2

Edges e1 0 5 7 2 8 8

e2 5 0 1 2 0 2

e3 7 1 0 1 0 0

e4 2 2 1 0 2 0

Corners v1 8 0 0 2 0 1

v2 8 2 0 0 1 0

Stairs 2 2 5 2 5 5

Table 2. The mathematics and computer
science groups.

Institute Math CS

Sizes [m2] 8 15 18 10 15 20 25

Groups 1 3 3 2 6 8 2 1

2 4 1 3 2 19 2 2

3 5 1 3 3 10 1 1

4 5 1 1 0 3 1 1

5 9 1 2 2 14 3 2

6 11 1 5 3 17 2 2

7 16 1 3 0 15 2 2

8 8 1 3 3 28 1 2

9 4 1 3 1 14 1 1

10 7 1 4

11 8 1 3

8 Experimental Evaluation

In this section, we evaluate our three approaches for the Floor Planning prob-
lem on our problem instances from Sect. 7. First, we examine the performance
of FPilp on its own. Then we combine FPilp with either FAilp or FAheu, and
discuss the strengths and limitations of these approaches. Finally, we detail how
we post-process FPilp solutions.

Using an ILP for Floor Planning. All ILP tests were run using CPLEX with
OPL on a virtual machine that runs Ubuntu 18.04 with 16 cores and 96 GB of
RAM. After preliminary experiments, we decided to use settings of CPLEX that
resemble a depth-first search with a focus on finding feasible solutions. We tested
FPilp twice on each of the six problem instances, once with a realistic time limit
of one hour and once with a time limit of 12 h for comparison. The bare results
are shown in Table 3.
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FPilp found solutions for small to medium-sized instances but it managed to
solve only the smallest instance sM-3M to optimality. The resulting floor plans,
found within five minutes, are shown in Fig. 6a. Knowing that at least one group
needs to be split to two floors, the results looks satisfactory.

Concerning the medium-sized instances (M-XX), FPilp performed signifi-
cantly better with the higher time limit. For example, for the instance M-9M,
the floor plans after 1 h, 12 h, and 66 h of computation time are shown in Fig. 7.
We observe that the floor plans after 12 h and especially after 66 h appear con-
siderably tidier than after 1 h, though still not fully satisfactory.

The situation is worse for larger problem instances. Namely, for MC-15L, no
solution was found even after 12 h. For C-11L, FPilp found solutions but ran out
of memory after roughly 8 h. The RAM usage shown in Table 4 suggests that
this is a systematic problem. Hence, these results indicate that it is necessary
to break down large problem instances into smaller ones by computing a floor
assignment first.

Fig. 6. The solutions found by FPilp, like the optimal solution for the problem instance
sM-3M here, should not be interpreted as final floor plans.

Table 3. Best solutions found for different approaches and instances. The two versions
of FPilp differ only in their time limit. Results written in red italic required scaling of
room sizes to admit solutions.

Instance sM-3M M-3XL M-9M M-18S C-11L MC-15L

FPilp (12 h) 848 6754 3398 ooMem –

FPilp (1 h) 241 1516 13816 3877 85142 –

FAilp (1 h) + FPilp 458 642 5207 5090 19934 15737

FAheu + FPilp 512 1398 6436 7538 23195 26300
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Floor Assignment as a Preprocessing Step. The two floor assignment algorithms
FAilp and FAheu distribute rooms to floors such that FPilp has to solve only
single-floor instances. We compare the solutions found by either combination
with those found by FPilp alone. To this end, we combined the solutions for the
single-floor instances to a solution of the original multi-floor instance and com-
puted the quality according to the objective function of FPilp; see Table 3. FAilp

instances were again solved with CPLEX and DFS-like settings.
Both floor assignment approaches made it possible to find solutions for the

two largest problem instances where FPilp on its own did not succeed. Further-
more, the combination of FAilp and FPilp found a better solution to M-3XL
than FPilp alone and this in a total of only 14 min. In general, the combination
of FAilp and FPilp achieved better results than the combination of FAheu and
FPilp. However, there is a caveat concerning these results. For most problem
instances, it was necessary to downscale the room sizes for several floors such
that they would admit solutions. In this regard, FAheu performed better than
FAilp; we discuss this in more detail below.

Table 4. Maximum amount of memory used by FPilp (excluding overhead).

Instance sM-3M M-3XL M-9M M-18S C-11L MC-15L

FPilp (12 h) – 900 MB 16 GB 3 GB >79 GB 66 GB

FPilp (1 h) 10 MB 900 MB 15 GB 3 GB 13 GB 6 GB

Table 5. Runtimes of FAilp in seconds for finding and for proving solutions optimal
(rows 1 and 2); aggregated runtimes for the FPilp runs over all floors (rows 3 and 4).

Instance sM-3M M-3XL M-9M M-18S C-11L MC-15L

FAilp finding OPT 0.01 0.35 1.09 5.47 2.36 4.70

FAilp proving OPT 0.18 0.35 2134.32 – 34.84 1067.23

FPilp (FAilp) 1.33 808.69 3.10 0.37 2.32 8.97

FPilp (FAheu) 1.22 170.44 4.06 0.63 4.27 10.71

Figures 8a and 8b show the floor plans computed for M-9M with the help of
FAilp and FAheu, respectively. We find that both solutions appear tidier than
those found by FPilp alone (Fig. 7). Moreover, since each group appears on at
most two floors, these solutions appear closer to what a human planner would
construct. We further want to point out that, for FAheu, only one floor required
downscaling of room sizes.

Next, we consider the runtime of the floor assignment approaches. While the
runtime of FAheu is negligible, we gave FAilp a time limit of one hour. Table 5
shows the time required by FAilp to find optimal solutions and to prove that they
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are optimal. Often, FAilp found the optimal floor assignment solution within a
few seconds for all instances, but required a few minutes to prove their optimality;
for M-18S it was not able to prove optimality even after three days.

For both FAheu and FAilp as preprocessing steps, Table 5 shows the runtime
required by FPilp to find and prove optimal solutions (aggregated over all floors).
FPilp solved most buildings in less than 10 s. Only the instances with the large
empty floor plan fXL still took a few minutes to be solved. Nevertheless, we can
conclude that first computing a floor assignment and then using FPilp for single
floors yields a tremendous speed up.

Scaling to the Rescue. Since the floor assignment approaches do not take the
empty floor plans into account when distributing the rooms it may happen that a
floor assignment solution results in unsolvable floor planning instances. For such
an unsolvable instance, we scaled down all room sizes with the same scaling factor
such that the instance became solvable. For the different problem instances,
Table 6 shows the worst needed scaling factor among all floors and the number
of floors that required scaling.

Fig. 7. Solutions for M-9M computed by FPilp with different time limits.



Algorithms for Floor Planning with Proximity Requirements 167

Taking a closer look at the solutions in Fig. 8, we observe that downscaling
was not only necessary because of a lack of empty space, but also because of a
bad distribution of room sizes. For example, the sixth floor in the FAheu solution
has many small rooms but only one large room and therefore not all corners
can be occupied. The same problem occurred on the second floor in the FAilp

solution. We further find the FAilp solutions mostly required downscaling because
of tightly packed floors. By design, this is less likely to happen with FAheu.

Algorithms vs. Human. For the problem instance M-9M we also constructed
a floor plan manually; see Fig. 8c. Compared to the floor plans computed by
the three different algorithmic approaches (see again Figs. 7 and 8), the manual
floor plan appears more coherent in the following sense. Groups form only few
clusters and do not alternate in the cyclic order around the corridors (whereas
they do in the ground-floor of Fig. 7b). Interestingly, the floor plan computed
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Groups

5

6

7

11

9

8

10

Fig. 8. Solutions of M-9M found by first computing a floor assignment with FAilp and
FPilp as well as a manually crafted solution. Red line segments indicate that the sizes
of the rooms next to the segments had to be scaled down slightly. (Color figure online)
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by FPilp after 66 h (Fig. 7c) achieved a lower score (4235) than the objective
function value of the manual solution (5144), but appears less coherent. Note,
however, that FPilp placed more groups within one floor (7 vs. 6). On the other
hand, in Fig. 7c, the small orange group 2 is spread over four floors (with 1, 1,
2, 1 objects). This yields 14 times the intra-floor distance, that is, the distance
between two consecutive floors (which we set to 20 m). Although the larger violet
group 8 in Fig. 8c is spread over just two floors, where it occupies four objects
on each floor. This yields more, namely 16 times the intra-floor distance. If we
want to favor solutions that avoid spreading groups over more than two floors,
we simply have to replace our linear floor distance function (see p. 11) by, say,
a quadratic one (e.g., |j − i|2 · 20 m for the distance from floor i to floor j).

Table 6. Worst needed scaling factors and the number of floors that needed scaling
when solving the (single-floor) Floor Planning instances created by floor assignment
solutions.

Instance sM-3M M-3XL M-9M M-18S C-11L MC-15L

FAilp Scaling factor 165/171 – 153/171 82/99 207/311 207/311

# floors scaled 1 0 6 9 6 7

FAheu Scaling factor – – 144/171 94/99 207/311 207/311

# floors scaled 0 0 1 1 3 8

Post-processing of ILP Solutions. A solution computed with FPilp only specifies
a room placement, which, by the definition in Sect. 3, is only a mapping of rooms
to edges and corners that does not include an ordering of rooms along the same
edge. For the floor plans depicted in Figs. 6, 7 and 8, we ordered rooms along the
same edge manually in a post-processing step. In our experiments, we observed
that in most cases only one group, rarely two groups, and only once three groups
were present at the same edge. We hence expect the task of ordering rooms along
an edge to be trivial in practice.

9 Concluding Remarks

In this paper, we introduced the Floor Planning with Group Proximity
problem and described an ILP formulation to solve it. We tested our ILP on
realistic test data using the ILP solver CPLEX. Our experiments showed that
small problem instances (28 rooms, 4 groups) can be solved to optimality within
minutes and with satisfactory results. While medium-sized instances (122 rooms,
11 groups) can still be solved within a few hours, the complexity of the problem
makes it unfeasible to tackle larger instances directly.

We further showed that large (multi-floor) instances of the floor planning
problem can be tackled by first solving the respective Floor Assignment
with Group Proximity problem and then solving the resulting (single-floor)
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instances as before. We have formulated the floor assignment problem, too, as
an ILP, but we also suggested a greedy heuristic for it. Our experiments demon-
strated that splitting instances via a floor assignment wasn’t only much faster,
but also improved some of the results for medium-sized instances that FPilp

computed within a fixed runtime limit.
Let us consider the optimal solution found for the smallest instance sM-3M by

FPilp in Fig. 6a. Since the ILP only optimizes according to an objective function,
we should not be surprised to find, for example, gaps between rooms or corner
rooms that cannot be entered. A planner would directly avoid these and other
deficiencies. However, such deficiencies can easily be eradicated in a (manual)
post-processing step as shown by the floor plan in Fig. 6b. As mentioned in
the introduction, if a user is not satisfied with an optimal solution (say, to an
ILP), then this is not a failure of the solver, but a failure of the model and the
corresponding objective function. Here, we decided to keep the model as simple
as possible to test the potential computational limitations of our approach.

The proposed variants of the floor planning problem and our algorithmic
approaches have demonstrated their potential to support planners in the design
of architectural floor plans of office buildings. We stress that formulating the
floor planning problem as an ILP has the advantage that a planner may add
further requirements. For example, one can easily add constraints that force
two given rooms to be adjacent, extend the model to less constrained building
outlines, or allow rooms to occupy two corners.
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