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Abstract

Vaccination is the best method for disease prevention. A vaccine is an antigenic
preparation intended to produce immunity to disease through stimulation of the
production of antibodies and memory cells. An “ideal fish vaccine” should have
the potential to generate specific immune response, protection, and memory.
There are several methods for vaccine development and application. These
methods range from conventional live vaccines to the latest molecular vaccines.
Every type of vaccine has its own advantages and disadvantages and the choice of
vaccine type depends on the type of target pathogen, immune response, safety of
the recipient, and feasibility of the application. Vaccine is classified based on the
method of preparation such as live attenuated vaccine, vectored vaccine,
inactivated vaccine, and sub-unit vaccine. Live vaccines and killed vaccines are
conventional methods of vaccine preparation which has potential for inducing
specific immune response in host. However, their applications in aquaculture are
limited due to constraint in delivery and uptake. Sub-unit vaccine developed
using immunogenic units of pathogen like selected proteins or toxoids hold
potential for vaccine development. Recombinant protein vaccine and vectored
vaccines such as DNA vaccine, RNA vaccine, edible vaccine, and virus-like
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particles are advantageous because there is no need to culture the pathogen for
vaccine production.
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1 Introduction

Aquaculture continues to be the fastest-growing food-producing sector in the world
[1]. However, infectious diseases of bacterial, viral, mycotic, and parasitic origin still
remain a major impediment in the intensification of aquaculture. In view of this, fish
health management has become a critical component to disease control and is
invaluable for improved harvests and sustainable aquaculture. Since the develop-
ment of the first fish vaccine in the 1940s, vaccination is regarded as the most
efficient and economical remedial measure in protecting the health of farmed finfish
from various infectious agents [2]. The importance of vaccination is much higher for
aquatic animals than those of terrestrial animals, as they are in continuous contact
with the microorganisms in their aquatic environment. However, unlike their terres-
trial counterpart, fish vaccine development has faced several challenges viz., limited
knowledge of the fish immune system, vast diversity of pathogens and their suscep-
tible host species, difficulties in identification and formulation of antigens, selection
of efficient adjuvants and vaccine carriers, challenges related to the mode of deliv-
ery, and various laws and restrictions related to food fishes. Nevertheless, over the
last four decades, fish immunologists have made profound efforts to understand the
immune system and the host-pathogen interactions which in turn help to develop
vaccination strategies for control of infectious diseases in commercial fish farming.

2 What Is a Vaccine?

A vaccine is an antigenic preparation intended to produce immunity to disease
through stimulation of the production of antibodies and memory cells. It works by
exposing the immune system of a healthy animal to an antigen and then allowing the
host immune system to develop a response and a “memory” to accelerate this
response in subsequent infections by the targeted pathogen [3].

3 Properties of Vaccine

An “ideal fish vaccine” should have the potential to generate an immune response.
From the commercial and practical point of view, the vaccine needs to have long-
term immune response, protection, specificity, and memory. While designing a
vaccine, it should also be considered that the vaccine candidates should protect
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against a broad range of pathogen strains. The vaccine needs to be user-friendly and
cost-effective. Further, the vaccines should be safe for the fish, the person
(s) vaccinating the fish, and for the fish consumers.

4 Types of Vaccine

A vaccine is classified based on the approach used to develop the vaccine. Each
approach has its own advantages and specific mechanism of action. Vaccines are
designed based on the feasibility of manufacturing and nature of infections. The
choices for vaccine design are typically based on fundamental information about the
microbe, such as how it infects cells and how the immune system responds to it, as
well as practical considerations, such as size and value of the fish species to which it
is administered. Broadly, vaccines can be classified based on antigen delivery
systems: (1) Replicative antigen delivery system: live-attenuated vaccine, DNA
vaccine, vector vaccine, and RNA vaccine; (2) Non-replicative antigen delivery
system: whole-cell inactivated vaccine, sub-unit vaccine, toxoid vaccine, peptide
vaccine, anti-idiotype vaccine, and edible vaccine (Fig. 1). Individual vaccine types
are described as follows:

Fig. 1 Types of vaccines
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4.1 Live-Attenuated Vaccine

This type of vaccine contains live-attenuated microorganisms which are “weakened”
or devoid of disease-causing capacity but still capable of replicating and presenting
its immunogenic properties inside the host. These vaccines are prepared by various
attenuation methods viz., chemical/heat attenuation, continuous passaging of the
pathogen in different heterologous systems (heterologous animals, tissue culture,
embryonated eggs), and genetic attenuation (mutation by deletion, disruption, or
insertion of the metabolic pathway or virulence gene) [4] (Fig. 2). This vaccine being
self-replicating does not need booster immunization and can elicit both humoral and
cell-mediated immune responses which in turn help in triggering a high level of
long-lasting protective immunity in the host. Live vaccines are the most potent way
of active immunization and the results of vaccination are evident in humans and
higher vertebrates. Various attenuation strategies have been employed for the devel-
opment of live vaccines for fish viz., antibiotic mutagenesis for Flavobacterium spp.,
Vibrio anguillarum, Edwardsiella tarda, and Aeromonas hydrophila vaccines [5, 6],
mutagenesis using acriflavin dye and novobiocin for attenuation of Streptococcus
agalactiae, Streptococcus iniae, Edwardsiella ictaluri, and A. hydrophila [7], muta-
tion of koi herpesvirus (KHV) by UV exposure for reducing its virulence and
minimizing chances of reversion to pathogenic strain [8], and gene deletion technol-
ogy used to delete the virulence gene from catfish herpesvirus [9]. Few modified live
fish vaccines are licensed in different countries which includes E. ictaluri vaccine
against enteric septicaemia of catfish (ESC), Flavobacterium columnare vaccine
against columnaris in catfish [10, 11]; Arthrobacter vaccine, licensed in Chile and
Canada against bacterial kidney disease (BKD) for use in salmonids having cross-
protection against Rennibacterium salmoninarum [12]. Among licensed live-
attenuated vaccines against viral pathogens, vaccine against viral haemorrhagic
septicaemia virus (VHSV) is available in Germany [13], and a live viral vaccine
against KHV for carp is available for use in Israel [14].

4.2 DNA Vaccine

DNA vaccine comprises a self-replicating extra-chromosomal plasmid containing
the immunogenic gene of the pathogen (Fig. 3). DNA vaccination involves the

Fig. 2 Live-attenuated vaccine
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delivery of plasmid DNA (raised in microorganisms such as bacteria) encoding a
vaccine antigen to the host [15]. Under the control of eukaryotic promoters, the
plasmid DNA expresses itself inside the recipient, first by transcription into mRNA
and then by translation into the protein encoded by the gene. The expressed antigenic
proteins are recognized by the host immune system as “foreign”, inducing strong and
long-lasting humoral and cell-mediated immune responses without the risk of
inadvertent infection. DNA vaccines have been experimentally tested against several
fish pathogens viz., viral haemorrhagic septicemia virus (VHSV) [16–20], infectious
hematopoietic necrosis virus (IHNV) [21–25], hirame rhabdovirus (HIRRV) [26–
28], spring viraemia of carp virus (SVCV) [29–31], infectious salmon anaemia virus
(ISAV) [32, 33], nervous necrosis virus (NNV) [34–36], salmonid alphavirus
3 (SAV3) [37, 38], grass carp reovirus (GCRV) [39, 40], infectious pancreatic
necrosis virus (IPNV) [41–45], Koi herpes virus (KHV) [46–49], Channel catfish
virus (CCV) [50], Lymphocystis disease virus (LCDV) [51, 52], E. tarda [53–60],
Aeromonas sp. [34, 61], Vibrio sp. [62–69], and Streptococcus sp. [70–76]. DNA
vaccines have also been effective in the prevention of infection caused by intracel-
lular and difficult-to-culture bacteria, like Mycobacterium marinum [77]. Despite its
effectiveness, several legal restrictions (primarily related to genome integration) for
the use of DNA vaccine in food fishes in most of the countries hamper its licensing
and commercialization. Two DNA vaccines have been commercialized for use in
aquaculture viz., APEX-IHN (Novartis/Elanco) in 2005, for protecting Atlantic
salmon against IHNV in British Colombia and CLYNAV (Elanco) in 2017, a
polyprotein-encoding DNA vaccine against salmon pancreas disease virus (SPDV)
infection in Atlantic salmon (Salmo salar) for use within the European Union (EU).

4.3 Vector Vaccine

Vector vaccine utilizes live virus vectors for transferring antigenic genes into the
recipient host which in turn express the encoded protein of another pathogenic
microorganism, as the vaccine antigen [78] (Fig. 4). The self-assembling ability of
viral structural proteins with the resemblance of a native virus has resulted in the
development of this class of sub-unit vaccines based on virus-like particles (VLPs)
[79]. The baculovirus expression system has proven to be an improved approach for
fast expression of plentiful recombinant proteins (VLPs) and is suggested to be an

Fig. 3 DNA vaccine
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inexpensive and efficient method for producing heterologous proteins [80–82]. The
vaccine antigens are capable of stimulating both humoral and cell-mediated immune
responses whereas, the vector has the potential to actively replicate inside the host
cells, activating the immune system like an adjuvant. VLPs can be produced in
competent hosts such as bacteria, plant, or fungi. VLPs are also produced by genetic
recombination of an unrelated virus-producing chimera. Few experimental VLPs-
based vaccines have been developed in recent years viz., vaccine against infectious
pancreatic necrosis, wherein the IPNV capsid protein VP2 expressed in yeast self-
assembles into sub-viral particles (SVPs) and induce immune response in Rainbow
trout [83]; vaccine against Atlantic cod NNV (ACNNV) for seabass, wherein the
coat protein was expressed in plant, Nicotiana benthamiana [84]; vaccines against
grouper nervous necrosis [85] and viral nervous necrosis [86] were developed for
orange-spotted grouper and European seabass respectively, using self-assembly of
VLPs. Salmonid alphavirus (SAV) replicon vectors are also commonly used for
developing fish vaccines, as these vectors are functional in cells from a wide range of
animal classes and express gene of interest (GOI) in the temperature range of 4 �C–
37 �C [87, 88]. The alphavirus-based replicon has the advantage that it does not
spread/ re-infect other cells after initial replication [88, 89] and also has the ability to
improve mucosal immunity [90].

4.4 RNA Vaccine

RNA vaccines are of two types: self-replicating mRNA and non-replicating mRNA.
The principle of mRNA vaccine is that the modified mRNA of the target gene is
either cloned in a vector or directly injected into the host. This mRNA undergoes

Fig. 4 Vector vaccine
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translation of the target protein. The protein is detected as a foreign substance by the
host immune system and specific immunity is generated against the pathogen [47]
(Fig. 5). Non-replicating mRNA, also called as NRM, are flanked by 50 and 30

untranslated regions (UTRs), a 50-cap structure, and a 30-poly-(A) tail [91]. Once the
NRM enter the cell cytosol, it is immediately translated to protein. The self-
amplifying mRNA, also called as SAM, has the same features as that of NRM.
Additionally, the construct encodes replicase components which are able to direct
intracellular mRNA amplification. SAM particles once delivered in cytosol, replicate
to produce multiple copies of mRNA that are ultimately translated into protein. RNA
vaccines are more efficient in stimulating antigen-specific cellular immune responses
as compared to the conventional plasmid DNA vaccines [92]. With many advantages
over DNA vaccine, mRNA vaccine could be developed against important fish
pathogens. SAV-based replicon provided significant protection against SAV3.
This SAV3 construct can be a future candidate for mRNA vaccine in fish [93].

4.5 Whole-Cell Inactivated Vaccine

Whole-cell inactivated vaccines are based on the principle of Louis Pasteur’s
“isolate, inactivate, and inject” [94]. These vaccines contain killed microorganisms
(virus/bacteria/parasite) that have been inactivated through physical or chemical
processes such as heat, formaldehyde, or radiation treatment (Fig. 6). The inactivated
pathogens lose their ability to cause disease but remain antigenic or immunogenic to
the host. The host in turn recognizes the foreign structure of the killed pathogen, and
subsequently activates its immune system (mainly humoral immune system). How-
ever, being inactivated, these vaccines induce relatively weaker immune responses
than live vaccines so they require suitable adjuvant as well as several booster doses
for maintaining adequate level of protective immunity over longer time. Commercial
inactivated vaccines have been reported for carps and salmon globally. The first
report on vaccine trial in fish was on an inactivated vaccine against Aeromonas
salmonicida, and an oral vaccine, attempted in cutthroat trout Oncorhynchus clarkia
[95]. Inactivated vaccine recorded successful immune protection against Yersinia
ruckeri and this was the first commercially licensed fish vaccine [96]. Following the
success of killed vaccine, research on developing killed vaccines increased espe-
cially against the infections of high-value fish species such as Atlantic salmon
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Fig. 5 RNA vaccine
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[97]. Although this method was effective for developing vaccine against some fish
pathogenic bacteria, its utility faced major obstacle for developing vaccine against
most other fish pathogens, especially viruses. Nevertheless, the first inactivated viral
vaccine for fish, against a carp rhabdovirus, causing spring viremia of carp (SVC)
was produced by a Czechoslovakian company (Bioveta) in 1982.

4.6 Sub-Unit Vaccine

Sub-unit vaccine uses the recombinant technology where only the immunogenic
target regions of a pathogen are expressed in a heterologous host from which the
protective antigen is purified and used in vaccine formulation [78] (Fig. 7). Biotech-
nological tools are used for recognition and designing of the gene sequence of
pathogen’s protective antigen. After designing, the antigenic genes are inserted
into prokaryotic [98] or eukaryotic [99] production hosts and are cultured on a
large scale under strictly controlled laboratory conditions by fermentation technol-
ogy, with the aim to produce the antigenic protein. The production hosts include
bacteria [98], cell culture [100], yeast [101], insect cells [99], microalgae as well as
transgenic plants [102]. However, in the case of fish vaccines, the administration of
the recombinant antigens produced through fermentation was found to be inefficient
in inducing protective immunity, which might be due to poor immunogenicity of the
antigens [103, 104]. Molecular techniques enabled the expression of highly anti-
genic proteins of the target pathogen in bulk and subsequent delivery of the purified
antigen as a vaccine. Although initial works on sub-unit vaccines in aquaculture
were not successful due to the rapid degradation of the protein during production and
transport, or in the gut of the animals, improvements were made to stabilize the
antigens and many sub-unit vaccines have been developed. Most of the sub-unit
vaccines are developed by expressing the sub-unit protein in Escherichia coli-based
prokaryotic expression system. One of the most successful examples is a sub-unit
vaccine against infectious pancreatic necrosis (IPN), comprising of fused IPN-VP2
gene. ISAV vaccine containing recombinant hemagglutinin-esterase protein is avail-
able as an oral vaccine in the name of Centrovet in Chile. Baculovirus system and
yeast expression system have been used for the vaccine against viral haemorrhagic
septicaemia and IHNV [105]. Although there are many reports on sub-unit vaccines
for fish, they are not commercially available for use in aquaculture [6]. The major

Fig. 6 Whole-cell inactivated vaccine
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issue with recombinant vaccines is the environmental safety and regulatory clear-
ance. Thus, recombinant protein-based vaccines need to prove their environmental
safety for field testing [106].

4.7 Toxoid Vaccine

Toxins (exotoxin and endotoxin) are components that are secreted by bacteria as part
of their pathogenic response. Toxoid vaccine is generally developed from exotoxin.
When toxicity of the toxin is inactivated or reduced by chemical or heat treatment,
while maintaining its immunogenicity, it is called a toxoid (Fig. 8). Toxoid has a
capacity to trigger the immune response and mount immunological response and
memory. When the immune system receives a vaccine containing a harmless toxoid,
humoral immune system is activated and produces antibodies that lock onto and
block the toxin. This is also termed as anatoxin. In aquaculture, few reports of
experimental trial of toxoid vaccine with low antibody response are available.
Toxoid-enriched inactivated vaccine containing Photobacterium damselae subspe-
cies piscicida was reported to give 37–41% protection. The toxoid vaccine has also
been tried against A. salmonicida [107].

4.8 Peptide Vaccine

Peptide vaccines are synthetic peptides or small amino acid domains on the surface
of a carrier protein, which have the capacity of generating immune responses in the

Fig. 7 Sub-unit vaccine
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recipient host (Fig. 9). The small amino acid domain that has the potential to
generate immunogenicity is first identified using bioinformatic tools such as Predict
Protein, Prosite, SwissProt and Epitope mapper. The peptide is then synthesized and
the synthetic peptide is used as a vaccine to generate the immune response. These are
referred to as peptide vaccines as they have the potential to generate immune
response and memory. The short peptides are bound to some surface carrier proteins
and used as a vaccine. Although, they are very simple and safe, due to low
immunogenicity their applications are limited in fish.

4.9 Anti-Idiotype Vaccine

This vaccine comprises of antibodies that have three-dimensional immunogenic
regions, designated as idiotopes that consist of protein sequences which can bind
to cell receptors (Fig. 10). Idiotopes are aggregated into idiotypes, specific to their
target antigen. Thus, anti-idiotypes are antigen-mimics that can trigger immune
response in the host. These anti-idiotypes can be purified from serum or can be
designed using bioinformatics-based molecular docking approach and used as anti-
gen replacement. However, this is yet to be explored in fish vaccination.

4.10 Edible Vaccine

Edible vaccines are plant-based vaccines prepared by molecular farming where
whole plants or plant cells/tissues are cultured in vitro for the production of

Fig. 8 Toxoid vaccine

Fig. 9 Peptide vaccine
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immunogenic proteins [108] (Fig. 11). These are potentially cheap to produce and
are viable alternative to mainstream production systems. Edible vaccines, after
consumption, expresses the antigenic proteins, which are then transported via
specialized M-cells to the dendritic cells subsequently activating a coordinated
immune response involving B-cells and T-helper cells. This vaccine technology is
at an early stage for fish vaccines [109] but likely to develop in the near future.

5 Conclusion

Vaccination is the best method for disease prevention, and there are several options
for vaccine development and application. These methods range from conventional
live vaccines to the latest molecular vaccines. Every type of vaccine has its own
advantages and disadvantages and the choice of vaccine type depends on the type of
target pathogen, immune response, safety of the recipient, and feasibility of the
application. The advantages and disadvantages of each type of vaccine are given in
Table 1. Vaccination and developing a strategy for successful vaccination in fish
have various challenges which can be addressed by modern vaccine methods such as
a recombinant protein-based vaccine, VLPs, and synthetic peptides. In the present
scenario of emerging diseases which cause serious impact on aquaculture

Idiotope

Paratope Anti-idiotype vaccine

Antibody

Fig. 10 Anti-idiotype vaccine

Fig. 11 Edible vaccine
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Table 1 Advantages and disadvantages of vaccines

Vaccine type Advantages Disadvantages

Live-
attenuated
vaccine

Being self-replicating does not need
booster immunization
Provides long-lasting protective immunity
to the host
Can be administered easily through oral or
immersion method

Possesses the risk of
recombination of different strains
resulting in the emergence of the
new strains
Has the risk of reverting to
virulent strain
Causes serious threat to off-target
animals and the aquatic
environment
Not suitable for immuno-
compromised animals as they
work on an active immune system

DNA
vaccine

Induces strong and long-lasting protective
immunity to the host
Possesses no risk of inadvertent infection
DNA vaccines are stable in dried powder
or in a solution and do not need a cold
chain
The vector can encode for multi-valent
vaccine against multiple diseases, which
could be given in a single administration
DNA vaccines are relatively cheap and are
easy to produce via identical production
processes

Legal restrictions (primarily
related to genome integration) for
the use of DNA vaccine in food
fishes in most of the countries
hampers its licensing and
commercialization

Vector
vaccine

Apart from the antigen, the vector has the
potential to replicate inside the host cells
actively and can activate the immune
system like an adjuvant
The alphavirus-based replicon has the
advantage that it does not spread/re-infect
other cells after initial replication
The alphavirus replicon has the ability to
improve mucosal immunity

Pre-existing antibodies against the
vector virus can neutralize or
inhibit the viral vector, thereby
reducing the targeted immune
response against the foreign
antigen
Vector vaccine technology is still
new to fish vaccine development
and has been tested to a minimal
extent

RNA
vaccine

RNA vaccines are not made from pathogen
particles or inactivated pathogen, so are
non-infectious
Unlike DNA vaccine, RNA vaccine does
not integrate itself into the host genome
and gets degraded once the protein is made
Limited clinical trial results indicate that
these vaccines generate a strong immune
response and are well-tolerated by healthy
individuals

Very new technology, so tested to
a very limited extent in finfish
vaccinology

Whole-cell
inactivated
vaccine

Unlike live attenuated vaccines, the
inactivated vaccines does not carry the risk
of mutating back to their disease-causing
state
Do not require cold chain for storage and
can be easily transported in freeze-dried

Being inactivated, these vaccines
induce relatively weaker immune
responses, so they need several
booster doses for maintaining
adequate level of protective
immunity over a longer time

(continued)
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production, it is important to focus more on developing effective vaccines so that
infectious diseases can be prevented and production losses can be minimized.

Table 1 (continued)

Vaccine type Advantages Disadvantages

form
These vaccines are easy to manufacture
and are economically feasible

To maximize their effectiveness,
they require suitable adjuvant
Mostly injection mode of delivery
is effective

Sub-unit
vaccine

Have no live components, thus no risk of
inducing disease
Safe, stable, and easy to manufacture

Although very effective against
human and animal pathogens, in
the case of fish vaccine, the
administration of the recombinant
antigens is found to be inefficient
in inducing protective immunity
Poor immunogenicity of the
antigens, induces a less strong
immune response
Often a response can be elicited,
but there is no guarantee that
immunological memory will be
formed in the correct manner

Toxoid
vaccine

Toxoid has the capacity to trigger an
immune response and mount
immunological response and memory
These are extremely safe methods of
immunization and are less likely to induce
any side effects
They can also work in immuno-
compromised individuals

May require several doses and
usually need an adjuvant
Relatively low antibody responses
are reported from the limited
experimental trial of toxoid
vaccine in aquaculture, reducing
its applicability

Peptide
vaccine

They are very simple and safe. Due to low immunogenicity, their
applications are limited in fish
vaccinology

Anti-
idiotype
vaccine

Anti-idiotypes can be purified from serum
or can be designed using bioinformatics-
based molecular docking approach and is
used as an antigen replacement

Yet to be explored in fish
vaccination

Edible
vaccine

These are potentially cheap to produce and
are a viable alternative to mainstream
production systems such as microbes and
mammalian cells cultivated in large-scale
bioreactors
Unlike other recombinant technologies,
they are free from undesirable
components, e.g., endotoxins in bacteria,
and hyperglycosylated proteins produced
by yeast
There is no limit to their production scale,
and the cost of scaling up is low

This vaccine technology is at an
early stage for fish vaccines but
likely to develop in the near
future.
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