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Abstract. The firefly algorithm (FA) is a swarm intelligence optimiza-
tion algorithm based on the firefly’s glow and attractive behavior. It
possesses a simple design, is easy to implement, and has been applied
in many engineering fields. Although FA well solves complex optimiza-
tion problems, it has flaws regarding premature convergence and overall
performance. Its learning style is relatively simple, as it can update indi-
vidual positions merely by the fluorescence intensity between individuals.
This paper proposes the firefly algorithm with opposition-based learning
(FA-OL), which enriches learning to improve its capability to jump out
of local optima. The opposition-based learning (OL) mechanism can pro-
mote individuals to search from the current and opposite points in the
search space, and can quickly broaden the solution space. The optimal
random parameter settings of FA-OL are obtained through experiments.
Comprehensive experiments on nine commonly used test functions com-
pare the proposed algorithm with the latest improved FA and seven other
algorithms. The experimental results show that the introduction of OL
greatly improved the search capability of FA, and FA-OL achieved better
results than other algorithms.
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1 Introduction

Metaheuristic algorithms have been widely used to solve complex and highly
nonlinear optimization problems. Among them, swarm intelligence optimization,
such as particle swarm optimization, ant colony optimization, and the firefly
algorithm (FA), simulates group behavior in nature, and has performed well at
solving complex optimization problems. Proposed in 2008 by Dr. Xinshe Yang
of the University of Cambridge, FA simulates the group behavior of fireflies.
Each firefly positions itself by its own fluorescence, through whose intensity it
can attract other fireflies, catch prey, or send out warning signals. It can move
individually to complete a search process in a solution space. The algorithm has
seen many improvements. An improved FA to learn between mates was proposed,
expanding upon the original FA, which has a single-sex firefly, and improving its
optimization performance [14]. Wang et al. [23] proposed Ying-Yang FA based
on a dimensional Cauchy mutation. A randomized attraction model promoted
convergence. To better use FA to solve global continuous optimization problems,
Wu et al. designed a logarithmic spiral search method to improve the individ-
ual’s exploration capability, and a dynamic search method to improve individual
exploration capability [25]. Nand et al. [11] proposed an improved FA called FA-
Step, and designed a new step search strategy and a step strategy mixed with
CMAES. Liu et al. proposed dynamic adaptive FA, which improved the con-
vergence speed and solution accuracy, and stopped the algorithm from suffering
from premature convergence [9].

FA has been successfully used in many engineering applications. A hybrid
cooperative FA was used to solve the restricted vehicle routing problem, achiev-
ing a good balance between intensification and diversity [1]. Cheng et al. pro-
posed a hybrid algorithm based on FA and GA, whose group attraction operator
reduced the time complexity. Three combined mutation strategies were intro-
duced, and the algorithm was used for constrained optimization problems. Tao
et al. [18] proposed an adaptive strategy in the FA attraction model to design ran-
dom models and penalty functions. It was used to solve constrained engineering
optimization problems, where it achieved rapid convergence and high accuracy.
Krishna et al. designed an improved random attraction FA for fuzzy image clus-
tering problems [6]. Tian et al. [20] improved and optimized individual fireflies by
combining mutation operations, used them to guide the direction of the group’s
operation, and applied the algorithm to the design of the SMC-PHD filter. Xie
et al. [26] proposed two improved methods based on FA to overcome the local
convergence problem in k-means clustering. Ireneus applied FA to the problem
of entity selection in machine learning [4]. Wang et al. [24] designed an improved
chaotic FA for wireless sensor resource allocation in the IoT environment. Dim-
itra et al. [22] designed an individual encoding and decoding strategy to use FA
for the prize-collecting vehicle routing problem. Cheng et al. [2] improved the FA
attraction model to promote convergence at a lower cost, designed three staged
adaptive firefly functions to determine its parameters, and used the designed
SAFA for the UAV charging planning problem in wireless sensor networks. Dash
et al. designed an improved FA-based optimal design of special signal blocking
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IIR filters [5]. Rohulla et al. designed a restricted multi-objective optimization
model for the privacy protection problem in social networks, and combined FA
and fuzzy clustering to solve it [8]. Tian et al. [19] designed an improved FA for
particle filtering and used it for multi-target tracking, achieving better accuracy.

This paper addresses the problem of FA easily falling into local optima. Our
improved FA based on opposition-based learning (OL), FA-OL, broadens the
search space of the algorithm and improves its ability to cover the feasible solu-
tion area. The remainder of this article is organized as follows. Section 2 intro-
duces the principle of the standard FA and FA based on the offline decreasing
random factor. Section 3 introduces the principle of OL and its application to
FA. Section 4 relates the results of experiments comparing our algorithm to seven
others, and discusses the randomized parameter-setting method that affects our
algorithm. Section 5 discusses our conclusions.

2 Introduction to FA

2.1 FA Concept

The two most basic behaviors of fireflies are attracting fireflies of the opposite
sex in the same population and attracting prey, both of which depend on the
fluorescence they emit, which is the fundamental principle of FA design. We know
from optics that the intensity of light is attenuated because it is absorbed by the
air, and the degree of attenuation is directly related to the air absorption and
distance of propagation. The intensity of light will also decrease as the distance
between the light source and the object increases.

In FA, each feasible solution is expressed as the position of each firefly, and
the fluorescence intensities of the fireflies is used as the target function value. In
standard FA, the fireflies are all of the same sex, so the attractive relationship
between them does not need to be considered. In addition, FA believes that the
degree of attraction between fireflies is proportional to their own fluorescence
intensity. Individuals with lower fluorescence intensity are attracted to fireflies
with higher fluorescence intensity, and will fly to them. The attraction behavior
between fireflies is also the convergence behavior of the algorithm, i.e., the fireflies
are searching for areas with better target function values.

The individual position update equation of FA has three parts, namely the
individual flight inertia; the movement of the i-th firefly attracted by the j-th
firefly is equivalent to the convergence behavior of the firefly in the evolutionary
process; the randomized search term, which is completely unrelated to fireflies i
and j. Through this, random disturbances can be generated to make the fireflies
reach a new search position, as follows:

xk
i (t + 1) =xk

i (t) + βij (t) · (
xk

j (t) − xk
i (t)

)

+ α (t) ·
(
randk

ij (t) − 0.5
) (1)

βij (t) = β0 · e−γr2
ij(t) (2)
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rij (t) = ‖xj (t) − xi (t)‖ =

√√
√
√

D∑

k=1

(
xk

j (t) − xk
i (t)

)2 (3)

where xk
i (t) and xk

j (t) respectively refer to the positions of fireflies i and j in the
k-th dimension of the t-th iteration; rij (t) is the distance between fireflies i and
j in the t-th iteration; D is the problem scale; rand is a uniformly distributed
random number in [0, 1]; α is a random factor; γ is the absorption coefficient; β
represents the attraction between two fireflies; and β0 is the attraction when the
distance between two fireflies is zero, i.e., the maximum attraction between them.
Regarding the parameters of FA, Yang [27,28] proposed that, when implementing
and applying FA, β0 = 1, γ ∈ [0.01, 100] is a constant generally set to 1, and
α ∈ [0, 1] is a constant generally set to 0.5.

2.2 Improved FA Based on a Proportionally Decreasing Random
Factor

From the position update equation of FA, we know that when the absorption
coefficient is zero, the update equation is

xk
i (t + 1) = xk

j (t) + α (t) · (
randk

ij (t) − 0.5
)

(4)

and when the absorption coefficient tends to infinity, the update equation is

xk
i (t + 1) = xk

i (t) + α (t) · (
randk

ij (t) − 0.5
)

(5)

It can be seen from formulas (4) and (5) that whether the fluorescence is
absorbed or not, the random search term is an important part of the firefly
position update, and the random search ability will be affected by the random
factor. We carried out research on random factors, and propose control methods
based on linear decline, proportional decline, parabolic decline, and fixed con-
stants. Through the experimental and statistical analysis results, it can be known
that the improved FA adopting the proportional decreasing method has the best
comprehensive optimization performance among the compared algorithms. The
proportional decreasing method of random factors has the formula

α (t + 1) = k · α (t) , α (0) = 0.5 (6)

where k is the common ratio, which is a constant less than 1. Optimizing the
standard test function with the value of k in the interval [0.97, 0.998] can obtain
a more reasonable result. Through experiments, it was concluded that the best
optimization performance occurs when k is 0.9902 [15]. FA based on a propor-
tionally decreasing random factor is referred to as FA-Prop in this article.
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3 Firefly Algorithm with Opposition-Based Learning

3.1 OL Principle

Generally speaking, heuristic algorithms are iterative. Starting from an initial
solution, after continuous iterative operations, a heuristic algorithm tries to
improve candidate solutions. When the algorithm stop condition is met, the
search process is terminated. When the prior information of the solution was
lacking, Tizhoosh et al. [21] proposed an OL mechanism, which used a random
guess to generate candidate solutions, and whose calculation time was related to
the distance between the initial and optimal solutions. Optimization algorithms
with superior performance often have a high probability of jumping out of local
optima and finding the global optimum, which is closely related to the ability of
the particles in the algorithm to explore and open up unknown areas. OL can
effectively broaden the search space and cover the feasible solution area.

Definition 1 Opposite number. If x ∈ [a, b] and x ∈ R then the opposite
number x is x∗ = a + b − x.

Definition 2 Opposite point. If P = (x1, x2, · · · , xD) is a point in a D-
dimensional space, xi ∈ R, and xi ∈ [ai, bi] (i = 1, 2, · · · ,D), then P is the
corresponding opposite point, where P ∗ = (x∗

1, x
∗
2, · · · , x∗

D) and x∗ = a + b − x.

Fig. 1. Opposition-based learning in one dimension [16]

Opposition-based optimization thinking: Assume P = (x1, x2, · · · , xD) is a
point in a D-dimensional space (it can be viewed as a candidate solution), with
opposite point P ∗ = (x∗

1, x
∗
2, · · · , x∗

D). Suppose f (·) is an evaluation function
to calculate the fitness of the candidate solution. Calculate f (P ) and f (P ∗) in
each iteration. If f (P ∗) ≤ f (P ), then replace P with P ∗, and otherwise still
iterate with P . The one-dimensional space OL process is shown in Fig. 1, where
Ok is the k-th OL reference point. Its value is the midpoint of the sum of ai and
bi. It is also called the symmetric OL mechanism. If you take a random position
Ok, it is random OL.

Zhou et al. proposed normalized OL [29]. Let ϕ (x) = Δ−x and x∗ = Δ−x,
where Δ is a calculated value and the corresponding opposite solution is x ∈
[Δ − b,Δ − a]. Compared with the original OL, the difference is the symmetric
position of the current and opposite points. The current and opposite points of
the original OL are with regard to (a + b)/2, while the normal OL is symmetric
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with regard to (2Δ − a − b) /2. Let Δ = η (a + b), where η is a real number.
Then normal OL is

x∗ = η (a + b) − x (7)

According to the different values of η, there are four types of OL. When
η = 0, the current and opposition-based solutions are symmetric with regard
to the origin, which is called OL based on solution symmetry; when η = 1/2,
the search interval is symmetric about the origin, which is called OL based on
interval symmetry; η = 1 is the special case of the original OL; and when η is a
random number, it is called random OL.

In the swarm intelligence algorithm, the OL mechanism is introduced, and the
individual can search at the current and opposite points at the same time. If the
opposite point has a better fitness value than the current point, then the search
area near the opposite point has a better chance to find the optimal value. The
individual can jump directly to the opposite point to continue searching, which
can quickly expand the solution space and cover the feasible solution area on a
larger scale, ultimately increasing the probability of finding the global optimal
solution.

Fig. 2. Flowchart of FA-OL

3.2 Opposition Learning FA

In the standard FA and FA-Prop, when comparing the fluorescence intensity of
two individual fireflies, the individual with weaker fluorescence intensity needs to
learn from the individual with high fluorescence intensity, i.e., according to for-
mulas (1)–(3), complete the location update of the weaker individuals. In FA-OL,
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Table 1. Experimental results of FA-OL on different random parameters

F1 F2 F3 F4 F5 F6 F7 F8 F9

FA Prop 2.38E−13 1.70E−03 8.83E+01 −7.97E+03 6.67E+01 1.12E−07 2.37E−03 6.68E−16 1.32E−03

3.97E−14 8.17E−03 1.40E+02 7.16E+02 2.09E+01 9.20E−09 3.99E−03 1.22E−16 3.64E−03

FA-OL 0 0 2.72E+01 −2.16E+02 0 −8.88E−16 4.75E+01 1.81E−15 4.39E−04

(Prob=0.1) 0 0 1.33E−01 6.22E+01 0 0 3.92E−01 5.22E−16 2.20E−03

FA-OL 0 0 2.72E+01 −1.62E+02 0 −8.88E−16 5.93E+01 1.82E−15 4.39E−04

(Prob=0.5) 0 0 1.32E−01 2.57E+01 0 0 1.69E−01 4.16E−16 2.20E−03

FA-OL 0 0 2.73E+01 −6.96E+03 0 −8.88E−16 2.96E−04 1.11E−15 1.32E−03

(Prob=0.01) 0 0 1.68E−01 7.91E+02 0 0 1.48E−03 3.12E−16 3.64E−03

FA-OL 0 0 2.73E+01 −4.48E+03 0 −8.88E−16 2.96E−04 1.28E−15 1.32E−03

(Prob=0.02) 0 0 1.47E−01 7.84E+02 0 0 1.48E−03 2.94E−16 3.64E−03

FA-OL 0 0 2.72E+01 −3.32E+03 0 −8.88E−16 5.92E−04 1.41E−15 8.79E−04

(Prob=0.03) 0 0 1.50E−01 5.81E+02 0 0 2.05E−03 3.27E−16 3.04E−03

FA-OL 0 0 2.73E+01 −2.66E+03 0 −8.88E−16 4.20E−02 1.75E−15 4.39E−04

(Prob=0.04) 0 0 1.33E−01 3.71E+02 0 0 4.95E−02 3.79E−16 2.20E−03

FA-OL 0 0 2.73E+01 −1.87E+03 0 −8.88E−16 1.57E+00 1.64E−15 1.76E−03

(Prob=0.05) 0 0 1.54E−01 4.42E+02 0 0 1.30E−01 4.67E−16 4.11E−03

Table 2. Ranking results of FA-OL on different random parameters (ANOVA)

F1 F2 F3 F4 F5 F6 F7 F8 F9 Total

FA Prop 8 1 8 1 8 8 4 1 1 40

FA-OL (Prob = 0.1) 1 1 1 7 1 1 7 7 1 27

FA-OL (Prob = 0.5) 1 1 1 8 1 1 8 8 1 30

FA-OL (Prob = 0.01) 1 1 1 2 1 1 1 2 1 11

FA-OL (Prob = 0.02) 1 1 1 3 1 1 1 3 1 13

FA-OL (Prob = 0.03) 1 1 1 4 1 1 1 4 1 15

FA-OL (Prob = 0.04) 1 1 1 5 1 1 5 6 1 22

FA-OL (Prob = 0.05) 1 1 1 6 1 1 6 5 1 23

to improve the ability of the algorithm to jump out of local optima, individuals
with higher fluorescence intensity expand the search space with probability Prob
through the OL mechanism, i.e., the position update is completed as

xk
i (t + 1) = Ub + Lb − xk

i (t) + rand (1,D) . ∗ xk
i (t) (8)

where Ub and Lb are the upper and lower bounds, respectively, of the search
space, and D is the problem dimension. It can be seen from formula (8) that
after an individual performs an opposition search, it can quickly search for the
best point in a new search area, which improves the global search capability of
the algorithm. The flowchart of FA-OL is shown as Fig. 2.

4 Experiment

4.1 Experiment Setup

We used nine standard test functions [15] to analyze the performance of FA-
OL. We also compared it with the latest improved FA, FACL [14]; improved
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ant colony optimization algorithm NABC [12]; and improved cuckoo algorithm
MSSCS [13]; and with classic improved algorithms PSO with inertia weight
(PSO-In) [17], PSO with constriction factor (PSO-Co) [3], Gaussian Bare Bone
PSO (GBBPSO) [7], and PSO with lbest (PSO-Lb) [10]. The dimension of the
test function was D = 30, the population size of each algorithm was 30, and the
maximum number of evaluations of the target function was 60,000. Other param-
eters of each algorithm adopted the recommended values in the corresponding
literature. Each algorithm independently and randomly optimized each function
25 times, and the average and standard deviation optimal results were recorded.

Table 3. Comparison results of FA-OL with other 7 algorithms

F1 F2 F3 F4 F5 F6 F7 F8 F9

FA-OL 0 0 2.73E+01 −6.96E+03 0 −8.88E−16 2.96E−04 1.11E−15 1.32E−03

(Prob=0.01) 0 0 1.68E−01 7.91E+02 0 0.00E+00 1.48E−03 3.12E−16 3.64E−03

FA-CL 1.23E+00 3.06E+01 3.07E+02 −4.38E+03 1.50E+02 5.49E+00 8.91E−02 3.15E+00 3.80E+01

2.88E−01 1.33E+01 3.45E+02 3.19E+02 1.60E+01 1.60E+00 2.34E−02 1.48E+00 2.48E+01

MSSCS 1.53E−37 1.66E−04 1.84E+01 −1.26E+04 1.95E−04 7.50E−15 1.39E−04 1.15E−12 8.79E−04

7.23E−37 4.18E−04 1.21E+01 1.24E−05 4.75E−04 2.49E−15 6.97E−04 8.67E−13 3.04E−03

NABC 1.29E−23 1.38E+03 2.05E+00 −1.26E+04 1.56E−14 1.02E−11 2.72E−12 3.31E−24 1.25E−22

1.19E−23 5.30E+02 2.94E+00 1.44E−05 4.40E−14 3.88E−12 1.31E−11 8.45E−24 1.48E−22

PSO In 1.94E−09 1.69E+03 1.54E+02 −3.20E+04 4.05E+01 1.90E−05 1.05E−02 5.39E−02 3.52E−03

3.97E−09 1.41E+03 1.88E+02 4.43E+03 1.21E+01 1.81E−05 1.53E−02 6.77E−02 5.23E−03

PSO CO 3.52E−03 5.19E−01 4.88E+01 −2.11E+04 6.42E+01 2.19E+00 2.40E−02 1.29E−01 2.84E−02

5.23E−03 8.71E−01 4.15E+01 3.03E+03 1.92E+01 1.24E+00 2.65E−02 1.67E−01 1.24E−01

GBPSO 2.99E−31 1.49E+04 1.48E+04 −8.92E+03 8.45E+01 1.83E+00 2.51E+00 4.15E−02 3.52E−03

6.20E−31 6.11E+03 3.35E+04 6.38E+02 2.64E+01 5.37E+00 1.25E+01 6.69E−02 5.23E−03

PSO LB 1.41E−05 3.63E+03 8.79E+01 −3.17E+04 5.05E+01 1.79E−01 3.84E−03 7.97E−02 4.70E−02

1.55E−05 1.16E+03 5.26E+01 3.85E+03 9.77E+00 5.22E−01 7.90E−03 1.05E−01 7.25E−02

4.2 Effect Analysis of Random Parameters

In the proposed FA-OL, the execution of OL depends on the random parameter
Prob. To clearly understand the impact of its setting on the optimization per-
formance of the algorithm, we set its value to 0.5, 0.1, 0.05, 0.04, 0.03, 0.02, and
0.01. The nine test functions were solved randomly and independently 25 times,
with average and standard deviation as displayed in Table 1. The first row of
data corresponding to each algorithm is the average value of the optimal solu-
tion, and the second row is the standard deviation. It can be seen from Table 1
that the introduction of OL significantly improved the optimization performance
of FA on most test functions, especially on the functions of F1, F2, F5, and F6,
on which higher solution accuracy was attained.

We used analysis of variance (ANOVA) to test for significant differences
between the mean value of the algorithm for each test function at the level of
0.05. The score of each algorithm on each function is shown in Table 2. At the
same time, the total score of each algorithm was calculated. The smaller the
score the better the comprehensive optimization performance. It can be seen
from Table 2 that the comprehensive optimization performance of FA-OL is best
when the random parameter value is 0.01.
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Table 4. Ranking results of 8 algorithms (ANOVA)

F1 F2 F3 F4 F5 F6 F7 F8 F9 Total

FA-OL (Prob = 0.01) 1 1 3 7 1 1 1 2 1 18

FA-CL 8 4 7 8 8 8 7 8 8 66

MSSCS 1 1 2 4 3 2 1 3 1 18

NABC 4 5 1 4 1 3 1 1 1 21

PSO In 5 5 6 1 4 4 4 5 4 38

PSO CO 7 3 4 3 6 4 6 7 4 44

GBPSO 3 8 8 6 7 4 7 4 4 51

PSO LB 6 7 5 1 5 4 4 6 4 42

4.3 Comparison with Other Algorithms

Table 3 shows the experimental results of FA-OL and the other seven algorithms,
and Table 4 shows their scores on the nine test functions. It can be seen from
Table 3 that the proposed algorithm achieves the best optimization results on
six functions (F1, F2, F5, F6, F7, and F9), especially in F1, F2, and F5 where
the position of the optimal solution was found, showing a strong global search
capability. From the statistical scoring results in Table 4, we can see that FA-OL
and MSSCS achieve the best statistical results, followed by NABC.

5 Conclusion

We proposed FA-OL, whose OL mechanism can effectively expand the current
search area, help individuals jump out of local optima, enhance individuals’
search capability, and improve the algorithm’s global search capability. The OL
mechanism and the attraction mechanism of FA act on two individuals partic-
ipating in comparative fitness, so that the learning capability of the group is
enhanced and the optimization capability is improved. The optimization effect
of the proposed algorithm was verified based on nine standard test functions,
and compared with seven improved algorithms. The optimization results were
analyzed by ANOVA. The experimental results show that FA-OL achieves the
best optimization performance and robustness.
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