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Abstract. Imbalanced data is widespread in the fields ofmedical diagnosis, infor-
mation security and industrial production. Traditional classification methods can
handle balanced data very well. However, when dealing with imbalanced classi-
fication, it will favor majority classes, which results in low classification perfor-
mance. This paper proposes an imbalanced classification method based on deep
feature representation, namedDL-FSVM.DL-FSVM extracts feature information
in the input space using a deep neural network (DNN) to ensure similarity within
class and improve the separation between different classes. After obtaining the fea-
ture representation, oversampling is performed in this embedding space based on
the center distance to enhance the balance of the data distribution. Fuzzy Support
Vector Machine (FSVM) is used as the final classifier. Assigning higher misclas-
sification costs to minority class samples through cost-sensitive learning. Experi-
ments were performed on six real-world datasets. The experimental results show
that DL-FSVM achieves promising classification performance in three evaluation
metrics: G-means, F1-score and AUC.

Keywords: Imbalance classification · Deep neural network · Fuzzy support
vector machine

1 Introduction

In many fields, the data are imbalance. There are significant quantitative differences
between the samples of different classes. For example, in disease diagnosis [1], most of
the data is healthy, and it is difficult to obtain data on diseases. The class that is easily
available and more numerous is referred to as majority class, and the class with less
data due to the natural frequency of occurrence or data collection is called minority
class. The imbalanced data distribution is also exist in the fields of fraud detection [2],
computer security [3] and image recognition [4]. In machine learning, there are many
well-established classification methods, but they are based on the setting of uniform
data distribution and have overall accuracy as the optimization goal. When traditional
classification methods are used to deal with imbalanced classification, the result are
more in favor of the majority class. Although the overall accuracy is relatively high, the
minority class data with important information cannot be accurately identified.

© Springer Nature Singapore Pte Ltd. 2022
L. Pan et al. (Eds.): BIC-TA 2021, CCIS 1566, pp. 32–44, 2022.
https://doi.org/10.1007/978-981-19-1253-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1253-5_3&domain=pdf
https://doi.org/10.1007/978-981-19-1253-5_3


Imbalance Classification Based on Deep Learning 33

Many imbalance classification algorithms have been proposed in recent decades.
These algorithms in general can be grouped into two types: data-level and algorithm-
level [5]. Thedata-level approachesfirst bring the original imbalanceddataset to balanced
distribution by some sampling processing, and then classify it using a traditional classi-
fier. The algorithm-level approaches attempt to improve traditional models by reducing
their favoring for the majority class data, and thus adapt to imbalanced data distribution.

In this paper, a novel imbalance classification method based on deep feature repre-
sentation is proposed, named DL-FSVM. First, from the perspective of data features,
embedding space features are obtained by deep neural networks. Appropriate feature
representation can lead to better classification quality, and it also enhances the differen-
tiation of features of different classes and the similarity of feature areas of the same class.
In addition, it will provide a basis for effective recognition of samples. The deep neural
network has a complex nonlinear network structure, which can effectively extract the
deep features of samples. When training the network, a triplet loss function [6] is used to
enable the network to separate minority class and majority class features. Additionally,
Gumbel distribution function [7] is applied as an activation function in the activation
layer. This function is continuously differentiable, and it can be easily used as an activa-
tion function in stochastic gradient descent optimization neural networks. The original
input samples are mapped to the same embedding space after feature extraction. In the
embedding space, a new minority class sample is randomly generated based on the dis-
tance between the sample and the center of the class, which makes the data distribution
balanced. After obtaining the embedding features of samples, FSVM [8] classifies the
samples. FSVM introduces membership values (MVs) in the objective function of tra-
ditional support vector machine, and it sets different misclassification costs for different
classes samples. Misclassification costs are higher for minority class than for major-
ity class. FSVM is a cost-sensitive learning strategy that is effective in improving the
recognition of the minority class samples. Traditional classification methods use accu-
racy as classifier evaluation metrics, but classifiers with accuracy as evaluation metrics
tend to ignore the importance of minority class samples. Moreover, accuracy limits the
effect of minority class samples on classification performance. Therefore, this paper uses
G-means, F1-score and AUC values to evaluate the results more comprehensively.

2 Related Work

Research on imbalanced classification can be grouped into two levels: data-level, and
algorithm-level.

2.1 Data-Level

Data resampling is themost importantmethod of data-level,which reduces the imbalance
rate (IR) by changing the data distribution. The under-sampling algorithm reduces the
bias of model to the majority class samples by decreasing the number of them. Random
under-sampling randomly selects and deletes parts of the sample. Some heuristic algo-
rithms are proposed to compensate the limitations of the above non-heuristic method,
such as neighborhood cleaning rule (NCL) [9]. Kang et al. added a noise filter to the
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under-sampling process [10]. In addition, Kang et al. also proposed a weighted under-
sampling algorithm (WU-SVM) [11] based on the geometric distance of the data input
space. Oversampling increases the number of minority class samples to make the data
balanced. The most representative method, the Small Sample Synthetic Oversampling
Technique (SMOTE), was proposed by Chawla et al. [12]. SMOTE randomly selects the
k nearest neighbors in the same class of the minority class sample and generates new
minority class samples between them using linear interpolation. In addition, Borderline-
SMOTE (BSMOTE) [13] and adaptive synthetic sampling approach (ADASYN) [14] are
also popular oversampling methods. Matthew et al. proposed the kernel-SMOTE algo-
rithm [15] and weighted K-SMOTE [16] for sampling in the embedding space obtained
by SVM.

2.2 Algorithm-Level

Algorithm-level methods use somemethods to make appropriate improvements to exist-
ing algorithms, such as cost-sensitive learning and ensemble learning methods. As a
cost-sensitive algorithm, the fuzzy membership values (MVs) in fuzzy support vector
machine (FSVM) [8] reflects the importance of the sample. FSVM differs from the
traditional support vector machine in that FSVM introduces the MVs of the sample in
the objective function. Batuwita et al. [17] proposed the FSVM-CIL algorithm. FSVM-
CIL works in the original data space and calculates the membership values based on
the distance between samples. Yu et al. [18] design the membership functions (MFs)
based on the relative density within and between classes. This approach makes up for the
shortcomings of the distance-based membership values calculation method. ACFSVM
[19] based on affinity and class probabilities was proposed by Tao et al. Dealing with
imbalance problems using ensemble learning is generally a combination of the standard
ensemble methods with the existing methods for classifying imbalanced data, such as
SMOTEBagging [20] and SMOTEBoost [21].

The DL-FSVM method proposed in this paper uses FSVM as the base classifier
and use data sampling method to obtain balanced data distribution. The new samples
generated after oversampling still belong to the minority class, and the use of FSVM
can further improve the model’s focus on the minority class. In addition, deep neural
networks are used to obtain more discriminative feature information, which convenience
subsequent classification.

3 Proposed Method

3.1 Feature Extraction with Deep Learning

With the growth of data and the improvement of computing power, the powerful feature
extraction capability of deep learning has attracted widespread attention in academia
and industry. Deep neural networks (DNNs) have succeeded in significantly improving
the best recognition rate of each previous problem by increasing the network depth or
changing the structure of the model [22, 23]. Feature representation has a key role in
classification quality, so this paper applies the classification method to the embedding
space after feature extraction.
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For this paper, a DNN is used for the feature extractor because it can learn advanced
feature representations from samples [24]. Once training is complete, the hidden feature
representations can be used as embedding features to reveal interesting structures in
the data. To enhance the differentiation of features from different classes and reduce the
differentiation of features from samples in the same class, a triplet loss [6] is used to train
the network model, and bring samples in the same class closer and to further separate
samples in different classes. Each sample can be converted into a differentiated feature
space based on the trained model. The triple loss is based on anchor points, making the
features in the embedding space more differentiated. It is defined as:

Ltriplet = (
Da,min − Da,maj + r

)
+ (1)

where r is the margin and set to 0.2 in experiments.D is the function used to calculate the
Euclidean distance of samples in the embedding space. a is the anchor point belonging
to the minority class, min is the minority class samples, and maj is the majority class
samples. (·)+ indicates the value is taken as loss if it is greater than 0. If it is less than
0, the loss is 0.

Fig. 1. Optimization result using triple loss function

Figure 1 shows the results and geometric significance of optimization using triple
loss. Triplet loss tries to learn an embedding space in which anchor is nearer to the
minority class samples, and the anchor is further away from the majority class samples.
The advantage of triplet loss is detail differentiation, i.e., triplet loss is able to bettermodel
the details when the two inputs are similar. This allows better feature representation to
be learned.

Gumbel distribution [7] is used as the activation function in DNN. The Gumbel
distribution is widely used to design the distribution of extreme value samples of various
distributions. The cumulative distribution function (CDF) is defined as:

σ(x) = e−e−x
(2)

As shown in Fig. 2, the Gumbel distribution function is continuously differentiable, so
it can be easily used as an activation function with optimization in a neural network.
Finally, the whole DNN framework used for feature extraction is shown in Fig. 3.
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Fig. 2. The curves of CDF and derivatives of Gumbel functions

Fig. 3. Deep neural network framework for feature extraction

3.2 Random Feature Oversampling Based on Center Distance

After obtaining the embedding space representation of samples, the data distribution is
still imbalanced. The dataset in the embedding space is X = {x1, x2, · · · , xn}, n is the
total number of samples, xi = [

f 1i , f 2i , · · · , f pi
] ∈ R

p, i ∈ 1, 2, . . . , n. f ji is the feature
of sample xi on the j-th dimension, j ∈ 1, 2, . . . , p. For the minority class samples,
the set of features in each dimension is denoted as F = {

F1,F2, · · · ,Fp
}
, where

Fj =
{
f j1 , f

j
2 , · · · , f jn_min

}
, j ∈ 1, 2, . . . , p. n_min is the number of the minority class

samples.Fj is the set of values of all minority class samples on the j-th dimension feature.
The feature of each dimension of the new synthetic sample is randomly selected from

the corresponding feature set, xsyn =
[
f 1syn ∈ F1, f 2syn ∈ F2, · · · , f psyn ∈ Fp

]
.

Thismethod of randomly generated features can increase the diversity of theminority
class samples and avoid overfitting. However, the method generates some outliers and
noise, so a constraint based on class center distance is used to filter the synthetic samples.
As shown in Fig. 4, in the embedding space, the majority class is centered on Cmaj, the
minority class is centered onCmin, and the whole data is centered onCall . By calculating
the distance between each center and the synthetic sample to determine whether the
following equation is satisfied:

d
(
xsyn,Cmaj

)
> d

(
xsyn,Call

)
> d

(
xsyn,Cmin

)
(3)
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where d(·) is the distance function. If the synthesized sample fits this condition, it
will be kept, otherwise, it will be deleted. In this paper, the influence of irregular data
distribution is avoided by calculating the class centers in the embedding space. The
number of synthesized samples is set to achieve balanced data distribution.

Fig. 4. Validation of the new synthetic feature vector

3.3 Fuzzy Support Vector Machine

In many practical situations, each sample has a different level of importance. For imbal-
anced data problems, the minority class tends to contain more important information.
To improve the quality of classification, each sample needs to be assigned a correspond-
ing weight according to its importance. In this paper, a fuzzy support vector machine
(FSVM) [8] is used as the classifier to achieve the assignment of different weights.

The data after sampling as X = {x1, x2, · · · , xn}, n is the number of samples includ-
ing all synthetic samples, xi ∈ R

p, i ∈ 1, 2, . . . , n. p is the feature dimension. Assuming
that the dataset is D = {(x1, y1), (x2, y2), · · · , (xn, yn)}. yi ∈ [1,−1] is the label of
the corresponding sample. FSVM adds an attribute to each sample to expand the orig-
inal data set to D = {(x1, y1, s1), (x2, y2, s2), · · · , (xn, yn, sn)}, si represents the fuzzy
membership value (MV) corresponding to different samples. The value of s reflects the
importance level and themisclassification cost of the sample. In thisway, the optimization
function of FSVM can be written as:

min : 1
2‖w‖2 + C

n∑

i=1
siεi

s.t.yi(w∗φ(xi) + b) ≥ 1 − εi

εi ≥ 0

(4)

where‖w‖2 represents themargin ratio of the generalization ability of the learningmodel.
The slack variable εi represents the acceptable training error degree of the corresponding
instance xi. C > 0 is called the penalty parameter, it is a parameter that weighs the size
of the separation interval and the number of misclassified points, as well as a trade-off
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between learning model accuracy and generalization ability. φ(·) is the mapping of high-
dimensional feature space. The fuzzy membership value si can adjust the punishment
degree of the corresponding sample. In order to solve this optimization problem, firstly,
formula (4) is transformed into an unconstrained problem using the Lagrangian function:

L(w, b, α, β) = 1
2w

2 + C
n∑

i=1
siεi −

n∑

i=1
αi(yi(w∗xi + b) − 1 + εi) −

n∑

i=1
βiεi (5)

The above formula satisfies the following conditions:

∂L(w,b,α,β)
∂w = w −

n∑

i=1
αiyixi = 0

∂L(w,b,α,β)
∂b = −

n∑

i=1
αiyi = 0

∂L(w,b,α,β)
∂εi

= εiC − αi − βi = 0

(6)

Introduce formula (6) into formula (5). Transforming optimization problem into the
following formula:

min : −
n∑

i=1
αi + 1

2

n∑

i=1

n∑

j=1
yiyjαiαjφ(xi)φ

(
xj

)

s.t.
n∑

i=1
yiαi = 0,∀i : 0 ≤ αi ≤ siC

(7)

where αi is the Lagrangian multiplier corresponding to xi, and it must also meet the KKT
condition:

∀i : αi(yi(w∗φ(xi) + b) − 1 + εi) = 0
∀i : (siC − αi)εi = 0

(8)

In this way, the value of αi can be calculated. Then, according to formula (9), we can
calculate w:

w =
n∑

j=1
αiβjφ(xi) (9)

After that, the value of b can be calculated by formula (8). The sample of αi > 0
is called a support vector. When 0 < αi < siC, the support vector is located on the
boundary of the interval. When αi = siC, the sample is located between the boundary of
the interval and the separation hyperplane or on the side of the separation hyperplane that
is misclassified. The biggest difference between traditional SVM and FSVM is that even
though two samples have the same value of αi, the different values of fuzzy membership
values si can also lead to two samples belonging to different types of support vectors.
Under normal circumstances, a smaller si is assigned to the majority class to reduce
the impact of the numerical advantage of the majority class on the classification results.
Finally, the decision function of the optimal separating hyperplane can be expressed as:

f (x) = sign(w∗φ(xi) + b) = sign

(
n∑

j=1
αiyiφ(xi)φ(x) + b

)

(10)
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4 Experiments and Results

4.1 Evaluation Metrics and Datasets

Evaluating the imbalanced classification effect of the model with overall accuracy can
cause the model to be biased in favor of the majority class. The overall classification
accuracy tends to guarantee the classification effect of only the majority class and ignore
the effect of the minority class, which makes the classification effectiveness of the
minority class become poor. In this paper, G-mean, F-score and AUC values are used to
comprehensively evaluate the classification quality.

Sen is the sensitivity of minority class sample: TP/(TP + FN). Pre is the precision
of the minority class sample: TP/(TP + FP). Spe is the specificity of the majority class
sample: TN/(TN + FP). Based on the above definition, G-mean and F-score can be
further defined:

G − mean = √
Sen∗Spe (11)

F − score = 2∗Sen∗Pre/(Sen + Pre) (12)

AUC is area under curve. It is defined based on the receiver operating characteristic
curve (ROC) and its value is less than 1. The algorithm was tested on several datasets
from the Keel database, as shown in Table 1.

Table 1. Description of the datasets

Name Attributes Data size Imbalance ratio

ecoli3 7 336 8.6

haberman 3 306 2.78

pima 8 786 1.87

poker-8_vs_6 10 1477 85.88

yeast3 8 1484 8.1

yeast4 8 1484 28.1

4.2 Experiment Settings

In data feature processing, a deep neural network with four fully connected
layers is be used. When using fuzzy support vector machine for classifica-
tion operation, the Gaussian kernel is the kernel function. For FSVM classi-
fier, penalty constant C and the width of Gaussian kernel σ are selected by
gird search method from the set

{
10−3, 10−2, 10−1, 1, 101, 102, 103, 104

}
and{

2−5, 2−4, 2−3, 2−2, 2−1, 1, 21, 22, 23, 24
}
. The fuzzy membership value of the minor-

ity samples is set to the imbalanced ratio (IR):

IR = nummaj/nummin (13)



40 K. Wang et al.

where nummin is the number of the minority class samples, and the minority class is
also the positive class. nummaj is the number of data of the majority class samples,
corresponding to the negative class. For the fuzzy membership value of the majority
class, set it to 1. In order to eliminate the randomness, five cross validation is applied,
and the algorithms are executed for 5 independent runs.

4.3 Results and Analysis

To compare the classification quality of the proposed algorithm, four baseline methods
are used. SMOTE [12] method uses linear interpolation to generate synthetic samples,
and finally uses SVM as a classifier. ADASYN [14] assigns the sampling weights of
different minority samples based on the number of majority classes in the nearest neigh-
bors. DSVM sets different penalty coefficients C for different classes, the minority class
is set to imbalance ratio (IR), and the majority class is set to 1. ACFSVM [19] is a FSVM
algorithm combined with sample affinity. The experimental results are shown in Table
2.

In order to observe the table more intuitively, bold the best classification result.
It can be seen that DL-FSVM has achieved better classification quality on all three
evaluation indicators. On the ecoli3 dataset, DL-FSVM has an increase of 0.1041 in
G-mean compared to SMOTE, and the F1-score also reached an increase of 0.1086. In
addition, on other datasets, the classification results of DL-FSVM are better than the
baseline SMOTE method. However, on the poker-8_vs_6 dataset, the baseline SMOTE
and ADASYN achieved the best results on the AUC, but its classification performance
on G-mean and F1-score was poor.

Compared with the two methods using cost-sensitive learning, the method proposed
in this paper has better classification performance. On the pima dataset, the fuzzy support
vector machine based on sample affinity achieved the best result on F1-score. The result
of DL-FSVM is worse than ACFSVM, which is 0.6502. On the ecoli3 dataset, the G-
mean and F1 of DL-FSVM are increased by 0.0201 and 0.0575 respectively compared
with the ACFSVMmethod. The average ranking of algorithm under different evaluation
metrics is shown in Fig. 5. It can be seen that the classification performance ofDL-FSVM
is the best. The imbalanced classification method based on DNN and FSVM proposed
in this paper has good robustness and can be used for different types of imbalanced data.
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Table 2. Results of different imbalanced classification methods on datasets

Dataset ecoli3

Algorithm G-mean F-score AUC

SMOTE 0.7750 ± 0.0545 0.5186 ± 0.0878 0.9100 ± 0.0085

ADASYN 0.7619 ± 0.0134 0.5460 ± 0.0022 0.9042 ± 0.0112

DSVM 0.8317 ± 0.0069 0.5579 ± 0.0269 0.9233 ± 0.0061

ACFSVM 0.8590 ± 0.0671 0.5697 ± 0.0843 0.9368 ± 0.0371

DL-FSVM 0.8791 ± 0.0712 0.6272 ± 0.1263 0.9552 ± 0.0587

Dataset haberman

Algorithm G-mean F-score AUC

SMOTE 0.5466 ± 0.0152 0.3342 ± 0.0111 0.5536 ± 0.0385

ADASYN 0.5580 ± 0.0124 0.4267 ± 0.0138 0.6116 ± 0.0080

DSVM 0.5666 ± 0.0052 0.4458 ± 0.0066 0.6303 ± 0.0120

ACFSVM 0.6176 ± 0.0535 0.5439 ± 0.0502 0.6794 ± 0.0542

DL-FSVM 0.6354 ± 0.1442 0.5898 ± 0.0579 0.6945 ± 0.0595

Dataset pima

Algorithm G-mean F-score AUC

SMOTE 0.6880 ± 0.0059 0.6023 ± 0.0072 0.7586 ± 0.0130

ADASYN 0.6672 ± 0.0207 0.5770 ± 0.0247 0.7343 ± 0.0188

DSVM 0.7183 ± 0.0036 0.6541 ± 0.0049 0.7634 ± 0.0014

ACFSVM 0.7305 ± 0.0388 0.6614 ± 0.0597 0.8017 ± 0.0467

DL-FSVM 0.7374 ± 0.0259 0.6502 ± 0.0351 0.8152 ± 0.0248

Dataset poker-8_vs_6

Algorithm G-mean F-score AUC

SMOTE 0.8487 ± 0.0260 0.8276 ± 0.0281 1.0000 ± 0.0000

ADASYN 0.8630 ± 0.0171 0.8133 ± 0.0189 1.0000 ± 0.0000

DSVM 0.8932 ± 0.0015 0.7905 ± 0.0642 0.9998 ± 0.0002

ACFSVM 0.8953 ± 0.0970 0.7830 ± 0.2871 0.9861 ± 0.0147

DL-FSVM 0.9045 ± 0.0737 0.8313 ± 0.1115 0.9976 ± 0.0057

Dataset yeast3

Algorithm G-mean F-score AUC

SMOTE 0.8143 ± 0.0024 0.5544 ± 0.0063 0.9269 ± 0.0028

ADASYN 0.8161 ± 0.0028 0.6193 ± 0.0012 0.9199 ± 0.0011

DSVM 0.9081 ± 0.0057 0.6396 ± 0.0084 0.9687 ± 0.0032

(continued)
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Table 2. (continued)

Dataset ecoli3

Algorithm G-mean F-score AUC

ACFSVM 0.8987 ± 0.0223 0.6316 ± 0.0421 0.9660 ± 0.0072

DL-FSVM 0.9106 ± 0.0236 0.6875 ± 0.0309 0.9718 ± 0.0187

Dataset yeast4

Algorithm G-mean F-score AUC

SMOTE 0.5742 ± 0.0047 0.3069 ± 0.0091 0.8586 ± 0.0010

ADASYN 0.5697 ± 0.0082 0.2971 ± 0.0073 0.8587 ± 0.0007

DSVM 0.8259 ± 0.0125 0.2976 ± 0.0178 0.8914 ± 0.0003

ACFSVM 0.8326 ± 0.0386 0.2391 ± 0.0415 0.9017 ± 0.0312

DL-FSVM 0.8412 ± 0.0927 0.3391 ± 0.0746 0.9158 ± 0.0549

0.0
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G-mean F1-score AUC

Mean Ranking 
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Fig. 5. Mean ranking of all compared algorithms on datasets

5 Conclusion

This paper proposes an imbalanced classification method combined with DNN, DL-
FSVM. In order to obtain features with intra-class similarity and inter-class discrim-
ination, DNN is trained using triplet loss function and Gumbel activation function to
obtain the deep feature representation. To balance the data distribution, a random feature
sampling algorithm based on the center of class is used in the minority samples to main-
tain the diversity of the minority class samples. Fuzzy support vector machine (FSVM)
has provided a higher misclassification loss for the minority class, and it enhanced the
classification quality of the algorithm for the minority class. Through the experimental
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results, it can be found that the proposed DL-FSVM has good classification results on
evaluation metrics: G-means, F1-score, and AUC. In future work, more robust feature
extractors can be used to provide effective measures for imbalanced classification.
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