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Abstract. In order to enable the unmanned ship to have the ability of
autonomous path planning in the complex marine environment, which
can avoid obstacles and reach the destination accurately in the unknown
environment, this paper combines the ability of deep learning to obtain
information with the decision-making ability of reinforcement learning,
and proposes an algorithm based on deep reinforcement learning. The
simulation results show that after 3000 rounds of training in a given
environment, the success rate of sailing to the end point in this environ-
ment is 100%. The path planning algorithm based on deep reinforcement
learning performs well in the simulation experiment, achieves a very high
accuracy after a large number of training times, and meets the needs of
the operation and use of the unmanned ship on the water. This algorithm
can be carried in the actual environment to realize the autonomous nav-
igation of the unmanned ship on the water.

Keywords: Unmanned ship · Path planning · Deep learning ·
Reinforcement learning

1 Introduction

The exploration of marine resources promotes the application of path planning
algorithm in unmanned ships. Path planning means that a ship finds the best or
suboptimal path from the beginning to the target location in a complex environ-
ment with obstacles under certain constraints [10]. Compared to global static
path planning, Local dynamic path planning is more suitable for the uncer-
tain environment at sea, and it can realize real-time navigation more easily. At
present, many scholars have developed different local dynamic path planning
algorithms, including non-intelligent and intelligent algorithms:

Inspired by the concept of “field” in physics, Khatib et al. [6] proposed the
concept of artificial potential field method in 1986. Chen Huiwei [2] applied the

c© Springer Nature Singapore Pte Ltd. 2022
L. Pan et al. (Eds.): BIC-TA 2021, CCIS 1566, pp. 373–384, 2022.
https://doi.org/10.1007/978-981-19-1253-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1253-5_28&domain=pdf
https://doi.org/10.1007/978-981-19-1253-5_28


374 Y. You et al.

artificial potential field method to the path navigation of unmanned ships by
changing the models of gravitational potential field and repulsive potential field.
Zadeh [8] and others put forward the concept of dynamic window method in 1997
and applied it to local obstacle avoidance of robots. Traditional non-intelligent
algorithms also include A* algorithm [7], Theata* [1] algorithm and so on.

Non-intelligent algorithm is simple to apply, but it requires accurate model-
ing of agents, which leads to the fact that real-time and generalization cannot be
well guaranteed. In contrast, the intelligent algorithm does not need an accurate
model, and has a stronger sense of the environment and a stronger generalization
ability. In 1991, DorigoM and others [4] put forward the ant colony algorithm
to solve the travel agency problem. Zhao Feng [11] aims at combining tradi-
tional ant colony algorithm with greedy algorithm to meet the requirements of
path planning in different dynamic environments. Chen Huiwei [3] applied ant
colony algorithm to the path planning of unmanned ships by improving heuristic
function and updating pheromones.

The aforementioned algorithm may encounter dimension disaster in complex
environment, which makes the algorithm unable to converge. Combining deep
learning with intensive learning can solve the problem. The deep neural network
directly processes the high-dimensional original information, while the reinforce-
ment learning algorithm interacts with environment.

At present, the commonly used deep reinforcement learning algorithms, such
as DQN algorithm [9] and DDQN algorithm [5], are all proposed by combining
neural network with Q-Learning algorithm. When these methods are iterative
in strategy updating, agents only consider the influence of obtaining the reward
values of two adjacent states on the Q value of state-action. Because the Q(λ)
algorithm can make the reward obtained by the agent affect the state-action Q
value of the adjacent multi-step state. This is equivalent to making the agent
gain the ability to perceive the development of the previous situation in advance.
Therefore, we adopt the idea of Q(λ) algorithm to improve DDQN algorithm, and
propose a λ-Step DDQN mechanism-oriented DDQN algorithm (λS-DDQN).

2 Algorithm Design

2.1 λS-DDQN Algorithm

In the process of training, λS-DDQN enables the reward obtained by the
unmanned ship to spread the estimated value of the state value of the λ-step
interval state. In this way, it can better guide the unmanned ship to learn quickly,
and at the same time, it can also make the unmanned ship aware of the changes
in the future state in advance. The output of the λS-DDQN target value network
is:

yλS−DDQN
t arg et =

i=λ−1∑

i=0

γiri+1+γλQt arg et(st+γ , arg max
a

Q(st+λ, a, θ), θ′) (1)
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The loss function of λS-DDQN network is:

L(θ) = E[yλS−DDQN
t arg et − Q(s, a, θ))2] (2)

For the training and learning using λS-DDQN algorithm, it is different from
the conventional DDQN algorithm in that the data stored in the experience
pool is different. In the conventional DDQN algorithm, the data stored in the

experience pool is [st, at, rt, st+1], but it becomes [st, at,
i=λ−1∑

i=0

γirt+i, st+1] in

λS-DDQN, so the training methods of the λS-DDQN algorithm are as follows:

Algorithm 1. Training Steps of λS-DDQN
1: Randomly initialize the weight θ of the current network Q(st, a; θ) and the weight

θ′ of the target network Q′(st, a; θ);
2: Initialize experience pool D and set hyperparameters λ;
3: For episode = 1, M Do
4: Reset the simulation environment and obtain the initial observation state

st,T ← ∞
5: Initialize three empty arrays St, A, R, St+1

6: Select action at = arg max Q(st, a; θ) according to current policy
7: Perform action at and return the reward value rt and the new status st+1

8: Put st into St, rt into R, at into A, st+1 into St+1

9: If st+1 is the terminal state Then
10: T ← t + 1
11: τ ← t − λ + 1
12: If τ ≥ 0 Then
13: If τ + λ < T Then

14: rt =
i=τ+λ−1∑

i=τ

γi−τri ri ∈ Rt

15: Else

16: rt =
i=T∑

i=τ

γi−τri ri ∈ Rt

17: Put (sτ , aτrτsτ+λ) into experience pool D
18: Random sampling of sample data mini-batch from D
19: Let yi = ri + γλQt arg et(st+λ, arg max Q(st+λ, a, θ), θ′

a

)

20: Update the weight θ of the current value network by gradient descent using
the loss function L(θ) = E[(yi − Q(s, a, θ))2]

21: Util τ = T − 1
22: End

2.2 Reward Function

The reward function is the reward value that the unmanned ship takes one action
in the current state and reaches the next state, indicating the good or bad degree
of taking a certain action in the current state. Because the positive reward for
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unmanned ships is very sparse, a new continuous combined reward function is
designed in order to speed up the convergence of the algorithm. Among them,
one is the reward obtained after finishing a certain round of training, such as
reaching the target point or colliding, which we call terminal reward. The other
is the reward obtained when the training round is not finished, which we call
non-terminal reward.

Terminal Reward Design

1. When the unmanned ship reaches the target point, it gets a positive reward:

rarr = 100; if dr−t ≤ dwin (3)

where dr−t is the Euclidean distance from the unmanned ship to the target
point, dwin is the threshold for the unmanned ship to reach the target point.

2. When the unmanned ship collides with an obstacle, it gets a negative reward:

rcol = −100; if dr−o ≤ dcol (4)

where dr−o is the Euclidean distance of the unmanned ship from the nearest
obstacle, dcol is the threshold of collision between the unmanned ship and the
obstacle.

Non-terminal Reward Design

1. When the unmanned ship moves towards the target point, it gets a positive
reward, otherwise it gets a negative reward:

rt goal = cr[dr−t(t) − dr−t(t − 1)] (5)

where the coefficient cr ∈ (0, 1], is set to 1 in this paper. The unmanned ship
is guided towards the target point by this reward.

2. When the minimum distance of an unmanned ship from an obstacle contin-
uously decreases, so does the dangerous reward rdang ∈ [0, 1] earned:

rdang = β ∗ 2dmin 0 ≤ rdang ≤ 1 (6)

where dmin is the minimum distance of an unmanned ship from an obstacle
and β is the coefficient such that the space of values of rdang is (0, 1).

In addition, we designed a direction reward, which is to give the correspond-
ing reward to the unmanned ship through the angle between the forward direc-
tion vector of the unmanned ship and the direction vector of the current coor-
dinates of the unmanned ship. When the angle is less than ±18◦, the reward is
1, when the reward is greater than ±18◦ and less than ±72◦, the reward is 0.3,
and in other cases, the reward is 0.

rori =

⎧
⎨

⎩

1 if aori ≤ ±18◦

0.3 if 18◦ < aori ≤ 72◦

0 otherwise
(7)
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where aori is the angle between the forward direction vector of the unmanned
ship and the direction vector of the unmanned ship reaching the target position
in the current coordinates.

rt goal + rdang + rori is defined as the final non-terminal award. This kind of
reward combination solves the problem of sparse reward, so that the unmanned
ship can get the corresponding reward at every step of the training process. Mov-
ing toward the target point, the unmanned ship will receive a positive reward,
while away from the target point or in a collision it will receive a negative reward.
In this way, the unmanned ship can better learn the corresponding strategies.
On the other hand, the combined reward function enables the unmanned ship
to learn strategies that can reach the target position more quickly in a shorter
path.

2.3 Modular Neural Network

We divided the navigation task into two sub-tasks, namely the local obstacle
avoidance module and the global navigation module. The local obstacle avoid-
ance module is mainly used to guide the unmanned ship away from obstacles,
and the global navigation is mainly used to guide the unmanned ship to a shorter
path to the target position. The deep neural network module of local obstacle
avoidance function and the deep neural network module of global navigation are
designed respectively. The input state information of the local obstacle avoidance
neural network includes the environment information detected by the distance
sensor and the relative position information of the unmanned ship which becomes
the control instructions output after propagating forward. The input state infor-
mation of the global obstacle avoidance neural network is the relative position
information of the unmanned ship, and the control command is output after the
processing of the input information.

Because both the local obstacle avoidance deep neural network and the global
navigation neural network output the corresponding instructions to control the
unmanned ship, this paper designs an instruction selection module to deter-
mine which network’s output action instructions to execute. We set a threshold
dto obs = 40 of distance from the ship to the nearest obstacle to determine which
module’s instructions to use. When the distance is less than 40, the instructions
output by the local obstacle avoidance deep neural network will be executed,
otherwise the instructions by the global navigation neural network should be
carried out to reach the target position at a faster speed. Therefore, the system
architecture of this deep learning method is shown in Fig. 1:

Based on the modular neural network framework, the unmanned ship can
adopt different strategies in different environmental states. When the unmanned
ship approaches the obstacle, the main task of the unmanned ship is to avoid
the obstacle, and the global navigation task becomes a secondary task. When
the unmanned ship is far away from the obstacle, the global navigation task
becomes the main task to help the unmanned ship to reach the target position
with a shorter path.
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Fig. 1. The systematic framework of deep learning method.

3 Experiment

3.1 Dynamic Environment Implementation

A 500-inch 500 window size is defined as the simulation environment, and dif-
ferent obstacles, boundary walls and target locations are added in this window.
The environment model established in this article is shown in Fig. 2.

Fig. 2. Simulation environment model.

It is assumed that the starting position of the unmanned ship is Pstart

in the higher left corner of the simulation environment, the coordinate is
(xstart, ystart), the moving speed is v = 0.5, and the current direction
of the unmanned ship is angle. In the current state, the unmanned ship
chooses an action to perform, that is, the unmanned ship chooses a steer-
ing action, the angle steering is angletran, the steering angle is angletran ∈
(15◦

turn left, 30◦
turn left, 0

◦, 15◦
turn right, 30◦

turn right), and formula (12) is the
angle of the unmanned ship after performing the action:

angle ← angle + angle + angletrain (8)

Combined with formula (12), the coordinates of the unmanned ship can be
changed to:

xnext = xstart + cos(angle) ∗ v (9)
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ynext = ystart + sin(angle) ∗ v (10)

Before calculating the distance between the lidar simulator and the obstacle,
the projection length of the x-axis and y-axis of each laser line in the unmanned
ship as the center coordinate system is calculated, and then the projection length
of each laser line segment in the environment model is calculated. The trans-
formation from the unmanned ship as the center coordinate system to the envi-
ronment model as the center coordinate system is based on the middle-two-
dimensional coordinate system transformation process. Assuming that the coor-
dinate of the unmanned ship is (center x, center y), the code for solving the
coordinates at the end of the laser segment centered on the environment model
is shown in Fig. 3:

Fig. 3. Coordinate conversion code.

The distance between the unmanned ship and the obstacle can be solved
when the coordinate projection of the laser line segment in the coordinate sys-
tem centered on the environment model is obtained. Then each edge vector of
the obstacle, the laser line segment vector, and the vector from the position coor-
dinates of the unmanned ship to each vertex of the obstacle are constructed. By
solving a relative relationship between these vectors in real time, the position
information between the unmanned ship and the obstacle can be obtained, and
the length of each laser line detected by lidar can be obtained.

The rules for determining the collision of the unmanned ship: first, set dmin

as the minimum safe distance between the unmanned ship and the obstacle, and
when the minimum laser line detected by the lidar is less than the set dmin, it
will be determined that the collision occurs and the training of this round ends,
re-assign a new starting position to the unmanned ship. Otherwise, there is no
collision, and the unmanned ship chooses the action to execute according to the
relevant strategy.

The rules for determining the unmanned ship’s arrival at the target position:
first, dArrivals is defined as the maximum distance for the unmanned ship to
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reach the target position. In the operation of the unmanned ship, the Euclidean
distance between the current position coordinates of the unmanned ship and the
target position coordinates is calculated. If the distance is less than or equal to
dArrivals, it indicates that the unmanned ship reaches the target position.

3.2 Training of Unmanned Ship Navigation Model

The above simulation environment model is taken as the unmanned ship training
environment, and the environment is set as the training environment 1(Env-1). In
order to verify the effectiveness of the λS-DDQN method, we test the navigation
ability of the unmanned ship in the training Env-1, and compare the λS-DDQN
algorithm with the DDQN, PrioritizedDQN and PrioritizedDDQN algorithms.
In order to ensure the fairness of the experiment, the same network structure and
the same software and hardware platform are used for model training. Before
starting the training, we set the relevant hyperparameters in deep reinforcement
learning, as shown in Table 1:

Table 1. Setting of super parameter.

Hyper parameter Value

Learning rate 0.001

Discount factor 0.9

Maximum capacity of experience pool 15000

Number of training samples 32

Number of steps λ 5

Number of steps between replication parameters θ 300

In order to evaluate the performance of each algorithm quantitatively, we
use three indicators to evaluate the navigation model. The first is the success
rate, which indicates the proportion of the unmanned ship’s successful arrival
at the target position to the total number of training from the beginning of
the training; the second is the reward value curve, which represents the sum
of the reward values received by the unmanned ship in each round during the
training process. In order to smooth the reward curve, we use the moving average
method to process the curve, and the sliding window size is 300. The third is the
average value of the reward, which represents the sum of the rewards received
by the unmanned ship during the training process and divided by the number
of training rounds.

Based on λS-DDQN algorithm, DDQN algorithm, Prioritized DQN algo-
rithm and Prioritized DDQN algorithm, the autonomous navigation ability of
the unmanned ship in Env-1 is trained. The training results are shown in Fig. 4:

As shown in Fig. 4(a), we can see that the success rate curve of λS-DDQN
rises faster than the other three methods, which indicates that the learning
efficiency of λS-DDQN algorithm is higher. The reward curve in Fig. 4(b) also
proves this view. After 3000 times of training, the success rate of λS-DDQN
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(a) Success Rate Curve (b) Reward Value Curve Per Round

(c) Average Reward

Fig. 4. Training result.

reaching the target location is 80.133%, and the success rate of DDQN is 61.7%.
The success rate of Prioritized DQN is 63.633%, and the success rate of Priori-
tized DDQN is 53.366%, we can see that the success rate of λS-DDQN is much
higher than that of other algorithms. This shows that the unmanned ship based
on λS-DDQN has carried out more collision-free and target-free training dur-
ing the training process, indicating that it has stronger obstacle avoidance and
navigation functions. In Fig. 4(b), we can see that the reward curve obtained
through λS-DDQN is stable at more than 200 after 500 times’ training, while
the curves of the other three algorithms fluctuate greatly, which indicates that
the navigation model based on λS-DDQN has higher stability. In Fig. 4(c), the
average reward value of λS-DDQN is 185.072, that of DDQN is 130.064, that
of Prioritized DQN is 132.067 and that of Prioritized DDQN is 101.650, which
also proves that the unmanned ship based on λS-DDQN has stronger navigation
ability. Because the lower reward value means a lot of negative reward, it means
that the unmanned ship has more collisions.

By analyzing the success rate curve, reward value curve and average reward
value curve of the navigation model based on different algorithms in the training
process, it can be concluded that the unmanned ship based on λS-DDQN algo-
rithm has stronger learning efficiency and higher stability than the other three
algorithms in the training process.



382 Y. You et al.

3.3 Testing the Accuracy of Dynamic Path Planning Model

After 3000 rounds of training in Env-1, the navigation model based on λS-DDQN
algorithm, DDQN algorithm, Prioritized DQN algorithm and Prioritized DDQN
algorithm is obtained. In this section, we first test these navigation models 200
times in Env-1, and analyze the proportion of successful reaching the target
location. In 200 tests, the starting position and target position of the unmanned
ship were randomly assigned. By comparing the success rate of the unmanned
ship reaching the target position in 200 tests and getting the average reward, the
superiority of the navigation model based on different algorithms is measured.
The higher the success rate, the higher the average reward, indicating that the
navigation model is a better strategy. The results show as shown in Table 2:
after 3000 times of training, the unmanned ships trained based on these four
algorithms have basically learned how to avoid obstacles and reach the target
position in Env-1. According to the test results, the λS-DDQN algorithm is the
best, with a success rate of 100% and the highest average reward. The results
show that the unmanned ship based on λS-DDQN algorithm has higher obstacle
avoidance ability and better navigation strategy. The navigation trajectory of
the unmanned ship based on λS-DDQN training in the environment is shown in
Fig. 5.

Table 2. Setting of super parameter.

Environment Algorithm Success rate Average reward value

Env-1 λS-DDQN 100.0% 243.996

Env-1 DDQN 88.0% 203.829

Env-1 Prioritized DQN 94.0% 228.829

Env-1 Prioritized DDQN 91.0% 215.293

Fig. 5. Dynamic trajectory planning of underwater vehicle.
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4 Conclusions

We divided the navigation task of the unmanned ship into two sub-tasks: global
navigation and local obstacle avoidance. Through task decomposition, each neu-
ral network is more clear about the strategies and methods that need to be
learned, so that the unmanned ship can better avoid obstacles and reach the
target position with a shorter path.

By combining the idea of Q(λ) algorithm with the traditional DDQN algo-
rithm, a λ-step DDQN algorithm is proposed, which makes the current state of
the unmanned ship obtain the influence of reward value to extend the action-
state Q value of several states. This is equivalent to giving the unmanned ship
the ability to perceive the future and facilitate it to evade obstacles in advance.
In addition, in the process of training, we propose to use a continuous combined
reward function to solve the problems of low accuracy and slow convergence
caused by the sparse state of the unmanned ship.

Through the statistics of 3000 rounds of training data in a certain environ-
ment, we find that compared to the other three algorithms our algorithm have
higher success rate and reward value, which shows that our algorithm has learned
more information in the training process. Then the trained algorithm model is
tested 200 times in this environment, and the test results show that the success
rate of navigation is up to 100% under this model. The accuracy of this algo-
rithm is enough to meet the autonomous navigation needs of unmanned ships
in most marine environments, and can be encapsulated in the navigation system
of unmanned ships.
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