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Abstract. Multi-feature fusion is a useful way to improve the classification of
hyperspectral image (HSI). But the multi-feature fusion is usually at the decision
level of classifier, which causes less link between features or poor extensibility
of feature. In this paper, we propose a multi-feature fusion based deep forest
method for HSI classification, named mfdForest. In mfdForest, the morpholog-
ical features, saliency features, and edge features are extracted, then the three
deep multi-grained scanning branches in dgcForest (one of improved deep forest)
are used to extract and fuse the extracted features deeply, and the fused features
are sent into cascade forest in dgcForest for classification. Experimental results
indicate that the proposed framework consumes less training time and has better
performance on two HSI data sets.

Keywords: Deep forest · Hyperspectral image classification · Multi-feature
fusion

1 Introduction

Hyperspectral images (HSI) are widely used in many fields, such as agriculture, military,
medicine, due to the rich information it contains [1–4]. The increase in spatial resolution
and spectral resolution makes HSI contain more fine-grained feature information. As
the amount of information increases, stronger feature extraction capabilities are needed,
multi-feature extraction and fusion are proven to be an effective way to improve feature
extraction [5–7].

To make full use of information contained in hyperspectral data, multi-feature based
strategy has been widely applied to current popular method. He et al. [8] proposed a
multi-scale 3D deep convolutional neural network to jointly learn both 2D multi-scale
spatial feature and 1D spectral feature fromHSI data in an end-to-end approach, achieved
better results with large-scale data set. However, Deep Neural Network (DNN) is hard
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to fuse multi-feature obtained by different methods limited by the structure of neural
network. Some methods use traditional extractor to extract multiple shallow features
to improve utilization of HSI information by enhancing the diversity of features, such
as Extended Morphological Profile (EMP), Gabor, Local Binary Patterns (LBP), Scale-
invariant Feature Transform (SIFT), etc. [9–12]. Li et al. [13] used linear divergence
analysis (LDA) to extract spectral features, and adaptive weighted filters (AWFs) to
extract spatial information. After multiple iterations, they were fused with LBP features.
The experimental results proved that the method can extract feature information further
effectively. Zhang et al. [14] used Principal Component Analysis (PCA), Extended mor-
phological profile (EMP), Differential Morphological Profiles (DMP), and Gabor filters
to extract different features, and used Support Vector Machine (SVM) and Gabor filters
for fusion and classification, achieved good performance. The aforementioned methods
combine traditional feature extractor and extracted features have no ability to present
well. Liu et al. [15] firstly extracted EMP features from HSI that was reduced by PCA,
and then extracted Boolean Map based Saliency (BMS) visual features and fused them.
While data redundancy is reduced, feature extraction is improved. However, BMS can
not extract edge information well due to the less focus on edge of object. The above
methods do not fully extract the spatial features.

After multi-feature extraction provides guarantee for HSI classification, the use of
high-performance classifiers is also crucial in HSI classification. Deep forest is a new
deep model of the alternative DNN proposed by Zhou et al. [11]. The deep forest used
non-differentiable modules to build deep model, and the modules can be decision trees,
random forest, et al. As the deep forest inherits the advantages of decision-tree ensem-
ble approach, with fewer hyper-parameters than deep neural networks, and its model
complexity can be automatically determined in a data-dependent way. The deep forest
includes multi-grained scanning and cascade forest, the multi-grained scanning further
enhanced the representational learning ability, potentially enabling deep forest to be con-
textually or structurally aware; the cascade levels can be automatically determined such
that the model complexity can be determined in a data-dependent way. Yin et al. [12]
applied deep forest to HSI classification, making it possible for deep forest to be used for
HSI classification. Liu et al. [13] proposed a deep multi-grained scanning cascade forest
(dgcForest), and improved the deep forest to make it more suitable for HSI classification
by deep multi-grained scanning. But the dgcForest extracts features just using different
sizes of sliding windows, not making full use of spatial information on HSI.

Extended morphological profile (EMP) is a simple and commonly used feature map
method that can denoise images [19]. Saliency detection can highlight the spatial scene
features [20]. However, saliency detectionwill weaken the boundary information of each
area in HSI. Edge detection can detect the edge feature of feature map, which makes up
for the deficiency of saliency detection. Thus, the combination of three features has a
certain rationality.

In this paper, we proposed a multi-feature fusion based deep forest method for HSI
classification. The main contributions of this paper are summarized as follows.

1) Three deepmulti-grained scanning branches in dgcForestwere used to deeply extract
EMP features, saliency features and edge features, which can supplement each other,
to make full use of spatial information of HSI.
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2) In order to enhance features, voting fusion method was used to fuse three deeply
extracted features, which can make the link between features closer than decision-
level fusion method.

2 Proposed Method

Reasonable multi-feature selection, efficient multi-feature extraction and fusion are
essential for promoting HSI classification. In this part, a novel framework is proposed to
extract multiple complementary features in depth and fuse them effectively to improve
the classification of HSI. The framework is shown in Fig. 1. Firstly, in order to decrease
the redundancy of HSI in the spectral channel, PCA is introduced. Secondly, following
the role played by EMP and Visual Saliency Detection (VSD) in previous studies, EMP
operation is used on the global PCA image to remove the noise and smooth the image.
And then VSD is used on EMP image to extract the more salient information, thereby
reducing the impact of irrelevant background on HSI classification. However, VSD is
difficult to detect the edge of ground objects, which will cut down the classification
of pixels in the edge area. Therefore, edge detection (ED) is introduced to compensate
for the loss of edge information caused by VSD, which is used to determine the edge
by detecting the dramatic changes in the gray value around the pixel and calculating
the reciprocal of the gray value change, and locate the edge by detecting the dramatic
changes in the gray value around the pixel, that is, calculating the reciprocal of the gray
value change. In the process of extracting edge information from EMP images, first, the
EMP feature map is denoised by Gaussian blur. Second, a discrete differential operator
called the Sobel operator is used to calculate the approximate gradient of the image, and
Non-Maximum Suppression (NMS) is used to obtain the point with the largest gradi-
ent. Finally, the edge point is obtained by setting the threshold, and the edge maps are
obtained by calculating all the edge points. The calculation process is shown in Eq. 1.
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In the Eq. 1, C(E) represents the operation of edge detection on the EMP featuremap,
DUAL_THRESHOLD indicates dual threshold filtering in CED, NMS is non-maximum
suppression, Gf is the gradient of the pixel (x, y), including the horizontal gradient Gf
and the vertical gradient Gf.

Although VSD and ED can extract semantic features, which is high-level feature
compared to texture features. But in the face of HSI, traditional methods are difficult
to extract enough useful information. To extract multi-feature effectively, our proposed
method uses the efficient feature extractor of dgcForest, deep multi-grain scanning, to
extract these three features separately. Firstly, each pixel of HSI is set as the center
pixel and the sub-block is obtained by choosing a neighbor region of this pixel with size
of (2 ∗ w − l)∗(2 ∗ w − l), where w and l is the size and step length of multi-grained
scanning window of dgcForest, which ensures that each neighbor region obtained by
deep multi-grained scanning contains the central pixel uniquely. Next, these sub-pixels
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blocks containing global spatial and local spatial information are input in deep multi-
grained scanning, and three multi-grained scanning will output three class probability
vectors in parallel (random forest, the core component of deep multi-grain scanning, can
output a probability vector of class that this sample belongs to). Then, the three feature
vectors are simply added to obtain the final deep feature vector containing global and
local information. Finally, the fused vector was sent into cascade forest to obtain final
prediction.

Fig. 1. The flowchart of our proposed method: mfdForest.

3 Experimental Results

This section presents the classification accuracy of several states-of-the-art methods
and three cases that our method used different types of features. The performance of
our proposed algorithm will be demonstrated through extensive experiments on two
well-known HSI datasets, using three evaluative metrics including average accuracy
(AA), overall accuracy (OA) and Kappa coefficient (Kappa). 10% of each category is
selected as the training set on the two datasets, and the rest data as testing data, which
are described in Table 1. The effects of several contributions of the proposed approach
also be summarized in this section. All experiments were implemented on ubuntu16.04,
with the CPU of Xeon E5-1603 and GPU of GeForce RTX1080Ti.
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Table 1. The detail of two data sets.

Data set Class Pixel Band Resolution Sample

Indian Pine 16 145*145 200 20 m 10249

Salinas 16 512*217 200 3.7 m 43980

To ensure the validity of the experiment, the parameters involved in our methods
are consistent with comparative methods: ACGAN [18], ResNet [19], dgcForest [14].
The parameters involved are number of PCA, the number of morphological opening
and closing operations on EMP, the size of neighbor region in dgcForest, the number
of decision tree in random forest and completely random forest, the number of random
forest and completely random forest in deep multi-grained scanning and cascade forest.
In order to ensure the consistency of the experiment, the above parameters are set to
the same. It’s just that the layer of cascading forest is increased to 2. Table 2 shows
the parameters setting. The number of features selected through the first layer of the
cascading forest will be different according to the datasets. Except for the experiment
about selecting the different number of features, other experiments uniformly use the
optimal number corresponding to the datasets.

Table 2. Parameters setting of proposed method.

PCA 3

Multi-feature extraction branches Number of morphological opening and closing
operations

4

Neighbor region size 7

Number of Random Forest 1

Number of Completely Random Forest 1

Number of Decision Tree 40

Number of k-Fold Cross-Validation 5

Cascade Forest Number of Levels 1

Number of Random Forest 4

Number of Completely Random Forest 4

Number of Decision Tree 80
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In order to evaluate the contribution of edge detection, two sets of experiments are
prepared. It can be seen from in Fig. 2, Fig. 3, Table 3, Table 4, that the addition of feature
extraction branches improves OA, AA, and KAPPA on three datasets. The EMP, EMP
+ Saliency, mfdForest means that our algorithm uses different type of feature extraction
branch, theEMP just uses extendedmorphological profile feature formfdForest, theEMP
+ Saliency uses extended morphological profile and Boolean Map Saliency Detection
features for mfdForest, mfdForest uses extended morphological profile, Boolean Map
Saliency Detection, and edge detection features together.

In Fig. 2 and Fig. 3, our algorithm has a better performance than other methods in
OA in two data sets. Although our method has a lower accuracy than ResNet when using
less than three branches in Indian Pines data set, but three branches can still have a best
performance.What’smore, in the case of ourmethodusing different number of extraction
branches, the accuracy was increased with more branches. As can be seen from Table
3 and Table 4, with the addition of the morphological features, saliency features, and
edge features extracted, the classification accuracy increases. It shows that each feature
we chosen and feature fusion method we used has played a significant role. In Table 3
and Table 4, our method also has superiority in OA, AA and Kappa comparing to other
methods, and AA has a subtle change in the case of using two extraction branches in
Indian Pines data set. It shows that saliency detection hasn’t improve classification in
some classes, which is the point we need to solve later.

In terms of running time in Table 3 and Table 4, which is the total time of training and
testing, although our improved algorithm is slower than dgcForest, the reduction in speed
has not been presented as multiple, the accuracy of both is higher than the dgcForest,
indicating that the three extracted features can improve the classification accuracy and
complement each other.

Fig. 2. OA of different methods in Indian Pines
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Fig. 3. OA of different methods in Salinas.

Table 3. Accuracy comparison of different algorithms in Indian Pines datasets.

Method ACGAN ResNet DgcForest EMP EMP + Saliency mfdForest

OA 94.38 ± 1.88 98.63 ± 0.25 97.73 ± 0.23 97.96 ± 0.3 98.32 ± 0.14 98.68 ± 0.15

AA 76.29 ± 3.28 90.33 ± 0.29 95.92 ± 0.51 94.62 ± 2.62 94.59 ± 2.02 96.8 ± 1.54

K*100 93.58 ± 2.15 98.44 ± 0.28 97.41 ± 0.18 96.23 ± 0.77 97.37 ± 1.01 98.55 ± 0.71

1 57.14 ± 46.78 100.00 ± 0.00 89.63 ± 2.30 96.97 ± 2.93 96.10 ± 1.95 97.56 ± 1.95

2 90.41 ± 4.26 98.81 ± 00.46 96.58 ± 0.66 96.45 ± 0.91 97.70 ± 0.92 98.44 ± 0.69

3 99.41 ± 0.40 98.35 ± 1.33 96.32 ± 0.90 96.78 ± 2.05 98.39 ± 1.14 97.72 ± 1.75

4 91.97 ± 1.58 98.64 ± 1.92 99.06 ± 0.39 95.21 ± 1.44 97.84 ± 0.97 98.6 ± 1.25

5 97.11 ± 1.46 98.06 ± 1.81 94.08 ± 0.51 96.14 ± 2.30 96.05 ± 1.88 98.39 ± 2.13

6 98.32 ± 0.60 98.59 ± 1.29 99.32 ± 0.25 98.6 ± 1.07 98.00 ± 1.32 99.09 ± 0.86

7 20.00 ± 40.00 66.67 ± 27.14 84.00 ± 1.73 67.2 ± 19.82 64.8 ± 14.4 90.00 ± 13.24

8 94.82 ± 2.94 99.39 ± 00.54 99.88 ± 0.10 99.81 ± 0.17 99.67 ± 0.35 99.07 ± 0.35

9 0.00 ± 0.00 0.00 ± 0.00 94.44 ± 0.00 85.56 ± 20.96 81.11 ± 19.12 99.53 ± 0.16

10 93.88 ± 2.50 97.34 ± 2.31 96.46 ± 0.09 97.17 ± 1.00 97.44 ± 1.17 97.49 ± 0.06

11 98.94 ± 0.97 98.87 ± 0.28 98.89 ± 0.24 99.24 ± 0.88 99.15 ± 0.61 99.82 ± 0.17

12 82.54 ± 29.04 99.56 ± 0.09 96.86 ± 0.07 97.45 ± 1.14 98.84 ± 0.89 98.13 ± 0.32

13 97.61 ± 2.96 97.78 ± 2.14 98.38 ± 0.00 98.6 ± 1.21 98.27 ± 0.99 98.92 ± 1.00

14 98.64 ± 0.41 99.24 ± 0.22 99.60 ± 0.16 99.82 ± 0.12 99.75 ± 0.23 99.74 ± 0.13

15 99.78 ± 0.20 98.19 ± 1.11 99.50 ± 0.36 99.77 ± 0.16 99.42 ± 0.73 97.7 ± 0.90

16 0.00 ± 0.00 95.86 ± 2.96 91.67 ± 0.00 90.00 ± 11.82 90.95 ± 8.54 98.96 ± 0.96

Running time(s) 836.15 923.48 94.6 114.37 139.93 152.11
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Table 4. Accuracy comparison of different algorithms in Salinas datasets.

Method ACGAN ResNet DgcForest EMP EMP + Saliency mfdForest

OA 92.12 ± 1.42 97.84 ± 0.12 98.71 ± 0.11 99.18 ± 0.22 99.43 ± 0.28 99.62 ± 0.21

AA 86.59 ± 2.96 98.63 ± 0.27 98.63 ± 0.09 99.18 ± 0.28 99.43 ± 0.49 99.62 ± 0.32

K*100 86.59 ± 2.96 97.59 ± 0.13 98.68 ± 0.12 99.09 ± 0.33 99.36 ± 0.24 99.57 ± 0.15

1 91.18 ± 1.59 100.0 ± 0.00 98.96 ± 0.12 99.8 ± 0.12 98.53 ± 0.15 100.00 ± 0.00

2 44.71 ± 37.94 99.94 ± 0.05 99.99 ± 0.03 99.78 ± 0.6 99.38 ± 0.31 99.87 ± 0.13

3 96.00 ± 4.38 99.22 ± 0.01 98.60 ± 0.61 99.3 ± 1.39 98.8 ± 1.01 100.00 ± 0.00

4 95.02 ± 2.70 99.22 ± 0.01 97.86 ± 0.14 99.25 ± 0.19 98.57 ± 0.17 99.28 ± 0.53

5 32.29 ± 39.59 99.17 ± 0.22 99.87 ± 0.09 97.9 ± 1.96 99.44 ± 0.26 99.48 ± 0.49

6 94.38 ± 1.62 99.78 ± 0.07 100.00 ± 0.00 99.32 ± 0.25 99.42 ± 0.4 99.87 ± 0.12

7 95.15 ± 3.89 99.98 ± 0.03 95.98 ± 0.03 99.83 ± 0.11 99.83 ± 0.14 99.89 ± 0.01

8 97.58 ± 2.02 99.77 ± 0.27 98.55 ± 0.15 98.92 ± 0.12 99.52 ± 0.1 99.36 ± 0.19

9 97.16 ± 1.68 96.63 ± 0.21 97.99 ± 0.03 99.51 ± 0.29 99.87 ± 0.22 99.65 ± 0.27

10 98.06 ± 1.25 99.73 ± 0.05 98.88 ± 0.13 98.57 ± 1.08 99.69 ± 0.13 100.00 ± 0.00

11 98.61 ± 0.96 99.15 ± 0.27 97.77 ± 0.35 99.62 ± 0.2 99.25 ± 0.44 100.00 ± 0.00

12 94.33 ± 6.11 96.24 ± 2.09 97.74 ± 0.34 99.69 ± 0.27 100.00 ± 0.00 99.84 ± 0.13

13 99.22 ± 0.70 98.84 ± 1.13 98.71 ± 0.29 100.00 ± 0.0 100.00 ± 0.00 98.68 ± 0.21

14 90.50 ± 4.79 99.16 ± 0.91 98.50 ± 0.71 97.59 ± 3.28 98.33 ± 1.37 98.61 ± 0.05

15 73.42 ± 36.72 91.72 ± 0.42 99.07 ± 0.63 99.04 ± 0.35 99.12 ± 0.28 99.56 ± 0.23

16 94.21 ± 5.26 100.0 ± 0.00 97.92 ± 0.12 99.28 ± 0.16 99.61 ± 0.31 99.34 ± 0.32

Running time(s) 1020.11 1861.4 368.9 437.21 472.98 531.29

4 Conclusion

In this paper, we introduce a multi-feature fusion based deep forest to extract and fuse
three feature maps of the HSI for improving classification accuracy. For a certain pixel,
even the classification improved by certain feature map is not good, but one of the other
two features may have a better effect, so it can work together for each pixel to get the
best results. Although we use three branches to increase the size of the model, which
result in the running time longer than dgcForest. This problem can be solved by parallel
computing, and we will set three branches of mfdForest in parallel in the future work.
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