
Edge Computing Energy-Efficient Resource
Scheduling Based on Deep Reinforcement

Learning and Imitation Learning

Hengliang Tang1, Rongxin Jiao1(B), Tingting Dong2, Huilin Qin1, and Fei Xue1

1 School of Information, Beijing Wuzi University, Beijing 101149, China
jeorgea@163.com

2 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract. Task scheduling is one of the key technologies in edge computing. End
devices can significantly improve the quality of service byoffloading some latency-
sensitive tasks to edge servers, but a large amount of power and compute units
are wasted. Therefore, this paper proposes a two-stage task offloading approach
to ensure low latency while reducing the energy consumption of edge comput-
ing units and cloud computing centers. The mobile edge computing environment
contains edge computing nodes as well as cloud computing centers. A two-stage
processing mechanism based on deep Q-learning is used to automatically gener-
ate optimal long-term scheduling decisions that reduce power consumption while
ensuring quality of service. Imitation learning is also used in the reinforcement
learning process to reduce the training time of the optimal policy. To evaluate
the effectiveness of the model, we use the Shortest job first (SJF) algorithm and
the Heterogeneous Earliest Finish Time (HEFT) into as comparison algorithms,
comparing the running time and energy consumption as a measure. Our proposed
algorithm has 13%more running time but 34% lower average energy consumption
compared to other algorithms.

Keywords: Edge computing · Resource scheduling · Deep reinforcement
learning · Imitation learning

1 Introduction

In the past few years, with the growth of data volume of terminal devices and the contin-
uous development of artificial intelligence applications, the limited computing power of
terminal devices cannot meet the application scenarios such as unmanned driving, smart
manufacturing and smart cities. This has led to the proposed edge computing service
model. Edge computing is the processing of latency-sensitive partial requests through
micro computing units such as base stations in the vicinity of mobile end devices, thus
improving the response speed as well as the stability and continuity of services. Requests
for non-delay-sensitive types are processed by means of cloud computing, thus reduc-
ing the load pressure on the edge computing units. Currently, the edge processing units
are underutilized, leading to idle equipment and energy waste. The data shows [1]. For

© Springer Nature Singapore Pte Ltd. 2022
L. Pan et al. (Eds.): BIC-TA 2021, CCIS 1566, pp. 222–231, 2022.
https://doi.org/10.1007/978-981-19-1253-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1253-5_16&domain=pdf
https://doi.org/10.1007/978-981-19-1253-5_16

Edge Computing Energy-Efficient Resource Scheduling 223

traditional computing centers, the optimal energy utilization is 70–80%, but the actual
service delivery is unpredictable in terms of user requests, so the energy utilization is
usually below 50%. We need to simulate user requests and find a reasonable scheduling
scheme to ensure the quality of service and energy consumption.

In the MEC (Mobile Edge Computing) scenario, by deploying micro-servers in the
communication base stations near the terminal devices, part of the computing resources
are sunk to the user side, which shortens the distance on the physical path, reduces the
communication overhead, and also relieves the load pressure on the cloud computing
center. The whole edge computing service system has two service parties, which are
the edge computing nodes and the cloud computing center. The service process of the
system starts with the end device sending requests to the edge computing node, and
the edge computing node sends part of the non-delay-sensitive requests to the cloud for
processing back to the edge server, and then the edge server returns to the end device. For
some delay-sensitive requests, the edge computing nodes process and return the results
directly to the terminal.

Traditional deep learning resourcemanagement schemes have long training time and
slow convergence [2]. This is mainly due to the fact that RL is completely ignorant of
“expert knowledge”, which allows RL to learn the optimal policy from scratch through
trial and error, which motivates us to adopt a more efficient training method [3]. The
training time can be significantly reduced by imitation learning.

In this project, the system consists of two main parts: workload processor and two-
level resource decision system. The workload processor receives user requests and adds
them to the task queue of the edge computing nodes and the task queue of the cloud
computing center, respectively. The two-level resource decision system allocates the
appropriate computing units based on the provided task information. To improve the
processing efficiency of compute units, we dynamically update the ready task queues
to achieve the parallel operation of the impractical virtual machines (VMS). Our task
scheduling optimization goal is to minimize the long-term energy cost by training while
ensuring the quality of service. We first implement this system and then verify the
effectiveness of our system by benchmarking algorithms. Our main contributions are
listed below.

(1) We implemented a two-level scheduling algorithm based on deep Q-learning. The
two-level decision canminimize the energy cost while satisfying the service quality.

(2) We built an edge computing service simulation system to simulate the requests of
end devices, edge computing service devices, resources and other information.

(3) To speed up model training and convergence, we integrate imitation learning in
reinforcement learning to mimic the behavior of some classical heuristics (e.g.,
minimum average waiting time). These scheduling methods are considered as
‘experts’ for specific scenarios, thus improving the effectiveness of agent training
and substantially reducing the training time.

2 Related Works

In recent years, academic circles have been enthusiastic about research in the field
of MEC: at the theoretical level, a number of literature reviews [4] summarized the

224 H. Tang et al.

existing theoretical framework and architecture of MEC and looked forward to the
future development ofMEC;MaoY et al. [5] investigatedMEC supporting technologies,
including technologies such as virtualization and software-defined networking; Zhang
K et al. [6] classified MEC scenes, models, and deployment in detail. At the application
level, Yang X et al. [7] expounded the application and value of MEC in the field of
Internet of Things; Huang X [8] et al.

Computing offloading is a process in which mobile users delegate computing-
intensive tasks to cloud computing platforms for execution. It has been fully and widely
applied in the field of MCC [9]. In the field of MEC, computing offloading technology
is the first of the three design elements of the MEC system (the other two major ele-
ments are resource allocation and mobility management), which can not only optimize
resource utilization, but also reduce service delay, extend equipment life, and improve
user experience, so it is also of great research value [10]. In general, the key to the design
of the calculation offloading algorithm is to decide which tasks to uninstall and which
devices to offload tasks to execute. Starting from the scope of computational offloading,
Yang J et al. [11] divided the computational offloading model into two basic categories:
single server model and multi-server model.

Under the single-server computing offloadingmodel, Yuan J et al. [12] used a convex
optimization method to achieve the optimal computational offloading decision.

At present, there is little research on edge computing resource allocation using deep
reinforcement learning algorithm. On the basis of [1], combined with Deep Reinforce-
ment Learning (DQN) algorithm and edge computing environment model, we propose
an edge computing task allocation model for energy efficient utilization, and use imita-
tion learning method to speed up the model training speed and realize the efficient use
of energy under the condition of meeting task constraints.

3 Scheduling System

We expect our system to minimize long-term energy consumption. To achieve this goal,
we built a platform that simulates theMEC environment model, which calculates energy
consumption and costs. We use real user request data and the workload model is handled
by the user. After that, we built an environmental model that provides information on
resource usage and energy consumption.

3.1 Workload Processor

Our system contains edge computing node processing units as well as cloud computing
center virtual machine processing units, where the edge node device set is represented
by set Ei and the computing center virtual machine is represented by set VMi. The set
of devices is represented as Eqs. 1 and 2.

E = {E1,E2, · · · ,En} (1)

VM = {VM1,VM2, · · · ,VMn} (2)

Edge Computing Energy-Efficient Resource Scheduling 225

We abstract each user request into a DAG graph, which is represented by a binary G
< V, E >, where V is the task vertex and E is the edge associated with the vertex. Each
vertex represents a task, and the edge represents the relationship between the two tasks.
The workload processor is responsible for classifying the tasks in the DAG diagram, and
then dynamically adding sub tasks to the edge node task queue Qe, T in the set of Qe
denotes the set of task queues on edge node e and the cloud environment task queue Qc,
T in the set denotes the set of task queues on the central server. The above two sets are
expressed by the following Eqs. 3 and 4.

Qe =
{
TE
1 ,TE

2 , · · · ,TE
n

}
(3)

Qc =
{
TC
1 ,TC

2 , · · · ,TC
n

}
(4)

Each task is represented by Ti. The workload resolves Ti based on the information
provided by the dataset include Tistart (Start execution time), Tiddl (Task deadline), Tires
(Computing resources required), Tis (Whether the task is delay-sensitive is represented
by a binary number, where 1 is delay-sensitive) and relevance to other tasks. Relevance
refers to the constraint relationship before and after task execution. For example, if task
a depends on the results and data of Task B, task a can only be executed after task B
is completed. Tasks are added to different queues according to the Tis value, and the
process is as in Eq. 5.

{
Add Qe(T), if Ttag = 1
Add Qc(T), if Ttag = 0

(5)

Ttime
i indicates that the workload processor calculates the running time required for

each task at different nodes, where i represents the task number. The runtime on edge
nodes and compute center VMs is calculated by the following Eqs. 5 and 6.

T time
i = Tires

VM p
i

(6)

T time
i = Tires

Ep
i

(7)

We use the HEFT algorithm to obtain the priority queue Q to provide to the agent for
selecting the appropriate computational unit. The HEFT algorithm is a static scheduling
algorithm that calculates the priority of tasks by computing the rank value from the
bottom up. It first calculates the earliest completion time of all tasks on each virtual
machine according to the dependencies in theDAGbefore scheduling, then compares the
smallest earliest completion time and its corresponding computational unit, matches the
task with the virtual machine and corresponds to the corresponding occupied time slot,
and then schedules the tasks of the whole workflow to the corresponding virtual machine
after all tasks and virtual machines are matched. After all the tasks and virtual machines
are matched, the tasks of the entire workflow are scheduled to the corresponding virtual
machines for operation.

226 H. Tang et al.

3.2 Problem Definition

We use deep reinforcement learning methods to generate reasonable task allocation
schemes that minimize energy consumption while meeting latency requirements and
quality of service. Therefore, we build a 2-level decision system. to handle task queues
at the edge nodes as well as at the cloud computing center, respectively. Figure 1 shows
the flowchart of task queue processing by the smart body. The task queues are generated
by the Workload Processor and used as the input to the neural network. The intelligence
automatically generates the best decision based on the reward function.

Fig. 1. Flow chart of system.

Power Consumption Model: We calculate the utilization of node i by expressing
it in the following equation, where Runtime(m) is the total running time of the node,∑n

i=1 Ti
time
res is the amount of time being occupied, where Titimeres is the amount of resources

required for each task, and i represents the tasks that currently running on this node.

Um =

n∑
i=1

T time
i

Runtime
(8)

The power of a computational node consists of two components: static power Pwrs
and dynamic power Pwrd. where the static power is fixed while the node is operating,

Edge Computing Energy-Efficient Resource Scheduling 227

while the dynamic power varies as the utilization increases.

Pwrs =
{

0 Um = 0
const Um > 0

(9)

PwrD =
{

α ∗ Um Um < Ũm

α ∗ Ũm + (Um − 0.7)2β Um ≥ Ũm
(10)

Um is the utilization rate of server m, α = 0.5, β = 10, Ũm is the optimal utilization
which is 0.7 [13]. And the total power of server m Pwrm is the sum of static power Pwrs
and dynamic power Pwrd.

Each task’s runtime takes up a non-infinite amount of computational resources. In
reality, it will be automatically released at the end of the process. To simulate this
process, we set a random runtime for each task. During this time, some resources of
the computational unit will be occupied by that task. In other words, when the agent
assigns a task to a computing unit, we can get an end time which represents the expected
completion time of the task. When the occupancy time is over, we change the status of
the task from “ready” to “finished” and release the corresponding resources. In this way,
we can dynamically model the changes of resources in the server system and help the
agent to make decisions.

3.3 Environment Model

Figure 2 below shows the workflow of the two-level decision processor [14, 15]. Tasks
are added to the edge node compute waiting queue as well as the cloud computing center
waiting queue based on latency sensitive markers, respectively. The system keeps track
of the resource status, information, records of the current cloud server platform and basic
information about the new tasks. The agent makes a decision based on the current task
and status information through a reward function. The pseudo code of two-layer deep
reinforcement learning is shown in Fig. 3.

Fig. 2. Two-stage processor based on deep reinforcement learning.

State Space: In the two-stage decision-making process, the current state information
and task information are obtained as the input information of the environment. For

228 H. Tang et al.

the agent of stage1, it will get the current resource status information and single task
information. For the second stage, the agent will obtain the resource status information
of all base stations and the task information of virtual machines in the base station.

Action Space: Just like the state space, the action space defines the operations avail-
able to the agent [16]. In the first stage, DQN needs to select a server farm from all the
server farms of the current task, and the agent of stage2 will select the appropriate base
station from the base station set.

Reward Functions: The following are the reward functions of our two agents [15].

R = P
[
tn,PwrD(tn−1) − PwrD(tn)

]
(11)

tn is the current time, and Pwrf(t) represents the total power of servers in the farm
on time t, and Pwrm(t) represents the power of individual server on time t.

DQN Resource Scheduling Algorithm
Input: Ready Tasks
Output: Scheduling Matrix
01. Initialize environment information
02. Initialize workload processor
03. Qe ← workloadprocessor() , Qc ← workloadprocessor() //Get Task Queue
04. For each Calculation unit do Ci

05. For each task unit do Ti

06. Unit_Task_ arrays ← calculate //Calculate the Ti runtime on Ci

07. For each task in Qe
08. Scheduling Matrix ← RunAgent1(Unit_Task_ arrays)
09. For each task in Qc
10. Scheduling Matrix ← RunAgent2(Unit_Task_ arrays)
11. Return Scheduling Matrix

Fig. 3. Resource scheduling algorithm pseudo code.

4 Simulation Experiment

Toverify the effectiveness of our algorithm,we compared the proposed algorithmHEFT*
with HEFT and Shortest Job First (SJF) algorithms. We used a real Google server log
dataset for the experimental comparison. Experimental environment parameters set 100
edge computing nodes and 3 cloud computing centers, We use imitation learning to
improve the convergence efficiency of the model.

The experimental environment is a computer with Windows 10 Home Edition, Intel
i7–6700 CPU, 16G memory, and NVIDIA GeForce GTX 1050Ti graphics card with 8G
memory.

We use the above parameters and data set and the experimental results are as follows
(Figs. 4 and 5).

Edge Computing Energy-Efficient Resource Scheduling 229

Fig. 4. Scheduling runtime comparison.

Fig. 5. Energy cost comparison.

This shows that the execution time of our proposed algorithm HEFT* is on average
13% more compared to the HEFT algorithm, but the average energy consumption of
scheduling is reduced by 34%. Because the DQN agent learns from the reward function
and continuously selects the server group and base station with the largest reward.

230 H. Tang et al.

5 Conclusion

The task scheduling problem in edge computing environments requires rational algo-
rithms to reduce energy consumption. Although traditional algorithms have shorter
scheduling time, their energy consumption is not considered.

The HEFT* algorithm is experimentally tested in an environment with edge comput-
ing nodes and cloud computing virtual machines. The time required for task scheduling
and the energy consumption are tested. And the convergence time is reduced by using
imitation learning method in training the DQN model. Task fault tolerance, network
failure, etc. can be considered.

In the future, a combination of fault-tolerant approaches to task fault tolerance in edge
computing environments such as those considered in [17–19] and more precise methods
for algorithms to determine whether a task is latency-sensitive can be considered to be
closer to the real situation.

References

1. Kozyrakis, C.: Resource efficient computing for warehouse-scale datacenters. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1351–1356 (2013)

2. Tong, Z., Chen, H., Deng, X., Li, K., Li, K.: A scheduling scheme in the cloud computing
environment using deep Q-learning. Inf. Sci. 512, 1170–1191 (2020)

3. Wen, G., et al.: Cloud resource scheduling with deep reinforcement learning and imitation
learning. IEEE Internet Things J. 8(5), 3576–3586 (2021)

4. Bellavista, P., Chessa, S., Foschini, L., et al.: Human-enabled edge computing: exploiting the
crowd as a dynamic extension of mobile edge computing. IEEE Commun. 56(1), 145–155
(2018)

5. Mao, Y., Zhang, J., Song, S.H., et al.: Stochastic joint radio and computational resource
management for multi-user mobile-edge computing systems. IEEETrans.Wireless Commun.
16(9), 5994–6009 (2017)

6. Zhang, K.,Mao, Y., Leng, S., et al.: Mobile-edge computing for vehicular networks: a promis-
ing network paradigm with predictive off-loading. IEEE Veh. Technol. Mag. 12(2), 36–44
(2017)

7. Yang,X., Chen, Z., Li, K., et al.: Communication-constrainedmobile edge computing systems
for wireless virtual reality: scheduling and trade-off. IEEE Access 6, 16665–16677 (2018)

8. Huang, X., Yu, R., Kang, J., et al.: Distributed reputation management for secure and efficient
vehicular edge computing and networks. IEEE Access 1, 99 (2017)

9. Xu, X., Liu, J., Tao, X.: Mobile edge computing enhanced adaptive bitrate video delivery
with joint cache and radio resource allocation. IEEE Access 1, 99 (2017)

10. Morabito, R., Cozzolino, V., Ding, A.Y., et al.: Consolidate IoT edge computing with
lightweight virtualization. IEEE Netw. 32(1), 102–111 (2018)

11. Duan, Y., Sun, X., Che, H., et al.: Modeling data, information and knowledge for security
protection of hybrid IoT and edge resources. IEEE Access 7, 1 (2019)

12. Liu, Z., Choo, K.K.R., Grossschadl, J.: Securing edge devices in the post-quantum Internet
of Things using lattice-based cryptography. IEEE Commun. Mag. 56(2), 158–162 (2018)

13. Yang, J., Zhihui, L., Jie, W.: Smart-toy-edge-computing-oriented data exchange based on
blockchain. J. Syst. Archit. 87, 36–48 (2018). https://doi.org/10.1016/j.sysarc.2018.05.001

14. Gao, Y., et al.: An energy and deadline aware resource provisioning, scheduling and optimiza-
tion framework for cloud systems. In: Hardware/Software Co-Design and System Synthesis.
IEEE, pp. 1–10 (2013)

https://doi.org/10.1016/j.sysarc.2018.05.001

Edge Computing Energy-Efficient Resource Scheduling 231

15. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep rein-
forcement learning. In: Proceedings of the 15th ACMWorkshop on Hot Topics In Networks
- HotNets 2016 (2016). https://doi.org/10.1145/3005745.3005750

16. Mnih,V., et al.: Human-level control through deep reinforcement learning.Nature, 518(7540),
529–533 (2015). https://doi.org/10.1038/nature14236

17. Xie, G., Zeng, G., Li, R., et al.: Quantitative fault-tolerance for reliable workflows on
heterogeneous IaaS clouds. IEEE Trans. Cloud Comput. 8(4), 1223–1236 (2020)

18. Moon, J., Jeong, J.: Smart manufacturing scheduling system: DQN based on cooperative edge
computing. IMCOM, 1–8 (2021)

19. Wu, Y., Dinh, T., Fu, Y., et al.: A hybrid DQN and optimization approach for strategy and
resource allocation inMECnetworks. IEEETrans.Wirel. Commun. 20(7), 4282–4295 (2021)

https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1038/nature14236

	Edge Computing Energy-Efficient Resource Scheduling Based on Deep Reinforcement Learning and Imitation Learning
	1 Introduction
	2 Related Works
	3 Scheduling System
	3.1 Workload Processor
	3.2 Problem Definition
	3.3 Environment Model

	4 Simulation Experiment
	5 Conclusion
	References

