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Abstract. Target search mission in given 3-D underwater environments
is a challenge in heterogeneous AUV swarms exploration. In this paper,
an effective and low consumption strategy is focused for the challenge.
With consistency theory, two problems are proposed: optimal partition
of regions and cooperative search of targets. First, the original com-
putational geometry of spatial structures is exploited using centroidal
Voronoi tessellation. Then, the optimal distribution of the regions under
weighted condition of the target probability is obtained by using the
mission load dynamic model. Next, a distributed cooperative protocol
based on consensus strategy is proposed to solve the cooperative search
problem. Finally, theoretical results are validated through simulations on
heterogeneous AUV swarms.

Keywords: Consensus theory · Optimal partition of regions ·
Bioinspired model · Cooperative target search · Optimal coverage
control

1 Introduction

Autonomous underwater vehicle (AUV) is a submarine robot that can cruise
underwater freely without the restriction of umbilical cable. With a variety of
sensors, it is capable of performing various underwater tasks, such as marine
resource exploitation, underwater scientific research and hydrological environ-
mental exploration [1–4]. However, with the increasing complexity and danger-
ous of underwater tasks, a single AUV or a homogeneous AUV swarm is difficult
to complete the tasks. In order to improve efficiency of such situation, AUVs
with different characteristics and abilities are grouped to perform tasks collabo-
ratively, which is called heterogeneous AUV swarm. The fundamental research of
heterogeneous AUV swarm is how to search targets, and how to reach a sensing
consensus of targets in the given underwater region [5–7].
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This problem had received a consistent attention in the research community
over the past decade. In [8], an internal wave detection experiment conducted
by the Massachusetts Institute of Technology (MIT) Laboratory of Autonomous
Ocean Sensing System (LAMSS) was summarized in August 2010. The goal was
to allow AUV swarm to collaborate autonomously through on-board autonomous
software and real-time hydroacoustic communication, but no relevant research
of search locational optimization has been conducted. A distributed cooperative
search strategy for multiple AUVs based on initial target information was intro-
duced in [9]. The process of target searching was decomposed into two stage,
in the first stage, the possible range of the target was predicted based on its
speed and elapsed time, in the second stage, AUV entered the prediction range,
and then updated the target existence probability in real time according to the
sensor detection results, and used predictive control to make optimal decisions
based on the target existence probability. This method can detect the existence
of targets quickly, however, it can cause waste of resources and unnecessary time
consumption, and the search region was not divided optimally, because it did not
consider the functional differences between the individual AUV of the swarm. A
cooperative combat strategy based on simultaneous survey was presented in [10],
which can solve the problem of AUV task region partition, however, this method
required AUV to meet and exchange information with its neighbors periodically,
which increased the difficulty of formation control and the load of the informa-
tion network. There were also methods such as the multi-AUV target allocation
strategy based on improved communication network which was proposed in [11].

In this work, the collaborative search task of heterogeneous AUV swarm was
decomposed into two sub-problems: optimal partition of regions and cooperative
search of targets.

Different types of AUVs in a heterogeneous AUV swarm usually carry devices
and sensors with different performance. Therefore, when dealing with the prob-
lem of optimal partition of regions, we address a control protocol involving the
voronoi partition with consensus approach, which makes the best of heteroge-
neous AUV swarm, and then makes all the sub-detection regions of the AUV
reach an even distribution.

After the sub-detection region is determined, each AUV reaches its respective
search area to perform target search task. A distributed collaborative search
method is designed to solve the problem of cooperative search of targets. Through
the information exchange between the AUV swarm, each AUV can determine
for themselves whether there is duplication of targets, then recounts and sorts
the targets until the target information of all AUVs reach consensus.

2 Problem Formulation and Preliminaries

2.1 Voronoi Partition

According to the optimal partition strategy of target region, the region is divided
by Voronoi partition principle [12–16]. Compared with other regional partition
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strategies, Voronoi partition has the characteristics of strong pertinence and high
computational efficiency.

Consider a target region S with i AUVs, and the collection of position of
AUVs is given by η = {η1, η2, ..., ηn}. The density function of the target region
is φ(ξ), ξ is defined as a function to describe the measurement cost of i-th AUV
to any point in the target region. The i-th Voronoi cell is thus defined as:

Vi = {ξ ∈ S|f(ηi, ξ) ≤ f(ηj , ξ),∀i �= j,∀i, j ∈ n} (1)

Lemma 1. n AUVs are randomly distributed in target region S, the collection
of position of AUVs is given by η. According to the current location information,
the optimal region partition principle for heterogeneous AUV swarm is Voronoi
partition principle.

According to Lemma 1, within the target region, the optimal coverage region of
each AUV is Voronoi region, which size and shape are not only related to the
location information of the AUV and its neighbors, but also related to the mea-
surement cost function of each AUV. Therefore, the measurement cost function
of each AUV needs to be predefined. Suppose f(ηi, ξ) = ‖ηi − ξ‖ denotes the
distance between any AUV and the target point. At present, f(ηi, ξ) is used as
the cost function by most studies. It is easy to understand and calculate the
distance as the measuring cost function of the vehicle.

2.2 Bioinspired Model

On biological cell membranes, there are a series of contents such as voltage, cur-
rent, signal input and output, and conclusions based on their mutual interaction
can solve many problems [17,18].

The bioinspired model was first proposed by British scientist Hodgeto while
studying the action potential of squid neurons. The mathematical model of this
kind of neuron potential is also called H-H model, The dynamic characteristic
equation of the cell membrane voltage Vm in this model is as follows:

Cm
dVm

dt
= −(Ep + Vm) · gp + (ENa − Vm) · gNa − (EK + Vm) · gK (2)

where Vm represents the membrane voltage of the cell membrane, Cm represents
the membrane capacitance of the cell membrane; Ep, ENa and EK represent
the energy of the negative current, sodium ion and potassium ion in the cell
membrane respectively. gp, gNa, and gK are the conductivities corresponding to
negative current, sodium ion, and potassium respectively.

H-H model coefficients are simplified by further improving. Suppose Cm = 1,
∂ = Ep + Vm, A = gp, B = Ep + ENa, D = EK − Ep, f(ei) = max(ei, 0),
g(ei) = max(−ei, 0), the bioinspired models can be obtained:

d∂

dt
= −A∂i + (B − ∂i)f(ei) − (D + ∂i)g(ei) (3)
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where f(ei) is the excitatory input and g(ei) is the inhibitory input. The mem-
brane voltage of neuron ∂i is the output of the system, and any excitation and
inhibition signal can be controlled within the range of [-D,B] to make the output
signal ∂i smooth. The bioinspired model can be used in AUV swarm to solve the
problems of speed jump in formation and cooperative operation [19,20].

2.3 Region Partition Model

In this work, a position-probability model is proposed to describe the probability
of the target appear in the search region. The larger the probability is, the wider
the search area of the AUV swarm is, which means the larger the task payload
of this AUV swarm. For any position r in a task region, assuming that there are
m suspicious positions in the region. Target occurrence probability utilized by
gaussian probability function can be expressed as:

target(r) =
m∑

i=1

1
2π

exp[−1
2
(r − ri)

T
Ki(r − ri)] (4)

ri represents the location where the target is most likely to appear, which is
mainly judged according to environmental features and prior knowledge, random
value is used in this work. Ki is a diagonal matrix, represents the probability
weight of occurrence of ri. According to the Eq. 4, the probability of occurrence
of the target is a continuous function. Assuming that the position information of
the ith AUV is ηi, the search mission payload of the ith AUV can be expressed
as the sum of the probability of occurrence of all targets in its task partition Vi:

task(i) =
∫

r∈Vi

target(r)dr (5)

Consider a convex polygon with N vertices as task region, Vi is also con-
vex polygon. Suppose {v1, v2, ..., vN} denotes the vertices, the task region can
be divided into N triangles whose vertices are respectively represented as
(ηi, vj , vj+1), where j ∈ {1, 2, ..., N − 1}. The mission payload of the ith AUV
can be expressed by double integral:

task(i) =
N∑

j=1

∫

sj

m∑

i=1

1
2π

exp[−1
2
(r − ri)

T
Ki(r − ri)]dr (6)

The optimal partition problem of target region can be described as the consis-
tency of all AUV groups to the mission payload:

task(1) = task(2) = ... = task(n) (7)
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3 Optimal Region Partition with Consensus Protocol

3.1 Control Strategy Design

In order to realize the reasonable partition of target search region, the dynamic
process of search task of heterogeneous AUV swarm is simulated based on
the biological competition mechanism in the bioinspired model. Consider the
dynamic characteristics, sensor performance, computing power and other fac-
tors of the AUV swarm, control force is used to indicate the search ability of
each AUV, the main system variables in the model are mapped to the parti-
tion problem, the territory is used to represent the search region for each AUV
swarm, total resources indicates the task payload of the AUV swarm.

According to the biological competition mechanism model, the greater the
control power, the more its total resources. The utilization resource ratio repre-
sents the resources occupied by the unit’s control power, which is the ratio of
total resources to control power. Based on the bioinspired model, combined with
the Voronoi partition and the optimal partition problem model for target region
search, the task allocation model for the AUV swarm is established.

Assuming that the heterogeneous AUV swarm is randomly distributed in the
search region S, and the position is represented as η = {η1, η2, ...ηn}, ηi ∈ R

2 (2
D plane), with the partitioning method defined:

Vi = {ξ ∈ S |f(ηi, ξ) ≤ f(ηj , ξ),∀i �= j,∀i, j ∈ n} (8)

The initial detection partition {V1, V2, ..., Vn} of all AUVs can be obtained,
and the mission payload of each AUV can be calculated by combining the target
occurrence probability target(r), the sum of target occurrence probability task(i)
and mission payload task(i), which is represented as {Tauv1, Tauv2, ..., Tauvi}. Set
a constant for the search capability of each AUV, the ratio of task and capability
Rauvi = Tauvi/Eauvi

of each AUV can be calculated. Therefore, the consistency
formula of the mission payload can be represented as below:

Rauv1 = Rauv2 = ... = Rauvn (9)

AUVi will move toward AUVj , When Rauvi < Rauvj and i �= j. Since the
search task assignment is based on the Voronoi partitioning principle, the search
task region of AUVj will be reassigned to AUVi. The dynamics of the ith AUV
is modelled as an integrator: η̇i = ui, the control input ui of the system can be
defined based on consistency theory and biological invasion mechanism:

ui = −γi

n∑

j=1

�nijaij(Rauvi − Rauvj) (10)

where γi is the feedback control gain coefficient greater than zero. �nij = ηi−ηj

‖ηi−ηj‖
is the direction vector. aij represents the degree of coupling between AUVi and
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AUVj in the search task region. According to the occurrence probability of the
target, it can be obtained:

aij =
∫

r∈Vi∩Vj

target(r)dr (11)

3.2 Consistency Analysis

In order to prove whether the uniform distribution of the search region can be
achieved based on the above theory, it is necessary to analyze its consistency.

Lemma 2. For n variables {δ1, δ2, ..., δn}, satisfy ∑n
i=1 δi = Δ, where Δ is a

constant value. Then for a set of positive real numbers {β1, β2, ..., βn}, there
exists:

min(
∑n

i=1

δ2i
βi

) =
Δ2

∑n
i=1 βi

And for any variable {δ1, δ2, ..., δn}, it satisfies:
δi

βi
=

Δ∑n
i=1 βi

According to the Lemma 2, if the minimum value of the objective function can
be obtained, the consistency of the variables can be achieved. If the mission
payload Tauvi of AUVi is taken as δi in the lemma, and the search capability
Eauvi is taken as βi, when the search region does not change:

Tauv1 + Tauv2 + ... + Tauvn = TS (12)

where TS is a constant and represents the sum of the probability of occurrence
of targets in the search region. Consider a Lyapunov function candidate:

V = V1 + V2 + ... + Vn

=
T 2

auv1

Eauv1
+

T 2
auv2

Eauv2
+ ... +

T 2
auvn

Eauvn

(13)

Lemma 3. For a first-order integral system η̇i = ui:

with ui = −γi

n∑
j=1

�nijaij(Rauvi − Rauvj) as the system input. If and only if lya-

punov function achieves minimum value, the task-capability ratio of each AUV in
the heterogeneous AUV swarm is consistent. That is the search region is evenly
distributed according to the load.

Taking the derivative of Eq. 13:

∂V

∂t
=

∂V1

∂t
+

∂V2

∂t
+ ... +

∂Vn

∂t

= (
∂V1

∂ξ
+

∂V2

∂ξ
+ ... +

∂Vn

∂ξ
)
∂ξ

∂t

=
n∑

i=1

∂V

∂ηi

∂ηi

∂t

(14)
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where ∂ηi

∂t = ui, For j �= i, and Ni denote the set of neighbors of the ith AUV:

∂Tauvi

∂ηj
= 0 (15)

Then
∂V

∂ηi
=

2Tauvi

Eauvi

∂Tauvi

∂ηi
+

∑

j∈Ni

2Tauvj

Eauvj

∂Tauvj

∂ηj
(16)

Tauvi can be represented as:

∂Tauvi

∂ηk
=

∂

∂ηk

∫

r∈Vi

target(r)dr

=
∫

r∈Vi

∂

∂ηk
target(r)dr +

∫

∂Vi

target(μ)nT (μ)
∂μ

∂ηk
dμ

(17)

where ∂Vi represents the boundary of Vi, μ is the parameterized expression of the
boundary. nT (μ) is the outgoing normal line at the boundary, which is the unit
vector. Since the probability distribution function target(r) of the occurrence of
the target does not depend on the position of ηk,

∫

r∈Vi

∂
∂ηk

target(r)dr is always

zero. So we have the following Eq. 18:

∂Tauvi

∂ηk
=

∫

∂Vi

target(μ)nT (μ)
∂μ

∂ηk
dμ (18)

With ∂Vi =
∑

j∈Ni
Vi ∩ Vj , the Eq. 18 can be expressed as:

∂Tauvi

∂ηk
=

∑
j∈Ni

∫

Vi∩Vj

target(μij)nT (μij)
∂μij

∂ηk
dμij (19)

To summarize:

∂V
∂ηi

= 2Tauvi

Eauvi

∑
j∈Ni

nT (μij)
∫

Vi∩Vj

target(μij)
∂μij

∂ηi
dμij

+
∑

j∈Ni

2Tauvj

Eauvj
nT (μij)

∫

Vi∩Vj

target(μji)
∂μji

∂ηi
dμji

(20)

For any two adjacent i and j, μij can be expressed as:

μij :
ηi + ηj

2
+

[
0 −1
1 0

]
ηi − ηj

‖ηi − ηj‖λij , λij ∈ [−aij , bij ]

It can be seen that μij is the midperpendicular line of ηi and ηj , λij represents
the boundary length. Since μij and n(μij) are orthogonal, it can be concluded
that:

nT (μij)
∂μij

∂ηi
= nT (μij)

∂μij

∂ηj
=

1
2
nT (μij) (21)
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Substituted into the Eq. 21:

∂V
∂ηi

= Tauvi

Eauvi

∑
j∈Ni

nT (μij)
∫

Vi∩Vj

target(μij)dμij

+
∑

j∈Ni

Tauvi

Eauvi
nT (μij)

∫

Vi∩Vj

target(μji)dμji

+
∑

j∈Ni

2Tauvj

Eauvj
nT (μij)

∫

Vi∩Vj

target(μji)
∂μji

∂ηi
dμji

(22)

nT (μij) = −nT (μji), simplify Eq. 22:

∂V

∂ηi
=

∑

j∈Ni

(Rauvi − Rauvj)nT (μij)
∫

Vi∩Vj

target(μji)dμji (23)

Then

∂P

∂t
= −

n∑

i=1

ki

∥∥∥∥∥∥

∑

j∈Ni

(Rauvi − Rauvj)n(μij)aij

∥∥∥∥∥∥

2

(24)

Since V is continuously differentiable and V̇ ≤ 0, according to the LaSalle
invariance principle, if V̇ = 0, the system state values will converge to the
maximum invariant set of the system. According to the Eq. 24, when V̇ = 0:

∑

j∈Ni

(Rauvi − Rauvj)n(μij)aij = 02×1 (25)

The matrix form of the Eq. 25 is expressed as:
⎛

⎜⎝
l11 . . . l1n

...
. . .

...
lm1 · · · lmn

⎞

⎟⎠

⎛

⎜⎝
Rauv1

...
Rauvn

⎞

⎟⎠ =

⎛

⎜⎝
02×1

...
02×1

⎞

⎟⎠ (26)

where lij ∈ R
2, then:

lij =

{ ∑
k∈Ni

n(μik)aik, j = i

−n(μij)aij , j ∈ Ni

(27)

Suppose Lα = LU
α ⊗

[
1
0

]
+ LD

α ⊗
[

0
1

]
, where LU

α , LD
α represent the weighted

Laplacian matrix of the system:
{

LU
α Rauv = 0

LU
α Rauv = 0 (28)

where Rauv =
[
Rauv1 · · · Rauvn

]T , and Rauv is a column vector with the same
elements, which is Rauv1 = Rauv2 = · · · = Rauvn, then the theorem is proved.
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4 Collaborative Target Search Based on Consensus
Protocol

4.1 Collaborative Target Search Problem Modeling

Assuming that n AUVs of different types have arrived in their respective sub-
region and started to perform target search tasks, the search range of the ith
AUV is centered on itself with radius of Dauvi, the target state information
detected by each AUV includes the following types:

(1) Position information: Oij(t) = (xij(t), yij(t), zij(t)) represents the spatial
coordinate of Tj detected by AUVi in the geodetic coordinate system.

(2) Velocity information: vij(t) represents the velocity of Tj detected by AUVi.
(3) Target type: Kij represents the type of Tj detected by AUVi.
(4) Time information: sij represents the time stamp of Tj detected by AUVi.
(5) Number of targets: mi represents the number of targets detected by AUVi.

Including the number of targets detected by itself and the number of targets
obtained from the neighboring AUV.

(6) Target label: nij represents the label of Tj detected by AUVi, which does
not exceed the value of mi.

When mi targets are detected, the status information of AUVi is established as
follows:

Si(t) = (ST
i1(t), S

T
i2(t), ..., S

T
imi

(t)) (29)

where ST
ij(t) = {Oij(t), vij(t),Kij , sij ,mi, nij} denotes the set of the status infor-

mation of target Tj detected by AUVi. If and only if ‖Si(t) − Sk(t)‖ → 0, the sys-
tem is consistent, which means the AUV swarm completes the cooperative search
task. The consistency model of heterogeneous AUV swarms can be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|xij(t) − xkj(t)| < εx

|yij(t) − ykj(t)| < εy

|zij(t) − zkj(t)| < εz

|vij(t) − vkj(t)| < εv

Kij − Kkj = 0
sij − sik = 0
mi − mk = 0
nij − nik = 0

(30)

where εx, εy, εz, εv are respectively denote the allowable errors of position
information and velocity information of the same target detected by different
AUVs.

4.2 Consistency Condition

Consider a heterogeneous AUV swarm composed of n AUVs, which communica-
tion network topology is G = (V,E). While V = {1, 2, ..., n} is a set of non-empty
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nodes, and each node represents an AUV. E ⊆ V ×V is a set of connecting edges,
represents the communication relationship between AUVs. G(t) = [gik(t)] is the
adjacency relation of the topology, where gik(t) = 1 means that the communi-
cation between AUVi and AUVk is connected at time t, and gik(t) = 0 means
that the communication is interrupted. The Laplace matrix L = [lik] is:

lik =

{∑
k

aik, i = k

−aik, i �= k
(31)

Suppose that AUVi sends the detected target information Tj to its neighbor
AUVk, and AUVk compares the received target information Tj with the target
information Tq detected by itself, if the following conditions are met:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|xij(t) − xkq(t)| < εx

|yij(t) − ykq(t)| < εy

|zij(t) − zkq(t)| < εz

|vij(t) − vkq(t)| < εv

Kij − Kkq = 0

(32)

Target Tj and target Tq can be determined as the same target, otherwise, they
are marked as different targets. Then, the target is renumbered and updated
with nkq.

If Tj and Tk are the same target, compare the timestamp:

(1) If sij < skq, let skq = sij .
(2) If skq = sij , AUVk reorder the targets according to the detected timestamp.

If Tj and Tq are not the same target, add Tj to the probe list of AUVk:
⎧
⎪⎪⎨

⎪⎪⎩

mk = mk + 1
Okq(t) = Oij(t)
vkq(t) = vij(t)
skq = sij

(33)

The target is reordered according to the time stamp, and the sorted result
is taken as the new number of the target. If and only if the target informa-
tion states of all AUVs are identical and tend to be consistent, which means
‖Si(t) − Sk(t)‖ → 0. The heterogeneous AUV swarms complete the cooperative
search task.

5 Simulation Experiment and Analysis

5.1 Simulation of Optimal Region Partition

The task range is set to 1000 × 1000. Consider seven AUV swarms, each AUV
swarm is represented by the leader AUV within the swarm. The initial position
and mission payload are shown in Table 1.
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Table 1. Initial position and mission payload

Heterogeneous AUV swarm The initial position The mission payload

Swarm 1 [860, 552] 80.1498165

Swarm 2 [428, 527] 32.72320087

Swarm 3 [547, 1] 72.49389006

Swarm 4 [718, 97] 80.03960203

Swarm 5 [368, 687] 33.54609727

Swarm 6 [522, 91] 92.11312154

Swarm 7 [411, 837] 62.61293414

According to the information in Table 1, we calculate the probability of
occurrence of the target at each position:

target(x, y) =
7∑

i=1

targeti exp(−10−3((xi − x)2 + (yi − y)2)) (34)

After the initial Voronoi diagram is produced, the state information is
updated according to the bioinspired model in this paper until the task loads of
all AUV swarms are consistent. The task region generation process is illustrated
in Fig. 1.

As can be seen from the final distribution diagram, the gray value of each
region is the same, achieving uniform distribution. The final consistency state is
shown in Fig. 2.

In Fig. 2, the algorithm adopted in this paper can effectively realize the
average distribution of the task load of different AUV swarms in the specified
search region. The final task load ratio R tends to be consistent, and the velocity
of each AUV group in the x and y directions also tends to be consistent. The
area value of the assigned area eventually tends to be stable.

5.2 Simulation of Cooperative Target Search

Consider that there are 3 AUVs in a swarm, and each AUV carries out target
search in a distributed manner. The target information detected by the AUV is
shown in Table 2.

Suppose εx = εy = εz = 0.02 and εv = 1. The simulation was carried out
according to the distributed collaborative algorithm proposed in this paper, the
simulation results were shown in Table 3.

As shown in Table 3, three AUVs in the group detect six targets. Target 1
and 2 detected by AUV1 were the same as target 4 and 5 detected by AUV2, and
target 1, 2 and 3 detected by AUV2 were the same as target 5, 6 and 3 detected
by AUV3. The results show that the algorithm can eliminate the repeated target
information among each AUV, and it can effectively realize distributed collabo-
rative detection in AUV swarm.
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Fig. 1. Task region generation

Fig. 2. Consistent state
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Table 2. Detecting target information 1

Target number nij Target coordinate Oij(t) The target speed vij(t) Time information sij

AUV1 1 [6.32, 2.56, 4.11] 5 08:55:53

AUV1 2 [11.32, 19, 21, 9.31] 5 08:56:28

AUV2 1 [17, 33, 16.21, 3.85] 6 08:55:56

AUV2 2 [5.21, 12.49, 18, 75] 10 08:58:35

AUV2 3 [10.21, 15.45, 9.08] 8 08:58:41

AUV3 1 [1.35, 16.76, 9.75] 5 08:56:00

AUV3 2 [2.49, 6.55, 10.69] 8 08:57:19

AUV3 3 [10.21, 1.33, 16.76] 10 09:05:03

AUV3 4 [8.37, 13.75, 17.44] 8 09:09:53

Table 3. Detecting target information 2

Target number nij Target coordinate Oij(t) The target speed vij(t) Time information sij

AUV1 1 [6.32, 2.56, 4.11] 5 08:55:53

AUV1 2 [11.32, 19, 21, 9.31] 5 08:56:28

AUV1 3 [1.35, 16.76, 9.75] 5 08:56:00

AUV1 4 [5.21, 12.49, 18, 75] 10 08:58:35

AUV1 5 [10.21, 15.45, 9.08] 8 08:58:41

AUV1 6 [2.49, 6.55, 10.69] 8 08:57:19

AUV2 1 [17, 33, 16.21, 3.85] 6 08:55:56

AUV2 2 [5.21, 12.49, 18, 75] 10 08:58:35

AUV2 3 [10.21, 15.45, 9.08] 8 08:58:41

AUV2 4 [6.32, 2.56, 4.11] 5 08:55:53

AUV2 5 [11.32, 19, 21, 9.31] 5 08:56:28

AUV2 6 [1.35, 16.76, 9.75] 5 08:56:00

AUV3 1 [1.35, 16.76, 9.75] 5 08:56:00

AUV3 2 [2.49, 6.55, 10.69] 8 08:57:19

AUV3 3 [10.21, 1.33, 16.76] 10 09:05:03

AUV3 4 [8.37, 13.75, 17.44] 8 09:09:53

AUV3 5 [17.33, 16.21, 3.85] 6 08:55:56

AUV3 6 [5.21, 12.49, 18, 75] 10 08:58:35

6 Conclusion

In this paper, the problems of search region partition and collaborative target
detection faced by heterogeneous AUV swarms in implementing collaborative
search tasks are studied. According to different stages of detection, two different
types of tasks are divided: region partition and target detection. Firstly, the tar-
get occurrence probability model is established for the region partition task, and
the initial detection region partition is carried out by using Voronoi partitioning
principle. By analyzing the detection capability of each AUV and transforming
it into the detection mission load index, a dynamic model of AUV mission load
based on bioinspired model is proposed and established. The consistency theory
is used to prove that this model can realize the uniform distribution of regional
detection tasks under the probability weighted condition of target presence. Sec-
ondly, A distributed collaborative detection method based on the principle of



204 Y. Lu et al.

consistency is proposed, which realizes the detection of repeated targets in the
target detection process. By judging the target information status of all AUVs
is all the same and tends to be consistent, the heterogeneous AUV swarms com-
pletes the collaborative detection task. Finally, the effectiveness and convergence
of the proposed method have been validated by the performance presented in
numerical experiments on heterogeneous AUV swarms.
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