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Abstract. While current Semantic Web technologies are well-suited for
data publication and integration, the design and deployment of dynamic,
autonomous and long-lived multi-agent systems (MAS) on the Web is
still in its infancy. Following the vision of hypermedia MAS and Linked
Systems, we propose to use a value-passing fragment of Milner’s Calculus
to formally specify the generic hypermedia-driven behaviour of Linked
Data agents and the Web as their embedding environment. We are specif-
ically interested in agent coordination mechanisms based on stigmergic
principles. When considering transient marker-based stigmergy, we iden-
tify the necessity of generating server-side effects during the handling of
safe and idempotent agent-initiated resource requests. This design choice
is oftentimes contested with an imprecise interpretation of HTTP seman-
tics, or with rejecting environments as first-class abstractions in MAS.
Based on our observations, we present a domain model and a SPARQL
function library facilitating the design and implementation of stigmergic
coordination between Linked Data agents on the Web. We demonstrate
the efficacy our modeling approach in a Make-to-Order fulfilment sce-
nario involving transient stigmergy and negative feedback.

Keywords: Linked Data · Semantic Web · Multi-agent systems ·
Stigmergy · Nature inspired algorithm · RDF · SPARQL

1 Introduction

Hypermedia multi-agent systems [4,6], sometimes also referred to as Linked Sys-
tems [20], are receiving increasing research attention. The hypothesis is that the
Web provides a scalable and distributed hypermedia environment that embed-
ded agents can use to uniformly discover and interact with other agents and
artifacts. Following a set of design principles very much aligned with REST
and Linked Data best practices [2], the design and deployment of world-wide
and long-lived hypermedia MASs with enhanced scalability and evolvability is
aspired. In this context, we are specifically interested in stigmergic coordination
principles for hypermedia MASs. The concept of stigmergy [22] provides an indi-
rect and mediated feedback mechanism between agents, and enables complex,
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coordinated activity without any need for planning and control, direct communi-
cation, simultaneous presence or mutual awareness. A crucial part of a stigmergic
system is its stigmergic environment [35] given that “it is its mediating function
that underlies the power of stigmergy” [23]. Accounting for the importance of
distributed hypermedia environments as first-class abstractions in hypermedia
MASs and the environment’s pivotal role in stigmergic systems, we examine the
use of hypermedia-enabled Linked Data as a general stigmergic environment.

We briefly present core concepts and variations of stigmergic systems and
summarise existing literature relevant to our work in Sect. 2. Next in Sect. 3, we
propose to use a value-passing fragment of Milner’s Calculus to formally specify
generic, hypermedia-driven Linked Data agents and the Web as their embedding
environment. We composed Linked Data agents and their environment into a
Linked System (or equivalently a hypermedia MAS). Based on this formalism, we
consider transient marker-based stigmergy as coordination mechanism between
Linked Data agents in Sect. 4. We identify the necessity of generating server-
side effects during the handling of safe and idempotent agent-initiated requests,
and present a domain model and a SPARQL function library facilitating the
design and implementation of stigmergic environments on the Web. Section 5
illustrates and evaluates our approach in a Make-to-Order fulfilment scenario
involving transient stigmergy and negative feedback. We conclude and point out
future work in Sect. 6.

2 Varieties of Stigmergy and Related Work

produces

Action

stimulates
inhibits

Stigma

executes perceives

Agent

Fig. 1. Stigmergic feedback
loop

In collective stigmergic systems, groups of agents
perform work by executing actions within their envi-
ronment [23]. An action is considered a causal pro-
cess that produces a change in the environment.
Agents choose actions based on condition-action
rules, and perform an action as soon as its condition
is found to be met. Conditions are typically based
on environmental states as perceived by the agent.
Examples from nature are the presence of specific
(food) resources, semiochemical traces, progress in
building nest structures, etc. Which actions an agent can perform, how the agent
will perform them, and which condition-action rules an agent will follow, is con-
sidered the agent’s competence [25]. The part of the environment that undergoes
changes as a result of executing an action, and the state of which is perceived
to incite further actions, is called the medium. Each action produces, either as
byproduct of an action, or the deliberate goal of the action itself, a stigma in
the medium. Consequently, the behaviour of agents in a collective stigmergic
system can be understood as a cycle of executing actions based on existing stig-
mata, and as result, leaving stigmata that stimulate or inhibit future actions
(see Fig. 1). In essence, stigmata work as indirect communication mechanism
between agents [37], potentially leading to coordination between agents, and,
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ideally, a self-organising behaviour of the entire system [22–24]. Based on these
core concepts, i.e. action, medium and stigma, stigmergic systems can be further
classified [23]. In sematectonic stigmergy, a stigma is a perceivable modification
of the environment as result of work that was carried out by the agent, e.g. giving
some new shape to a working material, or re-arranging order of objects in the
world. In marker-based stigmergy, stigmata are markers, e.g. semiochemicals,
that are specifically added to the environment as means for indirect communica-
tion between agents. When perceiving stigmata, agents may choose their actions
based on the mere existence of a stigma in the medium (qualitative stigmergy), or
also take into account quantities, like semiochemcial concentration levels, num-
ber of stigmata left, etc. (quantitative stigmergy). Moreover, stigmata present
in the medium may stay until actively being removed by an agent (persistent
stigmata) or until dissipated over time due to agent-less processes (transient
stigmata).

Since the concept of stigmergy was coined as inherent underlying principle
of coordination found in nature, it has faced a history of thorough research [36].
There is a profound understanding of the many variations of stigmergic systems,
and how these are suited to model and implement efficient, flexible, and scalable
algorithms for AI-based coordination and optimization [7,23,24].

Stigmergy is recognized as suitable underlying principle for multi-agent sys-
tems [17,18,37,38] and is applied in a variety of practical domains, e.g. digital
manufacturing [39], robotics [27,30] or public transport [1,29].

Stigmergic systems can be considered a variation of situated agent systems,
in which the interaction of agents with their environment is reduced to direct
reaction based on perception, rather than complex knowledge processing and
inference [41–43]. Principles in these systems were also developed around an
indirect, influence-based interaction mechanism between agents and their envi-
ronment as chosen for our proposed stigmergic system [13].

Web technologies have been found a suitable basis for implementation of
multi agent systems [5,6,26,28]. Meanwhile, it came to attention that stigmergic
principles are the underlying concept of many applications in the World Wide
Web [8] including coordination in Web-based IoT systems [33].

Self-organizing multi agent systems and agent systems that rely on stigmergy
as coordination mechanism have been exhaustively reviewed in [3]. This review
concludes that a common understanding of such systems is widely lacking, and
suggests a generic domain model to describe self-organizing system. From the
review, we conclude additionally that the interaction between agents and envi-
ronment is often described only vaguely, and is generally underspecified. As a
solution, we provide in this paper a formal and generic specification of hyper-
media driven agents and the respective agent-server interaction for stigmergic
systems.
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3 Process Algebra, Agents and Linked Systems

In what follows, we recap the syntax and semantics of a value-passing fragment
of Milner’s Calculus of Communicating Systems (CCS) [31,32]. This process
algebra allows us to (i) specify the notion of Linked Data servers, (ii) formally
model the generic hypermedia-driven behaviour of Linked Data agents, and (iii)
compose a collection of Linked Data agent and server processes into a concurrent
system that is denoted as a Linked System [20] or a hypermedia MAS [6].

3.1 Theoretical Setting: CCS with Value-Passing

Let A be a set of channel names; Ā = {ā | a ∈ A} be the set of co-names;
Act = A ∪ Ā ∪ {τ} be the set of actions where τ is the silent action; and K be a
set of process identifiers.

The set P of all pro-
cess expressions is the set
of all terms generated by
the right-hand side abstract
syntax. Here, 0 is the atomic
inactive process; K ∈ K is a
process identifier; α ∈ Act;
�x = (x1, . . . , xn) is a n-
dimensional vector of vari-
ables; P1≤i≤2 ∈ P are pro-
cess expressions; and e is a
Boolean expression.

P := 0 (inaction)

| K (process labelling)

| α.P (prefixing)

| α(�x).P (value passing)

| P1 + P2 (choice)

| P1 ‖ P2 (parallel composition)

| if e then P1 else P2 (conditional)

A process definition is an equation system of the form (K1≤i≤k = P1≤i≤k)
where P1≤i≤k ⊂ P is a set of process expression with process identifiers from
K1≤i≤k ⊂ K. Each process definition determines an Act-labelled transition sys-
tem whose transitions can be inferred from the following Structural Operational
Semantics rules

α.P
α→ P

P
α→ P ′ (K = P )

K
α→ P ′

P
α→ P ′

(P + Q)
α→ P ′

Q
α→ Q′

(P + Q)
α→ Q′

P
α→ P ′

(P ‖ Q)
α→ (P ′ ‖ Q)

Q
α→ Q′

(P ‖ Q)
α→ (P ‖ Q′)

P
a→ P ′ Q

ā→ Q′

(P ‖ Q)
τ→ (P ′ ‖ Q′)

ā(�x).P
ā(�v)→ P a(�x).P

a(�v)→ P [v1/x1, . . . , vn/xn]

P
ā(�v)→ P ′ Q

a(�v)→ Q′

(P ‖ Q)
τ→ (P ′ ‖ Q′)

P
α→ P ′

if true then P else Q
α→ P ′

Q
α→ Q′

if false then P
α→ Q′ else Q

where P, P ′, Q,Q′ ∈ P are process expressions; K ∈ K is a process identifier;
α ∈ Act; �x = (x1, . . . , xn); a, ā ∈ A∪Ā; P [v/x] is the process expression obtained
from P by substituting a data value v for all occurrences of x.
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3.2 Linked Data Servers, Agents and Linked Systems

Let I, L and B be pairwise disjoint sets of resource identifiers, literals and blank
nodes, respectively. The set of all RDF triples is T = (I ∪ B) × I × (I ∪ B ∪ L);
a RDF graph G ⊂ T is a finite set of RDF triples. Given a formal RDF query
language Q, we define the query answering functions ans : Q × 2T → 2T ,
ask : Q × 2T → B, sel : Q × 2T → 2I and descr : I × 2T → 2T .

A resource structure is a tuple (I, R, η, OPS, RET) where I is given as above;
R ⊂ I is a finite set of root identifiers; η : I → N is a function that maps resource
identifier i to its origin server SERVERη(i); OPS = {GET, PUT, POST, DEL} is a set of
method names; and RET = {OK, ERR} is a set of return codes.

We now fix a set of channel names as A = {reqi, resi | i ∈ N}, and give CCS-
style process specifications of Linked Data servers as well as Linked Data agents
defined over the given resource structure (I, R, η, OPS, RET).

Linked Data Servers. We conceive a Linked Data server SERVERk as a reactive
component that maintains an RDF graph G. It receives requests to perform a
CRUD operation op ∈ OPS on a resource i via channel reqk

SERVERk(G) = reqk(op, i, G′).PROCk(op, i, G′, G)

where G′ ⊂ T is a (potentially empty) request body. The server employs a
constrained set of operations to process client-initiated requests for access and
manipulation of the server-maintained RDF graph G

PROCk(GET, i, G′, G) = RESPk(OK, (∅, descr(i, G)), G) + RESPk(ERR, (∅, ∅), G)

PROCk(PUT, i, G′, G) = RESPk(OK, (∅, ∅), (G \ descr(i, G)) ∪ G′) + RESPk(ERR, (∅, ∅), G)

PROCk(POST, i, G′, G) = RESPk(OK, ({i′}, ∅), G ∪ G′) + RESPk(ERR, (∅, ∅), G)

PROCk(DEL, i, G′, G) = RESPk(OK, ({i}, ∅), G \ descr(i, G)) + RESPk(ERR, (∅, ∅), G)

where i′ ∈ I is a “fresh” IRI with η(i′) = k. The server responds to requests via
channel resk

RESPk(rc, rval, G) = resk(rc, rval).SERVERk(G)

with return code rc ∈ RET and with a linkset and response graph in rval ∈
(2I × 2T ).

Tropistic Linked Data Agents. We specify a tropistic [16, section 13.1]
Linked Data agent AGENTk as an active component

AGENTk = PERCk(i ∈ R, G = ∅, L = {i})

being initially situated at a resource i ∈ R without a-priori agent knowledge
(G = ∅) and a linkset L = {i} restricted to i. Our specification of AGENTk puts
emphasis on a direct response to its perceptions and favours to employ situated
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perceptions [34] of the environment as the basis for deciding which action to
perform next. We model situated perception in CCS-style as

PERCk(i, G, L) = reqη(j)(GET, j, ∅).resη(j)(rc, (L
′, G′)).(

PERCk(i, G′′, L′′) + REACTk(i, G′′, L′′)
)

(1)

where AGENTk - while being situated at i - will at first issue a GET request for
a resource j in its current linkset L via channel reqη(j) and then awaits the
server’s response via channel resη(j) with return code rc ∈ RET, response linkset
L′ ⊂ I and response graph in G′ ∈ T . Subsequently, the agent executes (i) a
perceptional query qPERCk over G′ in order to update its situational knowledge to

G′′ = G ∪ ans(qPERCk , G′)

as well as (ii) a navigational query qNAVk over its updated knowledge graph in
order to update its linkset to

L′′ = L ∪ L′ ∪ sel(qNAVk , G′′))

On the basis of G′′ and L′′, AGENTk chooses to either recurse into its situated
perception process PERCk(i, G′′, L′′) or to enter the process REACTk(i, G′′, L′′) in
order to select an action on the basis of a local, short-time view of its environ-
ment. An action selected only on the basis of a situated perception is called a
reaction.

We model the process of selecting reactions in the following way

REACTk(i, G, L) = PERCk(j ∈ L, ∅, {j}) +∑
m∈OPS\{GET}

(
if ask(q̂mk , G, L) then mk(i, G, L) else REACTk(i, G, L)

)

(2)
In essence, an agent may choose to either
(i) re-situate and perform situated perception of resource j ∈ L, j �= i with the

implication that its situational knowledge and linkset will be reset; hence
it does neither maintain a long-term internal model of its environment nor
pursues explicit goals;

(ii) request the execution of operation m ∈ OPS \ {GET} against resource i given
that the conditional query q̂mk over its knowledge graph G holds; possible
instantiations of mk(i, , L) are given by

PUTk(i, G, L) = reqη(i)(PUT, i, ans(qPUTk , G)).resη(i)(rc, (∅, ∅)).REACTk(i, G, L)

POSTk(i, G, L) = reqη(i)(POST, i, ans(qPOSTk , G)).resη(i)(rc, (L′, ∅)).REACTk(i, G, L ∪ L′)

DELk(i, G, L) = reqη(i)(DEL, i, ∅).resη(i)(rc, (L′, ∅)).REACTk(j ∈ L \ L′, G, L \ L′)

where ans(qmk , G) is the result graph of executing an effectual query qmk over
the agent’s knowledge graph G with m ∈ {PUT, POST}.

Given the formal notation of Linked Data servers and agents, we can now focus
on composing a collection of Linked Data agent and server processes into a con-
current system that is denoted as a hypermedia MAS [6] or a Linked System [20].
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Linked Systems. A Linked System [20] is the parallel composition

LINKED-SYSTEM = (AGENTS ‖ ENVIRONMENT)

with AGENTS = (AGENT1 ‖ · · · ‖ AGENTm)and ENVIRONMENT = (SERVER1 ‖ · · · ‖
SERVERn)for a collection of Linked Data agents AGENT1≤k≤m and Linked Data
servers SERVER1≤k≤n respectively. All direct interaction within LINKED-SYSTEM
is between agent and server processes.

The state space of LINKED-SYSTEM is given by the nodes of an Act-labelled
transition system whose transitions can be inferred from the Structural Opera-
tional Semantics rules given in Sect. 3.1.

A computation is an alternating sequence of global states and actions, where
an action is either a communication between an agent and a server, or an internal
process transition. A computation of a Linked System induces an interaction
sequence given by the sequence of actions along that computation.

3.3 Synthesis

With the notions of Linked Data servers, tropistic Linked Data agents, and
finally Linked Systems as defined above, the resulting value-passing CCS frag-
ment enables us to formally specify the generic hypermedia-driven behaviour of
tropistic Linked Data agents. We would like to emphasise the fact that the gen-
eral behaviors as described by the CCS fragment are generic and independent of
the scenarios in which they are applied. Domain- or application-specific behav-
iors of agents and systems are entirely encoded in terms of the queries that are
evaluated as part of the different processes. For these, we identified four different
type of queries:

(i) Perceptional queries specify the subsets of the environment representation
relevant to the agent.

(ii) Navigational queries constrain the agent navigation with respect to such
relevant subsets of the environment.

(iii) Conditional queries guard the selection of particular reactions.
(iv) Effectual queries describe how the agent intends to manipulate a given

resource.

The per se generic framework can be applied to different scenarios by supply-
ing respective specific queries. In the following section, we will extend Linked Sys-
tems to support stigmergy by an additional class of queries: evolutional queries
that drive the dynamics of the underlying ENVIRONMENT.

4 Stigmergy in Linked Systems

A LINKED-SYSTEM as specified previously provides an indirect, mediated mech-
anism of coordination between AGENTS. It therefore enables the realisation of
sematectonic and persistent marker-based stigmergy. However, when consider-
ing some of the prime examples of stigmergy, e.g. ant colony optimization [9–12]
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and termite colony optimisation methods [21], it becomes apparent that a purely
reactive ENVIRONMENT is insufficient for the implementation of transient marker-
based stigmergic mechanisms.

Environment

Agent

Agent
State

Agent
Dynamics

Medium
State

Medium
Dynamics

Fig. 2. Stigmergic system
components

In fact, a stigmergic environment typically
demonstrates some immanent dynamics that may
modify the environment’s state independent of any
agent’s actions [23, p. 24]. These endogenous dynam-
ics, e.g. diffusion, evaporation, dissipation, atrophy
or erosion of stigmata, constitute a crucial compo-
nent of transient marker-based stigmergic systems
([40], cf. Fig. 2), and more importantly, they are not
subjected to agent-driven processes. 5 We call the
part of a stigmergic environment that, in addition
to being malleable and perceivable by all agents under coordination, actively
drives the evolution of such agent-less dynamic processes a stigmergic medium.

Taking into account the notion of a stigmergic medium, we define a stigmergic
Linked System as the parallel composition

STIGMERGIC-LINKED-SYSTEM = (AGENTS ‖ (MEDIUM ‖ ENVIRONMENT))

where the stigmergic MEDIUM = MEDIUM1 ‖ · · · ‖ MEDIUMl relates to the parallel
composition of a collection of extended LD server components.

A MEDIUMk component is a Linked Data server that offers a constrained set
of operations to access and manipulate server-provided resource states, but in
addition, generates server-side side-effects1

MEDIUMk(G) = req(op, i, G′).PROCk(op, i, G′, G))

RESPk(rc, rval, G) = res(rc, rval).MEDIUMk(G)

PROCk(GET, i, G′, G) = EVOLVEk(i, G)

as evolution EVOLVEk(i, G) of the environment during the handling of safe and
idempotent agent-initiated resource request. The generation of such side-effects
is subjected to an internal process

EVOLVEk(i, G) = RESP(OK, (∅, descr(i, G′)), G′′) + RESPk(ERR, (∅, ∅), G) (3)

where the result of executing an evolutional query qEVOk over a given RDF graph
G is given by G′ = ans(qEVOk , G) and the server state after an evolutional state
update is G′′ = G \ descr(i, G) ∪ descr(i, G′). Executing an evolutional query
drives the endogenous dynamics of MEDIUMk over time, e.g. diffusion and evap-
oration of semiochemicals, irrespectively of agent-initiated requests for resource
state change.

Next, we address the definition of evolutional queries; towards this end, we
introduce the stigLD domain model and the stigFN SPARQL function library.

1 We emphasise that this conception is not in violation with HTTP semantics [14,
sections4.2.1,4.2.2] [15].
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4.1 stigLD: A Domain Model for Stigmergic Linked Systems

Our domain model (cf. Fig. 3) defines four basic concepts: stig:Medium,
stig:Law, stig:Topos and stig:Stigma.

stig:topos

dct:spatial

dct:temporal

stig:Medium

stig:carries

stig:medium

dct:spatial
<perceives>
<influences>

stig:Topos

stig:adjacentTo

<stimulates>
<inhibits>

stig:Stigma

Action

stig:governs stig:Law stig:affects

geom:geometry

spatial:Feature

geom:Geometrytime:TRS <performs>

Agent

Fig. 3. stigLD domain model

A stig:Medium instance is a
resource that allows for interaction
between different actions, and there-
fore, it enables the stigmergic coor-
dination between agents performing
such actions. In order to fulfil its
“mediating function that underlies
the true power of stigmergy” [23],
a stig:Medium must be similarly
perceivable and malleable by all
agents under stigmergic coordination.
A stig:Medium is considered a part
of a larger environment, and it under-
goes changes only through agents’
actions or through a set of stig:Law
governing its endogenous dynamics.

A stig:Medium may optionally detail on its spatio-temporal characteristics2,
however, it must introduce a structure of interconnected stig:Topos instances
in which an agent navigates, experiences situated perception and exerts situated
behaviour.

A stig:Topos resource is the fundamental structural element of a
stig:Medium and carries a potentially empty set of stig:Stigma instances.
It has a potentially empty set of directed connections to other stig:Topos
instances within the same stig:Medium instance. Furthermore, a stig:Topos
may be identified with any domain- or application-specific resource using an
owl:sameAs link and optionally detail on its spatial characteristics. An agent
situated in a specific stig:Topos partially perceives the medium state and may
try to influence the medium as a result of its action.

A stig:Stigma is a perceivable change made in a stig:Medium by an agent’s
action. The perception of a stig:Stigma may stimulate (or inhibit) the perfor-
mance of a subsequent action, i.e. the presence of a stig:Stigma makes the
performance of this action more (or less) likely. Hence, actions stimulate (or
inhibit) their own continued execution via the intermediary of stig:Stigma (cf.
Fig. 1).

A stig:Law describes the spatio-temporal evolution of stigmata within the
medium. For this, a stig:Law describes itself in terms of its specific effect, e.g.
linear decay, to a set of affected stig:Stigma sub classes. A stig:Law may link
to an evolutional query which may be used to calculate the evolution of the
medium’s endogenous dynamics.

2 For example via dct:spatial and dct:temporal links.
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4.2 stigFN: SPARQL Functions for Stigmergic Linked Systems

In order to facilitate the implementation of transient marker-based stigmergic
Linked Systems, we supplement our domain model with the stigFN SPARQL
function library. It provides the fundamental operations required for implement-
ing the endogenous dynamics of a stigmergic medium:

1. Decay functions. Transient marker-based stigmergy may require certain stig-
mata to be subjected to dissipation processes. With stigFN:linear decay
and stigFN:exponential decay, we provide two standard decay models.

2. Diffusion functions. In diffusion processes, the intensity of a stigma does not
decay over time but rather spreads over a spatial dimension from the point of
its deposition. With stigFN:diffuse 1D, the 1D diffusion equation is made
available.

3. Handling temporal and spatial values. Decay and diffusion functions require
arithmetic operations on temporal data, e.g. xsd:duration, xsd:dateTime
or xsd:time. Due to lack of built-in support in SPARQL and XPATH,
we provide stigFN:duration secs and stigFN:duration msecs for con-
versions from a xsd:duration value to (milli)seconds. Additionally,
stigFN:dist manhattan is provided as a means to find the Manhattan dis-
tance between topoi when the medium is discretised into grids.

We implemented stigFN using SPARQL user-defined functions3 in Apache
Jena4. https://github.com/BMBF-MOSAIK/StigLD-DemoDocumentation and
source code5 is publicly available; we intend to extend stigFN with additional
decay and diffusion models as well as auxiliary functions.

5 Use Case: Make-to-Order Fulfilment

We apply the previously established concepts to a Make-to-Order (MTO) ful-
filment process from the production domain. MTO is a production approach in
which manufacturing starts only after a customer’s order is received.

Let us consider a shop floor area that is represented by a discrete grid; in
each grid cell is a shop floor location and can accommodate a single production
resource. We distinguish between three types of production resources: machines,
output slots assigned to individual machines and transporters.

Machines produce a product of not further specified kind in response to a
confirmed order received for it from a final customer. Whenever a machine fin-
ishes production of a product, the product is placed into an output slot awaiting
pickup by a transporter unit. Output slots have limited capacity. If any of the
output slots are full, the associated machine cannot produce any new products
until the output slot is emptied by the transporters. Transporters are initially
situated in idle locations spread throughout the grid; they can move to any
3 https://jena.apache.org/documentation/query/writing functions.html.
4 https://jena.apache.org/.
5 https://github.com/BMBF-MOSAIK/StigLD-Demo.

https://github.com/BMBF-MOSAIK/StigLD-DemoDocumentation
https://jena.apache.org/documentation/query/writing_functions.html
https://jena.apache.org/
https://github.com/BMBF-MOSAIK/StigLD-Demo
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unoccupied location within their respective Manhattan distance neighbourhood.
Their task is to pick up finished products from the output slots of machines, so
that production can go on without significant interruptions.

The shop floor will continuously receive new customer orders; we aim to coor-
dinate the MTO fulfilment process such that customer orders should be assigned
to machines in such a way that the overall machine work load is balanced, and
make-shift times of individual products – the time from start of production to
delivery of the finished product – should be minimized. More specifically, we are
interested in improving the following metrics

(i) average number of steps moved by the transporters
(ii) average maximum and minimum machine loads
(iii) deviation in maximum load experienced by machines
(iv) average time between start of production of a product until pickup by a

transport unit (mean time to deliver)

All material needed to set up and run the example are provided https://github.
com/BMBF-MOSAIK/StigLD-Demoonline along with an http://mosaik.dfki.
deinteractive demo instance6.

5.1 Shop Floor Representation in StigLD

In our example, the stig:Medium represents the overall shop floor area as a
10× 10 grid of stig:Topos instances. Neighborhood relations depend on the
type of agent that is exploring the medium (see also Sect. 5.2): For transporter
agents that navigate the shopfloor, each st:Topos links via stig:adjacentTo
predicates to the stig:Topos instances in its Manhattan distance neighborhood.
Order assignment agents ignore spatial information, and consider all topoi that
carry a machine unit as mutually connected. Production resources are assigned
to their individual stig:Topos instances using stig:locatedAt link predicates;
the Transporters’ idle locations – the grid cells to which they return after having
finished a pickup – are given by ex:idlePosition link predicates.

5.2 Agent Models

We employ marker-based stigmergy with transient semio-chemical marker mod-
els to achieve the desired coordination. For this, we employ two types of agents:
one type assigns open orders to available machines on the shop floor, the other
controls transport units.

Order Assignment Agents: Transient Stigmergy Based on Linear
Decay. For an open order, an order assignment agent OAA = PERC(i, G = ∅, L =
∅) is placed on a randomly chosen topos i that is accommodating a machine; the
agent performs situated perception as specified in Eq. 1 with

6 http://mosaik.dfki.de.

https://github.com/BMBF-MOSAIK/StigLD-Demoonline
https://github.com/BMBF-MOSAIK/StigLD-Demoonline
http://mosaik.dfki.deinteractive
http://mosaik.dfki.deinteractive
http://mosaik.dfki.de
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(G′′ = ans(qPERC, G
′)) ≡ (∀t ∈ G′ ⇒ t ∈ G′′)

(L′′ = sel(qNAV, G
′′)) ≡ (L′′ = {j | argmin

j

⎛

⎝
<j> stig:carries [ stig:level ?val;

a ex:NFMarker ];

^ (stig:locatedAt) [ a ex:Machine ].

⎞

⎠})

When selecting its reaction (cf. Eq. 2)

REACT(i, G, L) = if i /∈ L then PERC(j ∈ L, ∅, ∅) else MARK(i, G, L)

the agent OAA will either (i) re-situate to a topos with lower concentration of
negative feedback or (ii) leave a negative feedback marker7 on its current topos:

MARK(i, G, L) = reqη(i)(PUT, i, ans(qPUT, G)).resη(i)(rc, (∅, ∅)).0
ans(qPUT, G) ≡ descr(i, G) ∪ {<i> stig:carries [ a ex:NFMarker; stig:level 1.0].}

Negative feedback markers will decay linearly over time; the system’s endogenous
dynamics with respect to negative feedback markers is given by Eq. 3 with

ans(qEVO,G) ≡

⎛

⎝
?i stig:carries [ a ex:NFMarker; stig:level ?c; stig:decayRate ?d ].

⇓
?i stig:carries [ stig:level stigFN:linear decay(Δt, ?d, ?c) ].

⎞

⎠

Leaving a negative feedback marker inhibits future selection of a machine, and
increases the likelihood of balancing machine workloads during the MTO process.

Transporter Agents: Transient Stigmergy Based on Diffusion. When-
ever a new finished product is put into a machine’s output slot, transportation
markers (ex:TMarker) are added to the topos containing the respective slot.
These markers do not decay linearly in-place, but diffuse and spread over the
entire shop floor.

A transporter agent TA = PERC(s,G = ∅, L = ∅) is initially situated in its
idle location s; the agent performs situated perception as specified in Eq. 1 with

(G′′ = ans(qPERC, G
′)) ≡ (∀t ∈ G′ ⇒ t ∈ G′′)

(L′′ = sel(qNAV, G
′′)) ≡ (L′′ = {l | argmax

l

(
<l> stig:carries [ stig:level ?val;

a ex:TMarker ].

)
})

When selecting its reaction (cf. Eq. 2)

REACT(i, G, L) = if i /∈ L then PERC(j ∈ L, ∅, ∅) else PICKUP(i, G, L)

PICKUP(i, G, L) = if ∃p : (<p> a ex:Product; stig:locatedAt <i>) ∈ G

then DEL(p, ∅, ∅).MOVE(s, p).PERC(s, ∅, ∅)

else PERC(j ∈ L, ∅, ∅)

the agent TA will either (i) re-situate to a neighboring topos with higher concen-
tration of ex:TMarker and hence climb the diffusion gradient, or (ii) attempt to
pickup and move a product from its current location to its idle location.
7 – as well as a production task into the respective machine’s task queue –.
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As described in Sect. 4, any GET request as part of a TA agent’s situated
perception (cf. Eq. 1) will trigger a diffusion update

ans(qEVO,G) ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

?i stig:carries [ a ex:TMarker; stig:level ?c; ].

⇓
?j stig:carries [ a ex:TMarker;

stig:level stigFN:diffuse1D(

?i, stigFN:dist manhattan(?i, ?j), ?c, Δt

) ].

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and drive the evolution of the system’s transportation markers.

Table 1. Results of simulations

Random walk Stigmergic coordination

Avg. number of updates 85 58

Avg. transporter steps 262 132

Mean time to deliver 112 s 67 s

Avg. max machine load 13 12

Avg. min machine load 6 8

5.3 Evaluation

We evaluated above scenario with fifty orders for products to be produced and
picked up by the transporters from output slots. The shop floor contains five
production machines and four transporter artifacts. For the sake of uniformity
while running these simulations, all machines have output slots with a capacity
of holding five finished products.

We employ the agent models as described in the previous section and bench-
mark against a simplified transporter agent model that only scans for finished
products in its surroundings to initiate pick up, but otherwise move around
randomly, i.e. not following any marker trace.

We compare the total number of updates required in each instance to com-
plete producing fifty orders, as well as emptying them from the output slots. In
addition, we compare the average number of steps moved by the transporters,
the deviation in maximum load experienced by machines in each simulation and
the average time that a finished product spends in an output slot before being
picked up by transporters. These results can be seen in Table 1. The stigmergic
coordination based shop floor simulation requires around 30% less updates in
order to complete the simulation run of producing fifty orders and transporting
them away from the output slots of machines. Also, it takes half as many move-
ments by transporters compared to randomly moving transporters. Moreover,
the average time it takes from a product from beginning of production to pickup
by a transporter (mean time to deliver) is reduced by 40% in the stigmergy based
simulation.
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Average maximum and minimum machine loads are comparable in both
cases, but slightly worse in the random walk simulations. Ideally, given that
we have five machines and fifty orders, the average number of orders at each
machine should be ten. But, since the randomly moving transporters often take
longer to empty some output slots, the corresponding machines are loaded less
relative to the other machines. Each update query (which includes the implicit
diffusion and linear decay of stigmergic markers) takes an average of 500 mil-
liseconds to complete.

6 Conclusions and Future Work

We propose to use a value-passing fragment of Milner’s Calculus to formally
specify the generic hypermedia-driven behaviour of Linked Data agents and the
Web as their embedding environment. Based on this formalism, agents and their
environment can be composed into a concurrent Linked System with declara-
tive queries serving as extension mechanism for specifying the domain-specific
hypermedia-driven behaviour of Linked Data agents.

Next, we took first steps into investigating stigmergic coordination princi-
ples within such Linked Systems. When considering transient marker-based stig-
mergy, we have identified the necessity of generating server-side effects during
the handling of safe and idempotent agent-initiated resource requests. This is
due to the fact that stigmergic environments may exhibit agent-less, endogenous
dynamic evolution.

Based on this observation, we developed the stigLD domain model and the
stigFN function library facilitating the design and declarative implementation of
stigmergic principles within the agent as well as server components of a Linked
System.

We demonstrate the genericity and effectiveness of our modeling approach
by implementing a make-to-order (MTO) scenario from the production domain
using two transient semio-chemical marker models. Our implementation displays
emergence of self-organized coordination from simple agent behaviour and com-
pares favourably against a random walk baseline strategy.

We intend to expand the stigFN function library with additional decay and
diffusion models as well as auxiliary functions; scalability experiments and appli-
cation to additional domains are subject to future work. Translating given CCS
specifications of (stigmergic) Linked Systems into executable labelled-transition
systems [19] is an issue for future research.
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