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1 Introduction

The process of infiltration through porous media is an important part of hydrolog-
ical cycle. The modelling of this process has important practical applications in
engineering such as water resources management and agriculture. Most numerical
models that describe the unsaturated flow in soils use the Richards model [16] which
is a highly nonlinear equation. This equation is obtained from Darcy’s law and the
conservation of mass [2]. The strong non-linearity of the unsaturated conductivity
and the capillary pressure as functions of saturation and the presence of both advec-
tion and diffusion terms make the Richards equation more challenging in terms of
numerical approximations and require the development of efficient numerical tech-
niques. The unsaturated conductivity and capillary pressure are correlated using
empirical models and experiment data such as the van Genuchten [20], Brooks-
Corey [4] and Gardner [6] models. Analytical solutions of the Richards equation
can only obtained for some cases with special initial and boundary conditions [7,
17–19]. Therefore, different numerical techniques are developed to efficiently solve
the Richards equation such as, finite-difference, finite-element, and finite-volume
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methods. For instance, Celia et al. [5] used the mixed form of the Richards equa-
tion and proposed a general mass-conservative numerical scheme, and Bause and
Knabner [1] developed an adaptive mixed hybrid finite element discretization for the
Richards equation. Manzini and Ferraris [15] developed a mass conservative finite
volume method using two-dimensional unstructured grids. Although many numer-
ical techniques have been developed to numerically solve the Richards equation,
there is still a strong need for more robust numerical techniques for modelling flows
in unsaturated soils.

The aim of this work is to develop a new technique based on the localized radial
basis function method and the Kirchhoff transformation in order to solve Richards
equation in one and two-dimensional homogeneous medium. The proposed tech-
nique allows us to avoid mesh generation, which makes the numerical method less
expensive in terms of computational cost. The use of localized meshless method has
the advantage of flexibility in dealing with complex geometries [3]. The proposed
method performs well in terms of accuracy and efficiency for modelling unsaturated
flow through soils.

To handle the nonlinearity of theRichards equation, we use theKirchhoff transfor-
mation which allows us to reduce the nonlinearity of the studied problem. We used
Picard iterations to solve the problem with the Kirchhoff variable where we used
the backward Euler method for temporal discretization. Other numerical techniques
using the Kirchhoff transformation to solve the Richards equation can be found in
[8]. The performance of the proposed numerical method is assessed using different
test cases.

The outline of the paper is as follows. In Sect. 2, we introduce the governing
equation and the proposed system using the Kirchhoff transformation. In Sect. 3,
we present the proposed meshless method. Numerical simulations are performed
in Sect. 4 for modelling water flow through one and two-dimensional unsaturated
porous media. Finally, we provide some conclusions in Sect. 5.

2 Governing Equation

2.1 The Mathematical Model

Infiltration of water in unsaturated soils is described by the Richards equation [16]
which can be derived from Darcy’s law and the conservation of mass. This equation
is given by:

∂θ

∂t
+ ∇.(K∇h) + ∂K

∂z
= s(x, t), x ∈ Ω, 0 ≤ t ≤ T, (1)

where θ
[
L3/L3

]
is the moisture content, h[L] is the pressure head, K [L/T] is the

unsaturated hydraulic conductivity, x = (x, y, z)T is the coordinate vector, x[L]
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and y[L] denote the horizontal dimensions and z[L] denotes the vertical dimension
positive down (coordinate in the direction of gravity) and s(x, t) is a source or
sink term which can depend on space and time and can include evaporation, plant
root extraction, etc. In this study, we assume that s(x, t) = 0, Ω is an open set of
R

d(d = 1, 2, 3), and T is the final simulation time.
We note that the Richards equation can be expressed using the water saturation

S =
(

θ−θr
θs−θr

)
and the parameter φ = θs − θr where θs and θr are respectively the

saturated and residual moisture contents. The unsaturated hydraulic conductivity is
given by:

K = Kskr , (2)

where kr is the water relative permeability, which accounts for the effect of partial
saturation and the saturated hydraulic conductivity is as follows:

Ks = ρgk

μ
, (3)

where ρ is the water density, g is the gravitational acceleration, k is the intrinsic
permeability of the medium, and μ is the fluid dynamic viscosity. The Richards
equation can be rewritten in the following form:

φ
∂S

∂t
+ ∇.(Kskr∇h) + ∂(Kskr )

∂z
= 0, x ∈ Ω, 0 ≤ t ≤ T, (4)

Equation (4) is highly non-linear due to the nonlinearity of the hydraulic conduc-
tivity and the capillary pressure function. Constitutive relationships are available for
the functions S

[
L3/L3

]
and K [L/T] based on experiment. In our study, the numerical

techniques will be developed based on Eq. (4) where we will introduce the Kirchhoff
transformation in order to reduce the nonlinearity of the equation.

2.2 Capillary Pressure

The pressure head can be expressed as a function of saturation in the following form:

h(S) = hcap J (S), (5)

where J (S)[−] is a dimensionless capillary pressure function and hcap[L] is the
capillary rise which is given by the classical Leverett scaling [13]:
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hcap ∼ γ cos θ

pg

√
k

φp

, (6)

γ is the surface tension between the fluids, θ is the contact angle and φ is the
medium porosity.

2.3 Kirchhoff Transformation

The Kirchhoff integral transformation is defined as:

ϕ(h) =
h∫

+∞
kr (s)ds. (7)

By applying this transformation, we can rewrite the Richards equation using the
variable ϕ, as explained below:

∇.(Kskr∇h) = Ks∇2ϕ, (8)

∂ϕ

∂t
= kr

∂h

∂t
,

∂ϕ

∂z
= kr

∂h

∂z
. (9)

By transforming the derivative terms ∂S
∂t and ∂

∂z (Kskr ) using the variable ϕ, we
obtain:

∂S

∂t
= ∂S

∂h

∂h

∂t
=
(
k−1
r

∂S

∂h

)
∂ϕ

∂t
, (10)

∂

∂z
(Kskr ) = Ks

∂kr
∂h

∂h

∂z
=
(
Ksk

−1
r

∂kr
∂h

)
∂ϕ

∂z
. (11)

We consider the variables:

⎧
⎪⎪⎨

⎪⎪⎩

A = φ

Ks

(
k−1
r

∂S

∂h

)
,

B =
(
k−1
r

∂kr
∂h

)
.

(12)

This leads to the following equation:

A
∂ϕ

∂t
+ ∇2ϕ + B

∂ϕ

∂z
= 0. (13)
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Finally, by applying the Kirchhoff transformation, we reduced the nonlinearity of
Eq. (4) and obtain Eq. (13) which has many benefits in terms of convergence of the
proposed numerical method.

2.4 Initial and Boundary Conditions

For the initial condition, we assume that the pressure head is h(x, 0) = h0 for each
point x on the computational domainΩ , which can be expressed using the Kirchhoff
variable as ϕ(x, 0) = ϕ(h0).

We transform the boundary conditions using the Kirchhoff variable in a similar
way:

Dirichlet: h(x, t) = hD for each x ∈ ∂Ω leads to ϕ(x, t) = ϕ(hD).

Neumann:ni ∂h
∂xi

= hN impliesni
∂ϕ

∂xi
= krhN , with hD and hN are given functions

and ni is the unit normal vector to the boundary.

3 The Materials and Proposed Techniques

In this section, we propose an efficient computational technique based on radial basis
function collocation method [9, 10]. This method has recently become very popular
due to its advantages in terms of approximation properties of solutions and its less
computational cost since it does not require mesh generation.

Equation (13) is solved using the localizedRBF collocationmethod and the Picard
iteration technique. The temporal discretization of Eq. (13) using the backward Euler
method is given by:

An+1 ϕn+1 − ϕn

	t
+ ∇2ϕn+1 + Bn+1 ∂ϕn+1

∂z
= 0, (14)

where ϕn+1, An+1 and Bn+1 are the approximate values of ϕ, A and B at t = tn+1,
respectively. 	t = tn+1 − tn is the time setup and the solution is assumed to be
known at tn and unknown at tn+1.

Equation (14) is linearized using the Picard iteration method which involves
sequential estimation of the unknown ϕn+1 using the latest estimates of An+1 and
Bn+1. Ifm identifies iteration levels, then the Picard iteration steps can be written as:

Am,n+1 ϕm+1,n+1 − ϕn

	t
+ ∇2ϕm+1,n+1 + Bm,n+1 ∂ϕm+1,n+1

∂z
= 0. (15)

For the sake of simplicity, we consider the following notations:
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Lm =
(
Am,n+1

	t
. + ∇2. + Bm,n+1 ∂.

∂z

)
, (16)

f m,n+1 = Am,n+1 ϕn

	t
, (17)

Lm is a linear operator for each Picard iterationm. Subject to boundary and initial
conditions, Eq. (15) can be rewritten in the following form:

⎧
⎨

⎩

Lmϕm+1,n+1(x) = f m,n+1(x), x ∈ Ω,

Bϕm+1,n+1(x) = q(x), x ∈ ∂Ω,

ϕm+1,0(x) = ϕm+1
0 (x), x ∈ Ω,

(18)

B is a border operator, q is the given function associated with the boundary
conditions. For each iteration n, Eq. (18) is solved using localized RBF meshless
method at each Picard iteration m until the stop condition is verified which is given
by:

δm = ∣∣ϕm+1,n+1 − ϕm,n+1
∣∣ ≤ Tol, (19)

with Tol is the error tolerance.

3.1 Localized RBF Meshless Method

In this section, we present the local multiquadric (LMQ) method [11]. This approach
is different from the traditional global multiquadric approximation since only local
configuration of nodes are used. To recall the localized RBF techniques, let

{
x j
}ni
j=1

and
{
x j
}N
j=ni+1 be the collocation points inΩ and ∂Ω , respectively. ni is the number

of interior points and N the total number of collocation points distributed over the
computational domain. For each xs ∈ Ω , we create a localized domain Ω [s] that
contains ns nearest neighbors interpolation points

{
x[s]k

}ns
k=1

to xs .

In each localized domainΩ [s], the approximate solution can be written as a linear
combination of ns multiquadric functions in the following form:

ϕ
m+1,n+1
[s] (xs) =

ns∑

k=1

α
m+1,n+1
k Φk

(∥∥∥xs − x[s]k

∥∥∥
)
, (20)

where
{
α
m+1,n+1
k

}ns
k=1

unknown coefficients to be determined, ||.|| is the Euclidian
norm and Φk are the multiquadric radial basis functions defined as:
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Φk(x) = Φ(rk) =
√
1 + (εrk)

2, (21)

where ε > 0 is the shape parameter and rk = ‖x − xk‖. Equation (21) can be
presented in the matrix form:

ϕ
m+1,n+1
[s] = Φ[s]α

m+1,n+1
[s] , (22)

where ϕ
m+1,n+1
[s] =

[
ϕ
m+1,n+1
[s]

(
x[s]1

)
, ϕ

m+1,n+1
[s]

(
x[s]2

)
, . . . , ϕ

m+1,n+1
[s]

(
x[s]ns

)]T
,

α
m+1,n+1
[s] =

[
α
m+1,n+1
[s]

(
x[s]1

)
, α

m+1,n+1
[s]

(
x[s]2

)
, . . . , α

m+1,n+1
[s]

(
x[s]ns

)]T
and Φ[s]

is an ns × ns real symmetric coefficient matrix defined as Φ[s] =[
Φ
(∥∥∥x[s]

i − x[s]
j

∥
∥∥
)]

1≤i, j≤ns
. The vector α

m+1,n+1
[s] can be obtained as the following

equation:

α
m+1,n+1
[s] = (Φ[s]

)−1
ϕ
m+1,n+1
[s] . (23)

For xs ∈ Ω , we apply the differential operator Lm to Eq. (20) to obtain the
following equation:

Lmϕ
m+1,n+1
[s] (xs) =

ns∑

k=1

α
m+1,n+1
k LmΦk

(∥∥∥xs − x[s]k

∥∥∥
)

=
ns∑

k=1

α
m+1,n+1
k �m

(∥∥∥xs − x[s]k

∥∥∥
)
,

Θm
[s]α

m+1,n+1
[s] = Θm

[s]

(
Φ[s]

)−1
ϕ
m+1,n+1
[s] = Λm

[s]ϕ
m+1,n+1
[s] = �mϕm+1,n+1, (24)

where ϕm+1,n+1 = [
ϕm+1,n+1(x1), ϕm+1,n+1(x2), . . . , ϕm+1,n+1(xN )

]T
, Θm

[s] =
[
Ψ m
(∥∥∥xs − x[s]1

∥∥∥
)
, Ψ m

(∥∥∥xs − x[s]2

∥∥∥
)
, . . . , Ψ m

(∥∥xs − x[s]ns

∥∥)
]T

, Ψ m = LmΦk and

Λm
[s] = Θm

[s]

(
Φ[s]

)−1
.

In order to extend Eq. (24) to be able to use ϕm+1,n+1 instead of ϕ
m+1,n+1
[s] , we

consider �m as the expansion of �m
[s] which can be obtained by padding the local

vector with zeros.
Similarly, for xs ∈ ∂Ω , we create an influence domain Ω [s] containing xs . Then

we have:

Bϕm+1,n+1(xs) =
ns∑

k=1

α
m+1,n+1
k BΦk

(∥∥∥xs − x[s]k

∥∥∥
)

= (BΦ[s]
)
α
m+1,n+1
[s] ,

= (BΦ[s]
)(

Φ[s]
)−1

ϕ
m+1,n+1
[s] = σ [s]ϕ

m+1,n+1
[s] = σϕm+1,n+1, (25)

where σ [s] = (BΦ[s])(Φ[s])−1
, and σ is the expansion of σ [s] obtained by completing

the local vector with zeros.
We substitute the Eqs. (24) and (25) into Eq. (18) to obtain the following system:
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{Lmϕm+1,n+1(xs) = Λm(xs)ϕm+1,n+1 = f m+1,n+1(xs),
Bϕm+1,n+1(xs) = σ(xs)ϕm+1,n+1 = q(xs),

(26)

which leads to the following sparse system:

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

�m(x1)
�m(x2)

.

.

.

�m
(
xni
)

σ
(
xni+1

)

.

.

.

σ (xN )

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

ϕm+1,n+1(x1)
ϕm+1,n+1(x2)

.

.

.

ϕm+1,n+1
(
xni
)

ϕm+1,n+1
(
xni+1

)

.

.

.

ϕm+1,n+1(xN )

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

f m+1,n+1(x1)
f m+1,n+1(x2)

.

.

.

f m+1,n+1
(
xni
)

q
(
xni+1

)

.

.

.

q(xN )

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (27)

Thematrix generated by the localizedRBF is sparse due to the presence of the local
configuration in the solution approximation. This allows us to avoid ill-conditioned
issues that arise in dense systems of equations generated by the global approach.
By solving Eq. (27), we obtain the approximate values of ϕm+1,n+1 at all nodes
ϕm+1,n+1(xs), s = 1, 2, ..., N of the computational domain.

4 Numerical Tests

In this section, we perform numerical experiments for solving the Richards equa-
tion by using the obtained Eq. (27) in one and two-dimensional systems. We used
the localized RBF method based on the multiquadric radial basis function. For the
temporal discretization, we used the backward Euler method.

4.1 One Dimensional Infiltration Problem

In this numerical test, we used the Brooks-Corey model [4] which describes the
pressure head and the power law for the relative permeability.

J (S) = S−1/λ, kr = Sβ =
⎧
⎨

⎩

(
h

hcap

)−λβ

, if h ≥ hcap,

1, if h < hcap.
(28)
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Table 1 Hydraulic property parameters of 2 types of soil

Texture θr θs θ0 Ks hcap λ λβ

Sandy clay 0.109 0.321 0.121 0.002 29.15 0.168 2.504

Loam 0.027 0.463 0.040 0.022 11.15 0.220 2.660

where λ and β are respectively the parameters related to the Brook-Corey model and
the power law for the relative permeability. The second (inequality) condition for the
capillary pressure in Eq. (28) is introduced to avoid numerical issues [12, 14].

We consider two different types of soils with a depth L and their hydraulic
parameters are shown in Table 1.We simulate a one-dimensional infiltration problem
using the proposed method. In order to verify the effectiveness of the developed
numerical model, we compare our numerical results with the numerical solutions of
1D-Hydrus where we consider the following initially and boundary conditions:

⎧
⎨

⎩

θ(z, 0) = θ0,

θ(0, t) = θs,

θ(L , t) = θ0,

(29)

Fig. 1 shows the numerical solutions obtained using the proposed method and
1D-Hydrus solutions where we observe good agreement between the solutions.

Table 2 presents the root mean squared error (RMSE), the relative error (L1
er )

between the numerical solutions and the solutions simulated by 1D-Hydrus. The
results confirm the accuracy of the proposed method in modelling unsaturated flow
in soils.

Fig. 1 Time evolution of moisture content for the soils given in Table 1. Left (Sandy clay), right
(Loam)
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Table 2 The RMSE and the
L1
er between the numerical

solutions and 1D-Hydrus
solutions

Soils T (min) RMSE L1
er

Sandy clay 600 5 × 10−3 3.5 × 10−3

3500 5.8 × 10−3 4.3 × 10−3

Loam 100 4.8 × 10−3 1.08 × 10−3

1000 6 × 10−3 7.2 × 10−3

4.2 Two-Dimensional Infiltration Problem

In this example, we perform numerical simulations using the proposed method for
a two-dimensional infiltration problem where we consider a rectangular domain
[0, l] × [0, L]. We used the same hydraulic parameters of test 1 (Table 1) and l =
L = 100 cm. We consider the following initial and boundary conditions:

⎧
⎨

⎩

θ(x, z, 0) = θ0,

θ(x, 0, t) = θs,

θ(x, L , t) = θ0,

(30)

and no-flux boundary conditions are imposed on the sides x = 0 and x = l of the
domain.

The numerical simulations are performed using Nx = 200, Nz = 200,	t = 0.05,
and the localized RBF parameters ε = 0.6 and ns = 5. The sandy clay and loam
soils are selected in this numerical test to simulate unsaturated flow through a two-
dimensional homogeneous medium. The time evolution of the total mass per unit
of length of the 2D numerical solutions and the solutions simulated by 1D-Hydrus
for a computational domain of unit length (1D problem) are displayed in Fig. 2. We
observe good agreement between the solutions, which demonstrates the accuracy of

Fig. 2 Time-evolution of the total mass per unit of length of the sandy clay and loam soils
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Fig. 3 The time evolution of saturation for the sandy clay (left) and loam (right) soils

the proposed method in modelling 2D unsaturated flow in soils. Figure 3 shows the
time evolution of saturation for the sandy clay and loam considered soils.

The proposed method is efficient and accurate for solving the Richards equation.
The method can be used for modelling unsaturated flow through homogeneous soils.

5 Conclusion

This paper focused on the infiltration process in porousmedia and introduced compu-
tational techniques for efficiently solving the Richards equation in one- and two-
dimensional homogeneous medium. The proposed techniques using the Kirchhoff
transformation allow us to reduce the nonlinearity of the obtained system from the
Richards equation. Our approach using a localized radial basis function method
avoiding mesh generation allows us to reduce the computational cost. The accu-
racy of the proposed method was validated using comparison between the numerical
solutions and the results of 1D-Hydrus. Our results confirm the accuracy of the
proposed techniques and their efficiency in terms of computational cost for solving
theRichards equation. The numerical techniques proposed in this study formodelling
unsaturated flow through homogeneous porous media is a first step toward devel-
oping efficient and accurate numerical methods for modelling unsaturated flows
though heterogenous soils.
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