®

Check for
updates

Vikram Dalal, Vishakha Singh, and Sagarika Biswas

Abstract

Oxidative stress is the disruption in the equilibrium between the production of
pro-oxidants such as peroxynitrite (ONOQO™), reactive oxygen species (ROS),
reactive nitrogen species (RNS), and superoxide anion (.0, ), etc. and
antioxidants such as catalase, dismutase, etc. Two major sources of oxidative
stress are endogenous and exogenous. Enhanced hyperoxia or aerobic metabo-
lism is assumed to have high levels of reactive oxygen and nitrogen species
(RONS) that have a high ability to oxidative damage to the lipids, DNA, and
protein. High altitude increased the generation of ROS or reduced antioxidants
that are the major causes of oxidative damage to macromolecules. Excess supply
of oxygen can increase mitochondrial ROS production. In hypoxia, the mito-
chondrial electron transport system causes the generation of ROS. Short- and
long-term exposure to hypoxia can enhance the level of oxidative stress. Rheu-
matoid arthritis (RA) is a chronic autoimmune condition that can cause joint
damage and deterioration of the bone. Oxidative stress in RA includes various
causes such as the irregular distribution of adhesive molecules, autophagy induc-
tion, and synoviocyte resistance for apoptosis. Several hours of exposure to
higher humidity and reduced pressure have a major worse effect on RA. In
vivo, ex vivo, and in-cell oxidative stress can be calculated using various
instruments such as flow cytometry, fluorescence microplate reader, and confocal
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microscopy, etc. Increased altitude is related to physiological responses to
hypobaric hypoxia stress by an increment in oxygen supply and usage of oxygen
for tissue via metabolic modulation.
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Abbreviations

5-LO 5-Lipoxygenase

AGE Advanced glycation end product
AOPP Advanced oxidation of protein products
CL-HPLC Chemiluminescence-high performance liquid chromatography
CPT1B Carnitine palmitoyltransferase 1

CT 3-Chlorotyrosine

CYP2E1 Cytochrome P450 2E1

DAF-2DA  Diaminofluorescein diacetate

DCF Dichlorofluorescein

DCFDA Dichlorofluorescein diacetate

DHR Dihydrorhodamine 123

DPPP Diphenyl-1-pyrenylphosphine

ESR Electron spin resonance

FAO Fatty acid oxidation

GSH Glutathione

HIF Hypoxia Induce factor

IgG Immunoglobulin

IR Ionization Radiation

LDH Lactate Dehydrogenase

MBL Mannose-Binding Lectin

MDA Malondialdehyde

NO Nitric oxide

NQO Quinine oxidoreductase

OA Osteoarthritis

PC Protein carbonyls

PCOOH Phosphatidylcholine

PEOOH Phosphatidylethanolamine

PPAR« Peroxisome proliferator-activated receptor o
RA Rheumatoid Arthritis

ROS Reactive Oxygen Species

SOD Superoxide dismutase

TBARS Thiobarbituric acid reactive substances
TLRs Toll-like receptors

TRX

Thioredoxin
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4.1 Oxidative Stress

The disturbance in the formation of free radicals and its detoxification by the
biological system leads to oxidative stress. Disturbance of the production of
antioxidants such as catalase, scavengers, and dismutase, etc. and oxidants such as
hydroxyl radicals (.OH), reactive nitrogen species (RNS), superoxide anion (.0, "),
reactive oxygen species (ROS), and peroxynitrite (ONOO™), etc. are referred as
oxidative stress. Reactive oxygen species referred as intermediate products of
biochemical reactions such as neutrophil-mediated phagocytosis, mitochondrial
respiration, and cytochrome P450, etc.

4.1.1 Oxidants

Oxidative stress is a leading cause of the oxidative process and apoptosis, which
further leads to cell death. Details of different oxidants are mentioned in Table 4.1. In
oxidative phosphorylation, mitochondrial active oxygen leakage is the main source
of the production of reactive oxygen radicals. Several redox-active flavoproteins
may act as an important factor in oxidant development. Superoxide is produced by
various enzymes such as xanthine oxidase, Nicotinamide adenine dinucleotide
oxidase (NADPH), and cytochrome P450, etc. Four major endogenous sources of
oxidants are: aerobic respiration reduced the O, and generate .O,, .OH, and H,O;
phagocytosis of bacteria or virus-infected cells generate the O, ", nitric oxide (NO),
OCl, and H,0,; H,O, produced by peroxisome and animal cytochrome P450
generate intermediate products which can damage DNA.

ROS and RNS are known to be involved in the pathogenesis of schizophrenia and
Alzheimer’s diseases. Oxidative stress can cause hyperoxia, tissue injury, diabetes,
and age-related development of cancer. Oxidants are mutagenic and cause DNA

Table 4.1 Different oxidants and their properties

Superoxide anion One electron reduction of O, forms the .O, . It is produced as an

(.0y) intermediate in various auto-oxidative reactions and electron transport
chain

Hydrogen peroxide Dismutation of O, forms a two-electron reduction state ROS named

(H,0,) as H,O,. It can easily cross the plasma membrane due to its lipid
solubility

Hydroxyl radical (OH) | It is produced by the decomposition of peroxynitrite and Fenton
reaction. It is three electron reduction state radical and extremely
reactive

Organic hydroperoxide | Cellular components like nucleobases and lipids form the ROOH
(ROOH)

Peroxynitrite Reaction between O~2 and NO' produce the peroxynitrite
(ONOO™)
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damage directly or indirectly and may also inhibit apoptosis and facilitate prolifera-
tion, invasiveness, and metastasis. Excessive production of vascular O, can results in
hypertension and vasospasm (Lepoivre et al. 1994). Oxidative stress plays an
important role in the break down immunological tolerance, inflammatory processes
and can induce apoptosis and even cell death (Dalal et al. 2017; Messner and Imlay
2002; Rice-Evans and Gopinathan 1995; Dalal and Biswas 2019).

4.1.1.1 Endogenous Source

Various intracellular enzymes such as peroxisomes, lipoxygenases, NADPH
oxidases, oxidases, etc. can produce the pro-oxidants inside the cells (Landry and
Cotter 2014). CYP450 is a heme-containing protein superfamily that can degrade
toxic compounds. Dioxygen is activated in the catalytic process CYP450 via a single
electron reduction reaction to O, in the CYP450 catalytic process (Lewis 2002).
Cytochrome P450 2E1 (CYP2E1) can generate ROS in the presence or absence of a
substrate, so it is also called leaky enzyme (Robertson et al. 2001).

Lipoxygenase is a metalloenzyme used to metabolize the eicosanoid like
leukotrienes and prostaglandins. Arachidonic acid is reduced into 5-Lipoxygenase
(5-LO), known to be involved in the formation of leukotriene (Dixon et al. 1990).
Leukotriene and 5-LO are directly related to oxidation and inflammation in arthritis,
asthma, and neurodegenerative diseases (Joshi and Pratico 2015). Peroxidases are
multifunctional enzymes that produce H,O, which is further degraded by catalase
(Nordgren and Fransen 2014; Wang et al. 2013). In mitochondria, four-electron
transport chain multiprotein complexes (complex I-IV) regulate oxidative phosphor-
ylation and the gradient of electrochemical protons (Liu et al. 2002). Complex I and
I interacts with O, and release oxygen radical (O,’) in the cytoplasm (St-Pierre et al.
2002).

4.1.1.2 Exogenous Source

Oxidants production can also be controlled by external environmental factors like
ionization radiation, bacterial, and fungal toxins and inflammatory cytokines. Expo-
sure of a specific cell type to these external factors may result in ROS that may affect
adjacent cells also. The co-expression of multiple Toll-like receptors (TLRs) can
cause oxidative stress by disrupting the generation of anti-inflammatory and
pro-inflammatory cytokines (Lavieri et al. 2014). It has been reported that ionization
radiation (IR) exposure to thyroid cells can generate ROS (Ameziane-El-Hassani
et al. 2015). IR is one of the main causes of bonds breakage and generation of free
radicals that can contribute to oxidative stress. The induction of Streptococcus
pneumonia-mediated oxidative stress depends on LytA pneumococcal autolysin
(Zahlten et al. 2014). Deoxynivalenol (DON) produced by Fusarium can damage
the membrane and diminish the cell viability (Yang et al. 2014). DON-treated
lymphocytes increase ROS levels, 8-hydroxy-2-deoxyguanosine, and lipid peroxide
levels.
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4.1.2 Antioxidants

Antioxidants play a major role in counteracting oxidants, which contributes to a
further reduction in oxidative stress. Thus, antioxidant and oxidant balance may be
used to assess human oxidative stress. Antioxidants possess antitumor, anti-
carcinogenic, anti-inflammatory, antibacterial, antiviral, and antiatherosclerotic
properties (Owen et al. 2000). Natural antioxidants reduce the risk of diabetes,
cancer, and cardiovascular diseases and can, however, cause oxidative DNA dam-
age. Antioxidants can be endogenous or exogenous (natural or synthetic). Both types
of antioxidants have the ability to eliminate or scavenge free radicals, which is vital
for the generation of ROS. Natural antioxidants can be further diversified into two
groups: enzymatic and non-enzymatic, as shown in Fig. 4.1.

4.2  High Altitude Mediated Oxidative Stress

Aerobic metabolism is a necessary consequence for the production of reactive
oxygen and nitrogen species (RONS). RONS plays a major role as a physiological
or natural modulator of cellular redox milieu, further act as a signal for controlling
factors of unknown and known pathophysiological and physiological processes.
Increased aerobic metabolism or hyperoxia is generally assumed to easily produce
a high level of RONS, that can result in oxidative damage of lipids, DNA, and
proteins. Physical exercise over a certain duration or intensity can cause oxidative
damage to various organs (Radak et al. 2001).

Nevertheless, the increment in the production level of RONS does not only seem
to due to mitochondrial respiration, as the anaerobic activity could also cause
oxidative damage (Radak et al. 1998). In addition, the defense of endothelium
through the use of superoxide dismutase (SOD) has avoided the oxidative damage
of lipids and the activity of xanthine oxidase, which indicates a variety of sources

Enzymatic e.g.

Catalase,
superoxidase,
dismutase.
.\'Iatulral Indirectly acting
Antioxidant antioxidants e.g.
System

chelating agents

Non Enzymatic OR
Low molecular —
weight antioxidants

Directly acting
antioxidants e.g.

Scavengers, chain
breaking.

Fig. 4.1 Classification of natural antioxidants
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and pathways in the creation of RONS-associated exercise. High altitude toxicity
can also cause oxidative damage to macromolecules such as DNA, protein, and
lipids. Low oxygen pressure appears to be beneficial for the production of less
RONS, but high altitude exposure along with oxidative damage can trigger the
RONS production and decrease the antioxidant system activity.

4.2.1 High Altitude and Oxidative Damage

Exposure to intermittent high altitude can significantly enhance the lipid peroxida-
tion in fast and slow muscle fibers of rats (Radak et al. 1994). Radak et al. 1997 did
not found an increment in lipid peroxidation after continuous exposure of 4 weeks,
however, the amount of protein oxidation detected by carbonyl derivatives was
increased (Radak et al. 1997; Kumar et al. 1999). In addition, Nakanishi and
colleagues reported the increment in the level of malondialdehyde level in serum,
liver, lung, kidney, and heart at an altitude of 5500 m (Nakanishi et al. 1995). It has
been reported that 12 healthy subjects to 4559 m of altitude causing major increases
in urine-determined DNA strand breaks (Mgller et al. 2001). It has been found that
simultaneous exposure at a high altitude of 2700 m and cold enhances DNA damage
and lipid peroxidation (Schmidt et al. 2002). At 6000 m, the rate of lipid peroxida-
tion rose by 23% and at 8848 m by 79% reveals that the level of oxidative stress is
proportional to the rise in altitude (Joanny et al. 2001). Therefore, high altitude
causes oxidative damage to proteins, DNA, and lipids by an increment in the level of
generation of ROS or a decline in antioxidant capacity.

4.2.2 RONS Generation at High Altitude

The large supply of oxygen can enhance the production level of mitochondrial ROS.
It also seems, however, that hypoxia also appears to lead to less stress, which can
also result in an increment in the production of ROS (Mohanraj et al. 1998). The
reductive stress can increase ROS production by automotive oxidation of mitochon-
drial complexes. It has been reported that the cellular level of NADH/NAD+ ratio
increases during reductive stress (Khan and O'Brien 1995).

During hypoxia conditions, the xanthine dehydrogenase/oxidase system is a
powerful ROS generator. High altitude irregular exposure has similar properties to
ischemia/reperfusion (Radak et al. 1994). However, the changes in ROS and NO
pattern during ischemia/reperfusion and high altitude exposure are different. The
initial response is followed by a reversible increment in ROS production during
ischemia/reperfusion and is reversed by antioxidants, which can raise the NO in
tissue. Unlike ischemia/reperfusion, ROS level rises in hypoxia and return to
pre-hypoxic values in normoxia. Acclimatization required inducible NO synthase
(iINOS) regulation suggests that hypoxia can alter the ROS/NO balance (Gonzalez
and Wood 2001). This phenomenon can influence the microcirculation correlated
with acute mountain sickness, hypoxic exposure, high altitude brain edema, and



4 High Altitude-Induced Oxidative Stress, Rheumatoid Arthritis,. . . 57

lung. Serrano et al. reported that the presence of different NOS forms in NO
formation at high altitudes might lead to a rise in the production level of nitrotyrosine
in rat cerebellum (Serrano et al. 2003).

4.2.3 Hypoxia and Oxidative Stress

The exposure of high altitude can enhance the level of production of ROS and RNS,
which can alter the redox balance (Magalhies et al. 2005). It has been shown that
hypoxic exposure for short and long term can raise the level of oxidative stress
(Joanny et al. 2001; Askew 2002; Dosek et al. 2007). Both types of hypoxia;
hypobaric (i.e. terrestrial altitude) and normobaric hypoxia (i.e., simulated altitude)
can increase oxidative stress (Magalhdes et al. 2005; Debevec et al. 2014). However,
hypobaric hypoxia found to triggers a higher level of oxidative stress than
normobaric hypoxia (Faiss et al. 2013; Damij et al. 2015; Ribon et al. 2016).
Three different mechanisms found to be directly involved in ROS modulation in
normobaric and hypobaric hypoxia (Fagerberg 2018). First, hypobaric breathing is
lower as compared to normobaric hypoxia along with higher respiratory frequency
and lower tidal volume (Faiss et al. 2013; Savourey et al. 2003). In hypobaric
hypoxia, higher alveolar physiological dead space is linked with hypocapnia and
ventilator alkalosis. Second, higher hypoxemia due to hypobaric hypoxia may also
negatively correlated between the level of oxidative stress and hemoglobin oxygen
saturation (Bailey et al. 2001). Lastly, hypobaric exhaled NO levels were lower than
normobaric hypoxia (Hemmingsson and Linnarsson 2009). Oxidative stress due to
environmental hypoxia relies on its duration and intensity (Debevec et al. 2014;
Damij et al. 2015). It seems, in general, that major deleterious effects of hypoxia-
induced oxidative stress caused by hypoxia are due to high hypoxic doses. It is found
that exogenous antioxidant does not appear to mitigate oxidative stress caused by
hypoxia throughout exposure at high altitudes (Subudhi et al. 2004).

4.3 Rheumatoid Arthritis (RA)

Rheumatoid arthritis (RA) is a chronic autoimmune disease that proliferates the
synovial cells at the joint. A high amount of infiltrates of macrophages, B cells, T
cells, and polymorphonuclear cells are found at the inflammatory sites. These cells
and cellular factors exhibit a major role in joint destruction in RA. RA involves
environmental factors and genetic factors that can activate autoimmune responses.
RA is characterized by swelling, heat, inflammation, redness, and joint pain. It
causes the proliferation of synovial cells and tissues which is destructive to the
cartilage and bone. The autoantibodies present in the serum of RA patients are
responsible for the autoimmune reactions in the body.



58 V. Dalal et al.

4.3.1 Oxidative Stress in RA

Macrophage and polymorphonuclear cells play a vital role in the development of
ROS by activation of inflammatory molecules that can destroy bones and cartilage in
humans (Mapp et al. 1995). In RA, oxidative stress includes many factors such as
lymphocytes, autophagy induction, and irregular production of adhesive molecules
along with cell damage (Ozkan et al. 2007). Numerous antioxidants such as
metallothioneins, thioredoxin, and glutathione (GSH) reductase may be present in
RA synovial tissues, but due to their low level, they cannot overcome oxidative
stress.

In RA patients, thioredoxin can cause synovial fibroblast cells to produce TNF o
induced IL-6 and IL-8. Vitamin C, thiols, and glutathione (GSH) blood levels
declined, while Malondialdehyde (MDA) levels in RA patients rose in comparison
to the average individual. O,”, ROS, and HO™ expression levels are elevated in
peripheral blood neutrophils and the synovial fluid of RA patients (Kundu et al.
2012). The ROS produced in neutrophils is directly linked to RA (Kundu et al.
2012). Immune cell invasion within RA joints will lead to the creation of RNS/ROS
species that further activate the redox responsive pathways, migrate multiple irregu-
lar molecules expressed on lymphocytes in synovial fluid of RA patients. Role of
oxidative stress in rheumatoid arthritis is shown in Fig. 4.2.

Activation of NF-kB
pathway and synthesis
of IL-6/ IL-8 in

synovial fibroblasts

Citrullination of
peptides by APC

Authophagy induction

IgG modifications by
AGE products

Oxidative Stress

Bone resorption by
osteoclasts

Synoviocytes and
lvmphocytes
resistance to apoptosis

Abnormal expression
of adhesion molecules
in peripheral blood
mononuclear cells

Synovial infiltration

Fig. 4.2 Role of oxidative stress in rheumatoid arthritis
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In RA, oxidative stress can cause the modification of immunoglobulin (IgG)
(Newkirk et al. 2003). It has been found that advanced glycation end product (AGE)
pentosidine and AGE-modified IgG are directly correlated with RA (Kurien and
Scofield 2008). Inhibited Caspase 3 activation has not been found in the synovial
cells of RA patients (Migita et al. 2001). Induction of autophagy can minimize the
apoptosis in the synovial cells of RA patients (Xu et al. 2013). The levels of H,O,,
thiobarbituric acid reactive substances (TBARS), and O, found higher in RA
patients as compared to control healthy persons. In RA, the levels of plasma
thioredoxin (TRX) and urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG)
were higher as compared to healthy controls (Jikimoto et al. 2002).

In RA, ROS generation is known to be directly linked to bone restoration in
inflammation processes (Bijlsma and Jacobs 2000). The intracellular ionic environ-
ment may be disrupted by hypoxic conditions, which can further alter the levels of
calcium and phosphorus (Cheeseman and Slater 1993). In the RA peripheral blood,
the rise in lipid peroxidation can induce oxidative stress (Walwadkar et al. 2006).
Moreover, lipid peroxidation can generate the MDA, which results in the generation
of immunogenic molecules. In RA patients, the level of nitric oxide and lipid
peroxide is higher as compared to a healthy individual. While, the concentration of
calcium/phosphorus and vitamin E is lower in RA patients than healthy control. The
increment in the level of nitric oxide and lipid peroxide and a decline in vitamin E
and calcium/phosphorus ratio confirmed the threat of oxidative stress in rheumatoid
arthritis. It has been reported that increased oxidative stress induces T cells to trigger
various stimuli that can regulate immune responses and even can cause severe
problems (Hassan et al. 2011). Thirty different antioxidants and oxidants were
identified in RA patients. These were classified as: (1) lipid peroxidation, (2) protein
oxidation, (3) DNA damage, (4) urate oxidation, (5) enzymatic activity,
(6) antioxidants, and (7) free radical/anions (Quifionez-Flores et al. 2016).

4.3.2 High Altitude and RA

It has been reported that climatic changes have a worsening effect on arthritis
(Holbrook 1960). In RA, the period after the storm or rainfall is most painful
(Singh et al. 1977). It has been found that a few hour exposures of rising in humidity
and a decline in pressure can have a significant worsening effect on RA (Hollander
and Yeostros 1963). Higher humidity and dropping barometric pressure are followed
by intracellular fluid diuresis and extrusion of intracellular fluid into the blood.
Diseased tissues lost its permeability, retain fluids, and therefore maintain higher
intracellular pressure as compared to surrounding tissue, which further results in
increased pain and swelling. Due to this, RA patients benefit from the warm and dry
Southwest climate of the USA (Singh et al. 1977). It has been reported that patients
at 35% humidity and 32 °C also improved (Edstrom 1944).

Men exposed to a dry and alternate warm and cold environment does not have
adversely affect due to enhanced immune response and fibrinolytic activity rather
than from meteorological variations. The excess of deposition of fibrin results in
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inflammation in RA, which further causes an elevation in the deposition of more
fibrinogen (Fearnley et al. 1966). Exposure of high altitude can enhance the excre-
tion of 17-hydroxysteriod in the urine which can elevate the synthesis of
corticosteroids that may play a pivotal role in the prevention of RA.

4.3.3 Reactive Species Measurement in RA

Several reports show that different biomarkers like advanced oxidation of protein
products (AOPP), 3-Chlorotyrosine (CT), and nitrosothiols can be used for protein
oxidation evaluation in RA (Datta et al. 2014; Stamp et al. 2012; Tetik et al. 2010). It
has been found that the rate of carbonylation of protein is higher in the plasma
samples of RA as compared to healthy (Stamp et al. 2012; Tetik et al. 2010). In RA
patients, protein carbonyls (PC), AOPP, and RNS have been determined (Datta et al.
2014). It has been reported that the level of 3-Chlorotyrosine (CT) is more in RA
than a healthy person (Nzeusseu Toukap et al. 2014). Malondialdehyde (MDA) is
the end product of lipid peroxidized decomposition reactions. It has been found that
the MDA level is enhanced in the synovial fluid of RA patients (Gambhir et al.
1997). The fluorometric method can be utilized to measure plasma lipid peroxidation
level in RA (Conti et al. 1991).

The activity of GSH-Px can be determined by spectrophotometric at 37 °C and
412 nm (Gambhir et al. 1997). The spectrophotometer can be used to measure the
hydrogen peroxide and molybdate at 405 nm (Gambhir et al. 1997). The levels of
antioxidants in plasma of RA can be measured by automated calorimetric methods
(Erel 2004). The intracellular NO can be measured by a non-fluorescent dye
diaminofluorescein diacetate (DAF-2DA), which fluorescent after reaction with
NO (Sarkar et al. 2011).

4.4 Oxidative Stress Measurement

Various techniques such as HPLC, GC-MS, UV-spectroscopy, and immunoassays
can be used to determine the concentration of principal biomarkers of lipid, DNA,
and protein oxidative damage, as shown in Table 4.2.

The level of oxidative stress can be calculated by detecting the concentration of
RS. RS can be measured Ex vivo, in vivo, or inside cells. Various techniques such as
L-band electron spin along with nitroxy probe and magnetic resonance imaging spin
can be used to detect RS directly inside the cells (Berliner et al. 2001). RS can be
measured directly or indirectly by measuring the concentration of generated NO~
and H,O, RS can be detected by measuring the concentration of trapped species or
oxidative damage.

Electron spin resonance (ESR) can measure the free radicals directly by detecting
the unpaired electrons. However, reactive radicals cannot be detected by ESR as they
do not accumulate to a sufficient level for measurement. This problem was solved
with the introduction of probes or trap agents that can form stable reactive radicals
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Table 4.2 Principal markers of oxidative stress and their detection techniques

Markers Techniques Matrices
8-Oxo-guanine GC-MS DNA

HPLC-ECD Urine, DNA
8-0x0-2'-deoxy-guanosine HPLC-ECD Urine, DNA
5-(hydroxymethyl) uracil GC DNA, synthesized oligonucleotides
8-hydroxy-deoxy-guanosine HPLC ECD Urine, DNA
Hydroperoxides Enzymatic methods Plasma

HPLC-MS Plasma

HPLC-CL Tissue, plasma, cellular membranes

Todometric methods Plasma, cellular membranes

GC-MS Cellular membranes
Isoprostanes Immunoassay Urine

GC-MS Plasma, tissue, urine
Malondialdehyde HPLC Plasma

TBA test Plasma, serum, tissue
4-hydroxynonenal HPLC Plasma, tissue

GC-MS Plasma, tissue, urine
Malondialdehyde HPLC Plasma

TBA test Plasma, serum, tissue

GC-MS Plasma, serum, tissue
Isoprostanes Immunoassay Urine

GC-MS Plasma, tissue, urine

Radioimmunoassay Plasma, urine
4-hydroxynonenal HPLC Plasma, tissue

GC-MS Plasma, tissue, urine

along with unstable radicals that can be detected easily by ESR. Spin traps use the
hydroxylamine probes to detect the free radicals in the liver and skin (Haywood et al.
1999). It can detect the generation of secondary radicals such as lipid produced
(peroxyl, alkoxyl, etc.) and protein radicals also. Aromatic traps, including phenyl-
alanine and salicylate, are more effective than spin traps (Ingelman-Sundberg et al.
1991). Salicylate and phenylalanine can be used to assess the development of radical
in RA patients (Liu et al. 1997). In Saliva, phenylalanine was used to detect the
concentration of the generation of OH'.

Dichlorofluorescein diacetate (DCFDA) is widely used for the detection of
cellular peroxidases, although it interacts very slowly with lipid peroxidases or
H,0, (Ischiropoulos et al. 1999). DCFDA converts into dichlorofluorescein (DCF)
which can be seen at 525 nm. Dihydrorhodamine 123 (DHR) was used to detect
NO,, OH, and ONOO™, etc., although it reacts poorly to NO., O, ., and H,0O,
(Buxser et al. 1999). DHR converted into rhodamine123 is fluorescent at 536 nm.
Dihydroethidium is oxidized into a fluorescent product (ethidium) that can fluores-
cent at 600 nm after excitation at 500—530 nm (Fig. 4.3) (Zhao et al. 2003). Ethidium
can detect the O, and intercalate into nuclear DNA.
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Fig. 4.4 Conversion of diphenyl-1-pyrenylphosphine (non-fluorescent) to a fluorescent product

Luminol can be used to measure the concentration of RS developed through
phagocytosis activation (Faulkner and Fridovich 1993). However, luminol cannot
measure O, directly, it reacts with O,” and generate the fluorescent product.
Diphenyl-1-pyrenylphosphine (DPPP) can react to peroxides and make the fluores-
cent product that can be detected at 380 nm after excitation at 351 nm (Fig. 4.4)
(Takahashi et al. 2001). Lipid soluble hydroxide can react with Diphenyl-1-
pyrenylphosphine while it cannot react with hydrogen peroxides. The fluorescent
DPPP is quite stable in living cells and remained up to 2 days, whereas other minor
effects such as cell morphology, proliferation, or cell viability remained up to 3 days.

Fluorescence plate reader is the simplest method that measures the variation in
fluorescence. However, the machine’s sensitivity and efficiency vary enormously,
and the addition of extra filters and other parts will make it costly. Flow cytometry
provides the benefit of measuring the cellular culture directly by fluorescence.
Quantitative data can be collected on the number of cells that emits fluorescence at
a certain wavelength. Although it has a drawback, the addition of trypsin can result
in the development of oxidative stress. In mouse liver, the concentration of phospha-
tidylethanolamine (PEOOH) and phosphatidylcholine (PCOOH) was calculated by
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chemiluminescence-high performance liquid chromatography (CL-HPLC)
(Miyazawa et al. 1987). Lipid peroxidation produce the endoperoxides,
hydroperoxides, and final products: ethane, pentane, so it is the most accurate
method of determination of ROS. It has been reported that determination of concen-
tration of PEOOH or PCOOH is one of the most accurate methods of lipid peroxi-
dation analysis (Miyazawa et al. 1987).

4.5 High Altitude and Proteomic Alteration

Exposure of hypobaric hypoxia increases the mandatory biological processes that
can enhance the oxygen delivery along with cardiac output, ventilation, and hemat-
ocrit in lowlanders rising to the altitude (Peacock 1998). Similarly, physiological
traits that can increase oxygen flux have been selected in high altitude populations
(Beall 2007). However, there is a pattern of acclimatization, which may vary
between highland populations such as Tibetans has higher resting ventilation rates
as compared to Andeans, while arterial oxygen contents and hematocrits are lower
than Andeans or lowlanders (Beall 2007). Exhaled vasodilator nitric oxide and
signal molecules are higher in Andeans as compared to lowlanders and Tibetans
(Beall et al. 2001). Several variants in the GTP-cyclohydrolase 1 gene involved in
the stabilization of NO synthase have been enhanced in Tibetans with high
circulating NO levels. Furthermore, NO can promote pulmonary perfusion and
provide protection for pulmonary hypertension as experienced at altitude by
outlanders (Busch et al. 2001). In Tibetan, elevated circulatory NO metabolites are
also linked to the increased flux of limb blood flow and NO itself can lead to the
modulation of hematocrit, reducing blood viscosity (Erzurum et al. 2007; Ashmore
et al. 2014).

A genomic analysis in the Tibetan highlanders demonstrated a peroxisome
proliferator-activated receptor (PPARA) haplotype positively selected and correlated
with the phenotype of a lower hematocrit (Simonson et al. 2010). Peroxisome
proliferator-activated receptor o (PPARa) encoded by PPARA, which plays an
important role in the regulation of cell metabolism. PPARa« is expressed in liver,
heart, and muscle and can enhance the expression of fatty acid metabolism
controlling genes (Gulick et al. 1994; Gilde and Van Bilsen 2003). PPARA haplo-
type is correlated with an increment of non-esterified fatty acids, which can result in
a decline of whole-body fatty acid oxidation (FAO) in Tibetan (Ge et al. 2012).
Whereas, in Sherpas, PPARA haplotype is co-related with a decrease in the expres-
sion of skeletal muscle PPAR« and carnitine palmitoyltransferase 1 (CPT1B) which
can result in a decrease in mitochondrial FAO capacity (Horscroft et al. 2017). In
hypoxia, cellular oxygen requirements may be reduced due to switch in the substrate
of ATP synthesis from fatty acid to non-fatty acids. It has been reported that
reduction in FAO capacity and increment in mitochondrial coupling efficiency
after some time of altitude exposure in native lowlanders make them adaptable
(Horscroft et al. 2017; Jacobs et al. 2012).
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The increment in glycolytic flux in highlander and lowlander populations can
activate hypoxia induce factor (HIF) to induce lactate efflux and glycolysis in the
cells (Semenza et al. 1994; Kim et al. 2006; Papandreou et al. 2006). Enhancement in
lactate dehydrogenase (LDH) activity indicates the increment in cardiac glucose
uptake and lactate efflux capacity in Sherpas as compared to lowlanders (Horscroft
et al. 2017; Holden et al. 1995). Therefore, increment in glucose metabolism,
especially glycolysis is a function of adaptation and acclimatization to high altitude.

4.6 Conclusion

The disturbance between the production of antioxidants and oxidants in a biological
system can result in oxidative stress. Oxidative stress is one leading cause of
apoptosis which can cause in cell death. Four oxidants development sources are:
aerobic respiration, phagocytosis of bacteria or virus, H,O, production by peroxi-
some, and cytochrome P450. Oxidants are mutagenic in nature and play a major role
in invasiveness, metastasis or suppression of apoptosis. Arachidonic acid is reduced
into 5-LO which can cause inflammation in asthma, arthritis, and neurodegenerative
conditions. Specific environmental factors, such as ionizing radiations, bacterial and
fungal toxins, and inflammatory cytokines, can also play an important role in the
regulation of development of oxidants. Antioxidants are required to counter the
oxidants which can decrease oxidative stress. Antioxidants exhibit antitumor, anti-
carcinogenic, anti-inflammatory, antibacterial, and antiviral properties.

The development of reactive oxygen and nitrogen species required an aerobic
metabolism process. Increment in hyperoxia or aerobic metabolism can produce a
high level of RONS, which can result in oxidative stress. Physical exercise after a
certain intensity or duration can cause oxidative damage to several organs. Exposure
of high altitude can increase the rate of lipid peroxidation in fast and slow muscle
fibers. Even short exposure at high altitudes can increase lipid peroxidation. An
abundant supply of oxygen can enhance the development of mitochondrial ROS.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that proliferates in
the articulation of the synovial cells. Autoantibodies in the serum of RA patients are
responsible for the body’s autoimmune reactions. Rheumatoid factor is known as an
autoantibody for RA diagnosis, however, it is present in two-third patients only.
Several other antibodies, such as heterogeneous nuclear RNPs, mannose-binding
lectin (MBL), and immunoglobulin binding protein (BiP) can also be used for the
detection of RA. Polymorphonuclear cells and macrophages may induce ROS, the
generation of ROS can trigger chronic inflammation which can destruct the human
bone and cartilage. The reduction in antioxidants levels of blood increases the
chance of RA development. A few hours of elevated humidity and reduction in
pressure will greatly exacerbate RA effects. Oxidative stress in RA can be measured
by protein oxidation or lipid oxidation by detection of various biomarkers such as
AOPP, RSNO, CT, and MDA, etc.
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Several techniques such as GC-MS, HPLC, and UV-spectroscopy, etc. can be
used to measure the concentration of reactive species. Reactive cell species can also
be detected by using different compounds such as Dihydrorhodamine 123 (DHR),
Diphenyl-1-pyrenylphosphine (DPPP), or luminol, etc. Different techniques such as
flow cytometry, confocal microscopy, and fluorescence microplate reader, etc. have
been used to detect the oxidative by measurement of the production of reactive
species. Physiological acclimatization can be observed in lowlanders at altitude.
These differences between individuals are due to genetic difference among them.
Hypobaric hypoxia can enhance the biological process, resulting in an increment in
cardiac output, ventilation, and hematocrit. Increased altitude can alter the expres-
sion or activity of various proteins such as PPARA, LDH, HIF, and CPT1B, etc.

In the last decade, research has been done on the detection of free radicals.
Several techniques, along with sensors or probes, have been identified. There is a
requirement of the development of new sensors or probes to measure the ROS within
a human cell. The production of molecules that can inhibit oxidants or activate
antioxidants is highly required. New biomarkers are required to detect the proteo-
mics alteration at high altitude.
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