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Abstract Laccase was identified very early but the potential of the enzyme has
cached the eyes of the researchers globally for two decades. The multifarious
applications of laccase have enabled its application in various industrial and envi-
ronmental sectors. The enzyme has been used for the delignification of lignocellu-
losic biomass, paper, and pulp industries. The manufacture of fibreboard via the
chemical treatment releases formaldehyde and pollutes the environment thereby
harming flora, fauna, and humans residing in the nearby areas. Thus, the heed for
developing non-polluting technologies gained attention amongst the scientific com-
munity and laccase was one of the most apt alternatives for the synthesis of the
fibreboard via biological treatment methods. As biological treatment methods are
used the synthesis process is eco-friendly, non-polluting, and sustainable as well.
Thus, the chapter would elaborate the structure of laccase, the general mode of action
of laccase, its role in the synthesis of composite and its mechanism of action on plant
fiber. Further to gain better insight other reported applications of laccases are also
discussed along with its limitations and future prospect.

Keywords Laccase · Fibreboard · Lignocellulosic biomass · Green synthesis · Non-
polluting

1 Introduction

Around 2.45 billion years ago, oxygen (O2) concentration in the biosphere increased
which gradually oxidized water-soluble iron (Fe) II to water-insoluble Fe III. Due to
Fe III’s insolubility, iron was not readily available to the living systems for their
metabolic processes. Under this evolutionary pressure, living systems such as
aerobic organisms were forced to find naturally available iron-like metals with
high redox potentials. As a response, they started utilizing copper (Cu II/Cu I) and
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manganese (Mn III/Mn II) which had a similar function as iron (Fe II/Fe III)
(Andrews et al. 2003). Copper-containing proteins are mostly are extracellular
(Crichton and Pierre 2001). They help with O2 transport and activation, as well as
electron transfer during redox reactions. These proteins are multicopper oxidases
(MCOs) and can oxidize huge range of substrates with help of O2 as an electron
acceptor and function as electron transfer proteins (Janusz et al. 2020). One such
interesting MCO is laccase. Laccase was first described by Yoshida (1883) that he
found in exudates of Rhus vernicifera. Laccases along with peroxidases help in the
development of plant cell walls. The presence of high levels of laccase-like MCO
and its expression in vascular tissues of Liriodendron tulipifera indicated the
requirement for the uptake of high-efficiency iron pumps in lignified tissues (Hoopes
and Dean 2004). Laccases found in Anarcardiaceae resin ducts are thought to aid in
defense against herbivores as well as a bacterial and fungal invasion (Mayer and
Staples 2002). Most of the high redox potentials laccases are from fungi havng
biotechnological and industrial significance (Nunes and Kunamneni 2018). It has
been detected in several fungal strains and its production is most efficient in white-
rot fungi (Shraddha et al. 2011). Fungal laccases only need oxygen and produce
water as a byproduct. Because of their requirements and broad substrate specificity,
they are regarded as green catalysts with biotechnological applications, including
direct bio-electrocatalysis. Laccase and laccase-mediator system (LMS) have its
applications in delignification (Virk et al. 2012), biocomposites (Nasir et al. 2014),
biobleaching of pulp (Boruah et al. 2019), removal of aromatic pollutants
(Khambhaty et al. 2015), treatment of industrial wastewater (Viswanath et al.
2014), biofuel cells and biosensors (Le Goff et al. 2015; Ribeiro et al. 2014) and
degradation of diclofenac (DCF) and chloramphenicol (CAP) by laccase in presence
mediators (Nguyen et al. 2014). Laccase has sparked tremendous interest for pro-
spective biotechnological applications due to its catalytic characteristics (Abdel-
Hamid et al. 2013). Laccase TEMPO oxidation treatment has been used used on
cotton fibers for grafting octadecylamine grafting that enhanced the hydrophobic
nature of the fiber (Ding et al. 2016). Bertrand et al. (2002) found the primary
catalytic function of laccase in the lignification process. In the following year,
laccase was applied in bioremediation processes. Pozdnyakova et al. (2006), dem-
onstrated that laccase was used as a degradation tool to degrade polycyclic aromatic
hydrocarbons (PAHs). Thus, with more knowledge and research, laccase was
utilized in various industries such as food processing, textile industries, and wine
stabilization. Table 1 gives an outline of the research varied out with laccase since
2000 to present 2021.

Thus, the present chapter would discuss the general mechanism of action of
laccase, the role of laccase in the synthesis of fibreboard, and the mechanism for
the synthesis of biocomposite. Further other reported applications of laccases its
limitation and the future prospect have also been elaborated.
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2 A Fascinating MCO-Laccase

Laccases (EC 1.10.3.2) bio-catalyze a electron (e�) oxidation of substrates and then
passes four (e�) to the catalytic copper (Cu) atoms, that are oxidized without
releasing partially reduced O2 called reactive oxygen species (ROS) (Janusz et al.
2020; Mehra et al. 2018).

Table 1 Timeline and application of laccase

Year Timeline of laccase References

2000 Nonphenolic lignin degradation by laccase/1-
hydroxybenzotriazole system

Srebotnik and
Hammel (2000)

2001 Decolourization of Remazol Brilliant Blue R Soares et al. (2001)

2002 Crystal structure of laccase Hakulinen et al.
(2002)

2003 Biobleaching of kraft pulp and mediated oxidation of
nonphenolic substrate

Arias et al. (2003)

2004 Decolorization of anthraquinone dye Hou et al. (2004)

2005 Denim washing Pazarlıoǧlu et al.
(2005)

2006 Dyes decolorization Zhang et al. (2006)

2007 Paper pulp delignification Camarero et al.
(2007)

2009 Dyes degradation Sanghi et al. (2009)

2010 Decolorization of azo dyes Moya et al. (2010)

2011 Bioremediation of a mixture of pentachlorophenol,
2-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol

Gaitan et al. (2011)

2012 Laccase bio-cathodes Gutierrez-Sanchez
et al. (2012)

2013 Dye removal Ashrafi et al. (2013)

2014 Laccase and LMS in organic compounds synthesis Mogharabi and
Faramarzi (2014)

2015 Gold nanoparticles synthesis El-Batal et al. (2015)

2016 Laccase for fruit juice clarification Lettera et al. (2016)

2017 Immobilized laccase for removal of carbamazepine Naghdi et al. (2017)

2018 Bisphenol A removal Barrios-Estrada et al.
(2018)

2019 Delignification of agroresidues Agrawal et al. (2019)

2020 Anthraquinone dye removal Agrawal and Verma
(2020a)

2021 Wastewater decolorization Amari et al. (2021)
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2.1 Structure of Laccase

The 3D structure of MCOs is mainly constructed of β-sheets and turns. They contain
a 10–20 kDa sized cupredoxin- like domain. MCOs are mainly of 3 types—2-
domain, 3-domain, and 6-domain enzymes. Laccase consist of Greek key β barrel
topology and it is ~500 amino acid residues structured in three successive domains.
The first domain consists of 150 amino acids, second domain from 150 to 300 amino
acids, and the third domain from 300 to 500 amino acids. The presence of disulfide
bonds in-between the domains I and II and between I and III stabilizes the structure
of laccase (Bertrand et al. 2002; Plácido and Capareda 2015). The structure of
laccase has been studied using crystallography, isolating plant and animal laccase
as crystals had been difficult to obtain due to the unavailability of proper purification
protocols. Despite their broad taxonomic distribution and variety of substrates, it has
been demonstrated that Cu in laccases exists in four different Cu catalytic forms per
protein unit. These four catalytic Cu atoms are type 1 Cu (T1 Cu) and tri-nuclear Cu
clusters (T2 Cu, T3α Cu, and T3β Cu) at the T2/T3 site across all multicopper
oxidases. These four Cu ions are divided into three types of structures: Type
1 (paramagnetic ‘blue’ Cu), Type 2 (paramagnetic “normal/non-blue” Cu) and,
Type 3 (diamagnetic spin coupled Cu-Cu pair). The majority of the proteins are
represented in Table 2.

2.2 General Mode of Action

Catalytic participation of laccase’s in coupling reactions is dependent on C–C, C–N,
and C–O molecule linkages. Laccase cleaves phenolic components in three ways:
Cα–Cβ cleavage, Cα oxidation, and aryl–alkyl cleavage. In laccase-catalyzed oxi-
dation, reaction the initial e� acceptor is T1 Cu that is situated in the cavity near the
enzyme surface. The reduction of T1 Cu is a rate-limiting step and the internal
electron then moves from T1 to T2 to T3 Cu. Meanwhile, at T2 and T3 Cu sites, O2

is reduced to H2O. Laccase converts phenolic compounds to phenoxyl radicals,
which are then polymerized by radical rearrangement or coupling. However, based
on the stability of the phenoxyl radicals, redox reversibility with oxidation of a
targeted substrate is observed. By acting as mediators, radical-based coupling/redox
recycling of phenolic substrates broadens the spectrum of laccase substrates (Patel
et al. 2019; Agrawal et al. 2018; Kunamneni et al. 2007).
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3 Laccase in the Synthesis of Biocomposite

The bio/wood composite is made by the use of two components the i.e., the wood
fiber and the adhesive. In the case of synthetic adhesive, formaldehyde and phenol
formaldehyde are generally used. However, due to its toxic and harsh effects, the
shift has occurred towards the biological synthesis of bio/wood composites
(González-García et al. 2011; Moubarik et al. 2010). Also, the Government of
Korea stated that the emission level above 4.0 mg/m2.h for the total volatile organic
compound (TVOC) is prohibited (JIS A 1901, small chamber method) (ASTM-
D6007-96 1996; Kim et al. 2007). The lignin component of the plants is the second
most abundantly available polymer after cellulose. As lignin has structural similarity
to the phenol-formaldehyde it has been regarded as a potential substitute for the
already available synthetic adhesive (Zhou et al. 2011; Kumar et al. 2009). However,
despite the two advantages i.e., high availability and a potential substitute for

Table 2 Sources and application of laccase in various industries

Sources Applications References

Myceliophthora thermophila Conditioner for dough Renzetti et al.
(2010)

Pleurotus ostreatus Polycyclic aromatic hydrocarbons
degrdation

Pozdnyakova et al.
(2006)

Trametes sp. Development of bioactive hydrogel
dressing

Rocasalbas et al.
(2013)

Trametes versicolor Biosensors Ardhaoui et al.
(2013)

Myrothecium verrucaria Delignification Agrawal et al.
(2019)

Myrothecium verrucaria Anthraquinone dye removal Agrawal and
Verma (2020b)

Stropharia sp. Alizarin Cyanine Green removal Agrawal and
Verma (2019a)

Stropharia sp. Column bioreactor for the removal of
Anthraquinone violet R

Agrawal and
Verma (2019b)

Myrothecium verrucaria Hazardous wastes Agrawal and
Verma (2020c)

Basidiomycete strain PV 002 Decolorization of azo dyes Verma and
Madamwar (2005)

Pleurotus ostreatus and
Phanerochaete chrysosporium

Dye decolorization Verma and
Madamwar
(2002a)

Stropharia sp. Depolymerization of lignocellulosic
biomass

Agrawal and
Verma (2020d)

Pleurotus ostreatus Gold nanoparticles synthesis El-Batal et al.
(2015)

Pleurotus ostreatus Biosensor Leite et al. (2003)

Pleurotus ostreatus Removal of Anthraquinone dye Hou et al. (2004)
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synthetic adhesive it has restricted use as most (80–85%) lignin available are either
burned or discarded (Vishtal and Kraslawski 2011; Mai et al. 2000; Pizzi 2003).
Thus, the use of lignin can be a game-changer for the industry of biocomposites and
as it is a renewable resource the fear of its scarcity in the future would not be an issue
(Agrawal and Verma 2020d).

4 Mechanism of Action of Laccase on Plant Fiber

The fiber modification has been an integral part of the synthesis of biocomposite and
various physical-chemical, methods have been applied and reported in literature e.g.,
alkaline, microwave, high temperature, and steam treatments (Verma et al. 2005,
2009, 2011; Verma and Mai 2010). However, due to high cost, energy requirement,
and less environmental sustainability, the past decades have been diverted towards
the biological and enzyme-mediated treatment of fibers. Laccase is ubiquitous and
multi-dimensional protein and has been used for the removal of lignin (Agrawal
et al. 2019; Agrawal and Verma 2020a). The biological treatment methods are
milder, specific, and more sustainable and cause minimal/no damage to the biolog-
ical structure of the fiber (Kunamneni et al. 2008). Laccase enzyme is large and
cannot penetrate the cells of the fiber it only results in surface modification (van de
Pas et al. 2011). It acts on phenolic polymers of lignin with the resulting in reduction
of O2 to H2O (Witayakran and Ragauskas 2009). It is due to these properties that
laccase is an intensively studied oxidoreductase having numerous applications and
recently in biocomposite synthesis (Agrawal et al. 2019; Agrawal and Verma
2020a, e). Also, laccase-mediated oxidation of lignin, free radicals of phenol and
polyphenols are formed. As these free radicals are highly reactive it results in
depolymerization, co-polymerization, and grafting (Saastamoinen et al. 2012).
Further, the structure of lignin exhibits similarity to phenol-formaldehyde and can
thus be a potential adhesive for the synthesis of biocomposite (Zhou et al. 2011;
Kumar et al. 2009). Despite the advantage of lignin, the major drawback is its
transformation to insoluble lignin and thus requires additional cross-linking e.g.,
maleic anhydride (Syukri et al. 2021). The laccase mediated treatment also has
numerous advantages such as improvement in crystallinity index (Agrawal et al.
2019; Agrawal and Verma 2020a) removal of amorphous phenolic and non-phenolic
components with no effect on the microfibril core that ultimately enhances the
crystallinity of the cellulose of the fiber along with surface modification to form an
effective biocomposite (Nasir et al. 2015) (Fig. 1).

5 Other Applications of Laccases

An overview of the various scientific and industrial applications has been
represented in Fig. 2 and has been elaborated in the following section.
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5.1 Paper and Pulp Industry

Wood is made of small wood fibers that are adhered to by lignin. To separate these
wood fibers chemical and physical methods of pulping are used. In chemical pulping
fibers are separated by dissolving and degrading lignin using chemical agents
whereas in physical pulping fibers are physically ripped apart (Bilal et al.
2019a, b; Singh et al. (2015). Pulping is followed by sheeting which results in the
production of paper. Chlorine-based chemicals are used for pulp bleaching; as a
result, chlorinated aliphatic and aromatic compounds are formed. The compounds
are said to be carcinogenic, mutagenic, and toxic. Extensive research has been

Fig. 1 Schematic representation of the laccase-mediated synthesis of biocomposite

Fig. 2 Applications of laccase in different industrial and scientific sectors
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undertaken in recent years to develop environmentally sustainable enzymatic
bleaching technologies. Pulp bio-bleaching has been demonstrated using laccase-
mediated systems, but the lack of proper and cheap mediators has hampered their
practicality. Laccases can remove potentially toxic phenols produced during lignin
degradation, allowing them to depolymerize lignin and delignify wood pulps.
Laccase starts by interacting with small phenolic fragments of lignin, which then
react to degrade with the lignin polymer. Moreover, the use of ligninolytic fungi to
pretreat wood chips strengthens the pulp while lowering the energy required for
mechanical pulping. It is also used to reduce the kappa number of pulp and improve
the pulp’s papermaking properties. Thus, the use of laccases in bio-bleaching
processes in the pulp and paper industry is an environmentally safe approach
(Bilal et al. 2019a, b; Virk et al. 2012).

5.2 Dye Degradation

Massive quantities of wastewaters are released by the textile industries which are
contaminated by a large spectrum of chemicals for example azo dyes, which are the
primary source of environmental pollution (Paździor et al. 2019). For the environ-
ment’s safety, treatment of industrial wastewater has become very important before
its safe release into the environment (Salem et al. 2019). These effluents contain
recalcitrant dyes (e.g., azo) that pollute the freshwater with their color and carcino-
genic intermediates such as the aromatic amines. These chemical reagents are
usually complex, synthetic and are unaffected to decolorization in presence of
H2O, light, and different chemicals. They are also resistant to various existing dye
degradation methods e.g., chemical treatments that are ineffective, and results in the
production of intermediate compounds that are mutagenic or carcinogenic (Bilal
et al. 2019a, b). As a result, the laccase-assisted dye bioremediation has gained
interest due to their diverse potential for the degradation of various dyes via
sustainable approach (Couto and Toca-Herrera 2006; Verma 2001; Verma and
Madamwar 2002a, b). Since traditional treatment methods based on chemical or
physical processes are extremely costly and involve massive quantities of resources,
various techniques have recently been investigated as alternatives. Laccase due to its
ability to catalyze reactions that can degrade a wide variety of pollutants. For textile
wastewater treatment, many aerobic and anaerobic bioprocesses have been devel-
oped and extensive research has been done fungal laccases for the production of
laccase to improve bioprocesses for the degradation of dyes (Verma and Madamwar
2005). The majority of current dye wastewater treatment processes are inefficient
and costly. As a result of their ability to degrade dyes fungal laccase mediated
remediation of dyes may provide an appealing solution for a sustainable future.
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5.3 Bioremediation

Major issues globally today are polluted air, soil, and water that have disastrous
consequences. Industrialization and the widespread use of pesticides in agriculture,
contamination of the atmosphere is major problem. Industries have been subjected to
stringent regulations to handle their waste effluents before their discharge. Numerous
remediation strategies have been reported but only a few have been adopted by the
industries. Recently, the ability of fungi to transmute diverse chemicals has sparked
the interest of the scientific community (Bollag et al. 2003). Also, low cost, high
efficiency, and environmental friendliness it has been considered as a feasible
alternative to the pre-established chemical-physical methods (Balcázar-López et al.
2016). Further, enzymatic therapy is now being considered as an substitute strategy
for the removal of xenobiotics (Balcázar-López et al. 2016). Laccases can remediate
polluted soils via immobilization as they can oxidize toxic organic contaminants
including chlorophenols, PAHs, etc. (Zhang et al. 2008; Niu et al. 2013). Farnet et al.
(2000) investigated the ability of Marasmius quercophilus laccase to
treatalkylphenols. Saparrat et al. (2010) investigated the detoxification of
“alpeorujo,” which is a solid by-product from the olive oil extraction industry by
Coriolopsis rigida laccase. Laccase has been reported for the removal of
dichlorodiphenyltrichloroethane (Yuechun et al. 2010) and 2,4-dichlorophenol
(Bhattacharya et al. 2009). The degradation of PAHs by Pleurotus ostreatus laccase
has been reported by Pozdnyakova et al. (2006) and high tannin from wastewater by
Coriolopsis gallica laccase (Yagüe et al. 2000).

5.4 Food Processing

Laccases have a lot of potential as food additives and manufacturing aids in the food
industry (Osma et al. 2010). Laccase-based biocatalysts are energy-efficient and
biodegradable, making them ideal for food industries and also to produce low-cost,
nutritious foods (Brijwani et al. 2010). Laccases can reduce food processing costs
while still being environmentally friendly and to fully realize its ability a detailed
understanding of their mode of action is required. Laccase’s versatility in action and
widespread presence in many fungi species attest to its ease of use in biotechnolog-
ical processes. Despite the presence of turbidity, after treatment with laccase and
active filtration color consistency improved in fruit juices. Also, the phenolic content
of juices reduced after laccase treatment along with stability of color (Ribeiro et al.
2010). Dough enhancement additives are added in bread-making process to improve
its taste, texture, volume, and freshness. Thus, laccase addition in dough had an
oxidizing effect thereby increasing gluten structures strength in baked goods. Also it
improved the crumb structure, softness, increased volume, stability, weight, and,
reduced stickiness. It also has to be noted that where laccase decreased extensibility
in both flour and gluten dough and increased its resistance. The laccase and
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proteolytic enzymes when added to oat flour increased loaf specific volume and
reduced crumb stiffness, chewiness respectively, and eventually improved its tex-
ture. Also, Jurado et al. (2009) stated that the induction of laccase acts as a
fermentation inhibitor and increased the output of ethanol from steam-exploded
wheat straw and reduced phenolic compounds (Larsson et al. 1999). The polymer-
ization of phenols and polyphenols and the natural co-oxidation reactions have
resulted in unwanted fragrance and color changes (Ribeiro et al. 2010). Thus, laccase
has been reported and used for the clarification of fruit juices (Narnoliya et al. 2019).
Giovanelli and Ravasini (1993) investigated the use of laccase along with filtration
for stabilizing apple juice. Phenols were removed more efficiently by laccase
treatment over other treatments, such as activated coals (Brijwani et al. 2010).
Ribeiro et al. (2010) stated that treatment by laccase significantly decreased the
phenolic content of juices while increasing color stability. It has also been found to
be more beneficial as compared to traditional treatments e.g., addition of ascorbic
acid and sulfites along with the enhancement of its functionality as well as sensory
properties. Laccase also contributes in beverage stabilization, role in overall food
quality improvement, and use in the baking industry (Manhivi et al. 2018; Di Fusco
et al. 2010). Further knowledge of laccase kinetic parameters would be beneficial for
functional applications of the enzyme.

5.5 Personal Care Applications

Laccase-generated products contain antimicrobial, detoxifying, or personal care
active ingredients and has been used to synthesize anesthetics, anti-inflammatory
medicines, etc. (Upadhyay et al. 2016). Couto and Toca-Herrera (2006) stated that
the dyeing formula’s hydrogen substitution method based on laccase can resolve the
inconvenience of chemical dyes by replacing the hydrogen with oxide. In recent
years, skin lightening has been also used for cosmetics and dermatological prepara-
tions containing staining proteins. Laccase can be used as fragrant agents in personal
care items such as toothpaste, mouthwash, detergent, and soap.

5.6 Pharmaceutical Pollutants

Active pharmaceutical ingredients have been detected in wastewater, and no effec-
tive method for the removal of are currently in use at large scale. Also these
pollutants when released in water severely damages the aquatic environment or
drinking water sources (Sui et al. 2010). This perilous condition necessitated the
creation of a system for effectively removing pharmaceutical-based pollutants from
wastewater. Researchers have confirmed bioremediation and removal of various
pharmaceutically active ingredients using laccase (Rana et al. 2017; Xu et al.
2015). Lonappan et al. (2018) confirmed DCF biodegradation by immobilized
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laccase and enzyme’s binding improved when biochars were pretreated with citric
acid. Remarkably, mature pig biochar immobilized laccase demonstrated a notable
ability to fully extract DCF (500 μg L�1) in 2 h. Naghdi et al. (2017) investigated the
removal of carbamazepine by immobilized laccase. After three cycles of reusability,
the immobilized biocatalytic device retained 70% of its original operation and
removed 83% of the carbamazepine from the spiked water. In a study by Taheran
et al. (2017) used polyacrylonitrile-biochar composite that was home-prepared for
laccase immobilization to degrade chlortetracycline from aqueous solution medium.
Furthermore, the composite nanofibrous membrane-immobilized laccase demon-
strated notable chlortetracycline removal efficacy (Taheran et al. 2017).

5.7 Biosensor

Oxidation of various organic pollutants, present in wastewater, especially phenolic
compounds is catalyzed by laccases. It has a significant effect on the production of
biosensors for both environmental and clinically relevant metabolites and it does not
need any cofactors for e� transfer reactions. Due to laccase’s wide substrate range in
biosensor technology, a large range of phenolics and azides can be detected
(Rodríguez-Delgado et al. 2015; Sezgintürk et al. 2005). Laccase coupled multi-
walled carbon nano tubes-based biosensors are used to calculate the polyphenol
index in wines. A bio-sensor based on laccases coupled with multi-walled carbons
nano-tubes measures the index of polyphenols in wine. This biosensor gives a clear
and fast amperometric response to gallic acid (Di Fusco et al. 2010). The
ultrasensitive amperometric detection of nanomolar catecholamine neurotransmit-
ters (dopamine, epinephrine, and norepinephrine) is achieved by co-immobilization-
based enzyme electrodes and laccase on glassy carbon electrodes. The enzyme’s
selectivity to different phenolic compounds has been altered by the hybrid material
of Nafion/sol-gel silicate used to immobilize laccase (Abdullah et al. 2007).

5.8 Miscellaneous Pollutants

As the population is increasing, agriculture production is being improved. This has
led to heavy industrialization and excessive use of pesticides, which has caused a
dreadful environmental condition. This has polluted the soil, water and, air with
toxic chemicals which can create havoc on human health and climate. Due to these
factors, it has become a major concern for the world. Potentially hazardous sub-
stances such as fungicides, herbicides, pesticides pharmaceutical compounds, phe-
nolic compounds, PPCPs, and recalcitrant synthetic compounds can be biodegraded
by laccase. Bisphenol-A, which has a carcinogenic effect, can be degraded by
glutaraldehyde cross-linked chitosan beads. Laccase can degrade a wide range of
substances, including polyvinyl chloride (Sumathi et al. 2016), xenobiotics e.g.,
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polynuclear aromatic hydrocarbons (Dias et al. 2003; Cañas et al. 2007),
polychlorinated biphenyls (Keum and Li 2004), etc. Laccase catalysis is used to
regulate contaminants in the environment where fungal laccases can efficiently
degrade and mineralize a variety of environmental contaminants, including BPA
(Uchida et al. 2001), chlorophenol (Gaitan et al. 2011), nonylphenol (Tsutsumi et al.
2001), and chlorinated hydroxyl biphenyl (Schultz et al. 2001). It has also been used
for the removal of 2,4,6-trinitrotoluene (TNT) (Cheong et al. 2006) and catechol
(Tušek et al. 2017).

6 Limitations and Future Aspects

The main limitations of the application aspect using laccase are deactivation factors
such as inhibitors, elevated pH, temperature, and non-reusability of free laccase.
These drawbacks can be mitigated using new systems such as laccase-mediator or
immobilized-laccase catalyzed systems. The lack of capacity to produce large
quantities of active enzymes prevents its utility on a large scale. However, these
issues can be addressed by recombinant organisms or screening for naturally
hypersecretory strains. Thus, strain proficient of producing high titre of a suitable
enzyme should be selected followed by optimization of the conditions for laccase
production. Recent biotechnological advances, particularly in protein engineering
and directed evolution, have enabled essential tools for the efficient development of
better enzymes with improved properties with better applicability. Also, the produc-
tion of new enzymes has been tailored to completely new areas of application where
enzymes had not previously been used. Although laccase is still produced in limited
quantities, their prospective ability is immense; many of these remain to be revealed.
Enzyme immobilization could be used to overcome these limitations while also
boosting biodegradation efficiency and enzyme reuse. Since the discovery of
laccase, its use has expanded in a variety of sectors and has gained significant
interest in the synthesis of biocomposites.

7 Conclusion

Laccase has tremendous potential in the application of biocomposite using plant
fibers and the research must now be directed toward less focused aspects of the
enzyme to broaden the enzyme’s applications. One of the major limitations of using
laccase is the high cost of downstream processes such as laccase purification that
raises the overall cost of production, preventing it from being commercialized. As a
result, research should concentrate on the development of more efficient and cost-
effective methods for large-scale production and commercialization of laccase-based
applications. It would facilitate the development of a “greener” approach for a
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“clean” environment by contributing towards chemical-free treatment in industries,
development of a chemical-free biocomposite.
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