
Chapter 12
Modeling and Control of PV Systems
for Maximum Power Point Tracking
and Its Performance Analysis Using
Advanced Techniques
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Abstract Maximum power point tracking (MPPT) is a necessary and primary
concern in modern photovoltaic (PV) energy systems. The nonlinear nature of the
output characteristics of PV systems causes it to supply maximum amount of power
at a particular point of operationwhich is known as themaximumpower point (MPP).
For optimal utilization of the PV modules effective tracking of this particular oper-
ating point is necessary for most of the PV energy systems. Over the years, many
different approaches have been proposed for maximum power point tracking in PV
energy systems. But most of these literatures do not draw a complete picture of the
design, control and operation process of the whole system involved in MPPT. To
alleviate such difficulties, this chapter discusses the MPPT system in an exhaustive
manner using a novel integrated model of the system for designing robust and effec-
tive controllers for MPPT. This chapter considers a system where a PV module is
connected to a DC-DC converter system for demonstrating the process. Firstly, a
novel small-signal model of the system where a PV module is connected to any of
the three basic DC to DC converters is obtained by utilizing the perturbation and
linearization method on the available large signal models. Then, using these small-
signal models, generalized transfer function models of the systems are obtained by
application of simple circuit theory. The intrinsic nonlinearities of the system and
other inherent factors that create difficulty in controller design are also pointed out.
As an effective solution to this problem of nonlinearity, the design and implemen-
tation process of a gain-scheduled PID controller for controlling such highly non-
linear systems is presented. Moreover, the design and implementation of an MPPT
control loop around the voltage control loop are described using some advanced
computation-based algorithms, namely, Particle Swarm Optimization (PSO), Differ-
ential Evolution Algorithm (DEA) and Binary Coded Genetic Algorithm (BCGA)
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for MPPT. In addition to that, a comparative analysis of the three metaheuristic algo-
rithms implemented here is also presented in this chapter.All the discussed theoretical
aspects were validated through simulation in MATLAB/SIMULUNK implementing
various real-world scenarios such as partial shading, load disturbance, etc. The novel
modeling approach, the systematic control system design approach, the MPPT algo-
rithm design methods and implementation and their comparative analysis can be of
great usefulness to a designer.

Keywords Binary coded genetic algorithm (BCGA) · Differential evolution
algorithm (DEA) · Gain scheduling · Maximum power point tracking (MPPT) ·
Particle swarm optimization (PSO) · Photovoltaic (PV) system · Proportional
integral derivative controller (PID) · Small-signal modeling

Nomenclature

ANN Artificial neural network
SA Simulated annealing
MPPT Maximum power point tracking
DEA Differential evolution algorithm
PSO Particle swarm optimization
FL Fuzzy logic
PV Photovoltaic
FLC Fuzzy logic controller
TLBO Teaching and learning based optimization
BCGA Binary coded genetic algorithm
GA Genetic algorithm
DC Direct current
AC Alternating current
PID Proportional integral derivative
InC Incremental conductance
P&O Perturb and observe
LHS Left hand side
RHS Right hand side
PWM Pulse width modulation
LUT Look-up table
CCM Continuous conduction mode
PI Proportional integral
KCL Kirchhoff’s current law
KVL Kirchhoff’s voltage law
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12.1 Introduction

In general, a photovoltaic energy conversion system comprises of photovoltaic
modules, power electronic converters, controllers, and loads. Figure 12.1 depicts the
structure of a typical PV energy conversion system. Such PV systems are classified
into different categories depending on the type of loads connected to the system, the
number of power electronic conversion stages present in the system, grid connection,
etc.

On the basis of interaction with the grid, photovoltaic energy systems are cate-
gorized into three categories, namely, grid-tied system, off-grid system and grid-
interactive hybrid system. In a typical grid-tied PV energy system the power gener-
ated by the PV modules is fed directly into the utility grid with the help of some
power electronic interfaces (Malinowski et al. 2017), whereas, in case of an off-grid
system the loads are fed from the PV modules which are assisted by energy storage
systems/batteries (Malinowski et al. 2017). The structure of a grid-interactive hybrid
PV-battery system is a hybrid combination of off-grid and grid-tied PV systems
(Khezri et al. 2020). Such systems are made of a typical energy storage systems
along with the PV modules and these can be operated in either of the grid-tied of
off-grid mode of operation.

The majority of grid-tied and off-grid PV systems are either single-stage (Guo
et al. 2020) conversion system where the inverter itself tracks the MPP or double-
stage conversion system (Fahad et al. 2019) where a DC-DC converter tracks the
MPP and the DC-AC inverter pumps the energy into the grid or load from the DC-
DCconverter. Even though single-stage conversion ismore efficient it is hard to apply
in low or medium voltage PV systems (Guo et al. 2020). In this chapter the modeling,
control and MPPT in a typical PV system with a DC-DC converter in the first stage,
as shown in Fig. 12.2 is discussed. In case of such a system, the representation of
the inverter input port as a resistor drastically simplifies the analysis of the system
without any significant loss of actual system characteristics (Li et al. 2019).

Even though, the topology, operation and control system structures are different
for the different types of systems mentioned above, the design and implementation
of MPPT in those systems are somewhat similar. Many different algorithms and

Fig. 12.1 General representation of photovoltaic energy systems
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Fig. 12.2 Schematic of double-stage PV system

methods have been suggested throughout the years for both single-stage and double-
stage conversion of solar energy. There are some conventional techniques, such as,
“perturb and observe (P&O) technique” (Haque 2014), “incremental conductance
technique (InC)” (Shang et al. 2020), “open circuit voltage method” (Ko et al. 2020),
“short circuit current method” (Ko et al. 2020), etc. Even though, these conventional
methods are relatively easy to implement, most of the time thesemethods fail to track
the “global MPP” under “partial shading conditions.” To solve the problem of stag-
nation of the classical methods many new techniques have been proposed. In recent
years, with the advent of fast computational systems the MPPT problem is being
considered as an optimization problem. Consequently,many optimization algorithms
have been suggested in literature. Implementation of“particle swarm optimization
(PSO)” inMPPT is discussed byLi et al. (2019). References (Fathy et al. 2018; Lyden
et al. 2020; Rezk et al. 2019) and (Allahabadi et al. 2021) shows the application of
“teaching and learning based optimization (TLBO),” “simulated annealing (SA),”
“fuzzy logic control (FLC),” and “artificial neural network (ANN)” respectively. In
terms of speed and tracking of global MPP performance of these methods are satis-
factory. But these improvements in tracking performance and efficiency come at a
cost of increased complexity, requirement of more costly components and require-
ment of more numbers of sensors. The target of this chapter is to discuss the various
aspects of the advanced computation-based MPPT system. It discusses different
aspects of modeling and control system design for MPPT in PV systems. It also
analyses some popular advanced computation-based metaheuristic algorithm-based
MPPT systems and presents a comparative analysis of the presented algorithms based
on their characteristics and tracking performance.

This chapter describes theMPPT systemdesign procedure in a systematicmanner.
First, the small signal modeling of the PV module and its combination with the
canonicalmodel ofDC-DCconverter is presented. Then the controller design process
followed by the implementation and comparison of MPPT algorithms are discussed.
The complete design process described in this chapter is summarized in the flowchart
of Fig. 12.3.

The rest of the chapter is organized as follows. Section 2 derives the small signal
modeling of a PV module based on perturb and observe technique which is then
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Fig. 12.3 Flowchart of the described design Process

combined with a canonical model of the DC-DC converters in Sect. 3. A gain sched-
uled PID controller is then designed in Sect. 4 depending on the systemmodel. After
that, the simulation results for different advanced algorithm-basedMPPT algorithms
are presented in Sect. 5. Section 6 presents comparative analysis of these algorithms
when applied for MPPT which is followed by the evaluation of system performance
subjected to load change in Sect. 7. Finally, the chapter is summarized in Sect. 8.
The key contributions of this chapter are:

• Novel Small-signal model of PV module and its combination with existing
canonical model of DC-DC converters.

• Design of gain scheduled PID controller using the derived system models.
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• Implementation of advanced soft-computing algorithm-based MPPT algorithms
and their comparative analysis.

12.2 Small-Signal Model of Photovoltaic Module

Majority of MPPT algorithms are implemented as a high level control algorithm
which controls the command signal for an internal control loop. The inner control
loop may be implemented to track and regulate the system voltage or current in
accordance with the command signal generated by the MPPT algorithm. In order to
properly design and implement this necessary control systemone requires an accurate
small-signal model representation of the actual system at the concerned operating
points.

The small-signal model of a PVmodule can be analytically derived from its large-
signal nonlinear model as shown by Rana et al. (2020). In this chapter a single-diode
model of the PV cell, as shown by Shang et al. (2020) is used as the large-signal
model to be utilized for derivation of the small signal model. Generally, several such
PV cells are interconnected in both series–parallel configuration with each other to
construct a PVmodule. Li et al. (2019) stated that the equivalent circuit schematic of
such PVmodule can be drawn as shown in Fig. 12.4a having terminal characteristics
as shown in Fig. 12.4b.

The relationship between the terminal current and voltage of the PV module in
Fig. 12.4a can be written as in Eq. (12.1) as shown by Li et al. (2019). Here, Ns and
Np are number of PV cells connected respectively in series and parallel manner to
construct the module, Rsh and Rs are equivalent shunt and series resistances of each
cell, η is the quality factor of the material, q denotes the value of the charge of a
single electron, Irs is the diode reverse saturation current, K represents Boltzmann’s
constant, and T stands for the absolute temperature in Kelvin.

I = Np Iph − Np Irs

[
exp

{
q(V/Ns + I Rs/Np)

ηKT

}]
−
[
NpV/Ns + I Rs

Rsh

]
(12.1)

Fig. 12.4 a Equivalent circuit representation of a PV module. b Characteristics of a PV module
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“The nonlinear large-signal model represented by (1) can be linearized by using
analytical methods to derive a small-signal model at a particular operating point of
the system. In this chapter the “perturbation and linearization” technique is used to
linearize the system around a quiescent operating point and obtain the small-signal
model” (Rana et al. 2020). Equation (12.2) is obtained when small perturbations in
the PV terminal voltage and current, (v͡ pv, i ͡ pv) are applied around the operating
point, (Vpv, Ipv) in Eq. (12.1).

Ipv + �
i
pv

= Np Iph − Np Irs

⎡
⎢⎢⎣exp

⎧⎪⎪⎨
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q(Vpv/Ns + Ipv Rs/Np) + q(
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−

⎡
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Rs )

Rsh

⎤
⎥⎥⎦ (12.2)

After expanding the exponential term in (2) using Taylor series expansion with
respect to the small perturbation terms (3) is obtained.
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⎦ (12.3)

Since, the perturbations are assumed to be very small, the higher power of these
terms would result in even smaller terms which have very little effect on the system.
So, a first order approximation may be used to neglect the terms containing higher
powers of the perturbations. After the approximation and some rearrangements (3)
results in (4).
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It can be observed that the first term on LHS and the first three terms on the RHS
of (4) represent the DC relationship between PV current and voltage, whereas, the
other terms in the equation represent the small-signal relationship. After equating
the small-signal terms on both sides of (4) one can derive (5).

�

i
pv

= −α(
�
v
pv

/Ns + �

i
pv

Rs/Np) − (Np
�
v
pv

/Ns Rsh) − (
�

i
pv

Rs/Rsh) (12.5)

where, α =
[
qNp Irs exp

{
q(Vpv/Ns + IpvRs/Np)

ηKT

}]
/ηKT (12.6)

Some rearrangements of (5) result in the required linear model representation of
the PV module as shown in (7). Here, σ is the small-signal conductance of the PV
module, mathematically its value is equal to the negative value of the slope of the
I-V curve of the module.

�

i
pv

= −σ.
�
v
pv

(12.7)

where, σ = (α/Ns) + (Np/Ns Rsh)

1 + (αRs/Np) + (Rs/Rsh)
(12.8)

Using the relationship in (7) the small-signal model of the PV module can be
interpreted as a variable resistor as in Fig. 12.5awhose value depends on the operating
point of the system. If the relative directional representation between the voltage and
current is reversed then the model can be drawn with a resistor having positive value
as in Fig. 12.5b.
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Fig. 12.5 Small signal model of PV module a equivalent model from Eq. (12.7). b With reversed
current direction

12.3 The Integrated Small-Signal Model

In a typical double-stage PV system theMPPT operation is performed in the DC-DC
conversion stage. Different types of converters can be used to serve this purpose.
Figure 12.6 shows the circuit configuration of such systems with the three well-
known basic DC to DC converters, namely, Buck, Boost and Buck-boost converter.
Here, the load, which might be an inverter or any other kind of load is modelled as
a resistor R0.

The liner small-signal model of PV system derived in the previous section can
be used for system modeling purpose. In this chapter, the linear resistive model
is integrated with a general canonical model of the DC-DC converters operating
in continuous conduction mode (CCM) to obtain the complete small-signal model
representation of the system. “The canonical model of DC-DC converter is a gener-
alized representation of the converters where the basic structure of the equivalent
circuit remains same for all the converters” (Cuk 1977). The schematic of the system
can be seen in Fig. 12.7, where, the small-signal resistance of the PV module is
represented by r.

The expression of the values of the different passive circuit components in the
canonical converter model is different for the different converters. These expressions
for the aforementioned DC-DC converters used in this chapter are given in Cuk
(1977), a modified version of which are reproduced in Table 12.1.

With the help of Fig. 12.7 and Table 12.1, one can obtain various transfer functions
of the system. In this chapter, the voltage across the terminals of the PV module is
taken as the parameter to be controlled for MPPT applications. Which necessitates
the derivation of the control to output transfer function, where the duty cycle of the
PWM converter switch is the control signal and the voltage across the terminals of
the PV module is considered as the output signal.

Applying conventional circuit theories, such as KVL and KCL, the necessary
transfer function can be derived in the form shown in (9).
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Fig. 12.6 DC-DC conversion stage of PV systems incorporating (a) Buck converter (b) Boost
converter (c) Buck-boost converter

Gvd(s) =
�
v
pv

(s)

�

d (s)
= b2s2 + b1s + b0

a3s3 + a2s2 + a1s + a0
(12.9)

Here, a0 = R0

M2
+ r (12.10)

a1 = Le

M2
+ rC1R0

M2
+ rC2R0 (12.11)
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Fig. 12.7 Complete Linear Small-Signal Model Representation of the System

Table. 12.1 Parameters of canonical model for basic DC-DC Converters

Converter type M(D) e(s) j(s) Le

Buck D
Vpv
D

DV pv
R0

L

Boost 1
(1−D)

Vpv
(1−D)

(
1 − sL

(1−D)2R0

)
Vpv

(1−D)3R0

L
(1−D)2

Buck-boost − D
(1−D)

Vpv
D(1−D)

(
1 − sDL

(1−D)2R0

)
DVpv

(1−D)3R0

L
(1−D)2

a2 = rC1Le

M2
+ LeC2R0

M2
(12.12)

a3 = r LeC1C2R0

M2
(12.13)

b0 = −r

{
e(s) + j (s)R0

M2

}
(12.14)

b1 = −r

{
e(s)R0C2 + j (s)Le

M2

}
(12.15)

b2 = − j (s)r R0LeC2

M2
(12.16)

The expression of the different elements of the polynomials in numerator and
denominator of (9) for different DC-DC converters can be derived using the param-
eter values from Table 12.1. The derived coefficients are tabulated in Table 12.2.
It needs to be mentioned that, since some of the canonical model parameters are
complex frequency dependent, the expression of the different coefficients need to be
reorganized to obtain the final form in Table 12.2.
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Table 12.2 Coefficients of transfer function polynomials

Coefficient Buck Boost Buck-boost

a0
R0
D2 + r R0(1 − D)2 + r R0(1−D)2

D2 + r

a1
L
D2 + r R0

(
C1
D2 + C2

)
L+r R0

{
C1(1 − D)2 + C2

} L
D2 + r R0

{
C1(1−D)2

D2 + C2

}

a2
L
D2 (rC1 + R0C2) L(rC1 + R0C2)

L
D2 (rC1 + R0C2)

a3
LR0C1C2

D2 LR0C1C2
LR0C1C2

D2

b0 −2 rV pv
D −2 rV pv

(1−D)
−2 rV pv

D(1−D)

b1 − rV pv
D

(
R0C2 + L

R0

)
− rVpv

(1−D)
(R0C2) − rVpv

D(1−D)

(
R0C2 + L

R0(1−D)

)

b2 − rV pvLC2
D 0 − rV pv

D(1−D)
LC2

(1−D)

The transfer function model in (9) along with Table 12.2 can be used for analysing
the system behaviour and design a suitable controller to control the terminal voltage
of the PV modules.

12.4 System Analysis and Controller Design

The transfer functions that have been derived so far can be used to analyse the system
before designing the control system for the system. In this chapter, a typical PV
system with a Boost converter as in Fig. 12.6b having parameter values as depicted
in Table 12.3 is considered for the system analysis purpose. The bode plots of the

Table 12.3 Parameter values
of PV module and converter

Parameter name Symbol Value

Open circuit voltage of each PV module Voc 21.75 V

Short circuit current of each PV module Isc 6.36 A

Each module voltage at MPP VMPP 17.83 V

Each module current at MPP IMPP 5.915 A

Series resistance of each cell Rs 0.001 �

Parallel resistance of each cell Rsh 5 k �

Number of cells connected in series Ns 36

Number of cells connected in parallel Np 1

Reverse saturation current of diode Irs 1 μA

Load resistance R0 100 �

Inductor L 10 mH

Input capacitor C1 100 μF

Output capacitor C2 100 μF
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Fig. 12.8 Bode plots of the transfer functions for boost converter at different operating points

transfer functions at different operating points, i.e. at different values of converter’s
duty cycle are illustrated in Fig. 12.8.

From Fig. 12.8 one can interpret that as the operating point varies, the dynamic
response of the open-loop system also change. The frequency responses presented
here are similar to a typical three pole system response with a high frequency pole at
relatively lower duty cycles. It can be observed that the bandwidth of the open loop
system increaseswith thePWMduty cycle up to a certain limit then it decreases again,
and the phase margin of the system keeps decreasing as the duty cycle increases.
Moreover, the natural damping of the system is not same at all the operating points;
the system is well damped around theMPPwhich happens to occur at 70% duty cycle
but the damping is not good enough for relatively smaller and larger duty cycle than
this. During the design process of a controller for the system one should consider
these key features of the frequency response of the system.

Even though the dynamic response of the system changes with operating point,
it is still possible to implement conventional control approaches, such as PI or PID
control for the system with the help of “quasi-static approximation” (Kocher and
Steigerwald 1982). But in such cases, the performance of the system will be subop-
timal because of the non-adaptability of the controller. But the overall response of the
MPPT system depends largely on the performance of the control system, which is
why the control system has to be robust and optimal. Consequently, different kinds of
adaptive control approaches are proposed in literature. Such as sliding mode control
(Meng et al. 2018), fuzzy logic control (Chamanpira et al. 2019), etc. In this chapter,
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a gain scheduled PID controller (Shao et al. 2019) is considered for controlling the
system and ensuring satisfactory response. The structure of the inner control system
is depicted in Fig. 12.9. The gain scheduling could be done on the basis of different
system variable. The PV module voltage varies linearly with irradiance but current
varies logarithmically with the irradiance the variation in the voltage is smaller than
current. That is why the voltage of the PV module is taken as the variable depending
on which the gain scheduling is implemented. Using the transfer functions of the
system the PID controllers were tuned at the different operating points and using
these tuning data the look-up tables (LUTs) were implemented. The differential gain
was filtered using a first order filter and a clamping algorithm was implemented to
avoid windup problem of the integrator.

Fig. 12.9 Detailed schematic with inner control loop of the systemwith gain scheduled PID control
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12.5 Advanced Soft-Computing Algorithms for MPPT

Soft computing algorithms are generally algorithms that are based on some form of
artificial intelligence or are inspired by somenatural phenomena. In recent days, these
algorithms have found an overwhelmingly rising application in the field of MPPT
in various systems. Some of these instances include application of “artificial neural
network (ANN)” (Allahabadi et al. 2021), “simulated annealing (SA)” (Lyden et al.
2020), “teaching and learning based optimization (TLBO)” (Fathy et al. 2018), etc. In
this chapter the application andperformance analysis of “particle swarmoptimization
(PSO)” based MPPT (Rana et al. 2020), “differential evolution algorithm (DEA)”
(Rana et al. 2020) and “binary coded genetic algorithm (BCGA)” (Nagarani and
Nesamony 2019) is discussed. This chapter also compares these algorithms based
on their tracking performance and convergence characteristics.

The system performance for the different aforementioned MPPT algorithms is
examined by simulating them in Matlab/Simulink. The schematic of the simulations
model is shown in Fig. 12.9. As discussed earlier theMPPT algorithm is implemented
as a higher level control algorithm which generates the reference or command signal
for the internal control loop. For a system with structure like this, the designer has to
ensure that the internal control loop is significantly faster than the external control
loop. For demonstration purpose the outer control or theMPPT control algorithms are
implemented in such away that the fastest change that they canmake to the command
signal has an interval of at least 15 ms between themwhereas, the settling time of the
inner control loop is maintained at around 5 ms. The simulations are performed for
two different shading conditionswith the power-voltage curve as shown in Fig. 12.10.
It can be inferred that one of the conditions are uniform irradiation condition which
is applied to the system for the first half of the simulations while the other one is a
typical partial shading condition which is applied to the system during the second
half of the simulations. The irradiance condition on the different PV modules and
the power and voltage at the MPP for those conditions are given in Table 12.4. Using
this format of simulation the different algorithms are evaluated.

12.5.1 Particle Swarm Optimization (PSO) for MPPT

The “particle swarm optimization algorithm (PSO),” first introduced by Kennedy
and Eberhart (Kennedy and Eberhart 1995), is inspired by two natural phenomena
known as “Bird-Flocking andFish-Schooling” (Khan et al. 2021),where each particle
use the collective intelligence and experience of all the agents or particles to move
towards an optimal point in the search space. The application of PSO for MPPT in
PV system is described in Li et al. Jan. (2019). The flowchart of MPPT algorithm
based on PSO is presented in Fig. 12.11. The mathematical process for performing
the various steps of the PSO algorithm is summarized in (17), (18) and (19) (Li
et al. 2019). Here, pin and vin are the position and the velocity of the ith particle in
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Fig. 12.10 Output power versus output voltage curve of PV array for different shading conditions

Table 12.4 Parameters of a single PV module

Set of irradiance Module-1 Module-2 Module-3 MPP voltage
(Vmpp)

MPP power
(Pmpp)

Set-I 1000 W/m2 1000 W/m2 1000 W/m2 53.64 V 316.4 W

Set-II 1000 W/m2 800 W/m2 700 W/m2 54.78 V 236.9 W

nth iteration respectively, C1 and C2 are tuning parameters, r1 and r2 are random
numbers between 0 and 1, w is the dynamic inertia weight factor with maximum and
minimum valueswmax andwmin, respectively,m is the number of maximum iteration,
and Pbest andGbest are personal best and global best solution. It is worth mentioning
that the weight factor w reduces gradually as the search process progresses; this is
implemented to let the particles explore the search space more at the beginning and
make them converge and move less near the ending of the search process.

w = wmax − [{(wmax − wmin)n}/m] (12.17)

vn+1
i = wvn

i + C1r1(Pbesti − pni ) + C2r2(Gbesti − pni ) (12.18)

p n+1
i = p n

i + v n+1
i (12.19)
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Fig. 12.11 Flowchart of PSO for MPPT

The shading detection algorithm as shown in Fig. 12.11 is a simple algorithm for
PSC detection (Wellawatta and Choi 2018). It keeps track of the power available at
a certain set point and whenever the power changes more than a certain percentage
of the previous power it triggers a new search for MPP. The Maximum number of
iteration that are allowed is used as the stopping criteria for the PSO algorithm.

The variation in power and voltage levels of the PV array with time which are
obtained from the simulation model with the simulation setup as discussed earlier is
illustrated in Fig. 12.12. It can be observed that the MPPT algorithm based on PSO
tracks the MPP with fair accuracy. The system parameters converge to the MPP with
gradually reducing oscillations. Since, the MPPT based on PSO algorithm is bursty
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Fig. 12.12 Power and voltage of PV array for MPPT based on PSO

in nature, i.e. the search process is carried out in intervals or only when necessary,
the oscillations after a complete search process are very less or negligible. Moreover,
the performance of the inner control loop with the gain scheduled PID controller
can also be said to be satisfactory. The gain scheduled controller makes the system
voltage to settle down at the reference voltage commanded by the PSO algorithm
within 5 ms with no or very less overshoots and undershoots.

12.5.2 Differential Evolution Algorithm (DEA) for MPPT

“Differential evolution algorithm (DEA)” was invented by Storn and Price (1997).
DEA is a nature-inspired evolutionary algorithm where each element in the popula-
tion (chromosome) undergoes a process called mutation followed by a process called
crossover to obtain the optimal solution in the search space. Figure 12.13 captures the
flowchart of the MPPT based on DEA algorithm implemented in this study (Zhang
and Sui 2020). In this case, also the partial shading detection algorithm is similar
to the algorithm in case of the PSO-based MPPT mentioned in the previous discus-
sion. Equations (12.20)–(12.24) represents the mathematical process of mutation,
crossover, population update and parameter update which are undergone in course
of the run of this algorithm. Instead of a static parameter-based DE algorithm a
dynamic parameter-based algorithm as shown by Brest et al. (2006) is implemented
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Fig. 12.13 Flowchart of DEA for MPPT

here for better tracking performance and smoother convergence.

vn+1
i = xnr1 + Fn+1(xnr2 − xnr3) (12.20)

un+1
i =

{
vn+1
i , if r ≤ CRn+1 or i = Irand
xni , if r > CRn+1 and i �= Irand

(12.21)

xn+1
i =

{
un+1
i , if f (un+1

i ) ≥ f (xni )
xni , Otherwise

(12.22)

CRn+1 = CRn − [(CR1 − CRmin)/m] (12.23)
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Fn+1 = Fn − [(Fmax − F1)/m] (12.24)

Here, vin, uin and xin are the ith element of the mutated-vector, trial-vector and
target-vector respectively in the nth iteration, CRn and Fn are the crossover rate and
the scaling factor in nth iteration, the variables Irand , r1, r2 and r3 are randomly
generated integers. Irand ranges from 1 to the dimension of the elements, and the
others are with values in between 1 and population size which are used to select the
elements from the population to undergo mutation, r is also a randomly generated
number that ranges from 0 to 1, The fitness value of the element x is represented by
f(x). CRmin is the lowest limit of crossover rate and Fmax is upper limit of the scaling
factor.

The variation in power and voltage levels of the PV array with time for the MPPT
based on DEA algorithm is visualized in Fig. 12.14. It can be perceived that the
oscillations in the power and voltage waveforms are much more chaotic than that
PSO-based MPPT algorithm. But as the search progress, the oscillation gradually
reduces and finally, the MPP is tracked down with good accuracy. Apart from that,
it can also be observed that the inner control loop’s performance is also satisfactory.
It makes the voltage of the PV module track the set point with fast response (settles
within 5 ms) and with less number of overshoots and undershoots.

Fig. 12.14 Power and voltage of PV array for MPPT based on DEA



12 Modeling and Control of PV Systems for Maximum Power … 285

12.5.3 Binary Coded Genetic Algorithm (BCGA) for MPPT

“The binary coded genetic algorithm (BCGA) also known as genetic algorithm
(GA) is a metaheuristic algorithm that employs the principle of natural evolution
by employing a systematic process of selection, crossover, mutation, etc., to find
the best-fit solution of a problem in the search space” (Chaturvedi 2008). Reference
(Garud et al. 2021) presents the implementation of GA for modeling PV system.
The flowchart of the BCGA based MPPT algorithm implemented in this study is
presented in Fig. 12.15. Similar to the previous cases, in this case also the PSC

Fig. 12.15 Flowchart of BCGA for MPPT
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Fig. 12.16 Power and voltage of PV array for MPPT based on BCGA

detection algorithm is a simple power monitoring-based algorithm. For the purpose
of selection of the parents before they go into the mating pool, Roulette Wheel selec-
tion technique (Katoch et al. 2021) is used and for cross-over, single point crossover
is implemented (Chaturvedi 2008).

Figure 12.16 captures the variation of the output power and the output voltage
of the PV array obtained from the simulation model for BCGA based MPPT. It can
be noticed that the BCGA based MPPT control system tracks the global MPP for
both uniformly irradiated as well as partially shaded condition with fair degree of
accuracy. In this case, it can be seen that the oscillations during the search are lesser
compared to the previous algorithms and the oscillations become negligible after
the convergence of the algorithm. Moreover, the convergence time is significantly
lesser than the other algorithms in this case. The inner gain scheduled controller also
performs satisfactorily. The setpoint tracking is performed with very good accuracy,
fast response and less number of overshoot and undershoot in the voltage waveform
of the PV module.

12.6 Comparative Analysis

The MPPT algorithms described in the previous section are all based on some meta-
heuristic algorithm. But at this point of discussion, it is still somewhat unclear which
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one of them performs better than the others or what are the criteria that sets them
apart from each other. The following comparative study ponders on some of these
questions. The comparison of the different algorithms are done on the basis of their
convergence characteristic (Lolla et al. 2021) and tracking performance.

12.6.1 Convergence Characteristics

The convergence characteristic of an algorithm reveals many useful information
about the performance of the algorithm. The characteristic typically shows how the
error value changes with respect to the progression of the algorithm. In this chapter,
the root mean squared error is plotted with respect to the iteration number of the
algorithm. The formula for calculating the root mean squared (RMSE) error is shown
in Eq. (12.25). Here, xmpp represents the MPP voltage (Vmpp) and power (Pmpp), xi
is the ith element in the population in a particular iteration, and N is the aggregate
number of elements in that set of population.

RMSE =
√√√√
[{

N∑
i=1

(xmpp − xi )2

}
/N

]
(12.25)

Figure 12.17 portrays the convergence characteristics of the power and voltage
obtained for the both uniform and partial shading case studies for the three algorithms
used forMPPT in this chapter. FromFig. 12.17a and b, it can be observed that the PSO
andDEA converges to theMPPwith a monotonically decreasing error characteristic,
whereas, the BCGA tends to diverge at the beginning but converges hastily at the
ending part of the search. Fig. 12.17c and d show similar kind of behaviour for the
DEA. Since, the DEA and the BCGA algorithms are inspired by the natural evolution
process where the fate of the future population depends greatly on their predecessor,
the performance of these algorithms is greatly dependent on the fitness and quality
of the initial population. As a result, when the randomly generated initial population
is of poor quality the performance of the algorithms degrades. So, for these two
algorithms the initial population has to be generated carefully. On the other hand, the
PSO algorithm is not that much dependent on the initial population. Its performance
depends on the velocity of the particles, and diversity of the population. This is
why, the PSO algorithms converge to the MPP in both the cases with a smoother
characteristics.

Apart from that, it should be noted that the BCGA shows a snappy characteristics,
i.e. the algorithm has a tendency to converge faster to the best solution found in a
particular iteration in the search space.Which results in less exploration in the search
space. In some cases, this might cause the algorithm to obtain a suboptimal solution
(local MPP) and miss the optimal solution (global MPP).



288 Md T. Rana and P. S. Bhowmik

Fig. 12.17 Convergence characteristics of the algorithms. a Voltage convergence for uniform irra-
diation b Power convergence for uniform irradiation c Voltage convergence for PSC d Power
convergence for PSC

12.6.2 Tracking Efficiency

It was previously discussed that the oscillations during the search process are largest
for the DEA algorithm, least for the BCGA and moderate for the PSO algorithm-
based MPPT. It was also shown in the previous section that the BCGA converges
fastest and the DEA converges slowest. So, assuming that the runtime for all the
algorithms are same and they all successfully track the global MPP, the energy lost
during the search processwill bemost for theDEA, least for theBCGA, andmoderate
for the PSO based MPPT. This means that the BCGA will be most efficient and then
there will be PSO and DEA in subsequent order.

But it has to be noted that all the algorithms do not track the exact same operating
point. Consequently, their tracking efficiency changes. To obtain their steady state
efficiency the power loss during the search process are neglected and the tracking
efficiency is calculated on the basis of the expression in (26) as given by Islam et al.
(2018). The efficiencies calculated for the case studies presented in this chapter are
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Table 12.5 Tracking efficiency of the MPPT algorithms

Shading condition Efficiency of PSO
based MPPT (ηPSO)
(%)

Efficiency of DEA
based MPPT (ηDEA)
(%)

Efficiency of BCGA
based MPPT (ηBCGA)
(%)

Uniform
irradiation

99.97 99.75 99.90

Partial shading
condition

99.99 99.99 99.98

shown in Table 12.5. It can be seen that the efficiencies are more or less same. So, it
can be said that only the performance during search process sets them apart.

η = Power Tarcked

Pmpp
× 100% (12.26)

12.7 Effect of Load Variation

In a PV system, the performance of the whole control system depends largely on the
inner control loop, i.e. the gain scheduledPIDcontroller in this chapter. The controller
must be immune to the various disturbances that are present in the system.Otherwise,
the systemwill have to frequently search for theMPPwhenever a disturbance occurs.
One of the major disturbances that occur in such systems is load disturbance. The
performance of the system for changing load conditions is shown in Fig. 12.18. The
load change is realized as a step change in the load resistance (R0) at 0.2 s and
ramp change between 0.6 s and 1 s of simulation. It can be observed that the system
performs very satisfactorily. The voltage regulation is very accurate and the system
successfully maintains the MPP rejecting the effects of these disturbances.

12.8 Summary

Advanced computation-based metaheuristic algorithms are increasingly being
applied in the case of MPPT applications in PV systems. These algorithms ensure
better performance under both uniform irradiation and partial shading condition. To
design an effective MPPT system implementing these advanced algorithms involves
complex tasks such as proper system modeling, robust controller design. etc. This
chapter discussed some of these aspects in detail. An analytical method-based gener-
alized modeling approach for PV system with DC to DC converters that operate in
CCM is presented and then based on this model the controller design process is
presented. The performance of the system is shown to be satisfactory when different
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Fig. 12.18 System performance under load disturbances

soft-computing algorithms.The comparative analysis revealed the strength andweak-
nesses of the algorithms. It was shown that the soft-computing algorithm-based
MPPT system tracks the MPP with good accuracy and fast response, but it has to be
noted that since these algorithms are not gradient-based continuous running algo-
rithm but rather bursty in nature, they may not be the most effective choice to track
MPP under slowly varying irradiance condition. Especially, when the rate of change
of irradiance is close to the convergence time of the algorithms. To solve such prob-
lems, hybrid algorithms can be used, where the metaheuristic algorithm first finds
the MPP and then a gradient-based traditional MPP algorithm is used to maintain
the MPP.

So, the key takeaways and inferences from this chapter are:

• The small-signal model of the PV systemwith DC-DC converters are not the same
at all operating points. Rather, they varywith the operating points. But quasi-static
approximation can be used to design the controllers at different strategic operating
points and they can be combined to control the system properly. A gain-scheduled
PID controller is such a controller.

• The soft-computing algorithms perform satisfactorily under fast changing shading
conditions but they reduce the system efficiency when subjected to slowly varying
shading condition.

• Even though, the tracking efficiency of all the MPPT algorithms presented in this
chapter are more or less similar, they have different convergence characteristics
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and different computational complexity. As a result, they should be chosen based
on the type of application.
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