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Goal-Directed Fluid Therapy
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Abstract

Goal-directed fluid therapy is the administra-
tion of fluid, vasopressors, and inotropes to 
optimize hemodynamic parameters for better 
tissue perfusion. Current practice uses cardiac 
output, systolic, or pulse pressure variations 
as the targets to follow. However, none of 
these measures indicate cerebral physiology. 
Electroencephalogram, evoked potentials, 
and cerebral oximetry may be used to guide 
fluid therapy. Nevertheless, the evidence for 
these monitors to improve patient outcomes 
remains inconclusive. There are numerous 
barriers in implementing goal-directed fluid 
therapy during anesthesia and caring for criti-
cally ill patients. Further trials should define 
the goals to target, and feasibility in imple-
menting protocol. More trials are required to 

define the benefit and risk ratio in adopting the 
goal-directed fluid therapy in specific patient 
populations.
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Goal-directed fluid therapy is a concept where 
administration of fluid, vasopressors, and inotro-
pes is targeted to achieve an optimal hemody-
namic parameter for better tissue perfusion [1]. 
In high-risk surgical patients, Shoemaker and 
colleagues reported a lower rate of postoperative 
complications, fewer deaths, earlier discharge 
from the hospital and the intensive care unit, and 
shorter duration of ventilation when periopera-
tive cardiac index and oxygen delivery were 
increased to >4.5 L/min/m2 and >600 ml/min/m2, 
respectively [2]. The extraordinary results had 
drawn a lot of attention, and the approach has 
since extrapolated to various scenarios. In this 
respect, goal-directed fluid therapies have been 
studied extensively for the treatment of critically 
ill patients and during major surgery. In contrast, 
few studies have evaluated goal-directed fluid 
therapy in neurosurgical patients. In this chapter, 
we reviewed the clinical utility of goal-directed 
fluid therapy in patients having neurosurgery and 
receiving neurocritical care.
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�Which Goal to Direct Therapy?

An integral part of goal-directed fluid therapy is 
to establish a “goal” to guide interventions. 
Ideally, the goal has to be clearly defined and 
prognostically important and can be measured 
accurately and noninvasively. Figure 1 shows the 
common parameters that have been used to gauge 
tissue perfusion during surgery.

�Traditional Goals

Arterial pressure is the primary determinant for 
driving tissue perfusion and is a standard monitor in 
contemporary anesthesia [3]. The major drawback 
of using arterial pressure is that there is no consen-
sus on the minimum arterial pressure required to 
maintain organ function. In this respect, over 130 
definitions on hypotension had been reported in the 
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literature [4]. Nevertheless, multiple cohort studies, 
systematic reviews, and meta-analyses have shown 
an increased risk of postoperative adverse events 
with mean arterial pressure <65 mmHg or systolic 
arterial pressure <90 mmHg for >10 min [5–8]. In 
a randomized controlled trial (RCT), individual-
ized blood pressure management with systolic arte-
rial pressure maintained within 10% of baseline 
(n = 147) reduced the risk of postoperative organ 
dysfunction by 27% (95% confidence intervals, 
CI: 6–44%) compared with standard care (treating 
hypotension only when systolic arterial pressure 
was <80  mmHg, n  =  145) [9]. Anesthesiologists 
may also monitor end-organ dysfunction using 
urine output, acid-base balance, and plasma lactate 
concentration. These measures however lack tem-
poral resolution, require long turnover time, and 
tend to worsen only after significant hypoperfusion.

�Cardiac Filling Pressures

Alternatively, anesthesiologists were accustomed 
in measuring cardiac filling pressures, such as 
central venous pressure and pulmonary artery 
occlusion pressure, to guide fluid therapy. As a 
measure of cardiac preload, it is assumed that an 
optimized filling pressure would be important to 
improve cardiac output and tissue perfusion. 
However, the absolute filling pressure is depen-
dent on valvular pathology and ventricular com-
pliance and is therefore a poor predictor for 
volume status or fluid responsiveness [10, 11].

�Cardiac Output

Cardiac output is a surrogate marker of tissue 
oxygen delivery. Conventional measurement uses 
the indicator (e.g., cold saline, lithium, or indo-
cyanine green) dilution technique, producing 
intermittent values, and requires insertion of 
invasive pulmonary artery catheter [12]. Recent 
technology development has allowed minimally 
invasive and beat-to-beat measurements of car-
diac output [13, 14]. Currently, four methods are 
commercially available:

	1.	 Impedance cardiography

Transthoracic electrical bioimpedance (TEB) 
measures the resistance to a high frequency and 
low voltage current passing through the thorax. 
The rhythmic changes of impedance correspond 
to the variations in aortic blood volume during 
successive cardiac cycles. Therefore, variations 
in cardiac output will be reflected by the change 
in TEB [15]. Clearly, TEB signals are affected by 
electrical interference and may undermine the 
utility of the device.

	2.	 Doppler ultrasound

The Doppler technique measures blood flow 
velocity through the aortic valve and the descend-
ing thoracic aorta using suprasternal and esopha-
geal probe, respectively [16]. Cardiac output is 
therefore the product of flow velocity, reference 
cross-sectional area, and heart rate.

	3.	 Arterial pressure waveform and pulse contour 
analysis

It has been long recognized that pulse pressure 
is directly proportional to stroke volume [17, 18]. 
Currently, three commercially available monitors 
have been developed to determine cardiac output 
based on arterial pulse contour. The LiDCO moni-
tor (LiDCO, London, UK) applies the PulseCO™ 
algorithm to account for aortic impedance, arterial 
compliance, and peripheral vascular resistance in 
order to estimate beat-to-beat cardiac output [19, 
20]. LiDCO requires regular calibration using 
subtherapeutic doses of lithium for dye dilution-
derived cardiac output [20]. Similarly, PiCCO 
monitor (PULSION Medical Systems AG, Munich, 
Germany) uses a proprietary algorithm to analyze 
the systolic component of the arterial pulse [21]. 
Intermittent (transpulmonary) thermodilution-
derived cardiac output is required for calibration. 
The Vigileo-FloTrac system (Edwards Lifesciences, 
Irvine, CA) measures cardiac output with standard 
arterial catheter attached special proprietary trans-
ducer. In contrast to the other monitors, FloTrac 
does not require additional calibration [22].
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In addition, the arterial pressure waveform 
monitoring allows anesthesiologists to access 
fluid responsiveness. In this respect, variations in 
arterial pressure (5–10 mmHg) during respiration 
are normal phenomena due to the transmission of 
intrathoracic pressure. In spontaneously breath-
ing patients, arterial pressure decreases with 
inspiration and increases with expiration. The 
reverse occurs in mechanical positive pressure 
ventilation, where pulmonary blood volume is 
shifted to the left ventricle during inspiration and 
therefore increases arterial pressure with an 
increase in preload. The increase in intrathoracic 

pressure also decreases right ventricular filling, 
and will decrease arterial pressure subsequently. 
In patients with hypovolemia, variation in arterial 
pressure is exaggerated, and therefore derived 
indices from the arterial waveform (e.g., stroke 
volume, systolic pressure, and pulse pressure 
variation) could be used to guide fluid adminis-
tration (Fig. 2).

	4.	 Partial rebreathing method

In this method, brief and step changes in car-
bon dioxide elimination is compared to the 
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Red tracing, arterial pressure; blue tracing, central venous 
pressure; green tracing, airway pressure. Arterial, venous 
and airway pressure tracings courtesy of Dr. Robert 
Linton and Dr. Nick Linton (http://www.foxlinton.org/
cardiac_output/PCOpages/spv2.html)
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changes in end-tidal carbon dioxide tension [23]. 
The differential Fick method measures pulmo-
nary blood flow and would only indicate cardiac 
output if the shunt fraction remains constant dur-
ing the measurement period. Potentially, the 
technique could be integrated into anesthetic ven-
tilator providing automated breath-to-breath car-
diac output readings [24].

�Measures of Cerebral Physiology

It should be noted that all the aforementioned 
technology measure systematic perfusion, and do 
not indicate cerebral physiology. Nevertheless, 
several modalities have been developed to 
measure cerebral hemodynamics, oxygenation, 
and electrophysiology (Table 1) [25], majority are 
designed for monitoring head-injured patients.

	1.	 Intracranial pressure

Intracranial pressure (ICP) can be measured by 
inserting a catheter into the ventricles, at the sub-
dural or epidural spaces. In addition, a fiber-optic 
sensor could be inserted to measure the parenchy-
mal ICP [26]. There are risks associated with ICP 
monitoring. The reported rate for bleeding and 
infection ranged from 0.5–2% to 1–5%, respec-
tively [27]. Nevertheless, ICP monitoring has been 
commonly used in the management of severe head 
injury [28, 29]. It remains difficult to decide on the 
ICP threshold that will require treatment. In the 
Benchmark Evidence from South American Trials: 
Treatment of Intracranial Pressure (BEST:TRIP) 
trial, strategies aiming to maintain ICP <20 mmHg 
in severe traumatic brain-injured patients did not 
improve 6-month mortality, functional, and cogni-
tive performance [30].

Table 1  Cerebral monitors

Modality Uses Drawback
Intracranial pressure • � Measure ICP with catheter (or microsensor) insertion into 

the ventricle, parenchymal and epidural or subdural pressure 
measurement

• � Cerebrospinal fluid drainage from ventricular catheter

• � Tract hemorrhage
• � Infection

Cerebral perfusion
Transcranial Doppler • � Measures cerebral blood flow velocity • � Operator dependent

• � Availability of acoustic 
window

• � Fixation of probes for 
continuous monitoring

Cerebral oxygenation
Jugular venous 
oximetry

• � Measures global cerebral oxygenation • � Invasive catheter 
insertion

• � Contamination with 
extracranial circulation

• � Carotid puncture
• � Jugular vein thrombosis

Brain tissue oxygen 
monitoring

• � Measures regional cerebral oxygenation using 
electrochemical-based probe or fluorescence-based probe

• � Tract hemorrhage
• � Infection

Near-infrared 
spectroscopy

• � Estimates cerebral tissue oxygen saturation by measuring 
the relative concentration of oxyhemoglobin and 
deoxyhemoglobin in a small region of the brain

• � Contamination with 
extracranial circulation

Cerebral 
biochemistry
Cerebral 
microdialysis

• � Measures regional tissue biochemistry (lactate, pyruvate, 
glucose

• � Tract hemorrhage
• � Infection

Cerebral 
electrophysiology

• � Measures scalp electroencephalogram, somatosensory 
evoked potential

• � Operator dependent for 
acquisition and 
interpretation

• � Delayed response
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	2.	 Cerebral blood flow

Measurement of global cerebral blood flow 
(CBF) requires imaging technique (e.g., xenon 
CT). However, regional CBF could be determined 
by using bedside transcranial Doppler. This is a 
measure of flow velocity, and the measurement is 
operator dependent, requiring appropriate acous-
tic bone window and specific mounting devices 
for continuous monitoring. Nonetheless, cerebral 
blood flow velocity has been used to determine 
cerebrovascular reactivity of the major cerebral 
vessels, for adjusting lung ventilation and arterial 
pressure targets during the management of head-
injured patients [31]. In addition, transcranial 
Doppler can be used to detect vasospasm and 
hyperemia (Table  1). In carotid endarterectomy, 
the Doppler signal can be used to detect microem-
boli during arterial clamp release [32, 33]. 
However, it is unclear what might be the optimal 
CBF flow velocity to target.

	3.	 Cerebral oxygenation

Global cerebral oxygenation could be deter-
mined by sampling of the venous blood drained to 
the dominant (90% right sided) jugular bulb [34]. 
A decrease in jugular venous oxygen satura-
tion < 50% is thought to indicate brain ischemia. 
However, this measurement lacks spatial resolu-
tion. Several companies have since produced non-
invasive cerebral oximeter that measures regional 
cerebral oxygenation using electromagnetic radi-
ation (e.g., near-infrared) [35]. It should be noted 
that cerebral oxygenation is a relative measure-
ment. Furthermore, the commercially available 
cerebral oximeters use different algorithms and 
the readings cannot be directly compared. Others 
have inserted a parenchymal probe with a Clark 
electrode to measure tissue oxygen tension. Tissue 
oxygen tension <20 mmHg is generally consid-
ered as critical [36].

	4.	 Cerebral biochemistry

Cerebral hypoxia and ischemia lead to anaero-
bic metabolism, cellular damage, and release of 
excitatory amino acids. This will lead to a deple-

tion of glucose store and an increase in lactate, 
lactate-to-pyruvate ratio, glutamate, and glycerol 
concentrations. By inserting a microdialysis 
catheter into the brain, it is possible to measure 
the concentrations of these metabolites and to 
gauge the extent of cerebral insult within a small 
brain region [37]. There are, however, no consen-
sus on the thresholds to intervene. Nevertheless, 
cerebral microdialysis helps clinicians to under-
stand the pathophysiology associated with brain 
injury and has been used as a surrogate marker 
for evaluation of new drugs for neuroprotection 
[38, 39].

�Goal-Directed Algorithms

After establishing the goal of interest, the next 
step is to design an algorithm so that appropriate 
treatments can be implemented to achieve these 
goals. Hemodynamic goals (e.g., arterial pres-
sure, cardiac output, pulse pressure variation) are 
commonly managed with fluid challenges includ-
ing a combination of colloid or crystalloid. In a 
systematic review and meta-analysis of 24 RCTs 
on goal-directed fluid therapy in patients having 
major surgery (n = 3861), intraoperative use of 
colloid was significantly higher in the goal-
directed group compared with controls, mean dif-
ference (95% CI): 467 (331–603) ml [40]. In 
addition, the administration of vasopressors or 
inotropes is getting popular to achieve these goals 
(Fig. 3).

In the management of neurocritical care 
patients, other measures, such as supplemental 
oxygen, hyperventilation, hypothermia, pento-
barbital coma, osmotic therapy, and anticonvul-
sant, are used to achieve the goals (Fig. 4) [41].

�Outcomes of Goal-Directed Therapy

�Targeting Hemodynamic Variables

Using the hemodynamic targets, >100 studies 
have evaluated the effectiveness of goal-directed 
fluid therapy to improve outcomes after surgery 
[42]. There were also >20 systematic reviews and 
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meta-analyses summarizing these results. Using 
different combinations of studies on various out-
comes, these analyses showed that goal-directed 
fluid therapy reduced rates of postoperative ileus 
[43–46], sepsis or infection [47–49], postopera-
tive cardiovascular complications [50, 51], renal 
failure [48], or any complications [46, 52, 53]. 
Goal-directed fluid therapy also reduced hospital 
stay and duration of intensive care unit admission 
[45, 54–57], and there was a decrease in hospital 
or 30-day mortality, compared with controls in 
noncardiac surgery [58–61]. In cardiac surgery, 
overall complication rate and hospital stay were 
reduced with goal-directed fluid therapy [62]. 
Other meta-analyses, however, demonstrated no 
difference between groups [48, 53, 63–70]. Only 
few trials had studied goal-directed fluid therapy 
in neurosurgery [71–74]. Three trials had studied 
craniotomy [71–73] and one on spine surgery 
[74]. Only two trials reported postoperative out-
comes [71, 72]. With limited sample size (total 
208 patients), goal-directed fluid therapy reduced 
a composite of complications (sepsis, stroke, 
renal impairment, and all-cause mortality), 17% 

vs 35%, odds ratio (95% CI): 0.38 (0.20–0.73), 
p = 0.004, I2 = 0.0%.

Nevertheless, in an attempt to pool all 110 tri-
als, Kaufmann and co-workers report large 
amount of heterogeneity, and it was not possible 
to perform meta-analysis. Furthermore, the 
results were sensitive to the studies included, 
sample size of individual trial [median (inter-
quartile range) size  =  40 [30–64] patients per 
group], monitors or targets chosen, and analytical 
methods used. Clearly, a large RCT is required to 
resolve the controversy whether target-guided 
therapy will improve postoperative outcomes 
[75, 76]. Two trials are currently ongoing. The 
FLuid Optimisation in Emergency LAparotomy 
(FLO-ELA) trial will randomize 7646 patients, 
≥50  years to have anesthesia guided by stroke 
volume variation or control (ISRCTN14729158). 
Similarly, the OPtimisation of Peri-operaTive 
Cardiovascular Management to Improve Surgical 
outcomE II (OPTIMISE II) trial recruits 2502 
patients having elective gastrointestinal surgery 
[77]. OPTIMISE II trial compares 30-day infec-
tion in patients receiving fluid and low-dose ino-

MAP < 65 mmHg, oliguria, or 
elevated plasma lactate concentration

PPV < 9%
or

SPV < 10 mmHg

Unlikely fluid responsive

Consider vasopressor / 
inotropic agents

PPV 9-13%
or

SPV or PPV > 5% baseline

Consider fluid challenge

PPV > 13%
or

SPV > 10 mmHg

Fluid responsive, 
requiring fluid challenge

Fig. 3  Typical algorithm of goal-directed therapy using systolic pressure variation (SPV) and pulse pressure variation 
(PPV) in patients receiving general anesthesia with mechanical ventilation
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tropes (dobutamine or dopexamine) to achieve 
the targeted stroke volume variation or usual 
care. The results will inform the role of 
hemodynamic-guided target therapy on postop-
erative outcomes.

�Targeting Cerebral Variables

Electroencephalogram (EEG) is the commonest 
cerebral monitor during surgery. EEG-guided 
anesthesia is thought to be useful in avoiding 
excessive anesthetic administration and may 
improve postoperative outcomes. Several trials 
have evaluated the effect of EEG monitoring in 
reducing postoperative deaths. The Perioperative 
Quality Initiative (POQI)-6 conference gathered 
a number of international, multidisciplinary 
experts to review the literature on the clinical 
utility of EEG [78]. In nine trials (ten publica-
tions [79–89], n = 8512) that examined postop-
erative mortality, EEG-guided anesthesia did not 
reduce all-cause death rate, 14.1% vs 15.1%, 
relative risk (95%CI): 0.95 (0.80–1.12), 

P  =  0.528, I2  =  38.4%. Since this systematic 
review, another large RCT was published. The 
Balanced Anesthesia trial randomized 6644 
patients to receive deep or light anesthesia based 
on bispectral index (BIS) EEG monitoring. The 
death rate at 1 year after surgery in the deep anes-
thesia group (7.2%) was not different from the 
light anesthesia group (6.4%), p = 0.223. Figure 5 
shows the updated meta-analysis. In 15,156 
patients, the pooled relative risk (95%CI) was 
0.94 (0.82–1.07), p = 0.339, I2 = 32.79%.

Alternatively, anesthesiologists have used 
cerebral oximetry to guide anesthetic administra-
tion. In a systematic review and meta-analysis of 
15 trials (n = 1822), there was no convincing evi-
dence that monitoring improved outcomes, 
primarily related to the lack of events [35, 90]. 
Nevertheless, cerebral oximetry monitoring 
might improve cognitive performance at 1 week 
after surgery and reduce intensive care unit stay 
by 5.5–6.9 h (n = 379) [90].

The effect of goal-directed fluid therapy for the 
management of patients requiring neurocritical 
care remains less well defined [25]. Majority of 

Trials (author, yearReference)
EEG-guided Control

Relative risk (Random effect, 95%CI)
Events/Total Events/Total

Leslie, 201079 252 / 1,225 296 / 1,238 0.86 (0.74-1.00)

Kertai, 201080 47 / 239 35 / 221 1.24 (0.83-1.85)

Kerati, 201181 180 / 723 178 / 750 1.05 (0.88-1.26)

Abdelmalak, 201382 22 / 194 23 / 187 0.92 (0.53-1.60)

Chan, 201383 32 / 454 26 / 455 1.23 (0.75-2.04)

Radtke, 201384 31 / 575 31 / 580 1.01 (0.62-1.64)

Brown, 201485 11 / 57 17 / 57 0.65 (0.33-1.26)

Short, 201486 6 / 64 7 / 61 0.82 (0.29-2.29)

STRIDE, 201987 14 / 100 14 / 100 1.00 (0.50-1.99)

ENGAGES, 201988 4 / 614 19 / 618 0.21 (0.07-0.62)

*Balanced Anesthesia, 201989 212 / 3,316 238 / 3,328 0.89 (0.75-1.07)

Overall effect 811 / 7,561 884 / 7,595 0.94 (0.82-1.07)
(z value=-0.956, p=0.339;
p=0.137 for heterogeneity; I2=32.79%)

Relative risk
0.05 0.1 0.5 1 5

Fig. 5  Forest plots of trials comparing the risk for 
long-term mortality after surgery in patients receiv-
ing EEG-guided or routine care anesthesia. *Patients in 
the control group received deeper anesthesia; CI, confi-
dence interval; EEG, electroencephalogram; ENGAGES, 

Electroencephalography Guidance of Anesthesia to 
Alleviate Geriatric Syndromes; STRIDE, A Strategy 
to Reduce the Incidence of Postoperative Delirium in 
Elderly Patients
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the current guidelines recommend multimodality 
monitoring including ICP, cerebral autoregulation, 
oximetry, and intracerebral microdialysis [28, 29, 
91, 92]. Nevertheless, the quality of evidence 
underlying these recommendations was low. 
Majority studies reported association and did not 
demonstrate causal relationship between goal-
directed therapy and outcomes in neurocritical 
care patients. In particular, it is unclear what would 
be the minimum monitoring required and the tar-
gets that should be adopted (Table 1). Further out-
come trials would be required before goal-directed 
fluid therapy could be widely adopted.

�Conclusions

There are numerous barriers in implementing 
goal-directed fluid therapy during anesthesia and 
caring for critically ill patients. Further trials 
should define the goals to target, and feasibility in 
implementing protocol. Large RCTs are required 
to define the benefit and risk ratio in adopting the 
goal-directed fluid therapy in specific patient 
populations.
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