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Use of Protease Inhibitors as a Promising
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Abstract Proteases are responsible for several processes essential to life and,
controlling their activity is naturally important in many specific metabolic events.
When a phytophagous insect feeds, the response machinery of a plant leads to the
production of protease inhibitors (PIs), which can occur locally or systemically.
Upon reaching the insect’s intestine, PIs bind to specific proteases and compromise
the insect’s digestibility, reducing the absorption of dietary amino acids. The
impaired nutritional balance affects the insect’s development and can lead to
death. In this sense, PIs have gained prominence as alternatives in the control of
pest insects, minimizing the toxic effects on other animals and the environment.
Conversely, insects express multiple isoforms of important digestive enzymes to
circumvent the toxic effect of plant PIs. Our research group is dedicated to under-
standing the biochemical mechanisms involved in plant–pest interaction from an
enzymatic, proteomic, and molecular biology point of view. Because of these efforts,
dozens of articles were generated, besides PI patented for use as ecologically correct
agricultural defensives. This chapter provides an updated overview of advances in PI
research applied to insect pest control.
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6.1 Introduction

Proteases handle several processes essential to life. This diverse group of enzymes
can cleave peptide bonds to finely control protein catabolism, selectively degrade
damaged proteins, or promote mass hydrolysis of dietary proteins. Advances in
enzymology and proteomics in recent decades have shown that proteases are
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essential not only for providing free amino acids to the cell but also for modulating
important processes, such as the removal of specific segments in zymogens (Stroud
et al. 1977; Gorelick and Otani 1999; Donepudi and Grütter 2002; Plainkum et al.
2003) and immature proteins (Peng et al. 1989; Muramatsu and Fukazawa 1993;
Khan and James 1998) or the removal of a signal peptide when the protein is already
in the appropriate cell compartment (Hussain et al. 1982; Novak and Dev 1988;
Friedmann et al. 2004; Lemberg 2011).

Proteolytic activity is also linked to the need to control specific metabolic events,
such as the final processing of proteins before they play their role in the cell (Lum
and Blobel 1997; Guttentag et al. 2003; Grau et al. 2005; Manolaridis et al. 2013),
selectively removing proteins when they are no longer useful or recycling amino
acids needed to synthesize new polypeptide chains (Ciechanover 1994; Bochtler
et al. 1999). Besides intra- and intercellular processes, proteases mediate several
molecular interactions that occur between different organisms in a given environ-
ment. Intracellular parasites, for example, secrete proteases that help their interac-
tions and survival in the host cell (Alves and Colli 2007; Knox 2007; Laliberté and
Carruthers 2008). Likewise, the hydrolysis of plant proteins in the intestine of
herbivorous insects are extracellular processes that aim to provide free amino acids
that will be absorbed to later make up new proteins (da Silva Júnior et al. 2020).

During the evolutionary process, insects gained complex protease systems, an
essential process to get a better nutritional benefit (Silva-Júnior et al. 2021). If, on the
one hand, an arsenal of proteases favors herbivory, co-evolution has selected plants
with strategies to overcome the adverse effects of insect proteases (Zhu-Salzman and
Zeng 2015; Pilon et al. 2017a; Meriño-Cabrera et al. 2018). Plants challenged by a
pathogen or predator, for example, produce protease inhibitors (PI) that bind to
proteolytic enzymes and prevent or limit their activity (Ryan 1990; Habib and Fazili
2007); this digestive deficiency implies less free amino acids to be absorbed and
used as raw material in the synthesis of proteins necessary for the proper develop-
ment of the insect. It is already well established that a wide variety of organisms use
PIs not only to control endogenous proteolytic functions but also to ensure their
protection against herbivory or infection. In this sense, PIs act for the complex set of
molecular interactions that occur between different organisms in an ecosystem,
acting as regulators of proteolytic events. Therefore, it is not surprising that PIs are
being proposed as a tool for the control of herbivores and pathogens (Clemente et al.
2019).

Based on this, pest control strategies using PIs were developed to control
nematodes (Turrà et al. 2009), viruses (Masoud et al. 1993) bacteria (Mishra et al.
2020), and phytophagous insects (Senthilkumar et al. 2010). The effects of dietary
PIs on the fecundity and growth of herbivorous insects have been described for
several species (Thomas et al. 1995; Telang et al. 2003; Jamal et al. 2015; Dantzger
et al. 2015; Singh et al. 2020), and the implication of extracellular proteases in
pathogenic processes has been documented in several cases (Dunaevsky et al. 2005;
Armstrong 2006; Santos and Braga-Silva 2012). For this, the use of PIs of protein
origin was proposed to be expressed through transgenics to protect plants from
agricultural pests (Gatehouse et al. 1993; De Leo et al. 2002; Zhu-Salzman and
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Zeng 2015). Today, the expression of PIs by genetically modified plants is a reality
in the control of herbivores and plant parasites (Rahbé et al. 2003; Riglietti et al.
2008; Senthilkumar et al. 2010; Khalf et al. 2010). Therefore, this additional
protection granted to economically important plants has a powerful appeal from
the food, biofuel, textile industry and from the entire production chain that
involves them.

6.2 Serine Proteases and Plant Protease Inhibitors

According to the enzymatic classification system created in 1956 (Knight 1962),
serine proteases (EC 3.4.21) belong to the class of hydrolases, a sub-class of
hydrolases that act on peptide bonds. The family name derives from the nucleophilic
Ser residue in the active site of the enzyme, which attacks the peptide carbonyl group
of the substrate to form a tetrahedral acyl-enzyme intermediate (Hedstrom 2002; Cox
and Nelson 2008). At the end of the peptide bond hydrolysis, the complete organic
reaction mechanism of the serine proteases involves the catalytic triad composed of
Ser, His, and Asp (Matthews et al. 1967; Blow et al. 1969; Henderson 1971).

Serine proteases are the best studied peptidases and are considered the main
responsible for protein digestion in the intestine of important pest insects, such as
those belonging to the orders Lepidoptera (Pilon et al. 2017b; Zhao and Ee 2018;
Meriño-Cabrera et al. 2018; Zhao et al. 2019; da Silva Júnior et al. 2020) and
Coleoptera (Mochizuki 1998; Alarcón et al. 2002; Marshall et al. 2008). At this
point, enzymes from the Trypsin-like, Chymotrypsin-like, and Elastase-like families
stand out as the main representatives (Kuwar et al. 2015; da Silva Júnior et al. 2020).
Because of this importance, several plant serine protease inhibitors have been
described and characterized.

Protease inhibitors of protein origin are classified into 99 families according to the
homology existing in the amino acid sequence of their representatives, at least in the
inhibitory unit. There may also be subfamilies when there is evidence of a very old
evolutionary divergence within the family. PIs are also grouped into clans, which
represent a group of inhibitors in one or more families that show evidence of an
evolutionary relationship from their similar tertiary structures (Rawlings et al. 2018).

Against this background, plant protease inhibitors (PPI) are usually small proteins
found in plant storage tissues such as the root, but also in leaves (De Leo et al. 2002).
In seeds, tubers, and other plant storage tissues, trypsin inhibitors represent about
10% of the total protein content (Mandal et al. 2002). These high levels of PPI are
associated with plant resistance to insects and pathogens (Kim et al. 2009; Dunse
et al. 2010). Although high levels of PPI are often found in Leguminosae,
Solanaceae, and Gramineae (Brzin and Kidrič 1996; Xu et al. 2001; Sin and Chye
2004), the expression of these PPI depends on the stage of development of the plant,
tissue, and presence of stressors, even presenting different isoforms in the same
tissue (Sels et al. 2008).
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Two very well-studied PPI families are Kunitz and Bowman-Birk. Members of
the Kunitz family have in their primary structure some conserved residues, such as
the four cysteine residues that form the two intrachain disulfide bonds (Pouvreau
et al. 2003), besides being monomeric proteins containing from 150 to 200 amino
acid residues and approximately 20 kDa (Norioka et al. 1988). Each molecule
contains a unique binding site that interacts strongly with the protease against
which the inhibitor is targeted (Salier 1990).

On the other hand, Bowman-Birk PPIs are polypeptide chains of approximately
8 kDa that can form oligomers, ranging from 54 to 133 amino acid residues (Birk
1985; Kennedy 1998). A Bowman–Birk basic unit contains a high proportion of
cysteine residues and forms several intrachain disulfide bonds, leading to a rigidly
folded conformation (Losso 2008). The monomeric unit contains two binding loops
with reactive sites on the enzyme. Therefore, each inhibitor can inhibit up to two
proteases with different inhibitory specificities (Qi et al. 2005).

Although PPIs are very well documented as plant defensive compounds, the
damage caused to insects and pathogens goes far beyond just decreasing the activity
of digestive proteases. The molecular mechanisms are not fully known, but
metabolome, transcriptome, proteome, and histology studies have shown several
effects on the physiology of insects subjected to PPI (Valueva and Mosolov 2004;
Bayés et al. 2006; Quilis et al. 2007; Bobbarala 2009; Sabotič and Kos 2012;
Radanovic and Anauate 2013; Quilis et al. 2014; Shao et al. 2016; Cingel et al.
2017; Shamsi et al. 2018).

6.3 Contributions in the Field from Our Research Group

The use of PIs as an agricultural defensive was suggested as far back as 1947, when
Mikel and Standish (1947) observed that a soy-based diet limited the development of
some insects. Just 25 years later, Green and Ryan (1972) demonstrated that damage
to nightshade leaves induced PI synthesis, suggesting the protective role of this
compound. In the following decades, the economic and environmental importance of
developing alternative strategies for the ecologically correct control of agricultural
pests increased interest in the development of IP for this purpose. However, the
biochemical mechanisms involved in the interaction between insect physiology and
PIs were not well known.

Given this scenario, our research group focused on understanding the biochem-
ical mechanisms involved in the plant–pest interaction from the point of view of
biochemistry and molecular biology, exploring techniques of enzymology, proteo-
mics, metabolomics, and transcriptomics. The interaction between soybean (Glycine
max) and soybean caterpillar (Anticarsia gemmatalis) was used as a model to
validate the biochemical mechanism of plant response via the Lipoxygenase path-
way (Fig. 6.1). Soy was chosen for its importance in agricultural production in
Brazil, and A. gemmatalis was chosen because, besides being a key soybean pest, it
is an insect that is easy to breed and presents a good yield of biological material for
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studies involving biochemical analyses that require purification and characterization
of the enzymes involved in the insect–plant interaction process.

The study of plant–insect interaction requires a thorough understanding of the
arthropod and the plant under properly controlled conditions. In this sense, the
determination of the enzymatic profile in the different larval instars of
A. gemmatalis was an important step to determine the proteases responsible for the
digestive process of the caterpillar throughout its development. For this, da Silva
Júnior et al. (2020) showed that the proteolytic profile in the intestine of
A. gemmatalis changes during larval development, with a predominance of cysteine
protease activity in the third instar and serine protease in the fourth and fifth instars,
suggesting modulation in gene expression accompanied by different nutrient
demand throughout this internship. Previous studies involving Lepidoptera focused
on the physiology and biochemistry of the insect only in the fifth instar, as this is the
moment of the greatest voracity of the caterpillar. However, some studies show
changes in the morphological profile in the intestine of some insects during devel-
opment (Chougule et al. 2005; Kipgen and Aggarwal 2014; Zhao et al. 2019). This
dataset suggests that both cysteine and serine proteases are important targets for the
development of PIs, aiming to compromise larval development in different instars.
Insects express an arsenal of isoforms for digestive enzymes, having as an important
consequence the attempt to circumvent the negative effects of PIs (Kotkar et al.

Fig. 6.1 Lipoxygenase pathway. The mechanical damage caused by the biting insect activates a
cascade of intracellular messengers and leads to the formation of jasmonic acid. This plant hormone
activates transcription factors that end with the production of protease inhibitors, compromising the
insect’s digestibility
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2009; Lomate and Hivrale 2011; Crava et al. 2013). Therefore, knowledge of the
primary and tertiary structures of proteins is of fundamental importance. Thinking
about that, Silva-Júnior et al. (2021) described the proteomic profile of the intestine
of A. gemmatalis, showing a large number of functional enzymes, their sequences
and post-translational modifications (PTM) through proteomics techniques. The
description of a proteomic profile of enzymes is a challenge because of the low
concentrations of these hydrolases concerning other abundant proteins present in the
sample. However, the conciliation of several proteomic methodologies allowed for
high coverage of the intestinal proteome of the caterpillar as shown in the workflow
in Fig. 6.2. Furthermore, research by our group showed the energies and points of
interaction between enzymes and inhibitors by molecular docking are important
information for the rational design of PIs (Meriño-Cabrera et al. 2019, 2020; de
Almeida Barros et al. 2021; Silva-Júnior et al. 2021).

A deeper knowledge of the enzymatic kinetics of digestive proteases from
A. gemmatalis allows a better understanding of the active centers, the mechanisms
of reaction of these enzymes, and the PI that need to be applied as inhibitors of the
complex arsenal of digestive proteases of the insect. In this sense, trypsins bound to
the intestinal membrane of the soybean caterpillar were partially purified and
identified by mass spectrometry (Reis et al. 2012). In addition, our research group
also evaluated the contribution of endosymbiotic bacteria in the production of
proteolytic enzymes in the intestine of A. gemmatalis (Pilon et al. 2013). The main
trypsins of these bacterial isolates were purified and kinetically characterized (Pilon
et al. 2017b) and this dataset allowed us to infer that endosymbiont bacteria
synthesize trypsin, contributing to the insect’s digestibility.

These works developed by our group brought a look towards the insect and its
intestinal enzymology of A. gemmatalis under normal conditions, that is, free from
PI treatments. However, the development of PIs, peptides, or organic peptide
mimetics with inhibitory activity requires a thorough understanding of the
enzyme-inhibitor complex. Inhibition kinetic studies are tools for understanding
the multi-mechanistic enzyme system. Thus, we performed the kinetic characteriza-
tion of trypsin-like inhibition of the insect against natural soybean PI (SKTI and
SBBI) and synthetic PI (Benzamidine and Berenil) to understand the inhibition from
the physiological structure/function point of view (Patarroyo-Vargas et al. 2020;
Silva-junior and de Almeida Oliveira 2021). Our study showed, for the first time, the
adaptation of trypsin-like enzymes in the intestine of A. gemmatalis against different
inhibitors. The effect of PI was also evidenced when the caterpillar was challenged
with Benzamidine (Pilon et al. 2018), Berenyl (Moreira et al. 2011; Paixão et al.
2013), synthetic peptides (Patarroyo-Vargas et al. 2018; de Oliveira et al. 2020; de
Almeida Barros et al. 2021), SKTI, SBBI (Mendonça et al. 2020), ILTI and ApTI
(Meriño-Cabrera et al. 2020).

If, on the one hand, the in-depth study of the pest insect is important, it is
necessary to understand the physiology of the target plant and its response systems
against the herbivore. With this in mind, we performed biological assays associated
with metabolome analysis in two soybean genotypes contrasting for herbivory
resistance in response to A. gemmatalis (Gomez et al. 2018). This approach allowed

142 N. R. Silva-Junior et al.



F
ig
.6
.2

T
he

in
te
st
in
e
ex
tr
ac
te
d
fr
om

A
nt
ic
ar
si
a
ge
m
m
at
al
is
w
as

fr
ac
tio

na
te
d
w
ith

po
ly
et
hy

le
ne

gl
yc
ol

to
re
m
ov

e
ab
un

da
nt

pr
ot
ei
ns
.T

he
cr
ud

e
ex
tr
ac
ta
nd

th
e

re
su
lt
of

P
E
G
pr
ec
ip
ita
tio

n
w
er
e
su
bm

itt
ed

to
sh
or
t-
ru
n
S
D
S
-P
A
G
E
.T

he
pr
ot
ei
ns

pr
es
en
t
in

th
e
ge
lw

er
e
id
en
tifi

ed
by

m
as
s
sp
ec
tr
om

et
ry

6 Use of Protease Inhibitors as a Promising Alternative for Pest Control 143



showing flavonoid profiles from soybean leaf extract and efficiently identifying
some new compounds related to resistance. With the metabolic profiles, it was
possible to reconstruct the biosynthetic pathways of flavonoids, revealing
upregulated glycoconjugate flavonoids in the resistant soybean genotype. These
differences in abundance between genotypes suggest they handle resistance to
herbivory in these varieties and open the door to a vast field of investigation aimed
at increasing soybean resistance against insects. Still from the perspective of how the
plant perceives and reacts to damage caused by the herbivore, we show that the
response to flavonoids also occurs when the plant suffers artificial mechanical
damage (da Silva Júnior et al. 2021). In addition, the deletion of genes in soybean
seeds that code for proteins important to plant defense, such as the lipoxygenase
enzyme and PI SKTI, does not interfere with the plant’s ability to respond to wounds
through the lipoxygenase pathway (da Silva Fortunato et al. 2007). These results
have industrial and practical appeal since these proteins are undesirable in the seed,
but fundamental in the plant’s defense against agricultural pests.
Given the reality of climate change, it is important to foresee how the plant–insect
interaction responds to environmental variations. Faustino et al. (2021) showed that
soybean subjected to drought reduces herbivory and survival of A. gemmatalis. The
group relied on gene expression, enzymatic kinetics, and metabolomic analysis to
conclude that the drought signal alone is not enough to promote increased resistance
to insect attack.
These results generated by our research group in the last decade made it possible to
identify the target enzymes and map the active sites, allowing the development of
potent peptide PIs to be sprayed, used as models for mimetic peptide production, or
even as a model for transgenics in the agricultural pest control. We have developed
promising protein inhibitors for agricultural pest control. Part of these contributions
is compiled in Fig. 6.3.

6.4 Final Considerations

The agricultural ex vivo application of protease inhibitors is still limited because of
the large molecular size, which turns them unstable in the environment. We believe
that smaller scaffold peptides designed according to the active site of important
digestive proteases and reactive domains of protease inhibitors could overcome this
bottleneck. Besides that, novel designed peptides have an advantage over vegetable
PIs that are not having co-evolved with insects, which might avoid adaptations. To
counteract the complex set of proteases that insects possess in their midgut, exposing
them to PIs for different classes of proteases could overcome the adaptative mech-
anisms more efficiently. Despite all the bottlenecks, PIs could be useful in integrated
pest management as an alternative/supplementary approach if well explored.
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