
Polyhydroxyalkanoate Production
in Transgenic Plants: Green Plastics
for Better Future and Environmental
Sustainability

15

Manoj K. Sharma, Shashank Singh, Neelesh Kapoor, and R. S. Tomar

Abstract

In the present time, polyhydroxyalkanoates have established itself as the
alternatives of petroleum-based synthetic polymers due to their biodegradability
and eco-friendly nature. Several efforts have been done toward this direction by
using microorganisms. Since the last two decades, several scientists have engaged
in search of cost-effective alternatives of producing polyhydroxyalkanoates at
larger scales. Therefore, many plant species have been genetically engineered for
this purpose. The major obstacles in producing PHA polymers in transgenic
plants are the regulation of the appropriate monomer’s composition and ratio
synthesized in their cells. Efforts are on the way to encounter these difficulties as
soon as possible. Among the targeted cell organelles, plastids have been consid-
ered as the best sites for higher production of polyhydroxyalkanoates because of
its maternal inheritance and it is unaffected by gene silencing. The research is also
going on for enhancing the production and accumulation of these biopolymers in
transgenic plants. Polyhydroxyalkanoate production technologies are still costly,
but these could be cost-effective in the near future. The present chapter describes
about the current status of transgenic plants developed for the production of
polyhydroxyalkanoates at cheaper costs.
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15.1 Introduction

Over the past 60 years, the development of synthetic polymers has reduced the men’s
dependence upon the utilization of plant product-based polymers such as rubber,
cotton, wood, etc. But the excessive and ever-growing demands of utilizing synthetic
polymers raise the global environmental concerns. Therefore, the scientific commu-
nity has engaged to discover alternatives of synthetic polymers. As an alternative of
synthetic polymers, polyhydroxyalkanoates (PHAs) came into existence. These are
the natural products of certain bacterial cells. Therefore, scientists decided to pro-
duce biological polymers by using bacterial cells as bioreactors. This was first time
exploited in 1980 by Imperial Chemical Industries (Anderson and Dawes 1990).
This industry generated a large setup for the bulk production of
polyhydroxyalkanoates using polymer-accumulating bacterial strains such as
Ralstonia eutropha. But the cost of producing PHAs through this way was very
high. So again there were also the requirements of cost-effective alternatives for
producing biopolymers. The development of advanced biotechnological tools
attracted the concern of global scientists toward the utilization of plant bioreactors
for producing renewable biological polymers. Therefore, the scientific community
moved toward the utilization of plant bioreactors for generating
polyhydroxyalkanoates (PHAs) in a cost-effective and eco-friendly manner. For
this purpose, a variety of transgenic plant species including Arabidopsis, tobacco,
rapeseed, cotton, alfalfa, flax, sugarcane, Camelina, and oil palm were tested at
larger scales and generated new dimensions of producing biopolymers.

Polyhydroxyalkanoates (PHAs) are biopolyesters that are synthesized naturally in
a broad range of bacterial cells such as Alcaligenes eutrophus and many other
species as an inert carbon and energy reserve accumulated in the cytoplasm up to
about 80% of the total dry weight in the form of round-shaped granules with a
diameter of 0.2–1.0 μm (Sabbagh andMuhamad 2017). These polymers are made up
of about 600–35,000 identical monomer units. Polyhydroxyalkanoates act as water-
insoluble storage compounds which are synthesized under environmental stress
conditions in the excess of carbon and the limiting quantities of important growth
nutrients such as nitrogen, phosphorus, iron, magnesium, potassium, sulfur, zinc, or
oxygen (Masood et al. 2014). These biopolymers are depolymerized during the
exhausted carbon source conditions. Thus, the degraded products could be used by
microbes as an energy and carbon source (Anderson and Dawes 1990).

Polyhydroxyalkanoates (PHAs) are considered similar to the conventional
plastics in reference of its properties such as thermoplastic and polypropylene nature
(Anjum et al. 2016). Instead of petrochemical plastics, PHAs are natural, nontoxic,
biodegradable, and renewable (Sharma et al. 2016). These properties make PHA an
attractive alternative of petrochemical plastic. In the near future, it is hopefully
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projected that the production of synthetic plastic polymers could possibly reached up
to about eight hundred ten million tons (810 million tons) by the end of 2050 (Gumel
et al. 2013). As it is well known that plastic pollution has been an unbeatable burning
issue across the globe, it has been an urgent necessity to find out the eco-friendly
alternatives of synthetic plastics. That’s why, the scientific community and industries
are engaging to produce synthetic polymers through natural means. Generally
microbial bioreactors are utilized in producing PHAs at larger scales, but
the whole process of bioplastic polymer production is still highly expensive than
the process of producing petrochemical-based synthetic polymers due to the cost of
the nutrition for microbial cultures (Baikar et al. 2017). So the scientific community
has engaged in optimizing transgenic plants as novel bioreactors for production of
PHAs at cheaper costs. The present chapter summarizes the information about PHA,
its structure, biosynthesis, and the current status of transgenic plants which were
engineered for producing PHAs at cheaper costs.

15.2 PHA Structure and Biosynthesis

Polyhydroxyalkanoates are generally linear polyesters consisting of several 3-(R)-
hydroxy fatty acid monomers (HA) linked together by ester bonds. These ester
bonds are produced by the linkage of carboxylic group of one monomer unit to
the hydroxyl group of another monomer unit (Sudesh et al. 2000; Lenz and
Marchessault 2005). On the basis of the presence of carbon atoms in the monomers,
polyhydroxyalkanoates are generally categorized into two major groups. The
first group is called short chain length polyhydroxyalkanoates (scl-PHAs), and
the second group is medium chain length polyhydroxyalkanoates (mcl-PHAs).
Short chain length polyhydroxyalkanoates (scl-PHAs) generally consist of 3–5
carbon atoms, whereas the medium chain length polyhydroxyalkanoates
(scl-PHAs) have 6–14 carbons. Under natural conditions, the short chain length
polyhydroxyalkanoates (scl-PHAs) are synthesized in Cupriavidus necator, while
the medium chain length polyhydroxyalkanoates (scl-PHAs) are accumulated in
Pseudomonas species. The examples of short chain length PHAs are P(3HB)
[poly-3-hydroxybutyrate], P(4HB) [poly-4-hydroxybutyrate], and P(3HV) [Poly
(3-hydroxyvalerate)] or the copolymer P(3HB-co-3HV), whereas the P(3HHx)
[poly-3-hydroxyhexanoate], P(3HO) [poly-3-hydroxyoctanoate], and copolymer P
(3HHx-co-3HO) are considered as medium chain length PHAs (Kim and Lenz
2001). Each polyhydroxyalkanoate (PHA) polymer generally consists of about
1000–10,000 monomers, but most of them are synthesized by short chain length
(SCL) monomer units (Van der walle et al. 2001). The chemical structure of
polyhydroxyalkanoates (PHAs) is depicted in Fig. 15.1.

Most of our knowledge about biosynthesis of polyhydroxyalkanoate is
mainly based upon the studies on the production of polyhydroxybutyrate (PHB)
in cytoplasm of a gram-negative soil bacterium Ralstonia eutrophus or
Alcaligenes eutrophus bacteria. This bacterium has the capability of producing
polyhydroxyalkanoate in a natural way and could accumulate the polymer up to
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85% of its total dry body weight when grown on culture media with excess of
glucose. In this way, it acts as an energy source, but the production of this polymer is
limited when there is growth-limiting conditions such as lack of macroelements such
as nitrogen, phosphorus, and trace elements or the lack of oxygen in culture media
(De Koning 1995). Previous studies reported that the polyhydroxybutyrate (PHB)
could be depolymerized into acetoacetate and further into acetyl coenzyme A (CoA)
by applying growth-limiting conditions (Steinbuchel and Valentin 1995). Therefore,
it is clearly demonstrated that the acetyl coenzyme A acts as a precursor of
polyhydroxybutyrate biosynthesis in bacterial cell. Polyhydroxybutyrate (PHB)
decomposes into 3-hydrobutyrate (3-HB) monomers that can be used by fungi and
bacteria as carbon sources. The biosynthesis of PHB was first time described in 1973
in a bacterium Ralstonia eutrophus by Gottingen and Hull (Senior and Dawes 1973).
There are three key enzymes, namely, acetoacetyl-CoA reductase, 3-ketothiolase,
and PHA synthase which leads to the production of polyhydroxybutyrate by using
acetyl-CoA. PHA synthase uses CoA thioester of (R)-hydroxy fatty acids as sub-
strate. The enzyme popularly known as 3-ketothiolase encoded by gene phaA or
phbA is mainly responsible for catalyzing the reversible condensation of two
molecules of acetyl-CoA into acetoacetyl-CoA molecule. The acetoacetyl-CoA
reductase encoded by phaB or phbB gene reduces acetoacetyl-CoA into R-(�)-3-
hydroxybutyryl-CoA. After that the R-(�)-3-hydroxybutyryl-CoA finally
polymerizes into polyhydroxybutyrate (PHB) by the action of PHA synthase enzyme
encoded by a gene called phaC or phbC (Yunus et al. 2008; Kosseva and Rusbandi
2018). The polyhydroxyalkanoates (PHAs) biosynthesis pathway is schematically
depicted in Fig. 15.2. Polyhydroxyalkanoates are generally biosynthesized through
two possible routes. The first route is based upon β-oxidation pathway intermediates
and also on alkanoic acids. In this process, the levorotatory S-3-hydroxyacyl-CoA is
converted into R-3-hydroxyacyl-CoA, a dextrorotatory enantiomer by the action of
an enzyme epimerase. In the second route, the fatty acid biosynthesis intermediates
such as R-3-hydroxyacyl-ACP are used. In this process, the acyl carrier protein

Fig. 15.1 The chemical structure of polyhydroxyalkanoates (PHAs). The pendant R groups
(shaded boxes) vary in chain length from 1 carbon (C1) to over 14 carbons (C14). Structures
shown here are poly-3-hydroxybutyrate (PHB) [R ¼ methyl], poly-3-hydroxyvalerate (PHV)
[R¼ ethyl], and poly-3-hydroxyhexanoate (PHH) or poly-4-hydroxybutyrate (P4HB) [R¼ propyl].
(Adapted from Suriyamongkol et al. 2007)
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(ACP) is replaced by coenzyme A using an important enzyme 3-hydroxyacyl-CoA-
ACP transacylase. Both these processes are completed by a gene called phaC
[Kosseva and Rusbandi 2018].

15.3 PHA Production in Transgenic Plants

The production of PHAs by using microorganisms is costly because of various
factors such as variety and amount of nutrition supplied for microbes, optimized
growth environment, and sterilized conditions (Din et al. 2012; Mozejko-Ciesielska
and Kiewisz 2016). Therefore in comparison to microbes, transgenic plants are
considered as cheaper eco-friendly alternatives. The biosynthesis of PHAs in trans-
genic plants mainly depends upon mineral salts, water, light, and carbon dioxide
(CO2). The PHA production in transgenic plants is generally based upon the
availability of acetyl-CoA, a primary substrate for PHA biosynthesis, because the
plant cells do not have the abilities to degrade PHA as the microbes do. Acetyl-CoA
is the main metabolite of plant’s catabolic and anabolic processes. The plant cellular
compartments such as cytoplasm, mitochondria, peroxisomes, and plastids are rich
in acetyl-CoA. Therefore, the scientists targeted these compartments as the major

Fig. 15.2 The medium chain length polyhydroxyalkanoates (mcl-PHA) biosynthesis pathways
occur in the peroxisomes of transgenic plants. Here, enzyme ACD ¼ acyl-CoA dehydrogenase;
ECH ¼ enoyl-CoA hydratase; HCD ¼ L-3-hydroxyacyl-CoA dehydrogenase; and KT ¼ -
β-ketothiolase. (Reproduced from Dobrogojski et al. 2018)
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sites for producing and accumulating various PHAs in transgenic plants. The litera-
ture showed that the first experimental research attempt for producing PHA was
successfully achieved in the cytoplasm of transgenic Arabidopsis thaliana. After this
work several another research experiments were also conducted using various plant
species. But the deficiency of acetyl-CoA and acetoacetyl-CoA because of their
utilization in plant hormone and steroid biosynthesis pathways limited the produc-
tion of PHAs inside plant cell cytoplasm. Like cytoplasm, mitochondria also have
the limitations of the deficiency of acetyl-CoA because of its utilization during
cellular respiration. Plastids appear to the best site for PHA biosynthesis in plants
because there acetyl-CoA is present in higher concentrations and mainly utilized for
the biosynthesis of fatty acids. The plastids are the organelles which work properly
despite the structural changes and have the ability to store larger starch granules. But
the plastids do not have the stocks of beta ketothiolases. The beta ketothiolases are
located in the cell’s cytoplasm. This problem could be overcome by applying
specific DNA-encoding plastid-targeted sequences inserting in the vectors. The
peroxisomes are also considered as high potential sites for the production of PHAs
in transgenic plant cells because of having high reductive strength of NADH and
their beta oxidation of fatty acids. Peroxisomes are important cell organelles because
of synthesizing medium chain length polyhydroxyalkanoates (mcl-PHAs). Since the
last two decades, several scientists are doing research on producing PHAs in
transgenic plants. The detailed information regarding the current status of transgenic
plants developed for producing polyhydroxyalkanoates are given in Table 15.1.

15.4 Conclusion and Future Prospects

The environmental pollution generated through petroleum-based synthetic polymers
has become a very big global challenge. The production of synthetic polymers is
increasing day by day, and now it has appeared in an unbeatable form of pollutants.
The management of the plastic and its products is not an easy task; it takes several
hundreds of years to be decomposed. Therefore, it is a need of present time to find
out eco-friendly biodegradable alternatives. Polyhydroxyalkanoates (PHAs) have
appeared as a smart choice of scientific community as well as industry in the form of
plastic alternatives. PHAs are the major class of biodegradable biopolymers which
are biosynthesized by microorganisms in a natural way. The production of PHAs by
using microorganisms is costly because of various factors such as variety and
amount of nutrition supplied for microbes, optimized growth environment, and
sterilized conditions. Therefore in comparison to microbes, transgenic plants are
considered as cheaper eco-friendly alternatives. The biosynthesis of PHAs in trans-
genic plants mainly depends upon mineral salts, water, light, and carbon dioxide
(CO2). Some cellular compartments such as cytoplasm, mitochondria, peroxisomes,
and plastids have been targeted as important sites for producing and accumulating
PHAs in transgenic plants. Since the last two decades, several scientists have
engaged in research for optimizing transgenic plants as bioreactors for producing
PHAs. Several plant species including Arabidopsis thaliana, Camelina, tobacco,
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Table 15.1 The current status of transgenic plants engineered for production of
polyhydroxyalkanoates (PHAs)

Plant species Genes
Targeted cell
organelle PHA type References

Arabidopsis
thaliana

phaA, phaB, phaC Cytoplasm,
nucleus,
vacuole

P3HB Poirier et al.
(1992)

Arabidopsis
thaliana

phbA, phbB, phaC Plastids P3HB Nawrath et al.
(1994)

Arabidopsis
thaliana

phbB, phbC Cytoplasm P3HB Poirier et al.
(1995)

Arabidopsis
thaliana

phaC1 Peroxisomes mclPHA Mittendorf et al.
(1998)

Arabidopsis
thaliana

phbA, phbB, phaC Plastids P3HB-
3HV

Slater et al.
(1999)

Arabidopsis
thaliana

phbA, phbB, phaC Plastids P3HB-
3HV

Valentin et al.
(1999)

Arabidopsis
thaliana

phbA, phbB, phaC Plastids P3HB Bohmert et al.
(2000)

Arabidopsis
thaliana

phbA, phbB, phbC Plastids P3HB Bohmert et al.
(2002)

Arabidopsis
thaliana

phaCAc Peroxisomes scl-
mclPHA

Arai et al. (2002)

Arabidopsis
thaliana

phaA, phaB, phaC Plastids P3HB Kourtz et al.
(2005)

Arabidopsis
thaliana

phbA, phbB, phaC Cytoplasm P3HB-co-
3HV

Matsumoto et al.
(2005)

Arabidopsis
thaliana

phbA, phbB, phaC Peroxisomes scl-
mclPHA

Matsumoto et al.
(2006)

Arabidopsis
thaliana

phaA, phaB, phaC Plastids P3HB Kourtz et al.
(2007)

Arabidopsis
thaliana

phaA, phaB, phaC1 Plastids scl-
mclPHA

Matsumoto et al.
(2009)

Arabidopsis
thaliana

phaA, phaB, phaC Peroxisomes scl-PHA Tilbrook et al.
(2011)

Arabidopsis
thaliana

phaA, phaB, phaC Peroxisomes P3HB Tilbrook et al.
(2014)

Beta vulgaris phaA, phaB, phaC Plastids P3HB Menzel et al.
(2003)

Brassica napus phbA, phbB, phaC Plastids P3HB Houmiel et al.
(1999)

Brassica napus phbB, phaC Plastids P3HB-co-
3HV

Slater et al.
(1999)

Brassica napus phaA, phaB, phaC Plastids P3HB,
P3HB-co-
3HV

Valentin et al.
(1999)

Brassica napus phbA, phbB, phaC Cytoplasm P3HB Poirier and Gruys
(2001)

(continued)
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Table 15.1 (continued)

Plant species Genes
Targeted cell
organelle PHA type References

Camelina
sativa

phaA, phaB, phaC Plastids P3HB Patterson et al.
(2011)

Camelina
sativa

phaA, phaB, phaC Plastids P3HB Malik et al.
(2015)

Elaeis
guineensis

phaA, phaB, phaC Plastids P3HB,
P3HB-co-
3HV

Omar et al.
(2008)

Elaeis
guineensis

phaA, phaB, phaC Mesocarp P3HB Omidvar et al.
(2008)

Elaeis
guineensis

phaA, phaB, phaC,
tdcB

Plastids P3HB,
P3HB-co-
3HV

Parveez et al.
(2008)

Elaeis
guineensis

phaA, phaB, phaC,
tdcB

Immature
embryos

P3HB,
P3HB-co-
3HV

Fuad et al. (2008)

Elaeis
guineensis

phaA, phaB, phaC Plastids P3HB Ismail et al.
(2010)

Elaeis
guineensis

phaA, phaB, phaC,
tdcB

Plastids P3HB-co-
3HV

Ariffin et al.
(2011)

Elaeis
guineensis

phaA, phaB, phaC Plastids P3HB Parveez et al.
(2015)

Glycine max phbA, phbB, phaC Vacuoles P3HB Schnell et al.
(2012)

Gossypium
hirsutum

phaB, phaC Cytoplasm,
plastids

P3HB John and Keller
(1996)

Linum
usitatissimum

phbA, phbB, phbC Plastids P3HB Wrobel-
Kwiatkowska
et al. (2004)

Linum
usitatissimum

phaA, phaB, phaC Plastids P3HB Wrobel-
Kwiatkowska
et al. (2007)

Linum
usitatissimum

phbA, phbB, phbC Plastids P3HB Wrobel-
Kwiatkowska
et al. (2009)

Linum
usitatissimum

phbA, phbB, phbC Plastids P3HB Szopa et al.
(2009)

Linum
usitatissimum

phbA, phbB, phbC Fibers P3HB Kulma et al.
(2015)

Linum
usitatissimum

phaC1 Peroxisomes mclPHA Wrobel-
Kwiatkowska
et al. (2019)

Medicago
sativa

phbA, phbB, phaC Plastids P3HB Saruul et al.
(2002)

Nicotiana
tabacum

phbB, phaC Cytoplasm P3HB Nakashita et al.
(1999)

(continued)
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Table 15.1 (continued)

Plant species Genes
Targeted cell
organelle PHA type References

Nicotiana
tabacum

phbA, phbB, phbC Cytoplasm P3HB Nakashita et al.
(2001a)

Nicotiana
tabacum

phbA, phbB, phbC Plastids sclPHA Nakashita et al.
(2001b)

Nicotiana
tabacum

phbA, phbB, phaC Plastids P3HB Arai et al. (2001)

Nicotiana
tabacum

phbA, phbB, phaC Chloroplast P3HB Zhang et al.
(2002)

Nicotiana
tabacum

phbA, phbB, phbC Plastids P3HB Bohmert et al.
(2002)

Nicotiana
tabacum

phaA, phaB, phaC Plastids P3HB Suzuki et al.
(2002)

Nicotiana
tabacum

phbA, phbB, phbC Plastids P3HB Lossl et al. (2003)

Nicotiana
tabacum

phbA, phbB, phbC Plastids P3HB Lossl et al. (2005)

Nicotiana
tabacum

phaA, phaB, phaC Plastids P3HB Arai et al. (2004)

Nicotiana
tabacum

phaC2, aadA Plastids mclPHA Wang et al.
(2005)

Nicotiana
tabacum

phaB, phaC Cytoplasm P3HB Matsumoto et al.
(2011)

Nicotiana
tabacum

phaA, phaB Plastids P3HB Bohmert-Tatarev
et al. (2011)

Nicotiana
tabacum

phaB, phaC BY-2 cells P3HB Yokoo et al.
(2015)

Oryza sativa phbB, phbC Cytoplasm P3HB Endo et al. (2006)

Panicum
virgatum

phaA, phaB, phaC Plastids P3HB Somleva et al.
(2008)

Panicum
virgatum

phaA, phaB, phaC Plastids P3HB Somleva and Ali
(2010)

Panicum
virgatum

phaA, phaB, phaC,
FBPase, SBPase

Plastids P3HB Somleva et al.
(2012)

Populus
tremula � alba

phbA, phbB, phaC Plastids P3HB Dalton et al.
(2011)

Saccharum
officinarum

phaA, phaB, phaC Plastids P3HB Brumbley et al.
(2003)

Saccharum
officinarum

cTP-CPL, HCHL Plastids pHBA McQualter et al.
(2005)

Saccharum
officinarum

phaA, phaB, phaC Cytoplasm,
plastids

P3HB Petrasovits et al.
(2007)

Saccharum
officinarum

phaA, phaB, phaC Plastids P3HB Purnell et al.
(2007)

Saccharum
officinarum

phaA, phaB, phaC2,
phaJ2, FatB2, KasA1

Peroxisomes scl-
mclPHA

Anderson et al.
(2011)

(continued)
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sugarcane, maize, rapeseed, flax, cotton, and oil palm have been genetically
engineered for producing PHAs. But till date, no one plant species is released for
commercial production of biopolymers. The research is on the way, things are
optimizing, and we hopefully expect that the transgenic plants would be available
in the near future for producing PHAs at commercial scales.
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