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Abstract Internet of Things (IoT) has practically facilitated the option of connecting
devices that necessitates cooperation through the Internet. The IoT environment
comprises of self-configuring and smart objects that have the possibility of inter-
acting with one another using the infrastructure of a global network. Clustering is
the predominant approach that potentially works on the improvement of network
lifetime. In this paper, a new clustering scheme using Differential Evolution-
Improved Dragonfly Algorithm-based Optimal Radius Determination Strategy (DE-
IDAORDS) is proposed for achieving prolonged lifetime in IoT.DE-IDAORDS facil-
itates the selection of Cluster Head (CH) based on the hybridized merits of DE and
IDA for balancing the trade-off between exploration and exploitation to achieve effec-
tive clustering that attributes toward excellent energy stability and network lifetime.
It adopts fitness function evaluation using parameters like cluster radius, distance
and energy during CH selection. The results of the proposed DE-IDAORDS confirm
better results in terms of energy, cost function, and number of alive nodes in contrast
to the benchmarked schemes taken for investigation. The results also demonstrate
that the proposed DE-IDAORDS scheme is capable of adequately enhancing the
convergence rate and energy conservation in a minuscule period.
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1 Introduction

In the recent past, Internet of Things (IoT) has developed tremendously owing to its
wide use across the world. It is a technological gift that is developed to overcome the
challenges of non-ubiquitous sensing and non-pervasive computing enabled using
Wireless Sensor Network (WSN) technologies [1–3]. It includes a collection of
assorted devices that are openly connected to the Internet. IoT links the devices
directly to the network through universal infrastructure, where the communication
amid devices is through smart and self-configuring devices. The smart association
of devices involving network resources plays a dominant role in IoT. The data accu-
mulated from diverse devices are analyzed to disseminate the valuable data through
applications built to deal with the demands [4]. The devices are capable of dealing
with the breach amid physical and digital worlds, facilitating fresh kind of services.
Though IoT is used in diverse applications, it involves many challenges which
include incorporation of numerous technologies and standards that focus on sensing,
computational competences, storage, and connectivity [5, 6]. The nodes are resource
constrained with restricted energy, memory, computation, and communication abil-
ities. The nodes may also act as gateways to distant users. Owing to insufficient
supply of energy to nodes, energy preservation is predominant in attaining extended
network lifetime. Clustering is effective as it improves scalability of network by
dropping channel contention and packet collision, and enhancing throughput. Profi-
cient Cluster Head (CH) selection increases the load efficiency on CHs as energy
may be conserved and network lifetime may be improved [7].

In this paper, a new clustering scheme using Differential Evolution (DE)-
Improved Dragonfly Algorithm-based Optimal Radius Determination Strategy (DE-
IDAORDS) is proposed for achieving prolonged lifetime in IoT. It integrates the
exploration capabilities of DE with the exploitation potentialities of improved DFA
to establish balanced deviation between the local and global search process. It
includes the parameters of cluster radius, distance and energy during CH selec-
tion to evaluate the fitness function under optimization. The simulation experiments
of the proposed DE-IDAORDS are conducted using the evaluation metrics such as
throughput, normalized energy, time incurred for CH selection, cost function and
number of alive nodes for varying number of rounds and iterations in contrast to the
benchmarked schemes taken for investigation.
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2 Related Work

In this section, thework done by various authors related toCHselection are discussed.
Feng et al. [8] have propounded an enhanced K-means algorithm to cluster nodes and
perform weighted assessment to enhance cluster construction. The cluster is divided
or broken based on the assessment outcomes to get non-uniform clustering. The
authors have focusedon increased transmission delay due to data fusion andhave built
a delay-enhanced fusion tree. Parent nodes are chosen based on distance and energy.
Time slot distribution is enhanced by building a fusion tree, and the delay involved
in transmission is reduced. Halder et al. [9] have dealt with improving the network
lifespan by balancing energy depletion amid CHs. The radius at every level plays a
dominant role in improving network lifetime. Lifetime Maximizing optimal Clus-
tering Algorithm (LiMCA) is propounded for energy stringent IoT devices. Mainly,
LiMCA involves a stochastic positioning mechanism for nodes in the network. A
protocol is designed to train nodes about coarse-grain positions. Reddy and Babu
[10] have adopted a hybrid model using Moth Flame Optimization (MFO) and Ant
Lion Optimization (ALO) to increase the performance of CH selection amid devices.
The distance and delay are maintained, and the temperature and load are balanced
for achieving ideal CH selection. The mechanism focuses on convergence, main-
taining alive nodes, controlling of energy, load and temperature. Reddy and Babu
[11] have designed a Self-Adaptive Whale Optimization Algorithm (SAWOA) for
ensuring energy-based selection of CH and clustering in Wireless Sensor Network
(WSN)-based IoT. The propounded schemes offer better network lifetime. Dhumane
and Prasad [12] have propounded Multi-Objective Fractional Gravitational Search
Algorithm (MOFGSA) for finding optimal CHs that support energy effective routing
in an IoT network. The CHs are assessed based on a fitness function in terms of
distance, lifespan, delay, and energy.

Srinidhi et al. [13] have propounded Hybrid Energy Efficient and QoS Aware
(HEEQA) scheme, an amalgam of Quantum Particle Swarm Optimization (QPSO),
and enhanced Non-dominated Sorting Genetic Algorithm (NSGA) to attain energy
balance amid devices. The parameters in MAC layer are altered to decrease energy
consumption of devices. NSGA focuses on multi-objective optimization, while the
QPSO algorithm supports in finding the optimum cooperative grouping. Govindaraj
and Deepa [14] have dealt with the optimization of IoT in WSNs that focuses on
handling energy and accuracy involved in complex clustering mechanisms. Capsule
Neural Network (CNN)-based learning model that manages network energy at an
optimal level is propounded. This architecture supports efficient routing and opti-
mization, wherein activation is done during the forward pass. Sennan et al. [15] have
propounded Type-2 Fuzzy Logic-based Particle Swarm Optimization (T2FL-PSO)
algorithm to choose the optimum CH to prolong the lifespan of a network. This
scheme is useful in offering precise solution in indeterminate network surroundings.
Residual energy along with the distances amid the nodes and the Base Station (BS)
are used to find the fitness. Virtual clusters are built depending on the distance amid
nodes and the CH or the BS. Dev et al. [16] have propounded a scheme wherein the
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CH is chosen by theOver takerAssistedWolf Update (OA-WU) that is a combination
of the conceptions ofGrayWolfOptimization (GWO) algorithm andRiderOptimiza-
tion Algorithm (ROA). This scheme is based on distance, radius and energy of the
cluster. Energy is conserved, and convergence rate is improved in a short duration.

3 Proposed DE-IDAORDS Scheme

The network model considered during the implementation of the proposed DE-
IDAORDS scheme consists of a single BS and finite number of static sensor nodes.
The communication in the network always occurs within the range facilitated by the
given radio. The network is assumed to face challenges related to energy consump-
tion, data sensing, sensor allocation, radio communication and topology character-
istics. The sensor nodes in the network are localized in the application areas either
manually or randomly. However, extending network lifetime is a herculean task in
WSNs enabled IoT. In this context, clustering is indispensable for partitioning the
sensor nodes to construct clusters. Moreover, the transmission of data from one node
to another is a challenging task inWSN-enabled IoT. This challenge of data transmis-
sion needs to be overcome based on the determination of optimal shortest paths. In
this context, several works focusing on the establishment of different system models
that aid in attaining the distribution of data packets among the cluster members and
BS using the merits of routing protocols are contributed to the literature. However,
energy and location of sensor nodes are identified as prime factors for performing CH
selection in hierarchical routing. In this paper, the proposedDE-IDAORDS scheme is
presented as a potential CH selection strategy using the optimizing factors of cluster
radius, energy, and distance for achieving energy stability and prolonged network
lifetime.

3.1 Cluster Radius Estimation

The factor of cluster radius needs to be estimated for enhancing the network lifespan
in the clustering architecture. This cluster radius (CR) is estimated by dividing the
complete network area of radius (RN ) into ‘k’ ring sectors based on the angle of disk
sector (ϕ). In the network model, the sensor nodes are independent of the size of the
network and transmit data to the neighboring CHs within a fixed radius. In specific,
each node possesses a particular sensing and communication radius to estimate its
network coverage. But communication radius depending on the number of neigh-
boring nodes needs to be essentially computed for reliable data transmission. To
achieve the estimation, potential optimization strategy becomes essential, and thus,
DE-IDA mechanism is employed for selecting the optimal cluster radius depending
on the fitness function 1 as specified in Eq. (1).
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F1 : CR = min
i

SNR−UC(i)

SNTotal
(1)

where ‘SNR−UC(i)’ and ‘SNTotal’ represent the number of sensor nodes that are not
covered by the radius and the total number of nodes existing in the network.

3.2 Energy Consumption

Adequate amount of energy is essential for data transmission. This energy is essential
for carrying out the functions of sensing, aggregation, transmission and reception.
The cumulative energy

(
E Initial
SN

)
necessary for communication is the aggregate sum

of the energy spent for idle state
(
E IS
SN

)
, data reception

(
EDR
SN

)
, electronic energy(

EEE
SN

)
, and data transmission

(
EDT
SN

)
as specified in Eq. (2).

F2 : E Initial
SN = E IS

SN + EDR
SN + EEE

SN + EDT
SN (2)

The above-mentioned energy consumption is the second factor (fitness function
2) to be optimized during the CH selection process.

3.3 Distance Estimation

In the process of clustering, CH is responsible for generating and forwarding an
advertisement message to the complete set of nodes existing in the network to inform
their role during the communication process. Whenever a sensor node receives an
advertisement message from a CH, it commences to estimate the distance between
itself and the CH. Moreover, the construction of clusters within the network is facil-
itated by the sensor nodes that possess the least distance with the CH. This distance
measure is determined and represented as a matrix as shown in Eqs. (3) and (4).

dM(a,b) =
√

(AW − BW )2 + (AN − BN )2 (3)

F3 : DM(i× j) =

⎡

⎢⎢
⎣

dM(CH1−S11) dM(CH1−S21) . . . dM(CH1−SM1)

dM(CH2−S11) dM(CH2−S21) . . . dM(CH2−SM1)

. . . . . . . . . . . .

dM(CHK−S11) dM(CHK−S21) . . . dM(CHK−SM1)

⎤

⎥⎥
⎦ (4)

The complete objective of the proposed DE-IDAORDS-based IoT clustering
model is defined in Eq. (5).
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ObjFN = Min

(
F1 + 1

F2
+ F3

)
(5)

where ‘F1’, ‘F2’, and ‘F3’ represent the fitness function parameters considered for
optimization with cluster radius set in the range from 0 to 50.

3.4 Dragonfly Algorithm (DFA)

Primitive DFA algorithm is proposed based on the inspiration derived from the drag-
onflies’ social behavior with respect to the hunting and migration for food [17]. In
specific, the dragonflies’ hunting phenomenon mimics the random movement in the
local search space as it corresponds to the exploitation potentialities of the algo-
rithm. On the other hand, migration of dragonflies is like the exploration capability
that investigates the solution in the entire problemdomain. In this context, the feasible
solution in the problem domain with respect to optimal radius-based CH selection
(population matrix) is shown in Eq. (6).

SD
i = {S1, S2, . . . , SN } (6)

where ‘SD
i ’ represents the position of the search agent (dragonfly) with ‘D’ and ‘N̂ ’

as the dimensional search space and search agents’ count respectively. The searching
process of the DFA algorithm comprises of the parameter of separation, cohesion
and alignment determined for ‘N̂ ’ individual neighbors. In specific, the parameter
separation and cohesion with respect to DFA are computed based on Eqs. (7) and
(8).

SP(i) = −
N̂∑

j=1

(
S − Ŝ j

)
(7)

CP(i) =
∑N̂

j=1

(
S − Ŝ j

)

N
− S (8)

On the other hand, the factor of alignment is determined based on Eq. (9).

AP(i) =
∑N̂

j=1 Vj

N
(9)

where ‘i’ and ‘j’ represent the current and neighboring individual solutions consid-
ered from the search space for exploration and exploitation.Moreover, ‘Vj ’ highlights
the velocity associated with the j th neighboring individual solution.
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Further, the degree of attraction
(
AR(i)

)
and distraction

(
DR(i)

)
of the search agents

toward the determination of optimal solution are computed as shown in Eqs. (10)
and (11).

AR(i) = S+ − S (10)

DR(i) = S− − S (11)

where ‘S’ represents the current position of search agent from which the required
solution is closer

(
S+)

and farther
(
S−)

depending on the position toward solution
determination.

At this juncture, the step vector ‘�SP(t+1)’ is updated based on Eq. (12).

�SP(t+1) = (
αSP(i) + βCP(i) + γ AP(i) + δAR(i) + μDR(i)

)

+ WIntertial ∗ �SP(t) (12)

where ‘α’, ‘β’, ‘γ ’, ‘δ’, and ‘μ’ represent the factors of separation, cohesion, align-
ment, attraction and distraction for achieving better exploration and exploitation with
‘WInertial’ as the inertial weight. Moreover, the position of the search agent is revised
based on Eq. (13).

SP(t+1) = SP(t) + �SP(t+1) (13)

In addition, the search agents’ position (dragonfly) using the merits of Levy fight
function is updated using Eq. (14).

SP(t+1) = SP(t) + Levy (d)ŜP(t) (14)

Finally, the fitness function presented in Eq. (5) is evaluated based on the
determined position vector until the termination condition is satisfied.

3.5 Differential Evolution

Differential evolution is proposed as a potential optimization algorithm that facili-
tates significant results over different linear objective functions which are like objec-
tive functions formulated for CH selection [18]. It offers better convergence rate and
aids in attaining better global optimal solution during searching. In this proposedDE-
IDAORDS scheme, DE is specifically utilized for handling the computation intensive
cost functions with minimized number of convergence properties and control vari-
ables. It also adopts randommutation that inherits the weighted difference estimated
between two vectors. It inherits trial factor for employing mutation and crossover
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over the target vector using mutant vector specified in Eq. (15).

mi
v = Sr1 + MF

(
Sr2 − Sr3

)
(15)

where ‘r1’, ‘r2’, and ‘r3’ represent the randomly selectedvalues that highlight the indi-
viduals in ‘N’ dimensions. Moreover, ‘MF ’ represents the component of crossover
introduced for refining the algorithmic diversity.

Further, the vectors of ‘mi
v’ and ‘SiP ’ are built using crossover for constructing

the trial vector based on Eq. (16).

Ui
Cross =

{
mi

v if (rndi ≤ CF ) or
(
RCF = RRnd

CF

)

Siv if (rndi > CF ) or
(
RCF �= RRnd

CF

) (16)

where ‘CF ’ and ‘RCF’ represent the crossover factor and dimension considered for
searching in the range of 0 and 1. Moreover, RRnd

CF ∈ [1, D] highlights the randomly
selected individual index value. In addition, the fitness value of the objective function
(specified in Eq. (5)) is utilized for selecting the optimal solution from the target and
trial vector.

3.6 Hybridization of DE and DFA

The primitive aim of hybrid optimization is to establish superior balance between
exploration and exploitation that attributes toward the mitigation of limitations
possessed in the parent optimization method for attaining enhanced optimal solu-
tion. The traditional DFA algorithm possesses exploration potential based on the
randomness of the initially generated population depending on the significance of
Levy fight search to achieve solution diversity. However, DFA does not inherit any
mechanism for storing the best solution. It also discards the local best values during
implementation when it exceeds the global best solution. It is also considered to
be slow and suffers from the problem of premature convergence. This limitation
completely fails in tracking the comprehensive set of solutions that introduces the
possibility of converging the solution to a global optimum. Thus, the hybridization
of DE and DFA concentrates on the performance improvement by (i) including indi-
vidual particle memory that stores the global best solution along with the local best
solution for attaining the global optimal point, (ii) integrating iteratively with DE
to execute the set of solutions determined by DFA in a predominant manner, and
(iii) hybridizing improved learning-based mutation of DE into DFA for achieving
population diversity. It also introduces the evaluation of convergence power using
local and global best solutions that control the span of convergence. In addition, it
utilizes the convergence power to generate a new set of population when it exceeds
the specific threshold. In this process of hybridization, mutation inherent in DE is
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carried out using the local and global best solutions for identifying the predominant
solutions in the search space. This mutation process adopts an enhanced learning
strategy to include the local and best solutions that improve the population diversity.
Then, the vector of target associated with DE is improved with the iterative best
solution identified from DFA depending on Eq. (17).

m(i,k)
v = S(i,k) + rndi

(
S(i,k) − S(i,k)

Old

)
+ M1

F

(
sLeader − S(i,k)

)

− M2
F

(
rn∗sWorst − S(i,k)

LBest

)
(17)

where ‘S(i,k)
Old ’, ‘S(i,k)

LBest’, and ‘sLeader’ represent the positions of the individual solution
and global worst particle in the preceding iteration. In this case, ‘rndi ’ represents the
random number that lies between 0 and 1 which obeys the characteristics of normal
distribution ‘N (0, 1)’. Moreover, the values of ‘M1

F ’ and ‘M
2
F ’ are determined based

on Eqs. (18) and (19).

M1
F = MF + rnd1MF (18)

M2
F = MF − rnd1MF (19)

At this juncture, the value of ‘MF ’ representing the mutation factor is computed
based on Eq. (20).

MF = 0.8 + (0.8 − 0.2)IterCurr
IterMax

(20)

where ‘IterCurr’ and ‘IterMax’ represent the current iteration and maximum number
of iterations considered during the implementation of DE-IDAORDS.

Finally, the proposed DE-IDAORDS-based IoT clustering optimization model is
adopted for clustering to improve the network lifetime and energy stability.

4 Results and Discussion

The performance evaluation of the proposed DE-IDAORDS-based IoT clustering
model and the benchmarked approaches is conducted using MATLAB R2018a. The
data acquisition associatedwith the implemented IoT environment is considered from
the data science community of Kaggle. This experimental investigation is carried
out based on the time taken for CH selection, cost function, normalized energy, alive
nodes and throughput.

The network area considered for implementation is 100 × 100 square meters
in which 100 sensor nodes are deployed randomly throughout the entire region.
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Fig. 1 Throughput for Varying Number of Rounds

The initial energy of sensor nodes is set to 0.5 J with simulation rounds of 2000
and packet size of 4500 bits. Initially, Figs. 1 and 2 demonstrate the throughput and
normalized energy realized in the network during the implementation of the proposed
DE-IDAORDS and the benchmarked T2FL-PSO, HEEQA, and SAWOA approaches
for varying number of rounds. The results evidently prove that the proposed DE-
IDAORDS scheme is potent in estimating the optimal cluster radius to a more accu-
rate level and confirm better throughput by propagating the packets from the source
to the destination nodes. On the other hand, the normalized energy sustained in the
network is maximized by the proposed DE-IDAORDS by adopting the potentiali-
ties of trial and target vector during local and global searches. Hence, the normalized
energy used by the proposedDE-IDAORDS for varying number of rounds is compar-
atively improved by 13.29%, 15.64% and 17.46% when compared to the bench-
marked T2FL-PSO, HEEQA and SAWOA approaches. Moreover, the proposed
DE-IDAORDS for varying number of rounds reduces the normalized energy by
12.98%, 14.82% and 16.71% in contrast to the benchmarked T2FL-PSO, HEEQA
and SAWOA approaches.

Further, Figs. 3 and 4 depict the cost function and the time incurred for CH
selection by the proposedDE-IDAORDS and the benchmarkedT2FL-PSO,HEEQA,
and SAWOA approaches for varying number of iterations. The results confirm that
the proposed DE-IDAORDS scheme is capable of minimizing the cost function
as it integrates the merits of DE and DFA toward optimal CH selection process.
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Fig. 2 Normalized Energy for Varying Number of Rounds

Fig. 3 Cost Function for Varying Number of Rounds
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Fig. 4 Time incurred for CH Selection for Varying Number of Rounds

The time incurred for CH selection as attained by the proposed DE-IDAORDS is
comparatively minimized since it adopts the adjustment of migration factor of DFA
into the mutation factor of DE toward better exploration and exploitation. Thus,
the cost function attained by the proposed DE-IDAORDS for varying number of
iterations is comparatively reduced by 17.21%, 19.86% and 21.94%when compared
to the benchmarked T2FL-PSO, HEEQA and SAWOA approaches.

Moreover, the proposed DE-IDAORDS for varying number of iterations mini-
mizes the time incurred for CH selection by 14.29%, 16.84% and 19.23% when
compared to the benchmarked T2FL-PSO, HEEQA and SAWOA approaches. In
addition, Fig. 5 depicts the number of alive nodes in the network as attained by the
proposed DE-IDAORDS and the benchmarked T2FL-PSO, HEEQA and SAWOA
approaches for varying number of rounds. The number of alive nodes sustained in
the network is improved due to the inclusion of DE that adaptively helps the DFA in
exploring the search space during the optimal CH selection process. The proposed
DE-IDAORDS for varying number of rounds maximizes the number of alive nodes
by 12.98%, 14.76% and 16.21% when compared to the benchmarked T2FL-PSO,
HEEQA and SAWOA approaches.



Differential Evolution-Improved Dragonfly Algorithm … 619

Fig. 5 Number of Alive Nodes for varying Number of Rounds

5 Conclusion

In this paper, the proposedDE-IDAORDSscheme is a significant scheme for selecting
optimal CHs through the exploration and exploitation benefits of DE and DFA
algorithms. It chooses optimal CH using the optimization factors of cluster radius,
energy model and distance measures. It facilitates optimal tuning of the process of
determining the cluster radius. The simulation results confirm that the cost func-
tion attained by the proposed DE-IDAORDS for varying number of iterations is
comparatively reduced by 17.21%, 19.86% and 21.94% when compared to the
benchmarked T2FL-PSO, HEEQA and SAWOA approaches. Further, the proposed
DE-IDAORDS for varying number of iterations minimizes the time incurred for CH
selection by 14.29%, 16.84%and 19.23%when compared to the benchmarkedT2FL-
PSO, HEEQA and SAWOA approaches. In addition, the results evidently prove that
the proposed DE-IDAORDS for varying number of rounds maximizes the number of
alive nodes by 12.98%, 14.76% and 16.21% in contrast to the benchmarked T2FL-
PSO, HEEQA and SAWOA approaches. As a part of the future plan, it is decided to
formulate a Mayfly-based optimal CH selection to improve the network lifetime in
IoT on par with the proposed DE-IDAORDS scheme.
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