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Abstract Code smells combine software features that indicate a code or design-
related problem that can increase the difficulty of the software and make it compli-
cated to recognize, develop, and maintain the software. Code smell detection helps
us to make code accurate and effective. In this study, five classification models are
applied. To complete this study, four datasets of code smell are used. To pick the
finest feature in the existing dataset, a feature selection method (FST) is used. The
ten-iteration cross-validation method is applied to calculate the execution of the
model predicted. In this document, the random forest model for the Feature-envy
dataset achieves an accuracy of 0.9912%.

Keywords Classification methods · Feature selection technique (FST) · Code
smell detection

1 Introduction

The software complexity is continuously mounting because of the complex require-
ments, an increase in the quantity, module size, and code smells belonging to the
advanced software, etc. Harsh conditions are challenging to examine and recognize,
and therefore, as a result the improvement turns out to be problematic. The compli-
cated necessities are not in the hands of the designer, but the smell of the code
can be recognized and the software can be made modest, more comprehensible,
and uncomplicated [1]. During the software making procedure, the operational and
non-operational quality required for developers must be followed to secure soft-
ware quality [2]. Developers concentrate only on practical demands and ignore non-
functional needs, such as comprehensibility, verifiability, evolution, maintainability,
and reusability [3]. The complexity of the software program is growing constantly
due to thewide range ofmodule sizes, method sizes, and branching complexity, reno-
vation costs are increasing due to extra code smells, and the quality of the software
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program is deteriorating due to the growing number of lines of code. Fowler et al.
[4] described the refectory method from which the slackly executed program could
be changed in an exemplary execution; 22 definitions of code smells were given by
them.

Many approaches for code smell detection have been used in the literature to
identify smells of different codes.

Every method will produce a distinct outcome according to their different cate-
gories. Seven types of code smell detection techniques are categorized by Kessentini
et al. [5]. These seven techniques are cooperative-based technique [6], visualization-
based technique [7], search-based method [8], probabilistic technique [9], symptom-
based technique, metrics-based technique, and manual technique [10]. Inspection
approaches [11], manufacturing process, and process identification methods [12]
were used by manual technique to advance the superiority of software. To detect
code smells using a symptom-based technique, the specification algorithm was used
[13].

Multiple studies have analyzed the code smell’s influence at the software and also
displayed unwanted impacts of software’s features with code smell detection [14,
15]. They also analyze the code smell effects that increase the risk of software system
failures and faults. They found that the challenge full of code smell impacted the soft-
ware improvement procedure and suggested software’s refactoring for elimination
of it.

Deligiannis et al. [16], Olbrich et al. [17, 18], and Khomh et al. [19] observed
the effect of code smells on software development by observing the changes in the
occurrence and size in the software system. They also observe that classes affected
by code smells have a more significant rate of change and require supplementary
maintenance work. The relevance of bad smells and the possibility of class error in an
OOS system were investigated by Li and Shatnawi [20]. Infected software elements
that use code smells have more class mistakes than other elements, according to
the experiment. The negative effect of God-class on energy intake was examined by
Perez-Castillo and Piattini [21], who found that eliminating God-class odors reduces
the cyclomatic complexity of the source code in the software system.

The main contributions of this research work are divided into two parts: In the
first part, five classification techniques are applied to detect the code smell from
the dataset and feature selection technique is also applied to select the best features
from each dataset. The second part shows the performance measures obtained using
classification and evaluation techniques with the tenfold cross-validation technique.

In this research work, the classification techniques for code smell detection are
proposed. The four datasets of code smell datasets are considered. The class-level
smell contains the God-class and the Data-class datasets, whereas method-level
smell contains Feature-envy and Long-method datasets. Five classification methods
(random forest, SVM, naive Bayes, KNN, and logistic regression) are applied to
classify the dataset.

This paper is partitioned in five section: Sect. 2 describes the literature review,
and this section shortly reviews the work done in past by various authors for code
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smell discovery by classification techniques. Section 3 describes proposed method-
ology. Section 4 describes the investigational consequences, and Sect. 5 explains the
conclusion of our work.

2 Related Work

Many researchers have presented papers using ML algorithms to detect the code
smells. In this paper, the existing methods of supervised learning techniques are
used to detect code smells. In this paper, the existing methods of supervised learning
techniques are used to detect code smells to comparing and experimenting with ML
algorithms to detect code smells. They tested sixteen ML techniques on four code
smell datasets as well seventy four Java platforms on the training dataset that were
manually evaluated. Boosting approaches are also used on four datasets of code
smells.

Mhawish and Gupta [22–24] proposed software metrics, tree-based and decision
tree-based ML algorithms, and software metrics for differentiating and recognizing
similar structural design patterns. To choose the most significant characteristics from
each dataset, they utilized two feature selection strategies in light ofGA-CFS (genetic
algorithm).

They also employed a parameter refinement using a grid search method approach
to improve the accurateness of all machine learning methods. Guggulothu and Moiz
[25, 26] suggested a multi-label classification strategy for code smell detection. To
see if the specified code components are affected in several ways, they employed
a categorization system with many labels. For excellent accuracy, they made use
of an unsupervised classification algorithm. Dewangan et al. [27] applied six ML
algorithms, and two feature selection techniques such as chi-square and method for
selecting features based on a wrapper were applied to pick the greatest features
from each dataset; then, moreover grid search procedure was used to increase the
performance of model, and they obtained 100% highest accuracy using the logistic
regression technique for the Long-method dataset. Kreimer [28] proposed a detection
approach to detect Long-methods and prominent class code smell based on a decision
tree approach. The approach is evaluated on two small software: theWEKA software
package and the IYC system. It was found that the prediction model and this model
help detect code smells. The usefulness of decision trees for identifying code odors
was proposed by Amorim et al. [29]. By putting Kreimer’s decision tree model to
the test, they were able to corroborate his findings. Class change proneness can be
predicted based on code smell using Pritam et al.’s [30] machine learning methods.
They agree that code smells have an influence on the predisposition of a given session
in a produce context to change. They used six ML techniques to estimate variation
proneness based on code smells from 8200 Javamodules across 14 software systems.

Draz et al. [31] proposed employing the classifier based on the whale optimization
method to enhance code smell prediction using a search-based method. They tested
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Table 1 Summary of related work

Author name Model Datasets FST Results

Fontana et al.
[33]

16 machine
learning
algorithm

Code smell
datasets

Non 99.10% in B-J48 pruned
on Long-method

Guggulothu
and Moiz [25]

B-random
forest,
random
forest, J48
unpruned
etc.

Feature-envy and
Long-method
with multi-label
classification

Non 95.9% in random forest
on Long-method, 99.1%
in B-J48 pruned on
Feature-envy

Mhawish and
Gupta [23]

Decision
tree
algorithm

Code smell
dataset

Genetic
algorithm-based
two FST

Data-class—98.05%,
God-class—97.56, and
Long-method—98.38%

Mhawish and
Gupta [22]

Six
machine
learning
algorithm

Code smell
dataset

Genetic
algorithm-based
two FST

99.70% in Data-class
using random forest
model

the nine different kinds of code smells on five different open systems applications.
They had an accuracy of 94.24% and a recall of 93.4% on average.

For metric-based code smell detection, Pecorelli et al. [32] provided an interesting
finding comparing the performance of machine learning-based and heuristic-based
strategies. They considered five types of code smells (God-class, Spaghetti Code,
Class Data Should Be Private, Complex Class, and Long-method) and comparedML
techniques with DECOR, a state-of-the-art heuristic-based approach. Researchers
discovered that the DECOR consistently outperformed the ML baseline. In Table 1,
a summary table of some essential related work is shown.

3 Proposed Methodology

In this paper, a code smell detection framework is constructed using classification
models. Code smell matrices play an essential part in determining the operational as
well as non-operational abilities and recognizing the software’s properties. Metrics
manage the static information of the software, such as classes, methods, and param-
eters that measure coupling and cohesion between objects in the system. Figure 1
depicts the steps which are followed to build the code smell detection framework.
First, four datasets of code smell are created. The pretreatment (regularization)
processes are then done to the dataset to cover all of the dataset’s ranges. The best
features from each dataset are then selected using the wrapper-based FST. Then train
the model with classification algorithms applied to the dataset and determine their
performance. The methodology of tenfold cross-validation is then applied to assess
the result of each experiment during the preparation development. For performance
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Fig. 1 Proposed work

10-Fold Cross-validation

Final Evaluation

Code Smell Dataset

Normalization/ Preprocessing

Classification Algorithm 

Feature selection technique

measurement, tenfold cross-validation is used, which divides the dataset into ten
sections and repeats them ten times. Then evaluate the final results.

God-class, Data-class, Feature-envy, and Long-method are four code smell
datasets which [33] were taken to make the code smell detection framework in this
study. In the following section, the data preparation methodology is shown briefly.

Because various datasets have distinct attributes, we cannot always use straight-
forward classification techniques on them. As a result, normalization is required to
span the dataset’s various ranges. ML models may sometimes evaluate quickly on
a normalized dataset, which might have a big impact when the model is sensitive
to size. Prior to the implementation of the support vector machine algorithm, for
example, it is necessary to avoid normalization in order to dominate higher number
ranges on small number varieties, where the variety of possible elevated values causes
mathematical problems [34]. This article uses the minimum–maximum normaliza-
tion technique to convert dataset values between 0 and 1. This strategy is utilized in
the data preparation step, which prepares the data for subsequent processing using
one of the machine learning algorithms such as SVM, NN, and others [35]. The
following equation executes an x mapping change from feature A from the range
[min A, max A] to [new min A, new max A].

x ′ = (x − min A)/(max A − min A)

All datasets were subjected to the min–max normalization approach, and the
resulting new data was used as input into all classification systems.

To choose the best features (matrices) from each dataset, this experiment uses a
wrapper-based FST. FST is applied to choose a set of characteristics in the dataset that
are mainly appropriate to the goal value [36]. In this experiment, we have selected
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the ten best features from each dataset, and then, classification algorithms are applied
to each dataset.

This paper applies five classification algorithms (random forest, SVM, naive
Bayes, KNN, and logistic regression) to perceive code smells from the code smell
dataset. Classification algorithms classify the data into the specifiednumber of classes
in our dataset.

In this study, the validation technique is used to assess the performance of each
experiment. For this, a tenfold cross-validation training approach was applied. Clas-
sification models that partition the dataset into tenfold with ten times of iteration are
calculated using tenfold cross-validation. Different parts of the dataset are considered
test datasets at each iteration, and other convolutions of the dataset are considered
training modes. Then, finally the trained models are tested with unseen test dataset
(10% split from the dataset before training). Stealth test dataset is used to clarify the
model’s forecasts and escape making broad generalizations.

Four performance constraints, precision, recall, F1-score, and accuracy, were
examined to measure the efficiency of our classification approach. To calculate them,
TP, TN, FP, and FN are found through the confusion matrix. True positive (TP)
displays the occurrences in the positive class that properly forecast the model. False
positive (FP) refers to occasions in which the model is predicted inaccurately in the
positive class. True negative (TN) displays the instances in the negative class that
properly forecast the model. Furthermore, false negative (FN) displays situations
where the negative class is wrongly predicted.

4 Experimental Results

To the experiment work, four code smell datasets are used. The five classification
algorithms are applied to identify the code smells from each dataset. The four perfor-
mance measurements, precision (P), recall (R), F1-score (F1), and accuracy (A), are
considered for eachdataset. The experimental results for each classification technique
are shown in Table 2. In this research, the F1-score was 0.98%, and accuracy was
0.98% for the Data-class, the F1-score was 0.98%, and the accuracy was 0.97% for
the God-class, the F1-score was 0.98%, and an accuracy of 0.9912% for the Feature-
envy, and an F1-score of 1.00% and an accuracy of 0.9952% for the Long-method
using the random forest algorithm attained themaximum accuracy, whereas the naive
Bayes (0.91% accuracy for Feature-envy) attained the gives the worst performance.

4.1 Evaluation of Our Techniques to Other Related Works

Table 3 represents a brief long evaluation of our techniques with other related
works. In this evaluation, it is observed that in the Feature-envy dataset our approach
achieved 99.12% accuracy, while in the Data-class and God-class datasets, Mhawish
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Table 3 Comparison of our approach with other related work

Year Author name Datasets

Data-class God-class Feature-envy Long-method

Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

2016 Fontana et al. [33] 99.02 97.55 96.94 99.43

2020 Mhawish and Gupta
[22]

99.70 98.48 97.97 95.97

2020 Guggulothu and Moiz
[25]

N/A N/A 99.10 95.90

2021 Dewangan et al. [27] 99.74 98.21 98.60 100.00

2021 Our approach 98.00 97.00 99.12 99.52

Bold value represent that our approach obtained the highest accuracy (99.12%) for feature-envy
dataset in comparation to other authors

and Gupta [22] achieved 99.70 and 98.48% highest accuracy. For the Long-method
data set, Dewangan et al. [27] achieved the highest accuracy of 100%.

5 Conclusion and Next Steps

The classification strategy is provided in this research to identify the code smells from
software and to find the metrics that play an important part in the detection process
using classification algorithms. To determine the key metrics that may be utilized to
increase accuracy, thewrapper-based feature selection approach is used. The findings
are then evaluated using a tenfold cross-validation procedure. In this researchwork, it
has been noted that the random forest procedure achieved the maximum accuracy of
0.98% for Data-class, 0.97% for God-class, 0.9912% for Feature-envy, and 0.9952%
for Long-method dataset. In the future work, other machine learning techniques and
other metrics selection techniques can be applied to increase the outcomes.
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