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Abstract The paper discusses the linear separability of data classes and the rela-
tionship of threshold neurons with class classifiers. The possibility of constructing
a neuron that can solve two different problems without the need for an intermediate
change in its parameters and architecture is shown theoretically. The idea is illus-
trated with a specific example of a neuron solving problems simultaneously with
both Boolean functions “AND” and “OR”. A conclusion has been drawn for the
existence of a neuron that can solve a class of an infinite number of problems. A
necessary condition for this is that the domain of the problems is linearly separable
from the surface in the input data space and the existence of parallel classifiers for
separability for each individual problem.
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1 Introduction

Let a set of objects be given

A = {A1, A2, . . . Am},m ∈ N , in which

eachobject Ai , i=1…m is characterizedby “n” different attributes of a completely
random type. In the general case, when considering the linear separability, it is not
necessary to define the type of the individual attributes in advance, but to draw atten-
tion to the possibility of grouping the objects into classes through these attributes.
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One attribute can be qualitative—for example, “color” or “shape,” another—quanti-
tative, for example, “weight” or “temperature,” and if necessary, for each qualitative
characteristic we could give some quantitative expression.

Following this line of thought, if we introduce quantitative correspondences of
qualitative characteristics, then we can describe each object only with quantitative
characteristics. For example, if for the colors we assume green = 28, and for the
shapes—polygon = 123, then the object green polygon is:

(color = “green”, shape = “polygon”)

and it can be represented as:

(x1 = 28, x2 = 123).

To simplify the reasoning, let us assume that all the characteristics of the consid-
ered objects are quantitative values. This in turn means that each object of the set A
can be considered as a point in the n-dimensional space of the attributes (Fig. 1), i.e.,

Ai = {xi1, xi2, . . . xin} ∈ En, ∀ Ai ∈ A, i = 1, 2 . . .m

As for the linear separability of A, it can be represented as a union of two linearly
separable classes [1, 2]:

B = {∀ Bi (xi1, xi2, . . . xin)/Bi ∈ A, i = 1, 2, . . .m} and
C = {∀ C j

(
x j1, x j2, . . . x jn

)
/Ci ∈ A, j = 1, 2, . . .m

}
,

as B ∩ C = ∅,

if there exists a plane α with representation:

Fig. 1 Elements of the sum
A, presented as points in En X1 X2

A i X3

A j

X n
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α :
n∑

i=1

wi xi + b = 0, (∀ wi ∈ R, i = 1, 2 . . . n) (1)

such as for ∀ Bi (xi1, xi2, . . . xin) ∈ B, the inequality is fulfilled

n∑

k=1

wk xik + b < 0 (2)

and ∀ C j
(
x j1, x j2, . . . x jn

) ∈ C—respectively:

n∑

k=1

wk x jk + b > 0. (3)

Let us consider a two-dimensional space of attributes, assuming that all objects
of the set A are characterized by only two qualities. In this case, n = 2 the plane (1)
is reduced to its two-dimensional analogue—straight line with the equation:

α : w1x1 + w2x2 + b = 0, wi ∈ R, i = 1, 2
(
1′)

where x1 and x2 are the coordinates of an arbitrary point of α.
Transferred to E2 (Fig. 2), based on the two-dimensional variant of conditions (2)

and (3), classes B and C are linearly separable if for ∀ Bi (xi1, xi2) ∈ B the equation
is fulfilled:

w1xi1 + w2xi2 + b < 0 (2′)
and ∀ C j

(
x j1, x j2, . . . x jn

) ∈ C :

Fig. 2 Elements of the set
A, presented as points in E2 X2

C

B

X 1

a
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w1x j1 + w2x j2 + b > 0
(
3′)

Since the conditions (2′) and (3′), classifying the belonging of an object to one of
the two classes are based on equation (1′), the line α is a linear classifier for B and
C.

There are many optimization algorithms for finding a suitable classifier that can
effectively separate classes [3, 4] and some testing methods for linear separability
[5]. In our case, however, we are interested not so much in finding the most efficient
separation, but in finding suitable parallel classifiers. Let us pay attention to the fact
that if two classes are bounded and linearly separable, an infinite number of linear
classifiers can be indicated (Fig. 3), which separate them in the way described by
(1)–(3).

Let us look at the two-dimensional Boolean function “AND” (Table 1). Its domain
consists of 4 points:

D = {(0, 0), (0, 1), (1, 0)(1, 1)}

Let us introduce the class of points B, containing the elements of D, for which
X1∧X2 = 0, and the classC , containing the points fromD.O, forwhich X1∧X2 = 1.
Given the essence of the Boolean function “AND”, we look for a classifier type (1′),
for which the following system is implemented:

Fig. 3 Multiple classifiers
separating the two classes B
and C linearly

X2

C 

B

X1

Table 1 Truth table for
Boolean functions “AND”
and “OR”

X1 X2 X1 ∧ X2 X1 ∨ X2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
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∣∣∣∣∣∣∣∣

w10 + w20 + b < 0
w10 + w21 + b < 0
w11 + w20 + b < 0
w11 + w21 + b > 0

It is obvious that the free member b must meet the conditions:

∣∣∣∣∣∣

b < 0
b < min{−w1, − w2}
b > −(w1 + w2)

(4)

Then for every two specific positive numbers w1 and w2, we can find a corre-
sponding value of b, by which we can define a classifying straight line of the type
(1′), which will be only one of an infinite number of members of the same family of
classifiers. If, for example, w1 = 0.3 and w2 = 0.7, then according to the system (4)
we can choose arbitrarily b:

−1 < b < −0.7

One possible solution is b = −0.8. Thus, this particular representative of the
whole possible class is given by the equation:

α1 : 0.3x1 + 0.7x2 − 0.8 = 0

For the coordinates of each point (x1, x2) ∈ α1 is met

x2 = −0.3

0.7
x1 + 0.8

0.7

This is a straight line passing through point (0, 1.143) and having an angular
coefficient k= −(0.3/0.7)= −0.428. Figure 4 shows an illustration of other possible
solutions:

α2 : 0.3x1 + 0.7x2 − 0.9 = 0,
which has the same angular coefficient as that of α1, and
α3 : 2x1 + 9x2 − 10 = 0,
with angular coefficient k = −0.222.

2 Threshold Neuron and Its Relationship with Linear
Classifiers

Let us consider a threshold neuron with n inputs which are activated through the
following step function:
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Fig. 4 Three straight lines
classifying the domain of the
Boolean function “AND”

Х2

(0,1) (1,1)

(0,0)  (1,0) Х1

   a1

a2 Х2

(0,1) (1,1)

(0,0)  (1,0) Х1

a1

а2 Х2

(0,1) (1,1)

a3

(0,0) (1,0) a1 Х1

g(S) =
{
0, at S < 0
1, at S ≥ 0

(5)

If the weight vector
−→
W has coordinates (w1, w2, . . . , wn), at input stimuli

(x1, x2, . . . xn) along the axonof the neuron, a signalwill propagatewith the following
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Fig. 5 Threshold neuron

value:

Output = g

[
n∑

i=1

wi xi + b

]

,

where b is the threshold of the neuron [6, 7]. Given the peculiarities of the activating
function, it is clear that this signal has a binary character—it will be “0” or “1”. The
neuron thus defined is called the threshold logic or TLU (Fig. 5), or just threshold
neuron [8]. The term perceptron is often used as a synonym for threshold logic unit,
although the perceptron is generally much more than a simple threshold logic unit
[9].

Based on the way the TLU is constructed, it is clear that if the stimuli
(x1, x2, . . . xn) appear in its dendritic tree, at fixed weights (w1, w2, . . . , wn), only
the following results are possible:

g

[
n∑

i=1

wi xi + b

]

=
{
0
1

Thus, unlike other neurons, TLU easily realizes the concept of “all or nothing,”
which makes it especially suitable for solving logical problems [10].

We will consider a special case when using threshold neurons, namely the one in
which the set of input data is linearly divisible by a given attribute.

Thus, let the domain of the input variables be linearly divisible with respect to
the ordered n-tuple (x1, x2, . . . xn) leading to the appearance of “1” at the output of
the neuron, and those (x1, x2, . . . xn), which generate the end result “0”. From the
assumed linear separability, it follows that there is a plane:

α :
n∑

i=1

wi xi + b = 0(∀ wi ∈ R, i = 1, 2 . . . n), such that
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for ∀(x01, x02, . . . x0n), for which at the output we have

g

[
n∑

i=1

wi x0i + b

]

= 0

the inequality is fulfilled

n∑

i=1

wi x0i + b < 0,

and for ∀(x11, x12, . . . x1n), for which at the output we have

g

[
n∑

i=1

wi x1i + b

]

= 1, we have:
n∑

i=1

wi x1i + b > 0

The presented information about the linear classifiers outlines their connection
with the threshold neurons. If we look at the total signal in the body of the artificial
neuron, we will notice the obvious classification form:

S =
n∑

i=1

wi xi + b,

while the classification itself is done through the activating function (5). Thus, the
action of the trained threshold neuron could be considered as an act of classification
of the linearly separable domain of its input variables. This essential relationship
betweenTLUand linear classifiers allows us to draw two very important conclusions:

(1) Based on each mathematically constructed linear classifier, we can form a
threshold neuron that is genetically prepared to solve the classifier problem.
If we consider, for example, one of the classifiers for the Boolean function
“AND”, which we built above:

α1 : 0.3x1 + 0.7x2 − 0.8 = 0

It is clear that we could form the neuron as shown in Fig. 6. Along the axon,
we have a signal which, given the weights and thresholds, fully corresponds to
the Boolean function “AND”.

(2) Wementioned that if two classes are linearly separable, then there are infinitely
many linear classifiers separating the objects in each of the classes. And since
the classifier is uniquely determined by the coefficients w1, w2, . . . , wn, b,
with which we could subsequently form a corresponding threshold neuron,
this means something very important to us, namely For each specific problem
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Fig. 6 Threshold neuron
prepared to solve the
Boolean function “AND”

with a linear separable compact domain of the input variables, there are an
infinite number of threshold neurons that are able to solve it.

On the other hand, from the existence of infinitely many, but let us emphasize
now, parallel linear classifiers, follows the existence of neurons:

H1 : Out1 = g

[
n∑

i=1

w1i xi + b1

]

H2 : Out2 = g

[
n∑

i=1

w2i xi + b2

]

........................................................

Hr : Outr = g

[
n∑

i=1

wri xi + br

]

........................................................

with weights for which

w1p

w1q
= w2p

w2q
= · · · = wrp

wrq
= · · · , p �= q; p, q = 1, 2, . . . n

and associated with planes

Sj = 0, where

Sj =
n∑

i=1

w j i xi + b j , j ∈ N .
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3 Solving Multiple Problems from a Single Threshold
Neuron

An interesting question is about the possibility of the same neural network to solve
a set of several tasks. There are various researches on this issue. For example, Kirk-
patricka and team apply a special type of neural network regularization, which is
associated with sequential training of the network to solve two tasks—A and B
[11]. In the second task B, the weights required for the first task A are retained
and the gradient descent continues. On the other hand, Yang and team train single
networkmodels to perform 20 cognitive tasks that depend on workingmemory, deci-
sion making, categorization, and inhibitory control [12]. The authors find that after
training, recurrent units can be grouped into clusters that are functionally special-
ized for different cognitive processes and introduce a simple but effective measure
to quantify relationships between single-unit neural representations of tasks. In the
present study, we focus on the possibility of a separate threshold neuron to solve two
logical functions simultaneously, without the need for sequential training for both
tasks, as in the networks of Kirkpatricka and team.

The connection of the threshold neurons with the linear classifiers creates precon-
ditions for searching for ways to apply linear separation in neural networks. We have
already mentioned that for each specific problemwith a bounded, closed and linearly
separable area of the input data, an infinite number of neurons can be constructed,
which are genetically prepared to solve it. Let us look at things from a different
perspective and ask ourselves the question—is it possible for a threshold neuron to
be constructed in a way that allows it to solve several different problems?

Let two problems be given related to finding the binary solutions of different
functions of n-tuples: f1 = f1(x1, x2, . . . xn) i f2 = f2(x1, x2, . . . xn). Let the
domains D.O1 and D.O2 of the two functions be compact and linearly separable
with respect to the n-tuples (x1, x2, . . . xn), for which f1 and f2 return “0” and,
respectively, “1”. Under these conditions, it follows that there are threshold neurons
H1 and H2, which successfully solve the two problems (Fig. 7) in the following way:

H1 : f1(x1, x2, . . . , xn) = g

[
n∑

i=1

w1i xi + b1

]

H2 : f2(x1, x2, . . . , xn) = g

[
n∑

i=1

w2i xi + b2

]

However, it is there a vector (w1, w2, . . . , wn), and a value for b,with which both
problems can be solved by a single neuron? What would such a threshold neuron
look like? If we submit only the variables (x1, x2, . . . , xn) at the input, will the
sought TLU know what to do with them? Should we use this data to calculate the
function f1(x1, x2, . . . , xn), or should we use the inputs provided to calculate the
value on f2(x1, x2, . . . , xn)? Obviously, along with the input data, the neuron needs
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Fig. 7 Threshold neurons
H1 and H2, solving two
problems

another input to get a question: “How much is f1 = f1(x1, x2, . . . , xn) ?” or the task
“Calculate f2 = f2(x1, x2, . . . , xn).”

The purpose at first glance is to find the weights {wi }ni=1 and the threshold b, for
which:

g

⎡

⎣
n∑

i=1

wi xi + b

⎤

⎦ =
{

f1(x1, x2, . . . , xn),Question: “How much is f1(x1, x2, . . . , xn)?”
f2(x1, x2, . . . , xn),Question: “How much is f2(x1, x2, . . . , xn)?”

Now we have another input for the neuron, and that is “Question” (Fig. 8). It is
also a variable input value to the sought neuron and is fed to its body through the

Fig. 8 Structure of a neuron
solving both problems
simultaneously
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dendritic tree, alongwith the other variables. Thus,with the emergence of the need for
a question, the input vector now takes the shape

−→
X (x1, x2, . . . , xn, xn+1 = question),

and the weight—
−→
W (w1, w2, . . . , wn,wn+1). That is why we are actually looking for

g

⎡

⎣
n+1∑

i=1

wi xi + b

⎤

⎦ =
{

f1(x1, x2, . . . , xn), xn+1 = “How much is f1(x1,x2, . . . , xn)?”
f2(x1, x2, . . . , xn), xn+1 = “How much is f2(x1,x2, . . . , xn)?”

We have already discussed that the qualitative characteristics of objects can be
represented by quantitative values. And since at the input of the neuron there is no
way to ask the question xn+1 directly by using some linguistic construction, we need
a quantitative interpretation that the neuron can process correctly. So, let

xn+1 = 0, If we want to ask the question “How much is f1(x1, x2, . . . , xn)?”

and

xn+1 = 1, if the question is “How much is f2(x1, x2, . . . , xn)?”

This way, we look for weights {wi }n+1
i=1 of a neuron with n + 1 inputs

x1, x2, . . . , xn, xn+1 and a threshold b, for which:

g

[
n+1∑

i=1

wi xi + b

]

=
{
f1(x1, x2, . . . , xn), xn+1 = 0
f2(x1, x2, . . . , xn), xn+1 = 1

The ability of the neuron H1 to calculate correct values for the function
f1(x1, x2, . . . , xn) means that there is a linear classifier of the domain D.O1 of the
input variables of the first problem, represented by a plane

S1 :
n∑

i=1
w1i xi + b1 = 0,

where xi are the coordinates of any point M ∈ S1.
Adding the question xn+1 requires a transition to (n + 1)—tuple dimensional

space of attributes and a requirement for linear separation of D.O1 through

S1 :
n+1∑

i=1

w1i xi + b1 = 0, for xn+1 = 0. (6)

In a similar way for the plane S2, which divides linearly D.O2 in the (n+ 1)—tuple
dimensional space of the attributes, we have:

S2 :
n+1∑

i=1

w2i xi + b2 = 0, for xn+1 = 1 (7)
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where xi are the coordinates of any point M ∈ S2.
The domain for the threshold neuron we are looking for is:

D.O = D.O1 ∪ D.O2 (8)

The neuronH that solves the two problemswould exist only if this commonD.O is
linearly separable. However, given that D.O consists of points in the coordinate plane
Ox1x2 . . . xnxn+1, as xn+1 = 0 andpoints in its parallel Ox1x2 . . . xnxn+1, as xn+1 =
1, from (6)–(8) it follows that for neurons H1 and H2 a very important condition must
be imposed: The existence of parallel linear classifiers of the type (6) and (7), through
which to build the sought plane dividing the common D.O. This condition means
that it is necessary to have surfaces S1 and S2, with the representation (6) and (7),
respectively, for which the condition of parallelism is fulfilled:

w11

w21
= w12

w22
= . . . = w1n

w2n
, b1 �= b2 (9)

allowing us to construct new planes separating D.O of the same class of parallel
planes

S :
n+1∑

i=1

wi xi + b = 0, xn+1 = λ, λ ∈ R

In other words, from the existence of parallel surfaces S1 and S2, with the repre-
sentation (6) and (7) follows the possibility of constructing a family of parallel planes
containing S1 and S2 (λ = 0 or 1) and linearly separating D.O.

Let us look at a specific example—the Boolean functions “AND” and “OR” with
the truth tables given in Table 1. The domains of the two functions are linearly
separable with respect to the pairs (X1, X2) returning “0” or “1”. Let S1 be one of the
infinite sets separating D.O1 lines:

S1 : 0.3 x1 + 0.2 x2 − 0.4 = 0.

Then there is a threshold neuron H1, solving the function f1(x1, x2) = x1 ∧ x2, with
weights and threshold indicated by the coefficients of D1 (Fig. 9). Similarly, if we
look at the Boolean “OR” function and use the classifier:

S2 : 0.75x1 + 0.9x2 − 0.3 = 0

Through it we can form a neuron H2, solving the function f2(x1, x2) = x1 ∨ x2.
So, we have two problems

f1(x1, x2) = x1 ∧ x2 and f2(x1, x2) = x1 ∨ x2,
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Fig. 9 Linear separability of
D.O of Boolean functions
“AND” and “OR”

which we can solve quite precisely through two different neurons. Our goal is to
build a neuron H, which is capable of solving both problems (Fig. 10).

The classification lines S1 and S2 have angular coefficients, respectively, k1 =
−

(
w11
w12

)
= −1.5, and k2 = −

(
w21
w22

)
= −0.8333. Obviously, they are not parallel.

We cannot build a plane through them that divides in an appropriate way

D.O = D.O1 ∪ D.O2

Fig. 10 Structure of a
neuron that can solve two
problems related to Boolean
functions “AND” and “OR”
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One possible solution is to keep looking for other linear classifiers for the two
functions until we find parallel ones. Another solution is to use the condition of
parallelism (9), which in our case has the following representation:

w11

w21
= w12

w22
, b1 �= b2

Therefore, we can choose the linear classifier S2, in such a way that

w22 = w21

(
w12

w11

)
(10)

So with the correction (10) of w22, we have:

S2 : 0.75 x1 + 0.5 x2 − 0.3 = 0

We can easily see that this line is still a linear classifier for theBoolean “OR” function,

with an angular coefficient k2 = −
(

w21
w22

)
= −1.5, i.e., S1‖S2.

Let point M1 and point M2 ∈ S1, while point M3 and point M4 ∈ S2. The choice
of these points does not matter much. It is enough to concretize them clearly, so that
belonging to the two lines, through them to form the vectors with which we will
construct a plane containing S1 and S2. Let:

point M1

(
x1 = 0.5, x2 =

(
(−1)

w11

w12

)
x1 − b1

w12
= 1.25, x3 = 0

)

point M2

(
x1 = −0.3, x2 =

(
(−1)

w11

w12

)
x1 − b1

w12
= 2.45, x3 = 0

)

point M3

(
x1 = 0.1, x2 =

(
(−1)

w21

w22

)
x1 − b2

w22
= 0.45, x3 = 1

)

point M4

(
x1 = 0.6, x2 =

(
(−1)

w21

w22

)
x1 − b2

w22
= − 0.3, x3 = 1

)

Let us now form the vectors �p = −−−→
M3M1 and �q = −−−→

M4M2. We have

�p(p1 = −0.4, p2 = −0.8, p3 = 1), and

�q(q1 = 0.9, q2 = −2.75, q3 = 1).

Then, if the plane S is defined by the vectors �p and �q , and the point M4, then

S : Ax1 + Bx2 + Cx3 + D = 0,

as
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A = p2q3 − p3q2, B = p3q1 − p1q3,C = p1q2 − p2.

For the free member D, we have:

D = −Ax1 − Bx2 − Cx3,

where (x1, x2, x3) are the coordinates of point M4.
Given the specific values of the coordinates of the vectors �p, �q and the point M4,

it follows that we can construct a linear classifier of

D.O = D.O1 ∪ D.O2,

which has the representation:

S : 1.95x1 + 1.3x2 + 1.82x3 − 2.6 = 0,

and the corresponding threshold neuron has the construction as shown in Fig. 11.
Let us recall that

Out = g

[
3∑

i=1

wi xi + b

]

(11)

where x3 = 0, if we want to ask a question to the neuron “How much is f1(x1, x2) =
x1 ∧ x2?”, and x3 = 1, to demand calculation of the value of f2(x1, x2) = x1 ∨ x2.

We will do a check with two specific examples. Let us pass the pair of logical
variables (x1 = 0, x2 = 1) at the input of the neuron and pose the question “How
much is f1(x1, x2) = x1 ∧ x2?”. In the dendritic tree, we have input stimuli:

x1 = 0, x2 = 1, x3 = 0.

Then, according to (11), a signal propagates along the axon of the neuron

Fig. 11 Threshold neuron
corresponding to the found
classifier S
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Out = g

[
3∑

i=1

wi xi + b

]

= g(−1.3) = 0

Now let us ask the question to calculate the value of f2(x1, x2) = x1 ∨ x2. At the
same values of x1 and x2, at the input of the neuron, we have:

x1 = 0, x2 = 1, x3 = 1.

and on the axon—a signal:

Out = g

[
3∑

i=1

wi xi + b

]

= g(0.52) = 1

Other cases can be checked in a similar way.

4 Conclusion

Examining the linear separability of the data and the relation of the threshold neurons
with the classifiers of the classes, we showed that it is possible to construct a neuron
that can solve two different problems without the need for an intermediate change
in its weights. But how effective and useful is a neuron that calculates several func-
tions? On the one hand, the use of such a neuron saves the use of neural structures;
therefore—memory, and on the other hand—this leads to an increase in the number
of operations in the body of the neuron by two.

In conclusion, we should note that summarizing the presented ideas and results,
we can find a neuron that solves a whole class of an infinitely number of problems
with domains that are linearly separated from the found surface S. The only condition
is that for each individual problem there is separability with linear classifiers which
are parallel to each other.
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