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1 Introduction

What do you consider to be the most significant aspect of security? Banking, the
military, data on the internet and networking are all businesses in which security is
critical. Embedded security is also used in numerous industries, such as hardware
security. Let’s start with an explanation of what hardware security entails. Security-
related hardware platforms include ASICs, semi-custom, and fully bespoke ICs.
FPGAs are getting more popular as a result of advancement and revolution. FPGAs
are preferred over full-custom ICs and ASICs because they are reusable and repro-
grammable. Researchers are now looking toward SoC-based FPGAs. A built-in high-
speed CPU, a large number of FPGA resources, and a shorter time to market distin-
guish SoC-based FPGAs. The design time is reduced because IPs are pre-defined and
pre-verified. To launch a product in a certain amount of time, most designers supply
intellectual property (IP). If third-party IP contains a hardware trojan that is damaging
to the design, it should be avoided. Due to their increasing demand, FPGAs have
become a popular target for piracy [1, 2]. Because of advances in attacking tactics,
the secret key used in traditional cryptography is no longer safe. The Cryptographic
key is frequently stored in EEPROM or battery backup SRAM. An attacker can
utilize side-channel attacks to try to gain the cryptographic key once the memory
has been started up. Another disadvantage of keeping the cryptographic key inside
the EEPROM or battery-backed SRAM is that it raises the cost by increasing the
hardware complexity [3]. That address these issues, we need a promising solution
to enable hardware security. The PUF is a blessing in disguise. There is no need to
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Fig. 1 Uniqueness of PUF (Source http://www.ictk.co.kr/servicenproduct/puf)

Fig. 2 Reliability of PUF (Source https://cryptography.gmu.edu/research/pufs.php)

save the key in PUF-based encryption, and no one can clone or replicate it. PUF
focuses on Integrated Circuits’ inherent nanoscale process changes (IC). The power,
voltage, and temperature changes of an IC are all elements to consider (PVT). Due
to manufacturing variance, even two identical ICs or components can have different
propagation delays, which can be uncontrollable. PUF accepts input as a challenge
and responds with output. Each time PUF is used, and it creates a different and
random response [4].

Even if two identical ICs are applied to the same challenge, their responses will
differ (see Fig. 1). This one-of-a-kind responsemay be considered a device signature.
This is one of the most distinctive characteristics of PUF [5]. Figure 2 shows another
important aspect of PUF which is its reliability. If a particular challenge is applied
to the PUF device, it produces a response. If the same challenge is given to the same
device after a few years, it should generate the same response as before [6].

The applied input determines the output of anymathematical or software function;
however, the output of PUF is determined not just by the applied input, but also by
the device’s internal variation. This feature of PUF makes it different than other
mathematical functions or software functions. Please keep in mind that the PUF
response is not a cryptographic key. The response bits must undergo error repair and
detection.

http://www.ictk.co.kr/servicenproduct/puf
https://cryptography.gmu.edu/research/pufs.php
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1.1 Related Work

The two types of PUF are silicon-based PUF and non-silicon-based PUF. The first
PUF, an optical PUF or non-silicon PUF, was created by authors [7]. Silicon-based
PUF comes in two types: delay-based and memory-based. The most prevalent delay-
basedPUF is anArbiter PUF (APUF),which is also known as a StrongPUFbecause it
contains themost challenge-response pairings.Weak PUFwas the name given to RO-
PUFwhen it was originally introduced to a small number of challenge-response pairs
by [8]. Author [9] described a PUF based on a modified Ring oscillator (RO-PUF).
Delay PUF assesses devices’ propagation delays and develops unique replies by
posing challenges to them. TheArbiter PUF is powerful because it has a large number
of challenges and response pairings (CRPs). Because it contains a low number of
CRPs, RO-PUF is a weak PUF. Routing symmetry is required for APUF, which is
challenging to implement on an FPGA [10]. On Arbiter PUF, modeling attacks are
morewidespread. RO-PUF does not require symmetric routing andmaybe developed
quite quickly on an FPGAboard [11].We implemented and tested the PUF on FPGAs
in this study. ASICs are less flexible than FPGAs. Because FPGAs are preconfigured,
FPGAdesign requires less time tomarket. In comparison toASIC fabrication, FPGAs
are a low-cost option. These are the main reasons why we chose FPGA technology
over ASIC implementation.

In 2012, the Xilinx came with seven series unified architecture FPGA with a new
tool, Vivado. The Xilinx Launched 28 nm technology, System on chip (SoC) boards.
SoC is a combination of a hard-wired Processing System (PS) and Programmable
Logic (PL) that consists of many Configurable Logic Blocks (CLBs) and a complex
routing system. Figure 3 shows the device view on the Xilinx Zed Board with PS
and PL. PS refers to the black box in the left corner, while PL refers to the rest of

Fig. 3 Device view with PS
and PL [12]
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Fig. 4 Single CLB structure

the colorful marking zones. PS and PL are both available on a single chip, which is
referred to as an SoC. On the PS side, the Xilinx Zed Board has a dual-core ARM
A9 dedicated CPU, and on the PL side, the Artix 7. The CLBs consists of a switch
matrix that connects the slices and the outside world. Slice L and slice M are the two
slices that make up a CLB shown in Fig. 4. LUTs are used to create logic functions,
whereas FFs are used to store data in a single slice. Each CLB on the Xilinx Zynq
chip used in this study contains two slices. Four LUTs and eight FFs make up each
slice. The SoC-based design can fulfill these requirements. In this chapter, we have
implemented RO-PUF and tested it on the Xilinx Zed Board (SoC) [13]. The main
focus of this paper is on an area-optimized RO PUF implementation with good
reliability. The design was tested for its area usage, speed, uniqueness, uniformity,
and reliability. With a brief introduction to PUF, we discussed the Ring oscillator
PUF with mathematical delay model in the second section, the implementation of
RO PUF on FPGA in the third section, results in section four, and a conclusion in
the fourth section.

2 Ring Oscillator

Figure 5 shows a schematic of the Ring oscillator formed using one NANDGate and
three inverters. RO will generate a square waveform. The frequency of the square
wave depends on the net delays and propagation delay of each gate [14].

Figure 6 shows the basic block diagram of the 1-bit RO PUF. Ring oscillator
PUF design comprises 32 ROs. The first sixteen ROS connected to one of the 16:1
multiplexer another 16 ROs connected to another 16:1 multiplexer. Select lines of
multiplexers will decide which RO to be selected. Both multiplexers will use select
lines, i.e., ‘challenge’ input, to choose any two ROs at the same time. Multiplexers
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Fig. 5 Ring oscillator [15]

Fig. 6 One-bit RO PUF schematic

connected clock input to two distinct 12-bit counters via the output of multiplexers.
The counting will be carried out on every affirmative edge of ROs. The comparator
compares the counter output. As previously said, each RO generates frequencies with
distinct periods. Even if both counters are linked to the multiplexers, counting may
start at the respective incoming positive edge. It causes any one of the counters may
get overflows first. If the upper counter gets overflowed first than the lower counter
then comparator output will be ‘1’ otherwise ‘0’. The output of the comparator
is a ‘response’ bit. ROs on two different devices have different frequencies. This
difference allows the RO PUF to characterize devices to authenticate them [1, 16].

This is an implementation of the RO-PUF in 8 bits. Figures 7 and 8 demonstrate

Fig. 7 Post implemented timing simulation (a)



166 S. Kulkarni et al.

Fig. 8 Post implemented timing simulation (b)

the time simulation of a single bit RO PUF after it has been implemented (b). The
inputs are Enable and Challenges. The output of each module can be seen here. ROs
will produce square waves, as previously indicated. The outputs of Ring Oscillators
are frw and frwm. Mux out1 and mux out2 are the mux outputs. The mux outputs
are mux out1 and mux out2, and two multiplexers can simultaneously select any
two ROs. Two counters use the clock input from these mux outputs as well. Every
positive edge of the incoming clock will be counted as well. The outputs of the two
counters are referred to as Ct1 and Ct2. Because no counters are overflowing, the
response bit remains ‘0’. If Ct1 reaches its maximum value before Ct2, the response
bit will be set to ‘1’.

In this Fig. 8, we can observe the ‘response’ bit. As soon as the first counter gets
overflows response bit became ‘1’.

2.1 Mathematical Function of Delay

To understand the RO PUF’s operation, we must first know the delay module.
According to [5], every path consists of two delay elements, a static delay element
and a randomdelay element. A Static delay element is the delay of a circuit calculated
by adding the individual gate and net delays for each path a Random delay element is
present due to process variations. Ideally, the PUF output should only be dependent
on its process variation. Hence, out of the two components, for a PUF, the random
delay component should be the significant factor. As RO-PUF is delay-based PUF,
we defined Delay D of a net.

D = DS + DṘ (1)

where DS is a static delay and DR is a random delay. The Static delay can be
determined using the timing tool available in Vivado by applying timing constraints.
It will remain the same for the same RTL and Board. But the random delay is delay
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generated due to internal process variation of devices hence it will be different for
each board. Mainly PUF functionality depends on Random delay. The conclusions
of the Arbiter, Butterfly and Ring Oscillator PUFs are based on the premise that the
symmetrical pathways’ static delays cancel out [17].

Let us consider two nets N1 and N2 from the same design which need to compare,

D(N1) = Ds1+ DR1 (2)

D(N2) = Ds2+ DR2 (3)

Equations 2 and 3 can be used to express the delayD differences between the two
networks. If two nets N1 and N2 are identical, Ds1 = Ds2 and the delay skew D
between them can be calculated.

�D = D1− D2 = DR1− DR2 = �DR (4)

The static delay differencesDS should tend to zero in an ideal case, and the delay
comparison between the two net delays should be a function of the random delay
component. However, ifDS1DS2 (that is,N1 andN2) are not similar, the delay skew
can be determined as follows:

�D = Ds1− Ds2+ DR1− DR2 = �DS + �DR (5)

This equation suggests that the delay difference between two nets is primarily the
sum of the difference of the individual components. Even a slight contribution by
the static delay component can result in a biased PUF output. If DS > DR, then the
effect of random variation on the output will be insignificant and the output of PUF
depends on static delay rather than random delay. In that case we can say that the
output of PUF will be biased [4].

3 Implementation of RO PUF on FPGA

While implementing the RO PUFs on an FPGA, we need to consider the following
things. The synthesis tool will always try to optimize a design concerning speed
and area. The ROs with unpredictable behavior would either throw a latch warning
or be completely optimized out as it serves no purpose from a tool point of view.
Additionally, every pair of ROs that is being compared is to be implemented the
same. ROs design needs to instantiate many times but the optimization point of view
tool will remove the multiple instances. To avoid this, the placement and routing had
to be thoroughly constrained. The usage of slices, logic, pins, and routing needs to
be done manually to prevent any optimization by the synthesis tool. Ring Oscillator
PUFs have the requirement of symmetric routing. We must construct it extremely
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carefully to avoid biassing of delays and to maintain all ROs in the PUF identical.
RO PUF necessitates the placement of ROs by hand. Each slice of the 7series FPGA
consists of four LUTs, as we explained previously. Because each RO contains four
logic gates, we assigned each LUT to one of them. One RO was implemented per
slice. In FPGA, hard macros are advised for manual installation [18].

Hard macros are required to avoid any additional delays caused by the various
instantiations required for the implementation. Instead of the entire design being
symmetrically placed and routed, the RO PUF simply requires each Ring Oscillator
to be similar. Furthermore, utilizing hard macros on Xilinx FPGAs, similar ring
oscillator routing is simple [19]. Formerly to performmanual placement and routing,
hard macros were employed. In the earlier version of the Xilinx tool, the ISE suite
supports an FPGA editor to crate Hard macro. Now the Xilinx Vivado does not
support the FPGA editor instead it has a TCL shell. The Xilinx Design Constraint
(XDC) constraints are written in TCL scripting. The Tcl script helps to place all the
resources at the desired location. Figure 9 shows the device view after the manual
placement of the component [15].

Figure 9 shows the TCL script written in the TCL console of the Vivado. The
Tool will automatically convert the TCL script into the Xilinx Design Constraints
(XDC) shown in Fig. 10. The constraint “set_property” is responsible to place the
instance into the cell. BEL specifies a specific placement within a Slice for a register
or LUT. BEL is generally used with an associated LOC property to specify the exact
placement of a register or LUT. A primitive component’s LOC indicates where it
should be placed (Fig. 11).

Fig. 9 Device view after manual placement of the components
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Fig. 10 The TCL script

Fig. 11 The XDC location constraints

4 Experimental Setup and Results

We converted our design to IP for hardware testing. Figure 12 shows the connection
diagram. The Xilinx VIO and ILA IPs are interfaced with PUF IP. ILA and VIO are
used for Hardware Debugging. The LogiCORE IP Virtual Input/Output (VIO) is a
programmable IP core for real-time monitoring of the design’s internal signals.

ILA is used to monitor internal programmable logic signals and ports for post-
analysis. Using VIO and ILA we are applying the input to our PUF design and
observing the outputs. Figures 13, 14, 15, and 16 show the design’s real-time output
in terms of ILA output waveform for different combinations of CRP.

Fig. 12 Block diagram for Hardware debugging
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Fig. 13 ILA output waveform (a)

Fig. 14 ILA output waveform (b)

Fig. 15 ILA output waveform (c)

Fig. 16 ILA output waveform (d)

We have tested the same RO-PUF design on two different Zed Board FPGA. Here
we can observe that even for two similar challenges we are getting different response
bits on two different boards. This shows the reliability of the PUF design. Similarly,
we got various answer bits when we applied the different challenges to the same
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Table 1 We have verified the output for the following cases

Sr. nos. Criteria Observations

Case I Same design on two different boards
(inter) with same challenges

We observed unique and random response
bits. It proves the uniqueness of PUF

Case II Same design, same board but different
clock region (intra) with same
challenges

We observed unique and random response
bits

Case III Same design, Same board, same region
but different day and time with same
challenges

We observed same response bits again and
again. It proves the reliability of PUF

Case IV Same design, same board, same region
but same day and time with multiple
challenges

We observed unique and random response
bits

Fig. 17 Utilization summary

design and board. We have presented two challenges at random. We have confirmed
that we are getting the unique answer bits for all of the tasks.

Figure 17 shows the utilization summary of the resource. The design uses less
than 3% of the total FPGA Logic resources and less than 10% of IO resources.

The design’s power analysis is shown in Fig. 18. The total onchip power, junction
temperature, and thermalmargin are all defined via power analysis. The implemented
system logic consumes 61% of the total power available.

5 Conclusion

Hardware-oriented security is an upcoming field in the electronics industry. Today
hardware designers are paying more focus on hardware security. Many different
PUF designs are getting designed by the researchers. The RO PUF architecture is
straightforward, but the FPGA implementation proved difficult. We did so till the RO
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Fig. 18 Power report

PUF on FPGA was successfully implemented. We verified the uniqueness property
and reliability property of PUF.However, PUFoutput is noisy, the generated response
needs to filter out using an error correction algorithm. After that, the FPGA board
will connect to the computer for more Hamming distance and Entropy research.
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