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Abstract Global climate change is evolving as a potential threat to the sustainable
food security. Abiotic stresses are the most important limiting factors to the agricul-
tural crop productivity. Therefore, exploration of efficient and economical technol-
ogies for the alleviation of abiotic stresses in plants are necessary to encounter the
food security. The rhizosphere and phyllosphere of plants are colonized by various
microorganisms, establishing neutral, detrimental or beneficial associations with
their respective host plants. The beneficial microorganisms sustain various physio-
logical activities in plants under extreme climatic conditions. They also promote the
abiotic stress tolerance of plants, thereby improving plant growth and productivity.
Therefore, amelioration of abiotic stresses in crop plants by using the microorgan-
isms is opening a promising avenue in enhancing the agricultural productivity. The
chapter summarizes the role of beneficial microorganisms in enhancing the crop
plants’ productivity though alleviation of abiotic stresses for the agricultural
sustainability.
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9.1 Introduction

The sessile nature of plants often compels them to confront environmental chal-
lenges caused by the universal climate change. Environmental stresses including
salinity, drought, extreme temperatures and heavy metal toxicity have devastating
impacts on the growth and yield of major crop plants throughout the world. Abiotic
stress frequently affects around 90% of the agricultural lands resulting in above 70%
loss of global crop productivity (Mantri et al. 2012). Current climate prediction
models indicate a gradual increase in the ambient temperature with erratic rainfall to
affect various ecosystems posing a considerable threat to the future food security.
According to the Food and Agriculture Organization of the United Nations (FAO),
the global food production requires to be increased by 70% to meet the food demand
for the estimated global population of ~9.7 billion by the year 2050 (F.A.O. (Food
and Agriculture Organization of the United Nations) 2017). It is, therefore, a major
challenge to take necessary steps to safeguard the abiotic stress-induced loss of
agricultural productivity.

Abiotic stresses severely impede the seed germination and fruiting patterns of the
agricultural crop plants. Individual or combination of different abiotic stresses
induces morphological, physiological, biochemical and molecular alterations in
plants that adversely affect the growth, biomass and productivity (Kumar et al.
2009a). Several abiotic stresses also disturb the plant water relations, thereby
reducing the water use efficiency. Abiotic stresses increase the overproduction of
reactive oxygen species (ROS) including hydrogen peroxide (H2O2), hydroxide ions
(OH�), singlet oxygen (1O2) and superoxide anion (�O2

�) through enhanced leakage
of electrons from the electron transport chain to the molecular oxygen (Basu et al.
2021a). Excessive ROS accumulation in plant cells leads to oxidative damages by
oxidizing photosynthetic pigments, membrane lipids, nucleic acids and proteins,
thereby inducing the tissue-specific programmed cell death (Nath et al. 2016, 2017;
Kapoor et al. 2019; Kundu et al. 2020).

Abiotic stress tolerance in plants is associated with the maintenance of the cellular
redox homeostasis mediated by antioxidant defence system-induced ROS scaveng-
ing (Dwivedi et al. 2019; Basu and Kumar 2021). The enzymatic antioxidants
facilitating the ROS detoxification include superoxide dismutase (SOD), catalase
(CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR),
monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase
(DHAR) (Basu et al. 2022). The non-enzymatic antioxidants mediating ROS scav-
enging include ascorbic acid, carotenoids, reduced glutathione (GSH), flavonoids
and α-tocopherol. Growth enhancers like proline and soluble sugars also confer
abiotic stress tolerance by interfering with the metabolic processes through osmotic
adjustment.
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9.2 Plant Growth-Promoting Microorganisms

Microbes possess the ability to enhance the plant growth by synthesizing various
microbial products. Bacteria derived from the plant rhizosphere have been demon-
strated to have beneficial effects on the roots of their host plants. The presence of
plant growth-promoting rhizobacteria (PGPR) on the plant roots has been found to
have positive direct and indirect effects on the plant growth with amelioration of
various abiotic stresses (Basu and Kumar 2020a). The beneficial microbes can
enhance plant growth through the induction of systemic resistance, antibiosis and
competitive omission. These rhizospheric microorganisms, with their unique char-
acteristics, diversity and relationship with plants require to be further exploited to
address their potential role in abiotic stress tolerance in plants (Prasad et al. 2015).
For instance, Bacillus species can form endospores that are extremely resilient to
harsh environmental conditions and can also secrete metabolites that stimulate plant
growth and health. Some Bacillus subtilis strains also emit various types of volatile
organic compounds assisting plants to recover from stress. Bacillus species also
secrete exopolysaccharides and siderophores that inhibit the movement of toxic ions
and help in maintaining the ionic equilibrium, consequently facilitating the water
uptake by plant roots. Thus, the successful application of beneficial microbes pro-
vides a model for enhancing abiotic stress tolerance and adaptation to climate
change. There is a potential to improve the beneficial interactions between plants
and microbes by further evaluation and identification of new microbial isolates
having significant effect in the rhizosphere. Technology could be used to identify
PGPR that might have a beneficial impact on abiotic stress tolerance, soil fertility,
nutrient acquisition and ultimately crop productivity (Basu et al. 2020b). Further
research is needed to screen and identify beneficial microbial isolates that form
plant-associated microbial communities and enhance overall plant health and vigour.
The use of a multidisciplinary approach that includes physiology, molecular biology
and biotechnology could provide new prospects and formulations with massive
potential to manage abiotic stress in crop plants (Singh and Jha 2017).

Abiotic stress tolerance in crop plants may be achieved through chemical fertil-
izer applications, breeding programs, tissue culture methods and genetic engineer-
ing, which are expensive and time-consuming and have adverse effects on the
environment. The use of plant growth-promoting endophytic bacteria (PGPEB) is
an alternative and eco-friendly approach for improving agricultural crop production
by ameliorating the negative effect of abiotic stresses on economically important
plant species throughout the world (Khan et al. 2020). The agricultural, coastal and
geothermal plant endophytes can colonize both eudicot and monocot plants confer-
ring abiotic stress tolerance. Abiotic stress tolerance is often correlated with the
increased ROS accumulation. The ability of bacterial and fungal endophytes to
confer abiotic stress tolerance in plants may provide a novel strategy for mitigating
the impacts of global climate change on agricultural crop plant species (Rodriguez
and Redman 2008; Godoy et al. 2021) (Fig. 9.1; Table 9.1).
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9.2.1 Salinity Stress

Salinity is a major abiotic stress limiting productivity of important agricultural crop
species (Basu et al. 2017; Mishra et al. 2021). Salinity-affected area exceeds 20% of
the global agricultural land (Fouda et al. 2019). Early exposure to salinity leads to
ion toxicity within the plant cells followed by disruption of osmotic balance when
the stress persists for longer duration (Kumar et al. 2022a). Combined effect of the
ionic and osmotic stresses alters the plant growth and development (Basu et al.
2021b). Salinity also interrupts the ion homeostasis in plant cells and impedes the
internal solute balance (Kumar et al. 2009b, 2012). Continuous climate change is
rapidly increasing the risk of soil salinization which has been predicted to affect 50%
of the arable cropland by the year 2050 (F.A.O. (Food and Agriculture Organization
of the United Nations) 2017). It is, therefore, a serious concern to take necessary
steps for alleviating the deleterious effect of salinity in crops to encounter the food
security.

Plant growth-promoting bacteria (PGPB) play a major role in the alleviation of
salinity stress in plants (Basu and Kumar 2020a). The endophytic PGPB induce the
growth of the host plants under salinity stress by facilitating the nutrient uptake.
They also enhance the antioxidant activities in the host plants under salt stress,
thereby maintaining the redox homeostasis. Egamberdieva et al. (2016) have
revealed the dual interaction of rhizobia (Bradyrhizobium japonicum) and endo-
phytic PGPB (Stenotrophomonas rhizophila) to alleviate the salinity stress in soy-
bean (Glycine max) plants by inducing their growth and productivity. The PGPB
induce salinity tolerance in the host plants by facilitating the nitrogen fixation,
phytohormone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase
activity, extracellular polymeric substance (EPS) production and biofilm formation
(Basu and Kumar 2020b; Kumar et al. 2020a). The siderophore-producing

Fig. 9.1 Abiotic stress impact on crop yield (Godoy et al. 2021)
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Table 9.1 Plant growth-promoting microorganism-mediated amelioration of different abiotic
stresses

Abiotic stress Microorganisms Plants Reference

Salinity Fusarium culmorum
(FcRed1)

Oryza sativa, Lycopersicon
esculentum

Rodrigue
et al. (2008)

Pseudomonas putida CW4 L. esculentum Yan et al.
(2014)

Drought Curvularia protuberata
(Cp4666D)
Fusarium culmorum (Fc18,
FcRed1)

O. sativa, L. esculentum,
Triticum aestivum, Citrullus
lanatus

Rodrigue
et al. (2008)

Colletotrichum magna
(path-1)

L. esculentum, Capsicum
annuum

Redman
(2001)

Colletotrichum magna
(L2.5)

L. esculentum, Capsicum
annuum

Colletotrichum musae (927) L. esculentum, C. annuum

Colletotrichum orbiculare
(683)

L. esculentum

Colletotrichum
gloeosporioides (95-41A)

L. esculentum

Submergence Pseudomonas putida UW4 Brassica napus Farwell et al.
(2007)

Achromobacter
xylosoxidans
Serratia ureilytica
Herbaspirillum seropedicae
Ochrobactrum
rhizosphaerae

Ocimum sanctum Barnawal
et al. (2012)

Heat Curvularia protuberata
(Cp4666D, CpMH206)

L. esculentum Rodrigue
et al. (2008)

Chilling Trichoderma harzianum
(OMG16)
Bacillus atrophaeus
(ABI02)

Zea mays
O. sativa
T. aestivum
Cicer arietinum
Solanum melongena
C. annuum

Abdel Latef
et al. (2020a)

Heavy metals As Micrococcus luteus Vitis vinifera Ivan et al.
(2017)

Cu Bacillus circulans,
Paenibacillus
polymyxa

Z. mays Abdel Latef
et al. (2020b)

Cr Staphylococcus
arlettae (MT4)

Helianthus annuus Qadir et al.
(2020)

Cd Bacillus siamensis T. aestivum Awan et al.
(2020)

9 Current Approaches for Alleviating Abiotic Stress Tolerance in Crops:. . . 235



rhizobacteria have also been reported to ameliorate salinity stress and increasing the
iron (Fe) availability in saline soils (Ferreira et al. 2019). Application of plant
growth-promoting rhizobacteria (PGPR) has been found to maintain the growth
and productivity of French bean (Phaseolus vulgaris) (Kumar et al. 2020b). Bokhari
et al. (2019) have reported different halophilic phosphate-solubilizing Bacillus
strains to ameliorate salinity stress in maize (Zea mays). The study also determined
the involvement of different osmolytes in salinity tolerance of maize plants. Among
different Bacillus sp. strains, B. cereus, B. subtilis and B. circulans have been found
to significantly enhance the growth and fresh weight of the inoculated plants under
saline conditions. Two salinity-tolerant strains of B. circulans have been found to
promote plant growth only in the presence of salt. Co-inoculation of maize plants
with Rhizobium sp. and Pseudomonas sp. has been revealed to show enhanced
salinity tolerance with decreased electrolyte leakage and maintenance of leaf water
contents (Zelicourta et al. 2013). High abundances of halophilic PGPB Pseudomo-
nas stutzeri and Virgibacillus koreensis in the rhizosphere of Calotropis procera
have been shown to induce the plant growth under saline condition (Al-Quwaie
2020). A recent study showed co-inoculation of plant growth-promoting microor-
ganisms B. cereus, B. megaterium, Trichoderma longibrachiatum and T. simmonsii
to boost simultaneous salinity and drought tolerance in soybean plants by improving
seed germination, seedling growth and K+ uptake (Bakhshandeh et al. 2020).
Another study Abdel Latef et al. (2020a, b) showed inoculation of maize plants
with PGPB (Azospirillum lipoferum or Azotobacter chroococcum) to confer salinity
tolerance by reinforcing plant growth and improving physiological activities.
Co-inoculation of alfalfa (Medicago sativa) plants with salt-tolerant PGPB
(Hartmannibacter diazotrophicus and Pseudomonas sp.) has been shown to enhance
salinity tolerance with sustainable plant growth, fresh weight, nodule number,
chlorophyll content, relative water content, membrane stability, K+/Na+ ratio and
photosynthetic performances (Ansari et al. 2019). Inoculation of wheat (Triticum
aestivum) plants with PGPB (Stenotrophomonas maltophilia) has shown to amelio-
rate the salinity stress with increased K+ uptake, proline level and antioxidant
enzyme activities (Singh and Jha 2017). The PGPB Burkholderia phytofirmans
has been reported to enhance salinity tolerance in Arabidopsis thaliana (Pinedo
et al. 2015).

Arbuscular mycorrhizal fungi (AMF) also significantly contribute in the salinity
tolerance in plants (Basu and Kumar 2021) (Fig. 9.2). The AMF improve growth,
nutrient uptake and productivity of crop plants under salinity stress (Daei et al.
2009). The study showed AMF to enhance the nitrogen and phosphorus uptake in
wheat plants under salinity stress. The AMF also increased the gaseous exchange
through stomata and improved the respiration and transpiration eventually affecting
the water use efficiency of the host plants. The AMF have also been revealed to
increase the osmolyte (carbohydrates and electrolytes) concentrations in plant roots
to maintain the osmotic equilibrium under salinity stress. The AMF enhance the
magnesium (Mg) uptake in host plants, thereby regulating the negative effect of Na
on the leaf chlorophyll content (Miransari et al. 2009). Thus, AMF improve the host
plants’ photosynthetic activities under salinity stress. The AMF also enhance
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nutrient uptake in roots by increasing the hydraulic conductivity ultimately inducing
the root development in host plants (Giri et al. 2003). The AMF enhance the
potassium (K) uptake and sustain the K+/Na+ ratio leading to improved plant growth
under saline conditions. The co-inoculation of PGPB (Bacillus subtilis) and AMF
(Claroideoglomus etunicatum, Funneliformis mosseae and Rhizophagus
intraradices) has been revealed to induce resistance in Talh tree (Acacia gerrardii)
against the adverse impacts of salinity stress (Hashem et al. 2016). The plants
co-inoculated with PGPR and AMF showed increased level of osmoprotectants
(proline, phenol and glycine betaine contents) and improved antioxidant enzyme
activities with reduced lipid peroxidation.

Fig. 9.2 Advantages of plant growth-promoting microbe-mediated approaches to improving stress
tolerance in crops (Coleman-Derr and Tringe 2014)
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9.2.2 Drought Stress

Drought is also one of the major abiotic stresses limiting the agricultural crop
production, thereby causing global food insecurity (Kumar et al. 2020c). Continuous
climate change associated with increased air temperature, rainfall anomalies and
shifts in the monsoon patterns has been expected to cause frequent drought events
throughout the world posing serious threat to the agricultural productivity. Drought
stress has been analysed to cause 21, 40 and 50% yield reductions in wheat, maize
and rice, respectively (Daryanto et al. 2016). Incidence of drought stress during the
pre-anthesis stage shortens the anthesis and the grain filling duration of the cereals,
thereby reducing the yield. Drought stress influences the water relations leading to
osmotic imbalance in plants (Basu et al. 2021c). It also impedes the plant growth,
dry-matter accumulation, canopy temperature, water use efficiency and photosyn-
thetic activities (Basu et al. 2017). Drought also severely impacts the nutrient
relations of plants (Garg 2003).

The role of various microorganisms in amelioration of drought stress in plants has
been extensively studied (Ojuederie et al. 2019; Fig. 9.3). The PGPR has been
shown to enhance the drought stress tolerance in Acacia abyssinica (Getahun et al.

Fig. 9.3 Mechanistic approach-mediated PGPR in alleviating drought stress and plant growth
promotion (Ojuederie et al. 2019)
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2020) and maize (Abdel Latef et al. 2020a, b). Various PGPB strains including
Acinetobacter calcoaceticus, Paenibacillus polymyxa, Pseudomonas putida and
P. fluorescens have been found to enhance drought tolerance in A. abyssinica.
Drought-tolerant Rhizobium sp. has been found to alleviate drought stress in
Sesbania. Colonization of the roots of wheat plants with Paenibacillus sp. and
Bacillus sp. have been reported to enhance the drought tolerance. The EPS secretion
from the microbes provides a suitable environment for chemical reactions, nutrient
enrichments and protection against drought by improving the water-holding capacity
and fertility of soil through aggregation as observed in Azospirillum. Application of
Bacillus subtilis has been found to be potentially beneficial in enhancing drought
tolerance in Acacia gerrardii (Hashem et al. 2016). Inoculation of Sambucus
williamsii with PGPB Acinetobacter calcoaceticus has been reported to enhance
drought tolerance (Liu et al. 2019). Similarly, another PGPB Paenibacillus
polymyxa has been found to improve drought tolerance in Arabidopsis thaliana.
The co-inoculation of two PGPB Acinetobacter sp. and Pseudomonas sp. has been
revealed to enhance drought tolerance in grapevines by maintaining the shoot
biomass (Getahun et al. 2020). In pennyroyal plants co-inoculation of Azotobacter
and Azospirillum strains have been reported to impart drought tolerance by increas-
ing the biosynthesis of secondary metabolites. The PGPB Burkholderia
phytofirmans has been shown to mitigate drought in wheat and maize (Meena
et al. 2017). Rhizosphere of cotton (Gossypium hirsutum) plants has been reported
to predominantly contain Acidobacteria, Actinobacteria, Chloroflexi,
Cyanobacteria, Gemmatimonadetes and Proteobacteria under non-stressed condi-
tions (Ullah et al. 2019). However, Chloroflexi and Gemmatimonadetes have been
mostly found in the drought-stressed rhizosphere, which could play an important
role to improve drought tolerance in plants. These two phyla have been found to help
cotton plants in sustaining various physiological functions under drought stress,
thereby conferring drought tolerance. The cluster analyses showed Acidothermus,
Gemmatimonas, Jatrophihabitans, Sphingomonas, Sphingopyxis and Streptomyces
to be relatively abundant in the cotton rhizosphere under normal and drought
conditions as compared to the control bulk soil. In addition to the antibiotic and
antifungal role of Streptomyces, their roles in plant growth promotion under drought
stress have also been well documented. Therefore, these bacteria may enhance
growth of cotton plants under drought stress. Plant roots change the physical and
chemical properties of the soil, and the secretion of root substances modulates
microorganisms in the rhizosphere. On the other hand, some microorganisms failed
to grow in drought-stressed soils. Some microorganisms adhere to the roots and may
subsequently enhance growth and drought tolerance. The soil bacterial community
might be important to plants in maintaining essential functions. The PGPB Pseudo-
monas fluorescens and P. putida have also been revealed to be exceptional in
enhancing drought tolerance in black henbane (Hyoscyamus niger) plants through
sustainable plant growth, chlorophyll, proline, leaf relative water content and
enhanced antioxidant enzyme activities (Ghorbanpour et al. 2013). Higher mem-
brane transport in PGPB has been predicted to enhance salinity and drought toler-
ance by regulating Na+/K+ ratio and H+-ATPase of the plasma membrane. Higher
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metabolic pathways have also been found to contribute in improved drought toler-
ance in plants (Ullah et al. 2019).

The AMF symbioses also play an important role in enhancing drought tolerance
in plants (Basu and Kumar 2020c). They bind to the soil particles with glomalin and
alter the moisture retention capability of soil, thereby inducing the host plants’
growth under drought (Auge 2001). Additionally, higher nutrient uptake by the
AMF enhances the surface area and density of host plant roots consequently
improving their drought tolerance (Subramanian et al. 2006). The AMF facilitates
the plant water movement, inducing the hydration and physiological activities of the
host plants under drought stress (Porcel and Ruiz-Lozano 2004). The mycorrhizal
plants are also able to absorb several forms of nitrogen promoting plant growth under
drought conditions. The AMF improve the host plants’ biomass under drought stress
through increased accumulation of organic products such as glycine betaine, proline,
carbohydrates (mannitol, sucrose) and inorganic ions (Cl�, K+) (Ruiz-Lozano et al.
2006). Furthermore, the AMF alter the physiology and gene expression of the host
plants, thereby enhancing drought tolerance. The mycorrhizal plants also exhibit
higher antioxidant enzyme activities under drought stress that enhance drought
tolerance through enhanced ROS scavenging and sustain plant growth.

9.2.3 Submergence

Submergence is one of the principal abiotic stresses detrimentally affecting the
growth and productivity of important crop species. It severely affects about 10%
of the total land worldwide. The flood frequency has been predicted to affect about
42% of the global land by the end of the twenty-first century, thereby impeding the
food security (IPCC 2014). Submergence has been characterized by low light
intensity, impaired gaseous exchange (Basu et al. 2020a). The O2 diffusion is
reduced 10,000 times under submergence than the normal air leading to hypoxic
or anoxic conditions that inhibit the aerobic respiration of plants. Submergence
severely affects the physiological activities in plants, including chlorophyll content,
membrane stability and photosynthetic gaseous exchange (Basu et al. 2021a).
Incidence of complete submergence for more than a week during the early vegetative
stage significantly reduces the dry-matter production resulting in dramatic yield loss.

Submergence-induced higher ethylene concentration inhibits plant growth and
leads to chlorosis or cell death. Bacterial ACC deaminase has been found to play an
essential role in reducing the excessive ethylene level by catabolizing its precursor
(ACC) into ammonia and α-ketobutyrate, thereby alleviating the negative effects of
submergence (Sasidharan et al. 2017). The ACC deaminase has been firstly isolated
from the bacterium Pseudomonas sp. and yeast Hansenula saturnus. This enzyme
was also found in Pseudomonas chlororaphis and different strains of Pseudomonas
putida. The ACC deaminase has also been found to be produced by fungi and
endophytic bacteria (Sarkar et al. 2017). The bacterium P. putida has been reported
to produce ACC deaminase ameliorating the submergence and metal stress in
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Brassica napus (Farwell et al. 2007). Co-inoculation of different ACC deaminase-
producing PGPR strains including Achromobacter xylosoxidans, Ochrobactrum
rhizosphaerae, Serratia ureilytica and Herbaspirillum seropedicae have been
found to confer submergence tolerance in Ocimum sanctum (Barnawal et al. 2012).

9.2.4 Heat Stress

Global climatic changes along with constant elevation in atmospheric temperature
severely influence plant growth and productivity of major agricultural crops. During
1979 to 2003, the annual mean maximum and minimum atmospheric temperature
has been found to increase by 0.35 �C and 1.13 �C, respectively (Peng et al. 2004).
Intergovernmental Panel on Climate Change (IPCC) has predicted the constant
weather change to increase the average universal temperature with a frequency of
0.18 �C every decade (IPCC 2014). Short episodes of heat stress coinciding with
sensitive developmental stages have been reported to cause a significant reduction in
grain yield. Increase in the temperature from 3 to 4 �C can cause a decrease in
agricultural crop productivity by approximately 15–35% in Asia and Africa and
25–35% in the Middle East. Heat stress reduces the life cycle of plants through
premature ripening which causes declined crop biomass due to lesser accumulation
of assimilates (Dwivedi et al. 2017). Heat stress also affects the grain filling duration
and the grain filling rate of plants ultimately decreasing the grain yield (Dwivedi
et al. 2019).

The role of different PGPB in alleviating heat stress has been widely examined in
various crop plants. A study reported the strain of PGPB Pseudomonas to enhance
the high-temperature (47–50 �C) tolerance of sorghum seedlings. Rhizobacterial
isolates have also been found to confer high-temperature (45 �C) tolerance in plants
(Getahun et al. 2020). Thermotolerant Bacillus cereus has been found to produce
biologically active metabolites, such as indole-3-acetic acid, gibberellin and organic
acids. Inoculation of B. cereus has been reported to confer heat stress tolerance in
soybean plants with improved plant growth, biomass, chlorophyll content and
reduced abscisic acid (ABA) and salicylic acid (SA) content. The inoculated plants
have been found to exhibit increased antioxidant enzyme activities (ascorbic acid
peroxidase, superoxide dismutase), glutathione and amino acid contents under heat
stress. The PGPB inoculation also augmented the heat stress response and increased
heat shock protein (GmHSP) expression in plants. Plant growth-promoting endo-
phytic bacteria (PGPEB) have also been reported to enhance heat stress tolerance in
chickpea, wheat, tomato and potato. The PGPEB can synthesize phytohormones that
help in increasing heat stress tolerance by enhancing biofilm formation, reducing
ABA levels and increasing HSP levels (Khan et al. 2020). Another study showed
plant growth-promoting thermotolerant Pseudomonas putida to enhance heat toler-
ance in wheat by improving plant growth, dry biomass, tiller, spikelet and grain
formation (Ali et al. 2011). Inoculation has also been observed to improve the
cellular metabolite (proline, chlorophyll, sugars, starch, amino acids and proteins)
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levels, enhance the antioxidant enzyme activities (SOD, APX and CAT) and reduce
the membrane injury under heat stress. The PGPB colonization on the plant root
surface has been seen to mitigate the negative effects of climate change on plant
growth. A recent study showed the PGPB Bacillus cereus to mitigate heat stress in
tomato (Mukhtar et al. 2020). Bacterial inoculation has been revealed to significantly
promote plant growth and biomass under heat stress. The EPS production and
ACC-deaminase activity have been observed to be significantly increased in the
inoculated plants. The AMF have been found to ameliorate heat stress in thermo-
philic plants (Bunn et al. 2009). They extend the extra radical hyphae into the soil
and increase the host plants’ access to water and nutrients, thereby promoting root
growth under heat stress.

9.2.5 Low-Temperature Stress

Low-temperature or chilling stress is one of the major abiotic stresses severely
affecting plant growth and hindering productivity of important agricultural crop
plants (Liu et al. 2018). Most of the tropical and subtropical crop plants, including
rice and maize, are extremely sensitive to chilling stress. Seed germination, physi-
ological and biochemical performances are disrupted under low-temperature stress.
Therefore, amelioration of chilling stress in crop plants has become a major chal-
lenge to encounter the food security. The PGPM play an important role in this
background.

Maize seedlings inoculated with PGPR have been shown to confer chilling
tolerance (Abdel Latef et al. 2020a, b). Plants under extreme cold conditions survive
either through avoiding supercooling of tissue water or through freezing tolerance
(Meena et al. 2017). Inoculation of Trichoderma or Bacillus is a suitable strategy to
improve the chilling tolerance in plants. Although co-cultivation of Trichoderma and
Bacillus strains on artificial growth media was frequently characterized by antago-
nisms in many plant species including Oryza sativa, Triticum aestivum, Cicer
arietinum, Solanum melongena and Capsicum annuum, synergistic beneficial effects
were reported after co-inoculation. This included stimulation of seed germination
and plant growth promotion in cold and wet soils. In a recent study, Moradtalab et al.
(2020) conducted a pre-selection trial with a range of fungal and bacterial PGPM
strains based on Penicillium sp. with cold-protective properties, a cold-tolerant strain
of Bacillus atrophaeus and a microbial consortium product (MCP), based on a
combined formulation of Trichoderma harzianum and Bacillus spp. with Zn/Mn
supplementation. Inoculation with T. harzianum has been observed to promote
maize root colonization. The inoculated plants showed increased ABA/cytokinin
ratio and increased concentrations of jasmonic (JA) and SA with increased enzy-
matic and non-enzymatic antioxidant-mediated ROS detoxification. Additional sup-
plementation with Zn and Mn further increased plant growth, shoot IAA and total
antioxidants leading to decreased oxidative damage in plants under cold stress.
Another study revealed the inoculation of cold-tolerant endophytic bacteria
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Pseudomonas vancouverensis and P. frederiksbergensis to confer low-temperature
(10–12 �C) tolerance in tomato plants (Subramanian et al. 2015). The inoculated
plants showed induced expressions of CRT repeat binding factors (LeCBF1 and
LeCBF3) under chilling stress. Similarly, PGPEB Burkholderia phytofirmans has
been reported to provide increased chilling tolerance in Arabidopsis (Su et al. 2015).

9.2.6 Heavy Metal Toxicity

Heavy metals (HMs) are the food chain contaminants affecting the growth and
productivity of crop plants (Kamal et al. 2010; Thakare et al. 2021; Sonowal et al.
2022). Continuous climate change has been predicted to exaggerate the HMs
(arsenic, cadmium, lead, chromium, mercury) contamination in the soil causing
substantial yield loss of major crop plants (Kumar et al. 2022b). The excessive
intake of HMs by the crop plants also impairs the growth, photosynthetic activities,
mineral nutrition and metabolic reactions in plants (Kumar et al. 2021). It is,
therefore, a serious worldwide concern to take necessary steps to counteract the
problem of HMs toxicity in crop plants (Sarkar et al. 2022).

Numerous studies have shown the PGPR to confer HM tolerance in different crop
species. A recent study showed Cd toxicity to decrease the abundance of
Actinobacteria in the rhizosphere of Brassica napus, whereas increased in the
rhizosphere of B. juncea. In the phyllosphere of B. napus, abundance of
Rhodanobacter sp., Rickettsia sp. and Massililia sp. has been found to be increased,
whereas Acinetobacter sp., Achromobacter sp. and Buchera sp. have been found to
decrease under Cd toxicity. The B. juncea phyllosphere showed increase in
Gibbsiella sp., Lysobacter sp. and Stenotrophomonas sp., while Gaiell sp.,
Herbaspirillum sp. and Telluria sp. were found to decrease under Cd toxicity
(Du et al. 2021). The PGPB has shown Bacillus anthracis to confer Cd tolerance
in Sesbania sesban through higher seed germination (Ali et al. 2021). Another study
showed the PGPR strains Bacillus circulans and Paenibacillus polymyxa to enhance
copper tolerance in maize plants (Abdel Latef et al. 2020b). The PGPR strain
Staphylococcus arlettae has been shown to alleviate chromium toxicity in sunflower
plants by restricting its uptake and strengthening the plant antioxidant defence
system (Qadir et al. 2020). Bacillus siamensis has been shown to improve Cd
tolerance in wheat plants by restricting the Cd accumulation and enhancing the
antioxidant defence system (Awan et al. 2020). Inoculation of PGPB Micrococcus
luteus has been shown to impart arsenic (arsenite) tolerance in grapevine with
increased biomass and antioxidant potential (Ivan et al. 2017).
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9.3 Conclusion

Soil microorganisms are directly and indirectly beneficiary for the agricultural crop
plants. Application of the PGPM is widely studied in amelioration of various abiotic
stresses like salinity, drought, heat, cold and heavy metals, which severely affect
plant growth, physiological activities and agricultural productivity. However, most
of the studies are restricted to the laboratory conditions. Therefore, the studies should
be executed under the field conditions for sustainable agricultural productivity to
keep pace with both the increasing population and continuously changing climate.
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