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Abstract Biofertilizers and biological products are increasingly being used to
enlarge the productivity of crops. Of these, microbes known as Plant Growth-
Promoting Microorganisms (PGPM) are the most valuable as biofertilizers, having
the capacity to directly impact the growth and development of plants. Plant Growth-
Promoting Fungi (PGPF) and Plant Growth-Promoting Bacteria (PGPB) help crops
to face biotic and abiotic stresses by enhancing the defense system and several other
parameters related to plant growth. This chapter is focused on explaining the
function and positive influence of the PGPF and PGPB on several crops, and also
to provide a general view of the application of microorganisms in modern
agriculture.
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2.1 Introduction

Nowadays, agriculture continues to use numerous chemicals (fertilizers and pesti-
cides) to ensure the growth and development of plants. Many of these products have
been related to the degradation and pollution of soils, water, and even crops
themselves (Jiménez et al. 2011).

The excessive application of synthetic pesticides is the direct cause of the
resistance of several organisms, and therefore, the loss of their effectiveness. Chem-
ical control also produces decrease in populations of natural enemies, resurgence of
pests with resistance against pesticides, and outbreaks of secondary pests (Pacheco
et al. 2019).

One way to increase the efficiency of agronomic systems in the long term is
through the application of microbial inoculants, which represent a new technology
that can be considered as clean, aligned with the principles of sustainable agriculture,
against the irrational increase in the use of pesticides and fertilizers (Naiman et al.
2009). An alternative to increase root growth in plants is by incorporating microor-
ganisms that contribute to the implantation, production, and development of crops.
Other factors include soil exploration, access to water and limiting nutrients for
crops, reduction of processes for mobile nutrients loss, attenuating periods of
moderate water stress and maintaining active growth rates of the crop, and improv-
ing its photosynthetic capacity (Díaz-Zorita and Fernández 2008).

Biofertilizers and biological products are increasingly being used to boost crop
productivity, being the microbes that stimulate plant development, known as PGPM
(Plant Growth-Promoting Microorganisms), most valuable as biofertilizers, having
the capacity to directly increase the growth and development of crops (Bashan et al.
2014; Varma et al. 2012; Giri et al. 2019).

An example of PGPM are the Plant Growth-Promoting Bacteria (PGPB) which
have been studied not only regarding their impact on the plant, but also relating to the
mechanisms they use to promote growth and interact with the plant (Sgroy et al.
2009; Prasad et al. 2015). Some of the characteristics sought for the selection of
bacteria with PGPB potential are: ability to solubilize inorganic phosphorus (genus
Paenibacillus, genus Enterobacter), biological fixation of atmospheric nitrogen
(species of Rhizobium, Azotobacter, Bacillus, Clostridium, and Klebsiella), produc-
tion of plant growth inducers such as auxins, mineralization of organic phosphorus,
ACC deaminase activity, production of siderophores (Azotobacter vinelandii, Bacil-
lus megaterium, Bacillus subtilis, Pantoea allii and Rhizobium radiobacter),
hydrocyanic acid and salicylic acid, among others (Glick et al. 2007; Sgroy et al.
2009).

Another group of PGPM are the Plant Growth-Promoting Fungi (PGPF). These
microorganisms are gaining importance in organic agriculture because they are soil-
borne filamentous fungi which are innocuous to plants, and yet they are of great
importance. These fungi act by colonizing the root of plants for development,
improvement, protection, and growth (Hyakumachi 1994). Some examples of
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PGPF are species of Aspergillus, Trichoderma, Penicillium, and several other
endophytes (Mishra et al. 2015).

The PGPF remove or suppress pests in the rhizosphere area through the produc-
tion of plant hormones and hydrolytic enzymes, and also through mineral solubili-
zation (P, N, and Fe). Some other functions include stimulation of systemic
resistance, competition for saprophytic colonization, and mycoparasitism (Lewis
and Papavizas 1991).

All the above information demonstrates the importance of knowing the
microbiota regardless of the function it performs in the plant (plant growth promoter,
nitrogen fixer, or phosphate solubilizer), with the aim of maximizing the beneficial
effects of biofertilization and biostimulation, to promote more sustainable agricul-
tural production, and satisfy the rising demand for food with the required quality. In
this way, using microorganisms able to promote plant growth is a great alternative
for biofertilization. The aim of this chapter is to provide information on fungi and
bacteria used as growth regulators in modern agriculture describing the species most
commonly employed and their function in plant growth.

2.2 Microorganisms in Modern Agriculture

Microorganisms appeared on Earth 4 billion years ago. The conquest of the terres-
trial surface emerged with the green algae, which evolution turned them into the first
plants, an event that occurred about 3.5 billion years later. Afterwards, agriculture
began in the Neolithic, about 10,000 years ago. These facts show that microbes have
occupied the soil long before other organisms, and that the cultivation of agricultural
species has always been associated with them. Nonetheless, only 300 years ago, we
have known about the existence of microorganisms, and even less time has elapsed
since they began to be considered important and even vital in various processes,
including agriculture.

The discovery of the presence of microbes in soil, water, the plant rhizosphere,
plant surface, and even inside plant tissues has motivated their in-depth study, in
search of relationships and influences that enhance agricultural production. In recent
decades, awareness of the contamination of agroecosystems by fertilizers and
pesticides has opened up new avenues for taking advantage of the beneficial
microorganisms that promote growth, to substitute or reduce the amount of those
products used in agriculture.

Research on the relationships between plants and microorganisms, including
many PGPBs and various genera of PGPF, have led to the discovery of two large
groups of mechanisms (direct and indirect) in which this stimulation manifests itself,
which will be reviewed below.
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2.2.1 Direct Mechanisms

2.2.1.1 Biological Nitrogen Fixation and Supply of Other Nutrients

In soils low in nitrogen, the presence of bacteria of the genus Rhizobium in symbiosis
with various legumes favors the growth of these plants. Rhizobium fixes atmospheric
nitrogen in the form of ammonia, assimilated by the plant. The symbiosis begins
with the emission of radical, exudates with a flavonoid structure that attracts
microorganisms, and these respond by activating genes that synthesize nodulation
factors (Oldroyd 2013). The plant-microbe association is genetically regulated by
miRNA (Hoang et al. 2020) at various points of the symbiosis (Varma et al. 2020).

The miRNAs are small RNA fragments capable of controlling the expression of
numerous and diverse genes through repression of translation or degradation of
mRNA. The first miRNA was discovered in the nematode Caenorhabditis elegans
(Lee et al. 1993). The regulation by miRNA in legumes occurs during the mutual
recognition between the plant and the microbe, in the formation and growth of the
nodules and the modulation of the synthesis and degradation of enzymes, reactive
oxygen species (ROS), auxins, and cytokinins during the symbiotic process
(Subramanian et al. 2008; Tóth and Stacey 2015; Wang et al. 2015; Yan et al.
2016; Tsikou et al. 2018).

Although the best-known nitrogen (N) fixation process is done by Rhizobium,
another no less important N fixation is done by the actinobacteria Frankia in woody
species (Van Nguyen and Pawlowski 2017). In this symbiosis, nodules develop on
lateral roots, and the microorganism protects the nitrogenase enzyme complex from
oxidation. Other bacterial genera also capable of fixing nitrogen include Azotobacter
(Jnawali et al. 2015), Azospirillum (Fukami et al. 2018), Bacillus (Kuan et al. 2016;
Yousuf et al. 2017), Paenibacillus (Shi et al. 2016), and others. Apparently, the
expression of genes involved in N fixation is regulated by the presence of elements
and substances such as oxygen and ammonia in the medium, as in Paenibacillus (Shi
et al. 2016; Do Carmo et al. 2020).

Phosphorous and potassium, in addition to nitrogen, are macroelements con-
sumed in large quantities by plants, and consequently are present in many synthetic
chemical fertilizers. Phosphorus is an element commonly found in soils in an
insoluble form, which cannot be assimilated by the plant. However, bacteria of the
genera Enterobacter, Pseudomonas, Rhizobium, and Bacillus and fungi of the
genera Aspergillus, Penicillium, and arbuscular mycorrhizae act as phosphorus
mobilizers or solubilizers (Adhya et al. 2015; Alori et al. 2017; Satyaprakash et al.
2017). The solubilization pathway of phosphorus from phosphate compounds by
bacteria such as Pantoea sp. is the acidification of the medium by the production of
gluconic acid, which is transformed to 2-ketogluconic acid, solubilizer of phosphate
(Castagno et al. 2011).

Potassium is the cation most absorbed by plants, but its availability in soils has
decreased due to erosion and leaching (Sindhu et al. 2016). A. tumefaciens and
R. pusense are rhizosphere bacteria that exhibit high levels of potassium
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solubilization (Meena et al. 2015) but a large variety of bacterial genera, as well as
the fungi P. frequentans and C. cladosporioides, perform this metabolic activity
(Sindhu et al. 2016). These microbes obtain potassium from the solubilization of
minerals such as mica and feldspar, through methods like the production of organic
acids, exchange reactions, and chelation (Etesami et al. 2017).

Even though iron is one of the most abundant elements in the earth’s crust, its
ferric form (Fe3+) is not assimilable by plants. Instead, bacteria produce small
organic molecules (siderophores) that can bind to this ion. Crowley (2006) showed
that siderophores of microbial origin are the main source of iron for plants. In
addition to the production of siderophores by E. coli, Streptomyces sp., and Pseu-
domonas sp. (Saha et al. 2015), its synthesis has also been demonstrated in the fungi
Trichoderma harzianum, Penicillium citrinum, Aspergillus niger (Yadav et al.
2011), and Trichoderma asperellum (Qi and Zhao 2013). Zinc, mycorrhizal fungi
(Gadd 2007), and some species of Acinetobacter, Gluconacetobacter, Pseudomo-
nas, and mainly Bacillus solubilize this element from insoluble compounds (Sharma
et al. 2012).

2.2.1.2 Production of ACC Deaminase

In higher plants, excess ethylene can cause defoliation, wilting, rot, and death events.
ACC (1-aminocyclopropane-1-carboxylate) is a precursor of ethylene, and one way
to avoid the excessive increase of ethylene is its deamination by the enzyme ACC
deaminase of rhizospheric microorganisms, synthesizing NH3 that can be used by
plants. In general, the activity of this enzyme is present in most microorganisms that
live with plants, especially in environments considered stressful (Timmusk et al.
2011). In the contact among plants and numerous bacteria known to stimulate plant
development, such as Burkholderia, Pseudomonas, and Rhizobium, and fungi like
Trichoderma asperellum, the activity of microbial ACC deaminase plays an impor-
tant role (Nascimento et al. 2014).

The high ACC-deaminase activity exhibited by PGPB participates in the reduc-
tion of ethylene levels that occur under conditions of flood stress, heavy metals,
drought, and salinity. Maxton et al. (2017) found that Burkholderiacepacia showed
the highest ACC-deaminase activity of three bacterial species tested, and also it
induced the highest growth promotion in pepper (Capsicum annuum L.) under water
and saline stress. The bacterium Leclercia adecarboxylata is ubiquitous, and previ-
ously considered to belong to the genus Escherichia until its reclassification (Tamura
et al. 1986). Recently, its ability to reduce saline stress in tomato (Solanum
lycopersicum L.), which seems to be associated with its high ACC-deaminase
activity (Kang et al. 2019) has been demonstrated. Two bacterial lines isolated
from the rhizosphere of garlic plants (Allium sativum L.), identified as
Aneurinibacillus aneurinilyticus and Paenibacillus sp., were the only ones among
six that showed ACC-deaminase activity, and also the only ones capable of promot-
ing in vitro growth of Phaseolus vulgaris plants under conditions of water and saline
stress (Gupta and Pandey 2019).
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The presence of ACC-deaminase activity in pathogenic microbes suggests that in
these cases it could help the microorganism to overcome the plant defense responses
to infection, which involve the ACC metabolic pathway (Singh et al. 2015). How-
ever, the use in agriculture of microorganisms with high ACC-deaminase activity is
an option to increase tolerance to abiotic stress with more sustainable agricultural
practices (Orozco et al. 2020).

2.2.1.3 Synthesis and Modulation of Phytohormones

In one way or another, all the effects of PGPB and PGPF are linked to phytohor-
mones, either through the synthesis of these compounds or through the modulation
of pathways such as salicylic acid in systemic acquired resistance (Heil 2001) and
ethylene and jasmonic acid in induced systemic resistance (Ongena et al. 2005;
Bisen et al. 2016).

The synthesis of indoleacetic acid (IAA) by PPGB is a pathway by which bacteria
stimulate the growth of lateral roots and root hairs (Jeyanthi and Kanimozhi 2018).
The softening of the cell walls leads to cell growth and to an increase in the effective
surface producing exudates useful for bacteria (Glick 2012a, b). Auxin synthesis by
PGPB has been demonstrated in Pseudomonas (Egamberdiyeva 2007), Azotobacter
(Jnawali et al. 2015), Bacillus (Kuan et al. 2016), Azospirillum (Fukami et al. 2018),
and other genera. The stimulation of root growth by the fungi Trichoderma
harzianum (Harman et al. 2004a) and Trichoderma virens (Contreras-Cornejo
et al. 2009), as well as by other genera (Penicillium, Aspergillus, Fusarium,
Talaromyces and Mortierella) (Murali et al. 2021) is mediated by auxin synthesis.

Cytokinins not only promote cell division and shoot growth, in which the
microorganisms that synthesize them can cooperate with plants (Wang et al. 2018;
Swarnalakshmi et al. 2020); their influence in plant-pathogen relationships have also
been shown (Saleem Akhtar et al. 2020). Gibberellins, mainly synthesized by
different genera of fungi, play a role in stem elongation and root colonization
(Hossain et al. 2017a). However, the nature of the effects of both phytohormones
remains to be clarified, since they have been proven to be produced by both
beneficial and pathogenic microorganisms.

The modulation of hormone synthesis involved in acquired and induced systemic
resistance (jasmonic acid, ethylene, and salicylic acid) can also be exerted by
Trichoderma sp. (Houssien et al. 2010; Tucci et al. 2011; Nawrocka et al. 2018).
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2.2.2 Indirect Mechanisms

2.2.2.1 Natural Enemy Suppressants

A great amount of fungi and bacteria synthesize substances that function as antag-
onists of plant pathogenic microorganisms. By reducing the chances of infection,
they indirectly favor plant growth and development (Patil et al. 2021).

Abundant information exists on the pathogen-suppressive effects of the genera
Pseudomonas, Burkholderia, and Bacillus (bacteria) and Gliocladium and
Trichoderma (fungi). The genus Burkholderia contains a great amount of species
that produce antibiotic substances of various types (Depoorter et al. 2016). The
pyrrolnitrin synthesized by Burkholderia and Pseudomonas is known to be a broad-
spectrum antibiotic, capable of acting against various genera of pathogenic microbes
such as Verticillium, Botrytis, Rhizoctonia, and Sclerotinia (Raaijmakers and
Mazzola 2012). The Burkholderia tropica line MTo431 synthesizes almost 20 vol-
atile substances, several of them derived from toluene and terpenoids, capable of
inhibiting to a greater or lesser extent the growth of the fungi F. culmorum,
F. oxysporum, S. rolffsi, and C. gloeosporioides, pathogens of various plant species
(Tenorio et al. 2013).

The 2,4-diacetylphloroglucinol produced by Pseudomonas fluorescens is recog-
nized as an antibiotic against several species of pathogenic fungi, including
Gaeumannomyces graminis var. tritici (Mazzola et al. 2004). However, it has also
been found that other isolates of this same bacterium are capable of inhibiting the
growth of this fungus through the production of hydrogen cyanide (HCN) and
siderophores (Warren et al. 2016). The growth suppression of Phytophthora
infestans in potato, mediated by Pseudomonas protegens, is also stronger in lines
that synthesize HCN (Hunziker et al. 2014). Pseudomonas chlororaphis synthesizes
other antibiotics such as pyrrolnitrin, diacetylphloroglucinol, rhizoxine, phenazines
and their derivatives (Arrebola et al. 2019).

For its use as a biocontroller, Bacillus sp. has the advantages that it grows in
numerous types of soil, it is easily cultivable under laboratory conditions, and
several of its species produce antibiotics. Zwittermicin A is an antibiotic synthesized
by Baccillus cereus (Savini 2016) and that acts on oomycetes such as Phytophthora
(Singh et al. 2017). Iturin A produced by Bacillus subtilis is an effective antifungal
against Rhizoctonia solani in tomato (Zohora et al. 2016). Bacillus thuringiensis
synthesizes thuricin-17, a small peptide with biocidal or growth-retarding effects on
many prokaryotes (Nazari and Smith 2020). In general, Paenibacillus and Bacillus
species elaborate a whole variety of protein and peptide structures that have a
deleterious action on other microbes (Olishevska et al. 2019; Miljaković et al. 2020).

Fungi of the genus Trichoderma are abundant in the rhizosphere and are capable
of parasitizing other fungi and producing lethal effects on numerous microorganisms
(Harman et al. 2004b). In recent years, documented reviews have been published on
their ecology, mode of action, and use as biocontrollers of pathogens (Contreras
et al. 2016; Ghazanfar et al. 2018; Singh et al. 2018; Al-Ani and Mohammed 2020).
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The metabolites produced by Trichoderma sp. are very diverse, and include antibi-
otics, siderophores, and hydrolytic enzymes; they are effective against pathogens
such as Sclerotium rolfsii (Evidente et al. 2003), Gaeumannomyces graminis,
Pythium ultimum, Rhizoctonia solani (Vinale et al. 2006), Botrytis allii,
Colletotrichum lini, Fusarium caeruleum (Reino et al. 2008), and Phytophthora
citrophthora (Druzhinina et al. 2011), among others.

Gliocladium sp. is a genus of fungi that, due to its morphology and coexistence in
the habitat, is often confused with Hypocrea, Penicillium, Verticillium, and
Trichoderma, to the extent that some of its species have undergone reclassification
(Castillo et al. 2016). The genus produces gliotoxin and gliovirin, antifungals against
R. solani and P. ultimum, respectively (Keswani et al. 2017). Gliocladium
catenulatum is effective against Botrytis cinerea (Van Delm et al. 2015);
Gliocladium virens controls Verticillium dhaliae, Curvularia lunata (Rizk et al.
2017); Gliocladium fimbriatum reduces Fusarium infection by 48% (Fitrianingsih
et al. 2019).

Although the antimicrobial effects of all these microorganisms are recognized,
their massive application should be done with discretion, since some species of these
genera are pathogens of plants, animals, and man, such as Pseudomonas aeruginosa,
Bacillus cereus, Bacillus anthracis and Burkholderia cepacia, and they live in the
same habitat of beneficial microorganisms.

2.2.2.2 Induced Resistance

During their evolution, plants developed ways of recognizing the pathogens that
attack them and defending themselves against those attacks. In addition, research on
the interaction of crops with abiotic and biotic stresses has shown that there is
another type of resistance, which depends on the contact of the plant with pathogenic
or beneficial microorganisms. This has been called induced resistance (Carvalho
et al. 2010).

Induced resistance phenomena could be classified into two large groups: systemic
acquired resistance (SAR) and systemic induced resistance (SIR) (Peteira 2020).
SAR is nonspecific and occurs as a result of attack by a pathogen; it is regulated
through the salicylic acid pathway and pathogenesis-related proteins (PRP) partic-
ipate in it (Heil 2001). PRPs are not involved in SIR, but it is controlled by ethylene
and jasmonic acid. In addition, pathogens do not participate in this regulation, but
growth-promoting bacteria (Ongena et al. 2005) and non-pathogenic growth-pro-
moting fungi do participate (Bisen et al. 2016). Although the molecular signals,
genes, and products involved are different, both mechanisms have a common result:
the resistance of plants to stress (Peteira 2020).

Systemic induced resistance is particularly interesting, because despite involving
harmless bacteria, it can increase resistance to pathogens and tolerance to abiotic
stresses. Among the PGPB, the genera Bacillus and Paenibacillus have been the
most studied. Inoculation with Bacillus subtilis decreased cucumber susceptibility to
Colletotrichum lagenarium and of tomato to Pythium aphanidermatum (Ongena
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et al. 2005). In peanuts, the presence of Paenibacillus polymyxa in the rhizosphere
contributed to the control of crown rot disease caused by Apergillus niger (Haggag
2007). Bacillus cereus induces resistance against Pseudomonas syringae, a pathogen
of various crops (Nie et al. 2017). The synthesis of elicitors by the resistance-
inducing microorganism plays a determining role in the process. Mutants of Bacillus
amyloliquefaciens exhibiting deficiencies in the production of extracellular com-
pounds are also deficient in the ability to induce resistance to Pseudomonas syringae
and Botrytis cinerea in Arabidopsis (Wu et al. 2018a, b).

Not only bacteria are capable of causing SIR; fungi of the genera Trichoderma,
Penicillium, Phoma, Aspergillus, Fusarium, and Piriformospora also induce this
phenomenon (Hossain et al. 2017a). Undoubtedly, the best known and most used in
agriculture is Trichoderma sp. (Yoshioka et al. 2012; Singh et al. 2014; Saxena et al.
2015; Bisen et al. 2016), but abundant examples exist of the effects of the remaining
genera. Resistance to cucumber mosaic virus can be induced by Penicillium
simplicissimum (Elsharkawy et al. 2012) and by Phoma sp. (Elsharkawy 2018).
Two Aspergillus species increase the synthesis levels of defensive metabolites
against various pathogens in corn (Mahapatra et al. 2014), while Aspergillus terreus
induces resistance to Pseudomonas syringae in tomato (Yoo et al. 2018).

The defense spectrum provided by SIR can also include herbivorous insects
(Rashid and Chung 2017) and abiotic stress. The increase in tolerance to salinity
caused by NaCl due to the effects of A. tumefaciens, Bacillus sp., and Pseudomonas
sp. has been reported (Gayathri et al. 2010; Rashid et al. 2012; Kumar et al. 2016).

2.2.2.3 Bioremediation

Bioremediation is a biological process of decontamination of soils and water, which
is carried out by taking advantage of the natural properties of bacteria, fungi, algae,
and other organisms, so it is essentially a biotechnological procedure. These organ-
isms convert waste and hazardous materials into less or nonhazardous substances
(Singh et al. 2019) thereby reducing pollution of the ecosystem.

The pollutants most approached from science and practical application are pes-
ticides, polycyclic aromatic hydrocarbons (PAH), and heavy metals (HM). Liu et al.
(2017) reviewed the bacteria and fungi capable of reducing the presence of these
contaminants and include genera well known to farmers, such as the bacteria
Bacillus, Pseudomonas, and Enterobacter; and the fungi Fusarium, Pleurotus, and
Trichoderma.

In bioremediation, bacteria, particularly PGPB, can act in two ways: a direct and
an indirect (Kaur 2021). The first one includes mechanisms that allow bacteria to
degrade pollutants (chelation, use of hydrolytic enzymes, biotransformation) and the
second one relates to supporting plants that are capable of assimilating pollutants
(particularly MH) in the process called phytoremediation (Sarkar et al. 2022; Prasad
2022; Sonowal et al. 2022). This collaboration mainly increases the bioavailability
of these elements so they are absorbed by plants, and stimulating crops development
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through the production of phytohormones, with which crops increases its
phytoremediation potential.

The enzymatic mechanisms used by fungi to degrade contaminants have been
reviewed by several authors, and they include the activity of hydrolytic enzymes
(such as lipases, cellulases, xylanases), the reduction of heavy metals to less toxic
forms, their metabolic assimilation or immobilization in soil, among others
(Deshmukh et al. 2016; Singh et al. 2019; Pérez and Héctor 2021).

2.2.3 The Microbiome Approach

Although the mechanisms of plant growth stimulation by microorganisms are
separately observed for their study, as well as the effects that one or another microbe
can exert, this phenomenon is much more complex. Many studies show that the
rhizosphere is an ecosystem itself, in which a great diversity of microorganisms
interrelates with the roots of plants. These relationships are established through
communication mechanisms through the segregation of chemical substances by
the participating organisms (Mhlongo et al. 2018). Plants are capable of regulating
which microorganisms live in the microbiome through radical exudates and, instead,
certain microbial species have evolved to live in that environment (Jacoby et al.
2017).

Researchers have understood this, and that is why studies have been developed in
which several microorganisms or substances synthesized by them are combined,
seeking to enhance effects such as the acquisition of mineral elements from the soil.
The combined inoculation of Rhizobium leguminosarum + arbuscular mycorrhizae
(Glomus mosseae) increases N2-fixation several times compared to the inoculation
of these microorganisms separately (Meng et al. 2015). The co-inoculation of
Rhizobium with the PGPB Bacillus aryabhattai and Azotobacter vinelandii, partic-
ularly with the latter, increases nitrogen fixation in Trifolium repens (Matse et al.
2020). The PGPB Bacillus velezensis increases the nodulation and N fixation
produced by Bradyrhizobium diazoefficiens in soybeans (Sibponkrung et al. 2020).

Microbial and microbe interactions with plants are also important in defense
against pathogens. One bacterium (Streptomyces griseorubens) and two fungi
(Gliocladium virens and Trichoderma harzianum) cooperate with each other to
control Fusarium oxysporum f. sp. capsici, in vitro and in vivo (Suryaminarsih
et al. 2015). In alfalfa, the combination of the effects of the bacterium Sinorhizobium
medicae and the mycorrhizal fungus Funneliformis mosseae reduces the severity of
leaf spot caused by Phomamedicaginis (Gao et al. 2018). Co-inoculation of Strep-
tomyces atrovirens and Trichoderma lixii is effective for the control of Rhizoctonia
solani in infected soils (Solanki et al. 2019). The effects of the phytopathogenic
fungus Phytophthora capsici on Sechium edule (Jacq.) Sw. are reduced by combined
inoculation with Rhizophagus intraradices and Azospirillum brasilense (Aguirre
et al. 2021).
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Knowledge has also been achieved on the effect of the microbiome in reducing
abiotic stress in plants. Inoculation with Bradyrhizobium japonicum combined with
the addition of thuricin-17, produced by B. thuringiensis, protects soybeans from
water stress (Prudent et al. 2015). Chickpea is more resistant to salinity after triple
inoculation with Rhizobium, the endophytic bacterium Stenotrophomonas
maltophilia, and arbuscular mycorrhizal fungi (Abd-Alla et al. 2019). The
phytoremediation capacity of cadmium of Sulla coronaria is increased by
co-inoculation with Rhizobium sullae and Pseudomonas sp. (Chiboub et al. 2020).
By jointly inoculating Rhizobium and arbuscular mycorrhizae, the natural population
of bacteria of the genera Proteobacteria, Actinobacteria, Acidobacteria, and
Chloroflexi is increased, with which alfalfa plants take up more nutrients from the
soil and better resist cadmium stress (Wang et al. 2021).

A very recent study by Sauer et al. (2021) in two medicinal plants illustrates the
difficulty of relationships that could happen in the rhizosphere of plants: in the
microbiome of Hamamelis virginiana L., 141 genera of fungi and 1,131 species of
bacteria were identified, and in that of Achillea millefolium L., 161 genera of fungi
and 1,168 bacterial species were observed. With such microbial populations, it is
evident that the relationships between them and with the plant are very complex, and
that very detailed studies are needed to effectively take advantage of the mechanisms
governing these interactions.

2.2.3.1 Fungi Used as Growth Regulators in Modern Agriculture

The use of PGPF in today’s agriculture is becoming increasingly common because
its use reduces the application of chemicals such as pesticides and fertilizers, and
with this the accumulation of chemical residues in vegetable and fruits are dimin-
ished. Up to now, only a few studies have informed on PGPF because researchers
pay more attention to their use for induction of resistance and plant development
improvement by triggering induced systemic resistance (ISR) in crops (Fig. 2.1)
(Zhang et al. 2018; Sindhu et al. 2018; Hossain et al. 2017b).

Some of the species that have been used as PGPF in agriculture as mentioned
above are Aspergillus, Trichoderma, Penicillium, and also mycorrhizas.

2.2.3.2 Aspergillus spp. as PGPF

The genus Aspergillus includes several endophytic fungi that are applied in many
treatments and forms because they represent beneficial effects to crops growth
promotion and protection. Some of the beneficial effects of Aspergillus spp.
according to Hung and Lee (2016) are:

• Extracellular production of phytases [phytate is a phosphorylated derivative of
myo-inositol important in the storage and retrieval of inositol, ions, and
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phosphorus during plant germination and development (Raboy 2003)] during soil
pretreatment

• Induction of growth promotion through the production of gibberellins, auxins,
and other phytohormone-like compounds and secondary metabolites

• Reduce stress experienced by the plant

Aspergillus ochraceus Wilhelm (1877) was reported by Badawy et al. (2021) as
providing salt stress tolerance (200 g L�1), for which barley plants (Hordeum
vulgare L.) were irrigated with seawater at 15% and 30% and inoculated with the
fungus. Because of this, morphological parameters such as sugars, proteins, pig-
ments, and yield characteristics increased, while the contents of hydrogen, proline,
malondialdehyde, and peroxide besides the activities of antioxidant enzymes
decreased. Another experiment addressing salt stress was done by Ali et al. (2021)

Fig. 2.1 Stimulation of several physiological processes (flowering, fructification, growth) in
tomato plant by Plant Growth-Promoting Fungi (PGPF)
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with plants of Vigna radiate (L.) R. Wilczek inoculated with A. awamori with the
aim to evaluate ionic status of the plant, biochemical indices, seedling growth,
antioxidant enzymes, and endogenous IAA.The main results showed that growing
plants inoculated with 150 mM NaCl displayed growth promotion and increase of
IAA contents.

Khushdil et al. (2019) inoculated plants of Pennisetum glaucum L. with A. terreus
and they were grown under salt stress conditions, finding that under 100 mM salt
stress, the plants significantly improved (P ¼ 0.05) chlorophyll, relative water
content, phenol, flavonoid, and soluble sugar because the fungus produced higher
amounts of indole acetic acid (IAA).

Syamsia et al. (2021) studied the effect of six isolates of endophytic fungi on
growth of the plant Cucumis sativus L. A combination of fungi isolates F6, F8, F9,
and F12 induced an increase in cucumber plants height, whereas the isolate F8
improved the fresh weight of the plants and the isolate F4 improved root growth. The
isolates were identified using molecular methods and it was found to be closely
related to Aspergillus foetidus, Daldinia eschscholtzii, Penicillium allahabadense,
Sarocladium oryzae, and Rhizoctonia oryzae.

Soybean (Glycine max L.) and sunflower (Helianthus annuus L.) seedlings were
inoculated with A. flavus to analyze the plant response to thermic stress. Crops were
grown in a thermal chamber with temperatures of 25 �C and 40 �C. Plants inoculated
with the fungus exposed to high-temperature stress showed low levels of proline,
abscisic acid (ABA), and high levels ascorbic acid oxidase, flavonoids, and phenols
catalase. Also, an increase in dry weight, root-shoot length, and chlorophyll was
registered in the inoculated plants. The results of this study suggested that A. flavus
could be used in crops growth promotion under heat stress conditions (Hamayun
et al. 2019).

Hamayun et al. (2020) identified the species Aspergillus violaceofuscus that also
is useful under heat stress conditions. This species had higher quantities of secondary
metabolites that increased biomass, plant height, and total chlorophyll content of
H. annuus and G. max seedlings under heat stress. Conversely, the plants associated
to A. violaceofuscus showed small levels of abscisic acid, proline, reactive oxygen
species, ascorbic acid oxidase, catalase, and a general improvement of the nutritional
value.

The inoculation of Aspergillus ustus on plants of Arabidopsis thaliana (L.),
Heynh. and Solanum tuberosum L. induces changes in developmental stage and
promotes growth mainly in roots (roots-induced root hair and lateral root numbers
and also increased root and shoot growth). Authors also confirmed that A. ustus
synthesizes gibberellins and auxins in liquid cultures (Salas-Marina et al. 2011).

2.2.3.3 Trichoderma spp. as PGPF

Trichoderma is a genus of opportunistic symbiont fungi that proliferates in the
rhizosphere of plants. Species of this genus can produce elicitors that activate
plant defense against various pathogens, as well as induce the synthesis of plant
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growth-promoting substances and help phosphorus solubilization (Hohmann et al.
2011).

Species of Trichoderma predominate in agricultural soils or in forests (terrestrial
ecosystems) with a low nutritional requirement and a temperature range of 25–30 �C
for their growth (Sandle 2014). Also, they have a great adaptability to ecological
conditions, for which they develop several substrates, which facilitates their massive
production for use in agriculture (Ramos et al. 2008; Zeilinger et al. 2016).

Various species of this genus can promote crops development and growth
(Fig. 2.2), due to the fact that they can be endophytically related or associated
with the rhizosphere of crops. Further, they produce auxins and gibberellins, as
well as organic acids (fumaric, citric, and gluconic) that influence the reduction of
the pH in soil and can promote the solubilization of magnesium, phosphates,

Fig. 2.2 Experiment with tomato plants (Solanum licopersicum L.) at Facultad de Ciencias
Agrícolas y Forestales of Universidad Autónoma de Chihuahua where (a) Tomato without
Trichoderma spp. in a greenhouse, small fruits; (b) Tomato with Trichoderma spp. in a greenhouse,
larger fruits (Source: Crescencio Urias Gracia and Melisa Magaña González)

50 S. Pérez-Álvarez et al.



manganese, and iron; nutrients that are essential for plant functioning (Sharma et al.
2017).

Secondary metabolites produced by Trichoderma species function as plant
growth regulators. As an example, a strain of T. harzianum (SQR-T037) released
harzianolide, a growth inducer in tomato seedling in soil or in hydroponic system at
very low concentrations (0.1 ppm and 1 ppm). Also, this metabolite can improve
root development (Cai et al. 2013). Others species such as T. atroviride and T. virens
can produce some auxin-related substances like IAA, a plant hormone that have
many functions including induction of plant growth, root development, among
others (Contreras-Cornejo et al. 2014).

The inoculation of the fungus Trichoderma sp. on plants such as Arabidopsis
(Contreras-Cornejo et al. 2014) can have various effects such as increase in root tip,
and shoots and root may have high iron levels (Yedidia et al. 2001). These results
showed that the transport of this nutrient improved in plants, and also harzianic acid
may control plant growth because of its Fe(III)-binding activity (Vinale et al. 2013).

One of the best roles of Trichoderma spp. is the development of roots, probably
due to the control or production of hormones that can regulate this activity, for
example harzianic acid, auxin, and harzionalide (Contreras-Cornejo et al. 2009;
Vinale et al. 2013; Cai et al. 2013). Further, plants of cucumber (C. sativus)
inoculated with T. harzianum considerably improved the root area on the 28th
day, and also increased the concentrations of several nutrients like copper (Cu),
phosphorus (P), zinc (Zn), iron (Fe), sodium (Na), and manganese (Mn) (Yedidia
et al. 2001).

Chagas et al. (2019) studied the efficiency of Trichoderma asperellum (UFT
201 strain) as a plant growth promoter in soybean (G. max) by analyzing the
possibility to synthesize IAA and to solubilize phosphate under greenhouse condi-
tions. This study found that the production of IAA was higher (26.7%) in plants
inoculated with T. asperellum UFT compared to the positive control. Also, soybean
plants inoculated with the fungus showed higher biomass than controls. The inoc-
ulation of soybean plants with T. asperellum UFT 201 showed the high efficiency of
this Trichoderma strain as a growth promoter.

In Capsicum chinense (Jacq.) var. ‘Chichen Itza’ the efficiency of Trichoderma
spp. for the promotion of vegetative growth was analyzed and plants treated with
Trichoderma sp. by foliar application at 28 days after germination had a biomass
(dry ¼ 0.13 g and plant�1 fresh ¼ 0.8 g plant�1), higher stem diameter (2.6 mm),
aerial height (11 cm), and root volume (dry ¼ 0.04 g plant�1and fresh ¼ 0.13 g
plant�1), compared to the treatments evaluated (co-application of both a chemical
fungicide (Captan®) and a commercial product (Tri-HB®: Bacillus subtilis and
Trichoderma harzianum) (Larios et al. 2019).

Halifu et al. (2019) compared two species of Trichoderma spp. (T. harzianum
E15 and T. virens ZT05) according to their effect on fungal community and plant
growth rhizosphere soil nutrients of Pinus sylvestris var. mongolica annual seed-
lings. The results showed differences between the control and the two species
studied. Parameters such as root structure index, seedling biomass, soil enzyme
activity, and soil nutrients were considerably higher compared to the control
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(p < 0.05). For T. harzianum E15 treatment, the seedling total biomass, ground
diameter and height were higher than that of T. virens ZT05 treatment. Regarding the
results of enzyme activity and rhizosphere soil nutrient content, treatment with
T. virens ZT05 showed higher values than those of T. harzianum E15.

Nuangmek et al. (2021) described morphological and phylogenetically a new
species named Trichoderma phayaoense. The fungus promoted growth in the plant
Cucumis melo L. by increasing plant shoot, root dry weight, and height. Also,
T. phayaoense had positive effect on fruit quality by increasing its diameter,
circumference, weight, and total soluble solid of fruit. Further, it is important to
point out that T. phayaoense tolerated a frequently applied fungicide (metalaxyl) in
recommended dosages for field applications.

2.2.3.4 Penicillium spp. as PGPF

The genus Penicillium was first described by Link in 1809. Thom, in 1910, consid-
ered P. expansum as the type species of the genus. The species included in the genus
Penicillium are ubiquitous, widely distributed throughout the world, and considered
saprophytic. Many of them live in the soil or in decaying organic matter (Pitt 1981).

The species of Penicillium could be identified with high frequency (Domsch et al.
1993), but, very little information is available about the influence of these fungi in
plant growth or interactions between species of the genus Penicillium and other soil
fungi.

Ismail et al. (2021) performed a field study on Phaseolus vulgaris L. inoculated
with fungal (Penicillium commune PF3 and Alternaria sorghi PF2) and endophytic
bacterial (Brevibacillusagri and PB5, Bacillus thuringiensis PB2) strains compared
to two hormones that were exogenously applied (benzyl adenine [BA] and IAA).
The biochemical characteristics of the plants and their growth were evaluated. The
plants inoculated with endophytic bacterial and fungal strains showed higher pho-
tosynthetic pigments, antioxidant enzyme activity, plant biomass, endogenous hor-
mones, carbohydrate and protein contents, and yield, compared to plants with
exogenous application of hormones (BA and IAA).

Surya and Yuwati (2020) inoculated Penicillium citrinum on Gerunggang
(Cratoxylon glaucum) seedlings, and they found that only the height of the plants
changed significantly, whereas leaf number and growth of plant diameter were not
affected. To understand these responses, authors inoculated other plants with differ-
ent application methods and dosage but the responses after 5 months were the same
in plant growth parameters (leaf number, dry weight of plants, height, diameter, soil
P content, and chlorophyll content). On the other hand, Penicillium spp. (Penicillium
neoechinulatum or Penicillium viridicatum) isolated from zoysiagrass rhizospheres
stimulated disease resistance and growth in cucumber plants (Cucumis sativus L.)
(Hossain et al. 2014).

Species of Penicillum have also been reported as phosphate-solubilizing micro-
organisms. For this function, Penicillium oxalicum I1 is able to induce growth in
maize plants (Zea mays L.) (Gong et al. 2014).
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Nasim et al. (2012) reported several isolates of Penicillium that had a positive
influence on growth of tomato plants (S. licopersicum) as follows:

• The nine isolates tested (P. simplicissimum, P. citrinum, P. oxalicum,
P. verrucosum var. cyclopium, Penicillium sp., P. billii, P. granulatum,
P. expansum and P. implicatum) significantly improved seed germination.

• Growth promotion increased up to 90% by the application of cultural extracts of
P. billi and P. expensum.

• P. oxlalicam and P. implicatum expressively increased root development in
tomato seedling.

• P. granulatum, P. implicatum, and P. verrucosum enhanced shoot length.
• P. implicatum improved root length and shoot in tomato seedlings.
• On seedling growth P. citrinum and P. simplicissimium were less effective.

Mushtaq et al. (2012) investigated the effect of several species of Penicillium
(Penicillium citrinum, Penicillium expansum, Penicillium oxalicum, Penicillium
implicatum, Penicillium verrucosum, Penicillium simplicissimum and Penicillium
bilaii) in tomato plants (S. licopersicum), and they improved seed germination,
plants’ shoot and root system. On the other hand, Penicillium chrysogenum
interrupted the dormancy of opuntia (Opuntia streptacantha Lem.) seeds
(Delgado-Sánchez et al. 2011).

Salinity is one of the main stressors affecting plant growth. In this sense, one
strain of Penicillium citrinum, KACC43900, was reported by Khan et al. (2009) as
growth promoter in Ixeris repens. The strain was isolated from the same plant and
this was the first report on the reduction of salinity stress in plants using P. citrinum
KACC43900 (Khan et al. 2009). Another Penicillium species that reduced the
negative effect of salinity stress in plants was P. resedanum LK6 specifically in
Capsicum annuum L. from where it was isolated. Also, when this strain (LK6) was
inoculated in C. annuum plants together with gibberellic acid treatment, an increase
of several physiological parameters of plant growth was observed, such as shoot
length, biomass, photosynthesis rate, and chlorophyll content (Khan et al. 2015).

2.2.3.5 Mycorrhizas as PGPF

Mycorrhizas constitute the most common synergy between microorganisms and
plants called mycorrhizal symbiosis. According to Bonfante and Genre (2010),
mycorrhizas (Arbuscular Mycorrhizal Fungi (AMF) endomycorrhiza, arbuscular
mycorrhiza (AM)) are endophytic fungi belonging to the Glomeromycota genera
that can colonize over 90% of higher plant families for symbiotic relationships
(Prasad et al. 2017).

AMF improve the nutrient in plants and water uptake by spreading the root and so
the absorbing zone and plants provide them carbohydrates to finish their life cycle. In
turn, the AMF reduce in plants the negative effect of abiotic stresses like salinity,
drought, heavy metals, and high temperatures (Kumar et al. 2017). The mechanisms
by which AMF are adapted to these stresses are commonly related to increased gene

2 Microorganisms Used as Growth Regulators in Modern Agriculture 53



regulation, hydromineral nutrition, production of osmolytes, synthesis of antioxi-
dants, phytohormones, and ion selectivity. Additionally, they improve ecosystem
stability and enhance bacterial communities, the quality of soil aggregation, and
plant structure (El-Sawah et al. 2021).

Mycorrhizas could mitigate the stress caused by drought in plants because AMF
can increase the area of plants for water absorption due to the symbiosis with roots of
crops through AMF hyphae which allow them access to distant soil regions where
water is retained by soil pores (Augé 2001). Several studies show the mitigation of
drought stress by AMF due to the increase of nutrient contents and the efficient use
of water in important agricultural crops such as tomato (S. lycopersicum)
(Subramanian et al. 2006), Allium cepa L. (Nelsen and Safir 1982), Triticum
aestivum L. (Allen and Boosalis 1983), Trifolium repens L. (Ortiz et al. 2015),
Lactuca sativa L. (Ruiz-Lozano et al. 2015), and other crops.

Mycorrhizas can also mitigate the stress produced by salinity in plants, since
plants inoculated with AMF have better capacity to absorb water and take nutrients,
improving the ionic homeostasis (Khanam 2008; Munns and Tester 2008), inducing
the accumulation of osmoregulators like sugars and proline (Yamato et al. 2008),
and reducing the uptake of Cl� and Na+ (Li et al. 2020a, b). Also, crops inoculated
with AMF and exposed to salinity show a reduction in oxidative damage and
enhanced stomatal conductance (Estrada et al. 2013; Pedranzani et al. 2015).
Some examples are:

• F. mosseae inoculated on tomato plants (S. lycopersicum) exposed to saline water
increased fruit fresh production, shoot contents of potassium (K), iron (Fe), zinc
(Zn), phosphorous (P), copper (Cu), and plant biomass (Al-Karaki 2006);

• F. mosseae colonizing tomato plants (S. lycopersicum) roots diminished the
concentration of sodium (Na) and increased several enzymes activity related to
oxidative stress in plants [ascorbate peroxidase (APX), superoxide dismutase
(SOD), peroxidase (POD) and catalase (CAT)] (Latef and Chaoxing 2011).

• AMF inoculation on wheat plants (Triticum aestivum L.) significantly reduced the
oxidative damage (Talaat and Shawky 2014). Also, authors reported an increase
in carbon and nitrogen metabolism.

• Plants of Z. mays under saline conditions were inoculated separately with three
native AMF [Claroideoglomus etunicatum (Becker and Gerdemann 1977),
Rhizophagus intraradices (Schenck and Smith 1982), and Septoglomus
constrictum (Trappe 1977)] resulting in increased content of K and proline in
shoots as well as plant biomass (Estrada et al. 2013).

In several important crops, the influence of AMF on plant physiological param-
eters and growth have been studied. Example of such crops include Withania
somnifera (L.) Dunal (Parihar and Bora 2018), Phaseolus vulgaris L. (Ibijbijen
et al. 1996), Solanum lycopersicum L. (Bona et al. 2016; Gamalero et al. 2004),
Cucurbita maxima Duchesne (Al-Hmoud and Al-Momany 2017), Sorghum bicolor
(L.) Moench (Nakmee et al. 2016; Kim et al. 2017), and others. In these species,
AMF enhanced the uptake of important nutrients such as phosphorus and nitrogen
(Jansa et al. 2019; Song et al. 2020), and growth parameters such as yield, quality,
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and nutritional value (Bona et al. 2016), root architecture (Gamalero et al. 2004), and
root system morphology (Berta et al. 1995).

AMF were used by El-Sawah et al. (2021) as biofertilizers in guar (Cyamopsis
tetragonoloba L.) to improve nutrients, soil microbial activity, and also the crop seed
quality, growth, and yield. AMF were applied individually or in combination with
Bacillus subtilis (Ehrenberg 1835) Cohn 1872 and Bradyrhizobium sp. Results
showed a great increase in plant growth (plant dry weight, shoot length, root length,
nutrient uptake, number of branches, chlorophyll content, and leaf area index (LAI)),
as well as an increase in seed yield and improvement of fat, total protein, starch, and
carbohydrate contents in seeds. In addition, the use of the biofertilizer improved the
microbial activity of the soil. This research demonstrated that the use of biofertilizers
with the correct doses can diminish the use of chemical fertilizers in about 25%.

Arbuscular Mycorrhiza (AM) as PGPF together with Azotobacter and Pseudo-
monas sp. as PGPB were used in Capsicum frutescens L, crop growing on infertile
lateritic soil (deficient in nitrogen and phosphorous) and the results after the use of
these three microorganisms together indicated an increased in growth (leaf area, leaf
number, height, number of flowers, and root collar diameter), productivity (number
of fruits, final dry and fresh yield), root colonization, and spore count of AM (Kulla
et al. 2021).

Five species of AMF (G. versiforme, Diversispora spurca, Acaulospora
scrobiculata, G. mosseae, and Glomus etunicatum) were used to determine their
effect on leaf gas exchange, plant growth, root nutrient contents, and root morphol-
ogy of walnut (Juglans regia L. Liaohe 1) seedlings. After 3 months, AMF colo-
nized roots in 47.0% to 76.4%. Also, plants that were inoculated with G. etunicatum,
G. mosseae, and D. spurca had greater projected area, volume, and root length. Four
AMF (D. spurca, G. etunicatum, G. mosseae, and A. scrobiculata) improved
transpiration rate, stomatal conductivity, and leaf photosynthesis rate, whereas leaf
temperature and intercellular CO2 concentrations were reduced (Huang et al. 2020).

2.2.4 Bacteria Used as Growth Regulators in Modern
Agriculture

2.2.4.1 The Rhizosphere and the Interaction of Beneficial
Microorganisms

Among terrestrial ecosystems, the soil is one of the richest habitats in microbial taxa.
More than 80% of the biological functions of this ecosystem are carried out by algae,
bacteria, fungi, and nematodes. The classification of organisms, by their body size,
are divided into microflora (<0.02 mm); microfauna (0.02–0.2 mm); mesofauna
(0.2–10 mm); macrofauna (10–20 mm); and megafauna (>20 mm) (Wolters 2001;
Wardle 2002). The rhizosphere is defined as the zone of soil that is located just in
narrow zone of the plant roots, and is directly influenced by the root exudates with a
high content of amino acids, sugars, carbohydrates, secondary metabolites, and
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organic acids that favor growth of microbial populations. The rhizosphere is divided
into (1) endorizosphere, which corresponds to the endodermis, the root cortex and
the apoplastic space between cells; (2) rhizoplane (root surface); (3) ectorizosphere,
an area that extends from the rhizoplane to outside the area of the rhizosphere.
Microbial groups found in the rhizosphere interfere with nutrient cycling, protect the
plant from attack by pathogens, or act as plant parasites (Philippot et al. 2013;
Ahkami et al. 2017; Vives-Peris et al. 2020).

The growth, health, and development of plants is influenced by the interactions
that occur between microorganisms that inhabit the rhizosphere. Mycorrhizal fungi
and plant growth-promoting bacteria (PGPB) play a key role in sustainable agricul-
ture by reducing the use of chemical fertilizers and pesticides, solubilizing nutri-
tional resources, and producing antagonistic compounds of potential
phytopathogens (Genre et al. 2020; Phour et al. 2020; Trivedi et al. 2020; Molina-
Romero et al. 2021). Mycorrhizae are fungi that, in combination with plant roots,
externally or internally, form networks that capture nutrients and water from the soil
(Varma et al. 2012). Ectomycorrhizae are mainly associated with trees and shrubs;
while endomycorrhizae can be arbuscular (related to a great variety of taxa),
ericoides (restricted to the order of Ericales plants), and orchids (associated with
the Orchidaceae family). Some bacteria have the ability to modulate mycorrhizal
symbiosis with the plant; as is the case of various species of the genus Pseudomonas
that have the ability to help the mycorrhizal process, and are called mycorrhizal
helper bacteria (Rigamonte et al. 2010; Xing et al. 2018; Genre et al. 2020). These
synergistic interactions between both microorganisms can be useful to improve the
growth and tolerance of plants in stressful environments (Moreira et al. 2016).

2.2.4.2 Plant Growth-Promoting Bacteria (PGPB)

PGPBs are bacteria that inhabit the rhizosphere, from where they take glutamine,
betaine, and trehalose sugars to improve their growth. PGPBs are divided into two
groups: extracellular (ePGPB) and intracellular (iPGPB). The ePGPBs colonize the
root surface or intercellular space of the cortex; while the iPGPBs produce special
cells inside the roots called nodules and develop within these structures. Both groups
of bacteria stimulate plant growth (Barber 1995; Yadav 2010). The genera
Arthrobacter, Azospirillum, Azotobacter, Bacillus, Erwinia, Micrococcus, Pseudo-
monas, and Serratia integrate the ePGPBs (Adesemoye and Egamberdieva 2013);
iPGPBs include Allorhizobium, Azorhizobium, Bradyrhizobium, Frankia,
Mesorhizobium, Ochrobactrum, Rhizobium, and Sinorhizobium (Quiza et al. 2015;
Hakim et al. 2021; Stone et al. 2000). Plant growth, promoted by these bacterial
groups, is carried out through indirect or direct mechanisms. The first is achieved by
increasing nitrogen fixation, phosphate solubilization, the availability of iron and
other essential nutrients, and improving regulation of the levels of phytohormones
(abscisic acid, auxins, cytokinins, ethylene, and gibberellins) and siderophores
(Gouda et al. 2018; Kalam et al. 2020; Rastegari et al. 2020; Singh et al. 2020).
On the other hand, the indirect mechanism includes the increase of the enzymatic
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activity related to the defense of the plant such as proteases, β-1,3-glucanases, and
chitinases, the reduction of ethylene (endogenous associated with stress), and the
induced systemic resistance suppressing the development of root and foliar phyto-
pathogens (Fig. 2.3) (Beneduzi et al. 2012; Glick 2014; Kour et al. 2020; Meena
et al. 2020; Rana et al. 2020). PGPBs that exhibit both direct and indirect mecha-
nisms have advantages in being more competent bioinoculants (Hernández et al.
2015).

2.2.4.3 PGPB and Biotic and Abiotic Stress

PGPBs have the ability to convert infertile soils to fertile by mineralizing organic
pollutants, and are used in soil bioremediation (Dessaux et al. 2016; Bibi et al. 2018).
In addition, they confer a better adaptation of plants to various biotic factors such as
diseases caused by plant pathogens (bacteria, fungi, insects, nematodes, viruses,
among others) and abiotics that include drought, soil salinity, floods, extreme
temperatures, and heavy metal contamination (Table 2.1) (Santoyo et al. 2017;
Gimenez et al. 2018; Gamalero and Glick 2020). Various studies have mentioned
that the inoculation of plants with PGPB consortia has a synergistic effect on their
development by producing various defense compounds and reducing abiotic and
biotic stress. The co-inoculation of Bacillus megaterium and Paenibacillus

Fig. 2.3 Mechanisms of action of plant growth-promoting bacteria (modified from Basu et al.
2021)
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Table 2.1 Benefits of inoculating plant growth-promoting bacteria (PGPB)

Bacterium
Benefits/type of
stress Hosts References

Alcaligenes feacalis
RZS2, Bacillus spp.,
B. cereus, Enterobacter
sp. RZS5
Ochrobactrum sp.,
Pseudomonas spp.,
P. fluorescens, P.
aeruginosa RZS3

Bioremediation
by pollutants
and heavy
metals/abiotic

Withania somnifera,
Arachis hypogaea, Zea
mays, Oryza sativa

Pandey et al. (2013),
Sayyed et al. (2015),
Das and Kumar (2016),
Khan et al. (2016),
Patel et al. (2016),
Kalam et al. (2017)

Paenibacillus
polymyxa, Pantoea
sp. S32

Increased nutri-
ent absorption/
abiotic

Capsicum chinense,
Oryza sativa

Pii et al. (2015),
Castillo-Aguilar et al.
(2017), Chen and Liu
(2019)

Bacillus subtilis, Rhizo-
bium spp., B. cereus

Improved soil
fertility/abiotic

Vigna radiata, Populus
sp.

Ahmad et al. (2011),
Islam et al. (2016),
Jang et al. (2017)

Achromobacter
piechaudii,
Azospirillum sp., Bacil-
lus megaterium,
B. pumilus,
Eneterobacter sp. PR14,
Exiguobacterium
oxidotolerans

Tolerance to
salinity/abiotic

Bacopa monnieri,
Eleusine coracana,
Lactuca sativa, Oryza
sativa cv. Sahbhagi,
Solanum lycopersicum,
Sorghum bicolor,
Zeamays

Mayak et al. (2004),
Marulanda et al.
(2010), Bharti et al.
(2013), Fasciglione
et al. (2015), Sagar
et al. (2020)

Achromobacter
piechaudii ARV8,
Azospirillum brasilense,
Bacillus subtilis,
Enterobacter
hormaechei DR16,
Paenibacillus
polymyxa, Pseudomo-
nas fluorescens DR11,
P. migulae DR35,
Phyllobacterium
brassicacearum, Rhizo-
bium tropici

Drought toler-
ance/abiotic

Setaria itálica, Zea
mays, Phaseolus
vulgaris, Arabidopsis
thaliana, Solanum
lycopersicum cv. F144,
Capsicum annuum
cv. Maor, Triticum
aestivum

Figueiredo et al.
(2008), Yang et al.
(2009), Bresson et al.
(2013), Timmusk et al.
(2014), Niu et al.
(2018), De Lima et al.
(2019)

Bacillus
amyloliquefaciens,
Ochrobacttrum
intermedium,
Paenibacillus
lentimorbus,
P. xylanexedens, Pseu-
domonas spp., Strepto-
myces sp.

Biocontrol/
biotic

Oryzasativa, Pinus
taeda, Solanum
lycopersicum, Triticum
aestivum

De Vasconcellos and
Cardoso (2009), Khan
et al. (2012), Gowtham
et al. (2016), Ilyas et al.
(2020), Srivastava et al.
(2016), Reshma et al.
(2018)

Rhizobium etli, Bacillus
cereus, Serratia
marcescens,

Heterodera avenae,
H. glycines,
Meloidogyne spp.

Reitz et al. (2000),
Hamid et al. (2003),
Siddiqui et al. (2005),

(continued)
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polymyxa, in combination with Rhizobium, has shown an improved plant biomass of
Phaseolus vulgaris compared to the individual inoculation of Rhizobium (Korir et al.
2017). Likewise, the application of Pseudomonas and Rhizobium increased the
biomass and the yield of Vigna radiata (Ahmad et al. 2012).

Table 2.1 (continued)

Bacterium
Benefits/type of
stress Hosts References

B. coagulans,
B. licheniformis,
B. pumilus,
B. megaterium,
B. subtilis, B. pumilus
L1, Pseudomonas
aeruginosa,
B. thuringiensis,
P. stutzeri,
P. fluorescens CHA0

M. incognita,
M. arenaria,
M. graminícola,
M. javanica
Bursaphelenchus
xylophilus,
Helicotylenchus
multicinctus,
Rotylenchulus
reniformis, Radopholus
similis

Mohammed et al.
(2008), Almaghrabi
et al. (2013), Rahul
et al. (2014), Khan
et al. (2016), Fatima
and Anjum (2017),
Lastochkina et al.
(2017), Basyony and
Abo-Zaid (2018),
Mostafa et al. (2018),
Xiang et al. (2018),
Ahmed (2019),
El-Nagdi et al. (2019),
Forghani and
Hajihassani (2020),
Jiang et al. (2020),
Mazzuchelli et al.
(2020)

Arthrobacter
protophormiae, Dietzia
natronolimnaea,
B. subtilis, Azospirillum
lipoferum, Bacillus sp.

Production of
phytohormones

Triticum aestivum,
Solanum lycopersicum,
Oryza sativa

Barnawal et al. (2017),
Tahir et al. (2017),
Kalam et al. (2020),
Cassán et al. (2001)

Azotobacter
chroococcum, Bacillus
subtilis, B.pumilus,
Exiguobacterium
oxidotolerans, Pseudo-
monas putida

Modulation of
secondary
metabolites

Bacopa monnieri,
Ocimum basilicum

Banchio et al. (2009),
Ordookhani et al.
(2011)

Azospirillum lipoferum,
Bacillus subtilis,
Brevundimonas
diminuta, Pseudomonas
fluorescens, P.putida,
Providencia sp.,
Serratia marcences

Improved seed
germination

Triticum aestivum,
Zeamays

Nezarat and Gholami
(2009), Rana et al.
(2011), Almaghrabi
et al. (2014)
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2.2.4.4 PGPB as Biological Control Agents for Pathogens

Biocontrol is a promising strategy to control plant pathogens and is an ecological
alternative to chemical pesticides and fertilizers. In recent years, the application of
PGPB as biocontrol agents for plant pathogens has been implemented in the world.
This strategy provides a safe, economical, durable, and environmentally friendly
alternative (Table 2.1) (Etesami 2019; Prasad et al. 2019). Bacteria of the genus
Bacillus belong to the phyla Firmicutes, family Bacillaceae, and are gram positive.
This group is characterized by forming rod-shaped endospores, which gives them the
ability to adapt to adverse conditions in a wide variety of habitats (Ducrest et al.
2019; Kuebutornye et al. 2019; Liu et al. 2019; Li et al. 2020a, b). Bacillus spp., like
PGPB, have been documented to confer numerous advantages in the agricultural
sector (Radhakrishnan et al. 2017). In disease management, this bacterial genus
controls the proliferation of phytopathogens by suppressing plant immunity or
induced systemic resistance (Glick 2012a, b; Shafi et al. 2017). Likewise, it
improves the immunity of plants by producing antimicrobial metabolites (directly)
and antioxidant enzymes (indirectly) (Belbahri et al. 2017; Rais et al. 2017; Sarwar
et al. 2018; Wu et al. 2018a, b).

The Pseudomonas group are found in the phyla Proteobacteria, family
Pseudomonadaceae, and are Gram-negative, rod-shaped bacteria. Pseudomonas
spp. is ubiquitous in agricultural soils and has many characteristics that promote
plant growth. For this reason, they have been used on a large scale for biotechno-
logical applications as biological control agents (P. putida and P. fluorescens)
(Anayo et al. 2016; David et al. 2018; Kandaswamy et al. 2019). Some species of
the genus Pseudomonas are pathogenic to plant (P. syringae) (Morris et al. 2008)
and human (P. aeruginosa) (Diggle and Whiteley 2020). Bacteria of the genus
Enterobacter belong to the phyla Proteobacteria, family Enterobacteriaceae. They
are Gram-negative, rod-shaped, and do not form spores. Reports show that Pseudo-
monas sp. and Bacillus sp. are used in the management of nematode parasites of
plants such as Heterodera, Meloidogyne, and Rotylenchulus (Siddiqui and
Mahmood 1999; Kokalis-Burelle et al. 2002; Siddiqui et al. 2005).

The genus Enterobacter has potential as PGPB in agricultural systems (Jha et al.
2011), and even when the mechanisms for improving the yield and growth of plants
due to Enterobacter spp. are not fully understood, it is inferred that they work by
facilitating the absorption of certain nutrients from the soil, synthesizing particular
compounds for plants, and reducing or preventing plant diseases through antagonism
or growth-promoting activities (Kumar et al. 2020). The genus Streptomycesis is
included in the row Actinobacteria, class Actinomycetes, family Streptomycetaceae.
They are gram-positive, filamentous bacteria. Most Streptomyces species are effi-
cient colonizers of the rhizosphere and rhizoplane. They can also act as endophytes
that colonize the internal tissues of host plants (Sousa and Olivares 2016). This
group has a high potential for biocontrol due to the production of antibiotics, volatile
compounds, secondary metabolites (Som et al. 2017; Quinn et al. 2020), and
production of extracellular enzymes (Gherbawy et al. 2012; Mukhtar et al. 2017).
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The species of this bacterial genus grow as a mycelium of branched hyphae and
reproduce in the form of mold sending aerial branches that become chains of spores
(Chater 2006). Streptomyces spp. act as PGPB in plant development (Viaene et al.
2016; Vurukonda et al. 2018).

2.2.4.5 Use of PGPB as Biofertilizers

During the last decades, the increasing use of fertilizers to improve crop yield has
caused environmental pollution and deteriorated the biological and physicochemical
characteristics of agricultural soils throughout the world. The use of PGPB as
biofertilizers is of utmost importance to reduce the application of agrochemicals in
crop production (Yang and Fang 2015; Bishnoi 2018; Dong et al. 2019; Anli et al.
2020). A biofertilizer is defined as a product that contains live or inactive microor-
ganisms that, when applied to the soil, seeds, or plant surface, individually or in
combination, colonizes the rhizosphere or the interior of it, and promotes their
growth and performance, by increasing the availability of primary nutrients and
secreting growth-promoting substances (Vessey 2003; Dineshkumar et al. 2018).
Biofertilizers can fix N2 from the atmosphere, solubilize the nutrients required by
plants (phosphate, potassium, and zinc), and also secrete hormones and substances
that promote plant growth (Table 2.1) (Borkar 2015; Kumar et al. 2018).

Due to the indirect and direct effects caused by PGPBs in plants, several micro-
bial taxa have been commercialized as efficient biofertilizers (Table 2.2). However,
these bacteria are affected by various factors such as the biological and physico-
chemical characteristics of the soil, crop rotation, natural selection, and the use of
organic and chemical fertilizers. Mahajan and Gupta (2009) mentioned that some
important measures must be carried out for the efficacy of the biofertilizer to be
successful: (1) it is essential that its concentration contains at least 107 viable cells
per gram of inoculum when supplied in the field and that it comes from a reputable
manufacturer; (2) it should only be applied to the crops specified in the product,
since biofertilizers are highly specific; (3) all the remainder must be applied in the
field so that the microorganisms of the inoculum begin to interact with other
microbiota in the rhizosphere and begin their colonization; (4) the biofertilizer
must be stored in shaded and cool places, at temperatures between 25 and 28 �C;
(5) the contact of the biofertilizer with synthetic agrochemicals should be avoided;
and (6) about 200 g of biofertilizer can be effectively used to treat 10 kg of seeds.

2.3 Conclusions

Plant growth-promoting microorganisms are increasingly being used in agriculture
to reduce the application of chemicals and thus restore soils and reduce pollution of
water and crops. The use of PGPF allows plants to produce bioactive substances, like
plant hormones; decomposing organic matter through mineral solubilization;
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Table 2.2 Plant growth-promoting bacteria used as commercial biofertilizers

Bacteria Trade name References

Azospirillum sp. Nitrofix® García-Fraile et al. (2015,
2017)

Azospirillum sp. Rhizosum Aqua García-Fraile et al. (2015,
2017)

Azospirillum spp. Bio-N Aloo et al. (2020), Uribe
et al. (2010)

Azospirillum sp. Ajay
Azospirillum

Aloo et al. (2020)

A. brasilense Azofer® García-Fraile et al. (2017)

A. brasilense Zadspirillum Aloo et al. (2020)

A. brasilense B-4485 Azotobacterin® García-Fraile et al. (2015,
2017)

A. brasilense, Azotobacter vinelandii, Bacllius
megaterium

BactoFil® A10 Aloo et al. (2020)

Azospirillum sp., Rhizobium sp., Acetobacter
sp., Azotobacter sp.

Symbion N Macik et al. (2020)

Azospirillumbrasilense, A. lipoferum Azo-N Adeleke et al. (2019)

Azospirillumbrasilense, A. lipoferum, Azoto-
bacter chroococcum

Azo-N Plus Adeleke et al. (2019)

Azorhizobium sp., Azoarcus sp., Azospirillum sp. TwinN® Adeleke et al. (2019)

Azorhizobium spp., Azoarcus spp., Azospirillum
spp.

TripleN® Dal Cortivo et al. (2020)

Azotobacter chroococcum Dimargon® Uribe et al. (2010)

Azotobacter vinelandii, Rhizophagus irregularis Rhizosum N® García-Fraile et al. (2017),
Dal Cortivo et al. (2020)

Azotobacter chroococcum, Bacillus megaterium Phylazonit M Macik et al. (2020)

Azotobacter chroococcum, Azospirillum
brasilense, Bacillus megaterium

Azoter Artyszak and Gozdowski
(2020)

Azotobacter chroococcum, A. vinelandii,
Acetobacterdiazotrophicus, Azospirillum
lipoferum, Rhizobium japonicum

AgrilifeNitrofix Mehnaz (2016)

B. subtilis, Bradyrhizobium japonicum Nodulator®

PRO
García-Fraile et al. (2017)

Bradyrhizobium japonicum Nodulator® García-Fraile et al. (2017)

B. japonicum BactoFil®Soya Mustafa et al. (2019)

B. japonicum Nodulest 10 Mehnaz (2016)

B. japonicum Rizo-Liq Top Adeleke et al. (2019)

B. japonicum BiAgro 10® Uribe et al. (2010)

Bradyrhizobium spp. Nodumax Adeleke et al. (2019),
Aloo et al. (2020)

Bradyrhizobium sp., Mesorhizobium ciceri,
Rhizobium spp.

Rizo-Liq Adeleke et al. (2019),
Aloo et al. (2020)

Delftia acidovorans, Bradyrhizobium sp. Bioboost® García-Fraile et al. (2015,
2017)

Paenibacillus polymyxa Custom N2 García-Fraile et al. (2017)

(continued)
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increasing plant defenses against biotic and abiotic stresses; improving photosyn-
thetic processes through the increase of total chlorophyll content; increasing IAA
contents, root-shoot length, plants’ dry and fresh weight, nutrient uptake, and many
other beneficial effects.

The PGPB are increasingly being used in sustainable agriculture with the aim of
reducing the use of chemical products and also generating stability to the plant in

Table 2.2 (continued)

Bacteria Trade name References

Pseudomonas fluorescens/putida, Klebsiella
pneumoniae, Citrobacter freundii

BioGro® Uribe et al. (2010)

Rhizobia Nitragin Gold® García-Fraile et al. (2017)

Rhizobia Cell-Tech® García-Fraile et al. (2017)

Rhizobia Mamezo® García-Fraile et al. (2015,
2017)

Rhizobia Biofix Adeleke et al. (2019),
Aloo et al. (2020)

Rhizobia, Penicillium bilaii TagTeam® García-Fraile et al. (2017)

Rhizobium etli Rhizofer® García-Fraile et al. (2017)

Rhizobium sp. Nitrasec Aloo et al. (2020)

Rhizobium sp., Bradyrhizobium japonicum Legume Fix Adeleke et al. (2019),
Aloo et al. (2020)

Bacillus megaterium Bio Phos® Mehnaz (2016), Macik
et al. (2020)

B. megaterium Symbion vam
Plus

Aloo et al. (2020)

B. megaterium var. phosphaticum Phosphobacterin Mahajan and Gupta
(2009)

Bacillus mucilaginosus, B. subtilis CBF Uribe et al. (2010)

Bacillus spp., Glomus intraradices CataPult Mehnaz (2016)

Bacillus megaterium, Frateuria aurantia,
Rhizophagus irregularis

Rhizosum PK® García-Fraile et al. (2017),
Dal Cortivo et al. (2020)

Pseudomonas fluorescens Fosforina® Uribe et al. (2010)

Pseudomonas striata, Bacillus polymyxa, B.
megaterium

P Sol B Mehnaz (2016), Macik
et al. (2020)

Azotobacter chroococcum, P. fluorescens Bio Gold Mehnaz (2016), Macik
et al. (2020)

PGPB consortia EVL Coating® García-Fraile et al. (2015)

PGPB consortia Bioativo Aloo et al. (2020)

Pseudomonas azotoformans Amase® Mehnaz (2016), Mustafa
et al. (2019)

Frateuria aurantia Rhizosum K García-Fraile et al. (2015,
2017)

F. aurantia K Sol B Mehnaz (2016)

PGPR consortia Biozink® García-Fraile et al. (2017)

Thiobacillus thiooxidans Zn Sol B Mehnaz (2016)
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presence of unfavorable conditions of abiotic and biotic origin. Using these bacteria
allows a more natural way to cope with agricultural challenges. Moreover, these
bacteria must be highly competent, environmentally friendly and compatible with
other organisms in the rhizosphere. These features may allow the plant to produce
bioactive substances and increase its defenses against extreme conditions and pest
attacks. These biostimulant microorganisms are emerging as an innovative solution
to the current crop-production crisis.
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