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Abstract In the present work, the effect of frequency-dependent viscoelastic prop-
erty on the forced/parametric resonant amplitude of viscoelastic sandwich beam is
investigated by deriving a reduced-order finite element model (ROM) in frequency
domain. In this concern, the frequency-dependent viscoelasticity is modelled using
fractional Zener model and the corresponding responses of sandwich beam are
compared with that are derived using an equivalent Kelvin-Voigt model. The ROM
in frequency domain is derived by implementing harmonic balance method prior
to the finite element discretization and reduced-order transformation. The compar-
ison of frequency responses evaluated using ROM and full-order model revealed
that the ROM with reduction basis from modal strain energy method provides the
response of frequency-dependent viscoelastic sandwich beam with reasonable accu-
racy. Further, the frequency-dependent viscoelastic property has shown a significant
effect on the resonant amplitudes especially when compared with an equivalent
Kelvin-Voigt model in wide-frequency range. Moreover, the results suggest that the
nonlinear frequency response analysis of viscoelastic layered beams using Kelvin-
Voigt model may be reasonably accurate when the different model parameters are
considered around each modal natural frequency.

Keywords Viscoelastic sandwich beam · Reduced-order finite element model ·
Harmonic balance method · Kelvin-Voigt model

1 Introduction

The flexibility of beam elements leads to their large amplitude nonlinear vibrations
under different kind of loads and thereby causes their fracture/fatigue failure. Hence,
a substantial amount of research is conducted on the vibration control of linear and
nonlinear vibrations of beam elements under various loadings [1–5]. One of the
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popular technique is the constrained layer damping (CLD) treatment of the struc-
ture, where the vibrational energy is dissipated through the transient deformation
of viscoelastic material by constraining it between the elastic substrate/face layers.
For the design of an effective damping treatment, the accurate optimization studies
of geometrically complex damping treatments [6, 7] may be necessary. Hence, for
this purpose, finite element (FE) method is commonly used that provides accurate
nonlinear dynamics compared to other alternative methods.

To conduct nonlinear dynamic analysis especially in conjunction with optimiza-
tion, the use of time integration may be inappropriate and expensive due to the
requirement of response for large number of geometrical parameters and excitation
frequency [2, 3]. Hence, to directly evaluate the steady-state frequency response
without requiring time integration method, the harmonic balance method (HBM)
is popularly used in literature [3, 8, 9]. Although it is computationally efficient
compared to time integration, it needs high computational time and memory [1, 3,
8–10] mainly due to the large number of degree of freedom associated with FE
discretization, Fourier expansion of HBM and especially, additional internal vari-
ables/degree of freedom to model viscoelasticity. Therefore, various reduced-order
FE models (ROMs) had been developing in literature that are majorly limited to
elastic structures [11–13]. Hence, the objective of the present work is to derive
the reduced-order FE model in conjunction with HBM to evaluate the nonlinear
steady-state frequency response of viscoelastic sandwich (VS) beam.

Most of the nonlinear dynamic studies in the literature were neglected the
frequency-dependency of stiffness/damping of viscoelastic material by consid-
ering Kelvin-Voigt model [2, 14, 15]. However, the variation of nonlinear resonant
frequency with the amplitude of vibration and the presence of frequency dependent
damping may significantly affect the resonant amplitude of the vibration. So, the
main objective is decided to investigate the effect of frequency-dependent viscoelas-
ticity on the steady-state nonlinear response by comparing the response evaluated
using fractional Zener viscoelastic model with that evaluated using an equivalent
Kelvin-Voigt model.

2 Reduced-Order FEModel of Viscoelastic Sandwich Beam

Figure 1 shows the schematic diagram of a VS beam, where the thickness of substrate
and viscoelastic core layer are denoted by hs and hv , respectively. The length and
width of the beam are denoted by L and b, respectively. Since it as a plane stress
problem [3] in two dimensional xz-plane, the state of stress and state of strain at any
point in the xz-plane can be written as,

σ = {σx σz τxz }T, ε = { εx εz γxz }T, ε = εl + εn,

εl = L ds, εn = Ln(ds) ds, ds = {u w}T (1)
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Fig. 1 Schematic diagram of a viscoelastic sandwich beam

where, εl and εn are the linear and nonlinear counterpart of Green–Lagrange strain,
respectively, while L and Ln are the corresponding operator matrices; u and w

are the displacements along x and z directions respectively. However, to derive the
incremental FE model, the incremental forms of state variables (�ds ,�ω) about a
reference state (i ds ,ωi ) can be given as in Eq. (2). The corresponding expressions of
strain and stress vectors can be given as in Eq. (3).

ds = i ds + �ds, ω = ωi + �ω (2)

εl = iεl + �εl , εn = iεn + �εn1 + �εn2, σ = iσ + �σ ,

iεl = L i ds,�εl = L �ds,
iεn = (1/2) i Ln

i ds,�εn1 = i Ln �ds,

�εn2 = (1/2) �Ln �ds,
i Ln = Ln(

i ds),�Ln = Ln(�ds) (3)

where, pre-superscript i denotes the variable about the reference state of vibration.
The incremental governing equation of VS beam subjected to transverse harmonic
point load (pot cosω t)/axial compressive harmonic load (poa(1 + λ cos 2ωt)) can be
obtained by following Hamilton’s principle and Eqs. (1)–(3) as,

∫
A

〈 (δ�εl + δ�εn1)
T(iσ + �σ ) + (δ�εn2)

T iσ

+(δ�ds)
Tρ(i d̈s + �d̈s) − ({0 1} δ�ds |(xl ,zl ))T(pot /b) cosωt

−(Lg δ�ds)
T(poa/bhs)(1 + λ cos 2ω t) Lg(

i ds + �ds)

〉
bd A = 0

(4)

where, pot is amplitude of transverse harmonic point load; (xl , zl) = (L/4, 0) is
the location of point load; Lg is the linear operator of strain vectors associated with
geometric stiffness term due to pre-stress;poa and λ are the static counterpart and
dynamic load parameter of axial harmonic load, respectively; ω and 2ω are the
frequency of excitation of harmonic point load and axial periodic load, respectively.
In Eq. (4), the last term with poa vanishes for viscoelastic material mainly due to the
negligible axial pre-stress induced in it.
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Now, for the implementation of HBM, the response is assumed following the
Fourier series with finite number (H ) of harmonic terms as,

ds = do
s +

H∑
m=1

dc
sm cos(mωt) + ds

sm sin(mωt) (5)

where, do
s , d

c
sm and ds

sm are the Fourier coefficient vectors of displacement (ds)
corresponding to the constant, mth cosine and mth sine terms of Fourier series,
respectively. The correspondingFourier series of stress vector in termsof strain can be
given in through the constitutive relation of viscoelasticmaterial in frequency-domain
as,

σ = (σ )o +
2H∑
m=1

(σ )cm cos(mωt) + (σ )sm sin(mωt),

(σ )sm = C
〈
f cm(εl + εn)

s
m − f sm(εl + εn)

c
m

〉
, (σ )cm = C

〈
f cm(εl + εn)

c
m + f sm(εl + εn)

s
m

〉
(σ )o = C(εl + εn)

o, f cm = ER(mω)/Eo, f sm = E I (mω)/Eo (6)

where, Eo is the relaxed elastic modulus; C is the stiffness matrix in terms of
Eo and Poisson ratio; ER /E I are the frequency-dependent storage/loss moduli of
the viscoelastic material. In this work, the frequency dependent viscoelasticity is
modelled using fractional Zener viscoelastic model [10]. The relation in Eq. (6) also
represent the constitutive relation for an elastic material when f cm = 1, f sm = 0.
However, to consider frequency-independent property for viscoelastic material, an
equivalent Kelvin-Voigt model in a specified frequency range ([ω1 ω2]) is used,
where the corresponding constitutive relation can be given in time-domain as,

σ = C( ε + τv ε̇),

τv = 1

ω2 − ω1

∫ ω2

ω1

η(ω)

ω
dω, η(ω) = E I (ω)/ER(ω) (7)

where, the relaxation time (τv) is evaluated by averaging the ratio of frequency-
dependent loss factor (η(ω)) and frequency (ω) in the interval [ω1 ω2] [15]. The
corresponding constitutive relation in frequency-domain can be obtained similar to
Eq. (6) with f cm = 1 and f sm = τv m ω. To derive the FE model, the xz-plane of
VS beam (Fig. 1) is discretized with nine-node isoparametric quadrilateral element.
Subsequently, considering the reduce-order transformation using a reduction basis
(RB) (Φ), the displacement and strain expressions at any point in a typical element
can be written as,

i ds = N Φe iV ,�ds = N Φe � V
iεl = BlΦ

eiV ,�εl = BlΦ
e�V , iεn = (1/2) BnΦ

e
I
iV I

iV ,�εn1 = BnΦ
e
I
iV I�V
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Φe
I = Φe ⊗ Φe, iV I = iV ⊗ I Nr (8)

where, N is the shape function matrix; Nr is the number of basis vectors in RB; Bn is
a linear matrix corresponding to the operator Ln(Eq. 3) that is obtained by separating
space-dependent and displacement dependent terms;Φe is the RB at element level;
iV /�V are the incremental forms of reduced coordinate vector. Thus, substituting
Eqs. (5)–(8) inEq. (4) and applyingGalerkinmethod, the reduced-orderFEgoverning
equation of motion in frequency-domain can be obtained using the orthogonality of
Fourier basis functions as,

K t �X = R + Rω �ω,

R = P − Km
iX, Rω = −(∂ Km/∂ωi )

iX
(9)

where, Km /K t are the effective reduced-order stiffness/tangent stiffness; R is residue
vector; Rω is the force vector per unit increment of frequency;P is external load
vector. However, the corresponding full-order FE governing equation can be obtained
by taking Φe as a unit matrix. Thus, the solution of Eq. (9) using continuation
method provides the frequency response ofVS beamunder harmonic point load/axial
compressive harmonic load. However, the RB is constructed by taking first 4 modes
obtained using modal strain energy method (MSE) [16] and corresponding 10 static
derivatives [17].

3 Numerical Results and Discussion

In this section, the numerical results are presented to show the effect of frequency-
dependent viscoelastic property on the forced and parametric resonant response of
clamped–clamped VS beam. However, initially, the validation for the accuracy of
the ROM against full-order model is presented. The geometrical properties of VS
beam are considered as L = 0.4 m, b = 12 mm and hs = 2 mm. The substrate layers
are considered to be made of Aluminum (E = 70.3 GPa, ν = 0.345, ρ = 2690 kg/m3

[10]) and viscoelastic core is made of ISD 112 (ν = 0.499, ρ = 1600 kg/m3) with
its fractional Zener viscoelastic model parameters [10] as Eo = 1.5 MPa, E∞ =
69.9495 MPa, α = 0.7915 and τ = 1.4052 × 10−5 s.

Initially, to validate the full-order FE model, the frequency response associated
with forced resonance of clamped–clampedVSbeam (withKelvin-Voigt viscoelastic
model) is evaluated by solving Eq. (9) using continuation method and compared in
Fig. 2a with the similar results in Ref. [1]. Next, to verify the modelling of frequency-
dependent properties and axial compressive harmonic load, the parametric instability
region is constructed using Eq. (9) [3]. This region is compared in Fig. 2bwith similar
result in Ref. [18]. The good agreement shown in Fig. 2 with the similar reference
results, validates the formulation of full-order FE model and solution method.
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Fig. 2 Validation for the evaluation of a frequency response of sandwich beam with viscoelastic
core modelled by Kelvin-Voigt model (Ref. [1]), b parametric instability region of frequency-
dependent viscoelastic beam (Eo = 425.72MPa, E∞ = 5954.6MPa, α = 0.2255 and τ = 0.6338 s)
for a load parameter of 0.6 (Ref. [18])

Next, to validate the reduced-order FE model, the frequency response associated
with parametric resonance of VS beam is evaluated by using ROM as well as full-
order FE model. The corresponding responses are depicted in Fig. 3a, where also
the axial load parameters are mentioned. The Fig. 3a illustrates that the frequency
response evaluated usingROM reasonably agreeswith that evaluated using full-order
FE model. It is to be noted that RB is evaluated without considering the effect of
static counterpart of axial load that significantly reduces the linear stiffness of beam.
For further validation of such RB, the similar frequency response for an axial load
near to the critical buckling load (331.2745 N) is evaluated and shown in Fig. 3b.
It reveals that the accuracy of response is almost independent of the value of static
counterpart of axial load. Thus, the present ROM and its RB with MSE method
accurately evaluates the frequency response of frequency-dependent VS beam.

To investigate the effect of frequency-dependent viscoelastic property on the
forced /parametric resonant response of VS beam, the corresponding frequency
response is compared with the similar responses evaluated using an equivalent
Kelvin-Voigt model. Considering a limited frequency range around the twice of
natural frequency (100–1500 rad/s, Eq. 7), the frequency response of VS beam

Fig. 3 Validation of reduced-order FE model for the evaluation of frequency response (H = 7) of
VS beam (hv = 4 mm) under axial compressive periodic load (λ = 0.7) with its static counterpart
as a poa = 231.96215 N and bpoa = 298.14705 N
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Fig. 4 Comparison of frequency response (H = 7) of VS beam using fractional Zener viscoelastic
model and Kelvin-Voigt viscoelastic model for the a parametric resonance (poa = 298.23705 N, hv

= 4 mm), and b forced resonance (pot = 6 N, hv = 2 mm)

under axial periodic load is evaluated by using Kelvin-Voigt model. The corre-
sponding response along with the response evaluated using frequency dependent
property (fractional Zener viscoelastic model) are presented in Fig. 4a. Similarly,
the frequency response of VS beam under transverse harmonic point load is eval-
uated using Kelvin-Voigt model by considering a limited frequency range around
the natural frequency (100–900 rad/s). The corresponding response along with the
response evaluated using frequency dependent property are presented in Fig. 4b.
Thus, from the Fig. 4 it can be observed that the effect of frequency dependent
property on the forced/parametric resonant response is very less since an equivalent
Kelvin-Voigt model provides nearly same response. However, to investigate the same
for a wide frequency range (100–3000 rad/s), the frequency response of VS beam
under harmonic transverse point load is evaluated using Kelvin-Voigt model and
presented in Fig. 5 along with the response evaluated using frequency-dependent
property (fractional Zener viscoelastic model). Here, Fig. 5 shows a significantly
higher inaccuracy of frequency-independent property (Kelvin-Voigt model) in the
representation of resonant peak amplitudes. Thus, from Figs. 4 and 5, it can be
concluded that the consideration of frequency-independent property (ie. Kelvin-
Voigt model) may be accurately valid when the different properties (i.e. parameters
of Kelvin-Voigt model parameters) are used around each modal natural frequency.

Fig. 5 Comparison of
forced resonant response (H
= 7) of VS beam in a wide
frequency range using
Fractional Zener viscoelastic
model and Kelvin-Voigt
viscoelastic model (pot =
6 N, hv = 2 mm)



8 R. S. Reddy et al.

4 Conclusions

In this work, the effect of frequency-dependent viscoelastic property on the
forced/parametric resonant amplitude of viscoelastic sandwich beam is investigated
by deriving a reduced-order finite element model (ROM) in frequency domain. The
forced and parametric excitations were separately considered by applying trans-
verse harmonic point load and axial periodic load respectively. The frequency-
dependent viscoelasticity is modelled using fractional Zener model and the corre-
sponding responses of sandwich beam are compared with that are derived using
an equivalent Kelvin-Voigt model. The ROM in frequency domain is derived by
implementing harmonic balance method prior to the finite element discretization
and reduced-order transformation. Whereas the reduction basis is constructed using
first four eigen modes through modal strain energy method and their corresponding
static derivatives. The comparison of frequency responses evaluated using ROM
and full-order FE model revealed that the ROM with aforesaid reduction basis eval-
uates the frequency response of frequency-dependent viscoelastic sandwich beam
with reasonable accuracy. Further, the frequency dependent viscoelastic property
has shown a significant effect on the resonant amplitudes when compared with the
frequency-dependent property approximated in awide frequency range usingKelvin-
Voigt model. Thus, the results suggest that the nonlinear frequency response analysis
of viscoelastic layered beams using Kelvin-Voigt model may be reasonably accu-
rate when the different model parameters are considered around each modal natural
frequency.
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