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1 Introduction

Large-scale infrastructures such as towers, bridges, roads, and dams are subjected
to deterioration due to exposure to the surrounding environment and applied loads
which significantly affects their overall life-span. The structural integrity of these
infrastructures can be monitored and evaluated using sensor-based structural health
monitoring (SHM) techniques. SHM is able to provide useful information about the
existing condition of the structure that can prevent any abnormal behaviour and avoid
catastrophic failure [1]. Acoustic emission (AE) is a nondestructive technique (NDT)
that can monitor and detect minor cracks in civil structures [2]. AE phenomenon is
defined as a transient elastic wave generated as an outcome of a material deformation
due to damage initiation and damage propagation [3]. Essential and useful informa-
tion of the health condition of structure can be extracted from AE parameters such
as amplitude, counts, rise time, duration, signal strength, and energy. However, these
traditional parameters can be sensitive to the surrounding environment, the level of
damage and the presence of noise in the measured AE data. Therefore, this study
aims to develop an AE sensing-based improved crack detection technique using a
deep learning method augmented with time-frequency decomposition.

Researchers have paid great attention to AE technique as a damage detection tool
due to its high sensitivity to minor damage. For example, AE technique was used
to assess the microcracks in different structural elements such as fibre-reinforced
concrete beams and multi-story buildings [4]. In [5], the authors proposed AE tech-
nique to detect the damage in a reinforced concrete slab subjected to dynamic load.
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On the other hand, AE technique was proposed to evaluate the existing health condi-
tion of the real-life bridge. AE sensors were placed at different locations of the
bridge to collect AE signals under various loading conditions [6]. In another study,
AE technique was utilized to detect the severity and location of damage in prefabri-
cated and prestressed concrete elements. The performance of the proposed technique
was verified using AE data collected from the reinforced-concrete beam specimens
under different loading conditions [7]. AE analysis based on an advanced deep neural
network approach was proposed to detect cracks in prestressed concrete specimens.
The proposed technique was implemented to monitor two full-scale bridges under
ambient conditions [8]. However, most of the above-mentioned studies are based on
pattern recognition techniques that require a suitable selection of features to identify
the severity and location of the damage [9].

Recently, Deep Learning (DL)-based artificial intelligence techniques have shown
the increased prevalence in the field of SHM as they can extract features from 1 and
2D data without being pro-processed by the users [10]. As such, mechanical faults
such as bearing deviations, stator and rotor friction, rotor breaks, and poor insulation
can be extracted from 2D greyscale images using CNN as demonstrated by [11].
Though many studies have focused on using traditional greyscale or RGB images
in DL-based damage detection methods, there are several studies which implement
images based on time or frequency domain methods. [12] demonstrated that the
CNN architecture, ‘LeNet-5" was able to efficiently and accurately diagnose faults
of mechanical systems using CWT images. Similar conclusions were reached by
[13], which demonstrated that ‘LeNet-5’ was able to distinguish between various
system health conditions from 2D spectrograms. However, 2D CNN based on time-
frequency (TF) images have focused primarily on mechanical systems, and very few
studies have contributed to the field of SHM. Therefore, this paper proposes a new
method for the localization of damage in civil structures through the classification
of CWT images extracted from the AE signals using CNNs.

2 Proposed TF-Based 2D CNN Method

2.1 Empirical Mode Decomposition (EMD)

EMD is a TF-based signal processing method that has been widely applied as a
modal identification and damage detection tool for civil structures due to its high
performance with nonlinear and non-stationary data [14]. EMD can decompose a
multi-component signal into a set of oscillatory waveforms defined as intrinsic mode
functions (IMFs) [15]. In order to consider the waveform as IMF, it should meet the
following criteria [16]: (a) the difference between the number of extremums and the
number of zero-crossings should be equal or differ at most by one in the entire data
set, and (b) the mean value of the envelope defined by local maxima and minima is
zero at any point. There are some steps that need to be followed to decompose any
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signal, which is provided in [14]. Once the signal is decomposed, the input signal
x(t) can be written as:

X0 =" IMFi(t) + e (1) (1)

where I M F; (t) represents the IMF of the original signal and ¢,,(¢) is the residual
of x(¢). In this study, EMD is applied to eliminate the presence of noise in AE data
and obtain the key AE components (IMFs) that belong to damage, which are used to
generate the images using CWT.

2.2 Continuous Wavelet Transform (CWT)

WT is a TF method that can provide a TF representation of the signals in a multi-
resolution framework. CWT is one of the powerful TF signal processing approaches
that are used in different fields such as image compression, signal noise filtering, and
pattern recognition [17]. The CWT of a signal x(¢) can be expressed as:
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The inverse CWT (ICWT) can be determined by:
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where ! and n represent scale and translation of the mother wavelet, respectively.
The basis function is called mother wavelet ¥ (¢), where superscript (*) denotes its
complex conjugate. With the appropriate choice of / and n, the CWT utilizes the
shifted and scaled versions of i and subsequently performs its inner product with
x (). In this paper, CWT is applied to generate spectrograms of key AE components
(IMFs) that are used to feed the CNN model to detect and identify the approximate
location of the damage.
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2.3 Convolutional Neural Network (CNN)

CNNss are a subset of DL Algorithms which were inspired by the visual cortex of
animals and the interconnectivity of neurons between the eye (input) and the brain
(output) for decision-making processes based on visual data. These networks can
consist of several blocks (neurons) which are used to extract the relevant information
from the input data accurately. Features are autonomously extracted from input data
(x) through convolutional layers, which implement dot product operations to extract
weights (W) and bias (b) through a pre-defined kernel. The presence of specific
features spatially within images is emphasized by activation functions such as recti-
fied linear units or hyperbolic tangent units, which allows nonlinear relationships
to be defined between the input and anticipated output of the data. Once feature
extraction has been completed, the results of the convolutional layers are flattened
using Fully Connected Layers. Finally, Softmax Layers are used to determine the
probability of a particular classification occurring based on the output (Y) defined
by:

Y=Wx+b &)

Following classification, the overall performance of the network can be evaluated
using various indicators such as accuracy, precision, recall and F1 score based on
comparing the predicted and true outputs of the inputted data.

2.4 Proposed Approach

Once AE data y(¢) is measured, EMD method is proposed to decompose the data
and extract the key AE components (IMFs) of each AE sensor. Then, CWT is used to
provide the TF representation of each IMF extracted from EMD, known as spectro-
grams. The resulting spectrogram of each IMF is used to feed into a 2D CNN model
to identify the potential location of the damage. In this paper, a modified VGG-16
developed by [18] is used to classify the spectrograms of the IMFs. The number of
filters of each convolutional layer from the traditional VGG-16 network is reduced
by a factor of 8 as the number of classifications and complexity of the features are
dramatically reduced compared to the original capacity the network was designed
for. Moreover, the length of intermediary fully connected layers is reduced from 4096
to 512, with the final fully connected layer having a length equivalent to the number
of classes used in the study. The main steps of the proposed approach are illustrated
in Fig. 1.
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Fig. 1 The flowchart of the proposed approach

3 Numerical Illustration

3.1 Sine Example

In order to validate the performance of the proposed approach, a suite of sine signals
containing four different frequencies (e.g., f1 = 1 Hz, f, =3 Hz, f3 =5 Hz, and f4
=7 Hz). However, a pure sine signal can generate only a single CWT image which
is not enough to train the CNN model. To overcome this issue, an ensemble of sine
signals with the same frequency is generated by adding noise to the original sine
signal, as shown in Eq. (6):

X =sin(2uft) +a (6)

Where f is the signal frequency, and « is the signal noise component that is a
random and normal time-series sequence. Each signal is processed using CWT to
create spectrograms, as shown in Fig. 2. 1000 images of each frequency class are
extracted using the CWT method and then used to feed the CNN model. 70% of
the images are used for training, 20% for validation, while the rest 10% are used
for training. This resulted in 2800 images, 800 images and 400 images, respectively,
that are used for training, validation and testing. The training is conducted over 30
epochs using a Stochastic Gradient Descent with Momentum (SGDM) solver with
an initial learning rate of 0.0005, minibatch size of 128 and L2 regularization of
0.0005. Figure 3 shows the variation of the accuracy and loss throughout the training
and validation process. The network is trained for 3 epochs resulting in 39 minibatch
iterations. It can be observed that due to the high performance of the network, the
accuracy reaches 100% relatively quickly while minimizing the loss function. The
trained network is tested using 100 images of each frequency class. Therefore, The
proposed CNN model can achieve 100% classification accuracy for all frequency
classes.
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Fig. 2 Spectrograms of the sine signals with frequency a 1.0 Hz, b 3.0 Hz, ¢ 5.0 Hz and d 7.0 Hz,
respectively
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Fig. 3 Performance evaluation of the proposed CNN (modified VGG-16) network
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4 Experimental Study

In order to validate the performance of the proposed method as a damage localiza-
tion tool, an experimental test is conducted using an AE monitoring system on a
wooden beam. In this study, a wooden beam was monitored using two AE sensors.
These sensors have an operating range of frequencies between 20—-450 kHz, which is
suitable for the proposed application. A preamplifier is attached to the AE sensors to
amplify AE signal. A decoupling box is connected with a preamplifier at one end, and
the other end is connected with the data acquisition (DAQ) system. It is also attached
with a direct current supply to power the AE sensor and collect the AE signal. A
DAQ with four input measurement channels is attached to a computer. The sampling
frequency of AE sensors is set to 20 kHz. Figure 4(a) presents the setup of the AE
monitoring system. In order to evaluate the performance of the proposed method, AE

Power supply

_\-———_;m_?_ :

Preamplifier

(b)

Fig. 4 a AE monitoring system and experimental setup b actual, and ¢ the schematic
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Fig. 5 Time-history of the measured AE data of damage at D

data collected from a wooden beam using two sensors (S; and S,) is considered, as
shown in Fig. 4(b). The dimensions of the beam are 62 cm in length, 6.5 cm width,
and 2 cm thickness, respectively. Two damage locations were considered to check
the capability of the proposed method for localizing the damage (e.g., location Dy :
damage near S; and location D;: damage near S;) as shown in Fig. 4(b, ¢). A drilling
machine was used to create the damage while the AE data was collected.

Figure 5 show the time-history of AE data collected from wooden beam using S,
and S;. The AE sensors produced big data due to the higher sampling frequencies.
Therefore, the time-series of AE signal was divided into a finite number of windows
(say, N). EMD method was applied to each segment separately, and a number of
IMFs were extracted. Figure 6 represents the first IMF obtained from EMD and its
Fourier spectra using AE data from (a, b) S; and (c, d) S,. Then, the CWT method was
used to generate the spectrogram of each IMF obtained from EMD. Figure 7 shows
a typical coloured (original) spectrogram of IMFs using AE data collected from (a)
S; and (b) S, for damage at D;. This coloured spectrogram of IMFs obtained from
CWT has a size of 936 x 1920, which were used as the training and testing data of
the 2D CNN.
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Fig. 6 IMF; and its Fourier spectra of AE data collected from (a, b) S| and (¢, d) Sy for damage
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Fig. 7 Spectrograms of IMF using AE data from a S; and b S for damage at Dy
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In this study, 473 randomly selected images of each sensor class were used in the
training process. An additional 135 images and 67 images of each sensor class were
used in the validation and training process. Figure 8 shows the training process of the
CNN model. The network was trained for 50 epochs using the same hyperparameters
outlined in Sect. 3.1. Thus, a total of 135 x 2 =270 images were used for validation
while 67 x 2 = 134 images were used for testing. The confusion matrix, as shown
in Fig. 9(a, b) displays the classification accuracy for the validation and testing
datasets, respectively. The accuracy, recall, precision and F1 scores of the validation
dataset and testing dataset are summarized in Table 1. The performance indicators
calculated from the confusion matrices suggest an excellent damage identification
using the proposed approach.
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Fig. 8 Training and validation: a performance and b loss of the Modified VGG-16 using the CWT
images
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Fig. 9 Confusion matrices for a validation and b testing data of the wooden beam
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Tal?le 1. Performance Performance indicator | Validation dataset | Testing dataset
indicators calculated from the
classification of CWT images ~ Accuracy (%) 93.7 93.2
of close and far damage Recall 0.93 0.93
Precision 0.95 0.94
F1 score 0.94 0.93

5 Conclusion

AE technique is considered as one of the powerful NDT techniques that is capable
of detecting and localizing minor damage due to its sensitivity to damage initi-
ation and propagation. For long-term AE monitoring of full-scale structure, AE
sensors produce a huge amount of data due to the high sampling frequency. Dealing
with such massive AE data using traditional feature extraction techniques can be
time-consuming and computationally expensive. In this study, a 2D CNN model
is proposed to automate the process of detecting and localizing the damage using
massive AE data collected from structures. A set of numerical and experimental
studies are conducted to validate the performance of the proposed approach as a
damage detection tool using a limited number of AE sensors. The results show the
high accuracy of the proposed approach to identify the approximate location of the
damage in the structural element. The proposed approach can identify the approxi-
mate location of the damage with 93% accuracy, where it can be a suitable candidate
for a damage detection tool.
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