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Abstract A novel modified version of particle swarm optimization (PSO) is intro-
duced in this paper to estimate the parameters of the chaotic Lorenz system. The
parameters estimation of the Lorenz system is modeled as a multidimensional
problem and solved by the proposed algorithm, a memory-based particle swarm
optimization (MbPSO) algorithm. In MbPSO, two new terms are added to the stan-
dard PSO to vary the population direction and enhance search capability. Firstly, the
impact of parameter configuration on MbPSO is studied. After that, the parameter
estimation problem is solved. The performance of the proposedMbPSO is compared
with othermeta-heuristic algorithms in terms of parameter accuracy and convergence
speed. According to the results, linking the memory of each particle to the memory
of other particles has a very significant effect on the proposed algorithm compared
to the original PSO. Briefly, the MbPSO algorithm is a successful and powerful
optimization algorithm for parameter estimation of chaotic systems with accurate
performance.

Keywords Chaotic system · Lorenz system · Parameter estimation · Particle
swarm optimization

1 Introduction

Nonlinear dynamics, especially the study of chaotic systems (CSs), have been
increasing interest in various fields, including science, engineering, communica-
tion, biomedical, finance, administration, and other areas [1]. The chaotic system,
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commonly known as the butterfly effect, means unpredictable, erratic motions, and
a complex behavior governed by deterministic laws. The chaotic system that is
extremely responsive to the initial conditions and parameters [2]. Chaotic systems
with low-order deterministic models could enhance interpretation and description
of phenomena (recorded data) of complicated real-world systems. The machinery
condition, electrical circuits [3], and subjects of diagnosis of human health status
[4] are some of the recent applications of chaotic systems. Many chaotic systems
simulate real-world systems such as Chen, Lorenz, Newton–Leipnik, Volta, Rossler
[5], and Lotka–Volterra [6].

In recent years, the control and synchronization of CSs have been intensively
studied in multiple subjects [7]. Most of the recommended techniques only work
according to the conditions of CSs that are defined in advance. Nevertheless, the
parameters may be very difficult to identify in the actual world due to the CSs
complexity. Parameter estimation ofCSs has great value in nonlinear science. Control
theory and signal processing have drawn great attention in different research subjects
and can be investigated as a multidimensional optimization problem (multi-DOP)
[2].

In the last decade, parameter identification of CSs has attracted a lot of attention
in the literature [8]. Different types of traditional techniques have been improved to
investigate these problems [9]. The most common approaches utilized to express the
problem of parameters estimation of CSs as a multi-DOP are metaheuristic algo-
rithms such as PSO [10], the genetic algorithm (GA) [11], and differential evolution
algorithm (DE) [12]. They seem to be an efficient alternative to traditional methods
because they do not require the gradient of the objective function, are not responsive
to the starting point, and seldom get trapped in local optima [13].

The investigation of the parameter identification problemshas a significant history,
with a special focus on the Lorenz system. Lorenz introduced this system in 1963
while observing atmospheric convection [14], and it is considered the first chaotic
attractor of a three-dimensional self-government system. The parameters are not easy
to acquire due to the unstable dynamic behavior of CSs. So in recent years, meta-
heuristic algorithms have been popular and frequently used by the researchers for
their efficient performance in a solution of optimization problems [15–17]; various
metaheuristic algorithms employed for parameters identification of this system have
been proposed by minimizing synchronization error such as GA [11], PSO [10],
improved particle swarm optimization (IPSO) [18], a drifting particle swarm opti-
mization (DPSO) [19], a quantum-behaved particle swarm optimization (QPSO)
[20], PSOwith dynamic inertia weight PSO (DIW-PSO) [21], and chaotic ant swarm
(CAS) [5, 22, 23]. It is noted that PSO and its modifications are the most frequently
used approaches for parameter estimation of CSs.

PSO was proposed in 1995 by Kennedy and Eberhart [24] as a population-based
algorithm inspired by the social behavior of swarms in nature such as bird flock
and fish school. The algorithm seeks out the best solution via sharing the historical
and social knowledge between the candidates (particles) throughout the global solu-
tion space. PSO algorithm has been used as an important optimization technique in
various applications due to its simple implementation, few parameters to adjust, and
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fast convergence rate. On the other hand, PSO demonstrates some shortages. It is
possible to get stuck in a local optimum in another sense, premature convergence,
and the convergence rate reduces significantly in the later stages of evolution [25–
27]. Therefore, many variants of the standard PSO approach have been proposed
for different applications to make the most of the merits, improve the search capa-
bility and overcome the deficiencies such as immune PSO (IPSO) [28], continuous
trait-based PSO (CTB-PSO) [29], and the hybrid GA-PSO [30, 31].

In this paper, parameters estimation of chaotic Lorenz system is modeled as a
multi-DOP and solved based on a modified version of PSO by adding two terms to
the velocity update formula. Themodified algorithm is calledmemory-based particle
swarm optimization (MbPSO). This modification of its role diversifies and enhances
search capability. This is the first research ofMbPSO for parameters estimation of the
Lorenz system that the authors are aware of. The comparisons of the results acquired
by other techniques show this algorithm’s efficiency, effectiveness, and robustness.

The main contributions of this paper can be summarized as follows:

• The chaotic system is modeled, generally, and the Lorenz system is illustrated
clearly.

• A modified version of PSO is proposed called MbPSO.
• The proposed algorithm (MbPSO) is applied for the Lorenz system to estimate

its parameters.
• Comparisons are made between the proposed algorithm (MbPSO), modified

PSO (PSO+), original PSO (programmed algorithms for this study), and other
algorithms used in the literature.

The remainder of this paper is organized as follows: Section 2 introduces the
problem formulation regarding the Lorenz system. Section 3 reviews the basic prin-
ciples of PSO. Section 4 introduces the proposed MbPSO algorithm, and the param-
eter configuration for the proposed algorithm is illustrated in Sect. 5. The numerical
simulation, and comparisons are presented in Sect. 6. Finally, this paper is concluded
in Sect. 7.

2 Problem Formulation

Considering the n-dimensional chaotic system modeled by the ordinary nonlinear
differential equation as below (ONLDE):

Ẋ = f (X, Xo, θo) (1)

where X = (x1, x2, ..., xn)
T ∈ Rn indicates the state vector, x0 indicates the initial

state and θ0 = (θ1o, θ2o, ..., θdo)
T is a set of original parameters. During calculating

the parameters, assume the chaotic system structure is known in advance, and hence,
the approximated system can be defined as follows:
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Ẏ = f (Y, Xo, θ) (2)

where Y = (y1, y2, ..., yn)
T ∈ Rn indicates the state vector, and θ = (θ1, θ2, ..., θd)

T

is a set of calculated parameters. Thus, the problem of the parameter estimation can
be described as the following optimization problem:

Min J = 1

M

M∑

k=1

Xk−Y 2
k by searching suitable θ∗ (3)

where the length of data used for parameters estimation is defined by M. The state
vectors of the original and the estimated systems at time k (k = 1,2, ...,M) are denoted
by Xk and Yk, respectively.

The parameters estimation for CSs is obviously expressed as a problem of multi-
DOP,where the vector of decision is θ , andminimization of J is the objective function
of the optimization problem. The parameters estimation problem of CSs based on
optimization techniques can be demonstrated byFig. 1. The parameters are not easy to
acquire due to the unstable dynamic behavior of CS. Furthermore, multiple variables
always exist in the problem, andmultiple local optima solutionsmislead the algorithm
in the search zoneof J, so conventional techniques are very easy to trap in local optima,
and the global optimal parameters are difficult to attain. Thus, Lorenz system was
selected as a CS model to test the performance of the proposed algorithm. Lorenz
system [14] has an unpredictable complex dynamic behavior and exhibits infinite
erratic periodic motions with extremely dependent initial conditions and parameters.
The Lorenz model is employed as an equivalent model about the behavior of the
atmosphere because it replicates some of the features of large-scale weather patterns,
such as the simulation of system behavior, variations in the predictability of local
events, and various time scales. The equations of the Lorenz system are system of
three ONLDE resulting from a simple form of the fluid convection between two
horizontal plates that is called Rayleigh Bénard problem. Lorenz system designated
three time-dependent variables: convection motion intensity is represented by x, the
temperature differential between increasing and decreasing currents is denoted by
y, and z is the deviation from linearity in the vertical temperature profile [32]. The

Fig. 1 The overall scheme
for optimization concept of
parameters estimation in CSs
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Fig. 2 The behavior of Lorenz system with A = 10, B = 28, C = 8/3 and initial conditions (X0 =
1, Y0 = 0, Z0 = 0) for evolving time = 100 s. a) the projection of Lorenz attractor into x–y plane;
b) the Lorenz attractor in three-dimensional space

following model is a mathematical representation of the Lorenz system:

⎧
⎨

⎩

ẋ = A(y − x)
ẏ = Bx − xy − y
ż = xy − Cz

(4)

where ẋ = dx/dt, ẏ = dy/dt, ż = dz/dt , A is defined as the Prandtl number, B
(B = Ra/Rc) is defined as the Rayleigh number over the critical Rayleigh number,
andC gives the size approximated by the systemof the region [32]. All the parameters
are positive numbers; for example, Ref. [33] demonstrates the behavior of a chaotic
attractor with initial conditions (X0 = 1, Y0 = 0, Z0 = 0) and A = 10, B = 28, and
C = 8/3. For a complete study of this system, see [33] (Fig. 2).

3 Particle Swarm Optimization (PSO)

PSO is considered as an evolutionary algorithm that is based on individual improve-
ment in addition to collaboration and competition in the population. It depends on
the simulation of simplified social models, such as the swarm theory: fish schooling,
bird flocking [24]. PSOhas a highly obvious, straightforward, and easy-to-implement
theoretical structure.

PSO initializes randomly with a swarm of birds (particles) over the searching
space. The particles search with a certain velocity and find the global optimum after
several iterations. The main idea is to adjust the trajectory of each particle to its own
best position and to the best particle of the swarm at each iteration. At each itera-
tion, the velocity vector of each particle is affected by its inertia, its best position,
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and the position of the best particle. Then, each particle moves to a new position.
Assume that, the location and the velocity of particle i in the d-dimensional search
space can be expressed as Xi = [

xi,1, xi,2, . . . , xi,d
]T

and Vi = [
vi,1, vi,2, . . . , vi,d

]T
,

respectively. The particle fitness can be estimated according to the objective func-
tion of the optimization problem. The best position visited previously of particle
i is denoted by the personal best position (pbest). It can be expressed as Pi (t) =[
pi,1(t), pi,2(t), . . . , pi,d(t)

]T
. The position of the best particle of the swarm is

defined by the global best position (gbest) Pg(t) = [
pg,1(t), pg,2(t), . . . , pg,d(t)

]T
.

At each step, the velocity and position of each particle is determined as follows:

vi, j (t + 1) = vi, j (t) + c1r1
(
pi, j (t) − xi, j (t)

)

+ c2r2
(
pg, j (t) − xi, j (t)

)
, j = 1, 2, ..., d (5)

xi, j (t + 1) = xi, j (t) + vi, j (t + 1), j = 1, 2, . . . , d (6)

where ω, indicates to the inertia weight, controls the effect of previous particle
velocity on its current one. C1 and C2 are the cognitive and collective acceleration
coefficients, respectively, which are balance the effects of self-awareness and social
awareness on particle movement toward the target and adjust the step size. r1 and
r2 are two independent uniform distributed random constants within the range of [0,
1].

In PSO, Eq. (5) implies that the particle’s new velocity is updated based on its
previous velocity and the distance of its present position from both the global best
position of the entire swarm and its best historical position. A typical approach is
to constrain the values of the elements of the vector vi to a range between [Vi, min,
Vi, max] to control excessive wandering of particles outside of the search space [Xi,
min, Xi, max]. The particle then moves toward a new position in accordance with
Eq. (6). The procedure is repeated until a termination condition determined is met
[34].

4 Memory-Based Particle Swarm Optimization (MbPSO)

This section presents a new modified version of PSO called memory-based particle
swarm optimization (MbPSO). The suggested algorithm (MbPSO) is a proposed
improvement for the particle velocity updating equation to determine the parameters
of Lorenz system. Although the position updating equation in MbPSO is identical to
the standard PSO, the equation of the velocity updating is improved by the addition
of two new terms, as illustrated below:

vi, j (t + 1) = �
(
ωvi, j (t) + c1r1

(
pbesti, j (t) − xi, j (t)

) + c2r2
(
gbest j (t) − xi, j (t)

)

+ c3r3
(
pbesti, j (rand) − xi, j (t)

) + c4r4
(
vi, j (rand)

))
(7)
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xi, j (t + 1) = xi, j (t) + vi, j (t + 1),

∀ i ∈ number of particles,∀ j ∈ problem dimension, and ∀t ∈ number of iterations
(8)

where ω is defined by the inertia weight. r1, r2, r3, and r4 are random numbers
within [0, 1]. C1, C2, C3, and C4 denote the acceleration constants that control the
effect of each term in the update process. pbest denotes the particle’s best solution,
while gbest denotes the best solution reached by all particles. Knowing that the
acceleration constants pull each particle to its best individual and global locations.
As a result, small values cause short movements toward target regions, whereas high
values cause abrupt movements. High values of the inertia weight, on the other hand,
result in a broad search across the search space, whereas low values result in a more
focused search [34].

In the original PSO, the first term, “inertial part” is represented as ωv i, j (t) which
is utilized as a search skill factor by using ω = ωmax − t(ωmax − ωmin)/tmax, where
ωmin and ωmax are the values of minimum and maximum inertia weight, respec-
tively, and tmax refers to the maximum number of iterations [35]. The second term
“cognitive part” is represented as c1r1

(
pbesti, j (t) − xi, j (t)

)
that is defined as the

distance between the particle’s current position and the particle’s most well-known
position, and it means that the particle’s decision will be influenced by its previous
experiences. The third term “social part” is represented as c2r2

(
gbest j (t) − xi, j (t)

)

which is defined as the distance between the particle’s current position and its best
neighborhood position, and it means that the particle’s decision is influenced by
the rest of the particles [34]. From this idea, we added two new terms. The fourth
term, “random self-cognition,” is represented as c3r3

(
pbesti, j (rand) − xi, j (t)

)
which

relates the particle’s position to the best position of random particles, which in fact let
each particle exploit thememory of other particles and allow the particles to randomly
share their knowledge during the updating process; it results in a stronger interrela-
tion between the whole swarm, higher chance in convergence toward good solutions,
and higher diversity of the search process. The fifth term, which is represented as
c4r4vi, j (rand), includes a random velocity that leads to increasing the potential of
space exploration and preventing the MbPSO from being stuck in local optima. The
new terms are inspired by [36].

The researchers utilize many additional terminologies with different meanings
(e.g., [23, 37]). Still, this paper incorporates modifications to diversify the popula-
tion search direction and enhance the swarm’s search capability. In original PSO,
gbest is utilized to enhance convergence characteristics, but the drawback of using
gbest is decreasing the diversity of the population that results in local minima. Thus,
adding two new terms increases search capability, providing new knowledge and
more information to the population. It can guide the particles to a better position,
and the attraction of gbest position to local optima in the search space is reduced.
Figure 3 depicts a graphical view of the updating process for a particle’s position
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and velocity in the MbPSO algorithm. Also, the overall procedures of MbPSO are
demonstrated in Fig. 4.

Fig. 4 Flowchart of the proposed algorithm (MbPSO)
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5 Parameter Configuration for the Proposed Algorithm
(MbPSO)

To make the best use of the proposed algorithm, the range of the parameter values
are taken from the literature [36], and the trial and error method was used through
the implementation on Lorenz system for configuring the parameters of the proposed
algorithm during the operation of minimizing J. Thus, a population of 100 particles
(p) was used; an inertia weight ω was established as linearly reducing from the
peak value of 0.9 to a minimum value of 0.4. The acceleration constants were used
as follows C1 = 1.5, C2 = 2, and C3 = 3 [38]. As different values of parameter
C4 have a significant impact on the proposed algorithm, the various effects of C4
were studied for values under one; based on the literature, C4 was studied without
including the constriction factor, and Fig. 5 shows the various effect of C4. For this
study, the constantC4= 0.3 introduces a better influence on the convergence than the
others (the procedures forC4 are based on the coefficientmentioned abovewith other
terms in [23]); in another aspect, the constriction factor has an extremely great effect
on the proposed algorithm; followingC4 is set to 0.3, the effect of constriction factor
was analyzed from 0.2 to 0.8. Figure 6 shows the various effect of the constriction
factor on the convergence and demonstrates that the constant ψ = 0.4 presents the
best convergence. The maximum generation number was set to tmax = 100 and tmax

= 200, and this is illustrated in the section of discussion and results. All simulations
were implemented 20 times. Table 1 displays the parameters used in the compared
algorithms (PSO, PSO+, and MbPSO).

Fig. 5 Convergence graph. Specifying of the best value of constant C4
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Fig. 6 Convergence graph. Specifying of the best value of constriction factor Ψ

Table 1 Parameter configuration for all algorithms used

Algorithm Parameter configuration

PSO p = 100, ωmax = 0.9, ωmin = 0.4, c1 = c2 = 2

PSO+ p = 100, ωmax = 0.9, ωmin = 0.4, c1 = c2 = 1.5, c3 = 0.4

MbPSO p = 100, � = 0.4, ωmax = 0.9, ωmin = 0.4, c1 = 1.5, c2 = 2, c3 = 3, c4 = 0.3

6 Results and Discussion

The proposed algorithm MbPSO is implemented to estimate the parameters of the
Lorenz chaotic system (A, B, and C). Figure 7 and Fig. 8 show the convergence
characteristic of the fitness function J for MbPSO, PSO, and PSO + . These figures
display that the value of J reduces to zero rapidly, whichmeansMbPSO can converge
to the global optimum very fast.

Furthermore, MbPSO is compared with a particle swarm optimization (PSO) [34]
and a modified PSO (PSO+) [6] to test the performance of the proposed algorithm.
The comparison was made for two cases: the first case, the maximum number of
iterations was set to 100, the range of the estimated parameters is (8 < A < 12, 20 <

B < 30, 2 < C < 3).
Table 2 compared the error and standard deviation (St.D.) values found by PSO,

PSO+, and MbPSO. As shown in Table 2, MbPSO has fast convergence and accu-
rate performance. Figure 7 illustrated that MbPSO has high performance and fast
convergence, but PSO and PSO+ had almost the same performance. The second case,
when the maximum generation number was set to 200 and the range of the estimated
parameters increased (0 < A < 20, 0 < B < 50, 0 < C < 5), the performance of
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Fig. 7 Convergence characteristic of objective function (J) for three algorithms PSO, PSO+, and
MbPSO (100 iterations)

Fig. 8 Convergence characteristic of the objective function (J) for three algorithms PSO, PSO+,
and MbPSO (200 iterations)

the modified algorithm (PSO+ and MbPSO) enhanced. Table 3 compared the error
and St.D. values of PSO, PSO+ , and MbPSO. After the modifications of simulation
conditions, MbPSO has the highest performance and the fastest convergence rate,
and PSO+ has the second-best performance, as shown in Fig. 8.
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Table 2 Comparison of convergence and statistical results of PSO, PSO+, and MbPSO (100
iterations)

Algorithm MSE(J) St.D

Best Average Worst

PSO 1.2836E−06 1.2836E−06 3.7944E−04 1.5743E−04

PSO+ 7.5670E−07 4.5711E−05 1.4774E−04 5.9247E−05

MbPSO 1.7666E−11 8.4102E−04 7.5000E−03 1.9000E−03

Table 3 Comparison of convergence and statistical results of PSO, PSO+, and MbPSO (200
iterations)

Algorithm MSE(J) St.D

Best Average Worst

PSO 2.3475E−07 4.5743E−06 1.1863E−05 5.0764E−06

PSO+ 1.6007E−08 1.5318E−05 5.3659E−05 2.3867E−04

MbPSO 2.5447E−13 1.4715E−04 5.5921E−04 2.5709E−05

Other comparisons can be made between the undefined parameter values A′, B′,
and C′ found by the MbPSO and the values found by with PSO and PSO+ from
fitness function performance. The convergence rates of the parameters for the three-
dimensional Lorenz system using MbPSO, PSO, and PSO+ are shown in Fig. 9.
All estimated parameters found by MbPSO are very similar to the real values in
all simulations, as shown in Fig. 9. This result demonstrates that the trajectories
of the estimated parameters converge to their real values asymptotically. Therefore,
MbPSO converges much faster than PSO and PSO+ . To get a full picture of our
estimates, the statistical results found in estimating the parameters A′, B′, and C′
using MbPSO, PSO, and PSO+ are summarized in Table 4. As shown in this table,
the best results found by MbPSO are better than those obtained by PSO and the
others. Additionally, the estimated parameter values found by MbPSO are still very
similar to the real values of the original parameters.

On the other side, the abilities ofMbPSOare compared to othermetaheuristic tech-
niques solved the same problem. Table 4 shows the comparison between the proposed
algorithm and: (DE) [12], PSO [2], and a hybrid swarm intelligence algorithm (PSO–
ACO) [23] in parameters estimation of Lorenz system. In general, MbPSO has accu-
rate results better than the best results determined by these metaheuristic techniques
(Table 5).

7 Conclusion

In this work, parameters identification for chaotic systems is modeled as a multi-
dimensional optimization problem. The problem is solved using a modified PSO
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Fig. 9 Lorenz system searching process for A′, B′, and C′ using PSO, PSO+ , and MbPSO

Table 4 Statistical results found by PSO, PSO+ , and MbPSO for the estimated parameters

Statistical results Algorithms Parameters

A’ B’ C’

Best MbPSO 10.0000 28.0000 2.6667

PSO+ 10.0003 27.999 2.6667

PSO 10.0009 27.9995 2.6666

Average MbPSO 9.9981 28.0009 2.6667

PSO+ 10.0039 27.9985 2.6666

PSO 9.9976 28.0011 2.6667

Worst MbPSO 9.8567 28.0641 2.6689

PSO+ 10.0155 27.9938 2.6666

PSO 9.9912 28.0001 2.6662

version called a memory-based particle swarm optimization (MbPSO). Lorenz
system is selected to test the performance of MbPSO. In the proposed algorithm,
MbPSO, two new terms are added to the standard PSO to diversify and enhance
search capability. Comparisons are made between the proposed algorithm MbPSO,
the original PSO, a modified PSO (PSO+), and other algorithms published in the
literature. The comparisons and results demonstrate that the suggested algorithm
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is an effective and useful arithmetic method for parameter identification of chaotic
systems, especially theLorenz system,with high efficiency, fast convergence process,
and accurate performance.
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