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Abstract This paper proposes a method to enable a risk-averse and resource-
constrained network defender to deploy security countermeasures in an optimal way
to prevent multiple potential attackers with uncertain budgets. To solve the problem
of information asymmetry between the attacker and the defender, a fake countermea-
sure (FC) is placed on the arc, and the situation of multiple attackers is also taken into
consideration. This method is based on the risk aversion bi-level stochastic network
interdiction model on the attack graph, which can easily map the path of attackers.
Meanwhile, our method can minimize the weighted sum of all losses and minimize
the risk of the defender’s key nodes being destroyed. At the same time, in order to
prevent the key node of the defender from being destroyed, the risk condition value
measurement is taken into account in the stochastic programming model. We design
a SA-CPLEX algorithm to provide a high-quality approximate optimal solution. And
computational results suggest that our method provides better network interdiction
decisions than traditional deterministic and risk-neutral models.

Keywords Stackelberg game · Averse risk · Hidden information ·
Bi-level programming · Cyber-security

M. Li · W. Dong (B)
School of Software, Dalian University of Technology, Dalian, China
e-mail: dongwanyu@mail.dlut.edu.cn

M. Li
e-mail: mingchul@dlut.edu.cn

X. Zheng
School of Computer Science and Technology, Shandong University of Technology, Zibo, China
e-mail: xiao_zheng0910@163.com

A. Carie
School of Computer Science, VIT-AP, Amaravati, India

Y. Tian
School of Economics and Management, Dalian University of Technology, Dalian, China
e-mail: ytian@mail.dlut.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. K. Bashir et al. (eds.), Proceedings of International Conference on Computing and
Communication Networks, Lecture Notes in Networks and Systems 394,
https://doi.org/10.1007/978-981-19-0604-6_49

523

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0604-6_49&domain=pdf
mailto:dongwanyu@mail.dlut.edu.cn
mailto:mingchul@dlut.edu.cn
mailto:xiao_zheng0910@163.com
mailto:ytian@mail.dlut.edu.cn
https://doi.org/10.1007/978-981-19-0604-6_49


524 M. Li et al.

1 Introduction

With the rapid development of information technology, people can browse a large
number of websites through the Internet. The application scenarios of computer
equipment have also expanded and penetrated into the public’s access network tech-
nology and work [1–3]. However, while the computer brings more convenience, it
also has certain security risks, causing somekey information to be leaked andbringing
certain economic losses. This paper studies the problemof a network defender tomin-
imize worst-case damage by setting countermeasures against uncertain attacks. We
propose a Stackelberg game between defenders and attackers, in which the defender
not only can deploy true countermeasures (TCs) but also fake countermeasures (FCs).
The deployment of FCs can be used to mislead the attacker’s actions.

The goal of this research is to help the defender makes better use of the limited
budget to protect the network from uncertain attacks. Therefore, it is necessary to
establish a new interdiction model to formulate the risk aversion of the network
defender under the uncertainty of the attackers’ ability [4]. This paper establishes
a defender-attacker stochastic Stackelberg game [5] model including risk aversion
based on attack graph. Our stochastic network interdiction model can interdict multi-
ple potential attackers with uncertain budgets. Compared with a model that considers
a constant budget and a unique attacker, this modeling method is more representative
of a realistic scenario. However, the traditional risk model stochastic programming
usually takes the minimization of losses as their goal and does not take into account
the risk ofmaximum loss scenarios. The risk aversion stochastic programmingmodel
minimizes the defender’s expected loss and minimizing the risk of huge losses when
the attackers’ initial budget is uncertain.

We introduce a novel risk-averse bi-level stochastic network interdiction model
based on attack graphs and use conditional risk value as risk measurement and cus-
tomized accurate algorithm to solve the bi-level random network counter-measures
model for risk aversion. This problem is defined as a bi-level stochastic network inter-
diction problemwith risk aversion, the upper-level is the problem of the defender, and
the lower-level is the problem of the attacker. In the upper-level model, the defender
makes decisions without knowing the attacker’s budget. While in the lower-level
model, the attacker plans an attack route based on a known budget and a known
interdiction strategy of the defender. And a simulated annealing algorithm based on
the commercial solver CPLEX, namely, SA-CPLEX, is customized for our model to
solve this NP-hard problem.

The contributions of this paper are as follows.

(1) We propose a risk-averse defender-attacker stochastic Stackelberg game model
that merges fake countermeasures andmultiple attackers with uncertain budgets.

(2) Conditional value-at-risk (CVaR) is involved in our model to measure the
defender’s risk performance with respect to the attackers’ uncertain budgets.

(3) An effective algorithm is proposed to solve the resulting bi-level problem, which
can provide an efficient solution for our model.



A Bi-Level Stochastic Model with Averse Risk and Hidden . . . 525

The remainder of this paper will be described in the following structure. In Sect. 2,
we review the related works. The problem definition and formulation are presented in
Sect. 3. In Sect. 4, we propose a heuristic algorithm and perform theoretical analysis
on the proposed algorithm. We present the experimental results and analysis of the
results in Sect. 5. Finally,we summarize our conclusions in Sect. 6.

2 Related Work

Attack graphs with different changes are widely used as a tool for network analysis,
such as defensive tree [6], attack countermeasure tree [7], vulnerability dependency
graph [8], etc. The way of network interdiction based on attack graphs to protect
target nodes (key assets) is to remove a set of arcs or nodes from the attack graph. In
the previous literature, attack graph network interdiction enhances network security
by generating cut sets [9]. Khouzani et al. [10] studied the cyber-security defense
problem using attack graphs to model a multi-stage attack. In addition to the math-
ematical model of attack graphs, some studies have proposed the use of traditional
mathematical models to reduce the risk of network attacks. For example, Zheng et al.
[11] allocated limited mitigation resources to increase the robustness of supply chain
infrastructure information technology in cyber-attacks. A recent paper, Bhuiyan et
al. [12] modeled multiple potential attackers, in which the attacker’s actions are
assumed to be absolutely unsuccessful if the defender deploys interdiction measures
on the arc. But in real life, even if the defender installs defensive countermeasures,
the attacker still has a certain chance to pass the arc. There are also studies that con-
sider uncertainty in the bi-level network interdictionmodel, including the uncertainty
of protection facilities to minimize the worst-case [13]. We have found that taking
uncertainty into consideration has a positive direction for the completeness of the
entire model.

In order to maximize the attackers’ cost of the shortest path, Pay et al. [14] estab-
lished a random shortest path network interdiction model. But in their network inter-
diction model, the huge risk posed by the attacker was not considered. In [15], the
risk measure, i.e., conditional value-at-risk (CVaR), is incorporated into the location
and protection problem. Furthermore, Lei et al. [16] studied stochastic flow interdic-
tion problems using a risk-averse approach. As proved by Lei et al. [16], the model
considering risk preferences can provide more robust solutions in comparison to the
risk-neutral counterpart. In this regard, our paper also incorporates a risk measure to
hedge against the huge risk.

3 Problem Definition and Formulation

This paper studies the stochastic Stackelberg game interaction between the defender
and two or more attackers in the risk aversion network using the attack graph. As
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shown in Fig. 1, the node represents the attack state,and its set is N . Each node is
represented in the form of N-D, where N is the value of each node, and D is the
defender’s loss when the head node is destroyed. The green node is the initial safety
condition, the blue node is the key node, and the yellow is the transition node. The
attacker’s attack path consists of an arc from the initial node to the key node. In the
case of NCs in Fig. 1, the attacker’s optimal plan is to destroy the key node through
the attack path 0 → 2 → 4. The attacker destroys any node in the attack graph, and
the defender has a certain loss. The attackers start from the green initial node, and
their goal is to destroy the blue node to maximize the defender’s loss. Once the target
node is successfully attacked, it will be completely destroyed.

The arc between the two nodes represents the action of the attacker. Set of arcs
with the tail pointing to node At (i), which indicates the prerequisite for the attacker’s
action, and it is a necessary security condition that the attacker should break during
the action. Set of arcswith the head pointing to node Ah(i), which represents the post-
condition of the attacker’s action, which is the security condition that the attacker
breaks after the action is successful. The value V of the arc between two nodes
indicates the probability of a successful attack through this arc. We can calculate the
loss when a node is destroyed as V × d. Taking the attack path 0 → 2 → 4 as an
example, the expected maximum loss to the defender is 3.8584(= 0.79 × 0.04 × 5).
Finding the optimal path by calculating and comparing the losses caused by different
paths.

In our research, the defender-attacker stochastic Stackelberg game on the attack
graph is modeled as a bi-level stochastic network interdiction problem with risk

Fig. 1 An example of attack
graph
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aversion. The upper-level indicates the problem of defender, and the lower-level
represents the problem of attacker. Within the game, the defender first finds the arc
where the attacker is most likely to attack without knowing the attackers’ budget
and spends a certain cost to install countermeasures (including TCs and FCs) on this
arc within the deployment budget. The attacker’s budget will only be obtained by
the defender after they have completed the plan. bd and b̄d represent the defender’s
budget of deploying TCs and FCs, respectively. In order to optimize the defender
model, some FCs will be placed in the path to mislead the attacker. It should be noted
that there are also some paths in the graph that have no countermeasures (NCs).
Minimizing expected losses is an important task for defenders while minimizing the
huge risks caused by the loss of key assets.

In terms of the behavior of the defender, each attacker develops an attack plan
based on their budget and destroys the key assets aiming to maximize the loss of the
defender. Each attacker has an attack cost cattacki j when attacking through the arc, and
their total cost should not exceed the budget. Intuitively, the FCs can be exposed or
detected by the attacker, thus let oi j be the exposure probability of FCs deployed on
arc (i, j). If the attacker detects the FCs, the arc (i, j) equipped with FCs is the same
as the one with NCs. Thus, according to both FCs and NCs, the attacker has the same
probability to pass the arc, which is denoted by p̄i j . Also, let pi j be the probability
of passing the arc equipped with TCs.

In order to maximize the defender’s loss, the attackers use a limited budget ba
to select the optimal attack plan in a given set of truncated arcs. The attackers start
the attack from the vulnerable node and continue to penetrate the network through
the transition node until the key asset (target node) is destroyed. If an attacker can
break through one of the target nodes, the network defender will suffer losses. The
attack path includes an arc from the initially vulnerable node NI to the target node
NT . An attack plan consists of a combination of one or more attack arcs. Even if this
arc can break through multiple target nodes in an attack strategy, the attacker only
needs to successfully attack this arc once. In this way, the problem is transformed
into a discrete optimization problem. In addition, once the target node is attacked,
then it will be completely destroyed.

Decisions are made sequentially in bi-level stochastic programming [17]. The
upper-level is tomake decisions before the uncertainty is realized, and the lower-level
is to make additional decisions after the uncertain parameters of each scenario are
concretely realized. In the upper-level of our bi-level random programming model,
the defender must make a decision to interdict even when the attacker’s budget is not
clear. In each case of the lower-level, each attacker specifies an attack plan with a
known budget and knows the interdiction decision of the network defender. We use
conditional risk value (CVaR) [18] as a risk indicator to measure risk aversion.

Our model will have to take into account the multiple attackers with uncertain
budgets, where each attacker has a specific budget. The budgets of the defender and
the attackers must be within their given limits. It is not certain which attacker the
network defender will encounter, nor does it know the attacker’s budget. However,
according to the probability distribution of known parameter values, the defender can
estimate the attacker’s budget [19]. In order to simulate the uncertainty in the budget
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of multiple potential attackers, we consider a set of the limited number of scenarios
S in the stochastic optimization problem. Each scenario represents an attacker with a
specific budget. In the case of a limited budget, the defender chooses the best subset
of arcs for deploying countermeasures tominimize themaximum loss in all scenarios
(Table 1).

Table 1 Notation

Notation Description

Sets

N Set of nodes

NI Set of initially nodes

NT Set of key nodes

A Set of arcs

At (i) Set of arcs with the tail pointing to node i

Ah(i) Set of arcs with the head pointing to node i

S Set of scenarios index by s

Parameters

lt Loss resulting from breaching a key node t ∈ NT

oi j Exposure probability of FCs deployed on arc (i, j)

pi j Probability of successful attack through the arc (i, j)

equipped with TCs

p̄i j Probability of successful attack through the arc (i, j)

Equipped with FCs or NCs

ps Probability of scenario s

λ The coefficient of risk

α Confidence level

ba Attacker’s budget

bd Defender’s budget for deploying TCs

b̄d Defender’s budget for deploying NCs

cattacki j Attack cost through arc (i, j)

cdi j Cost of TCs on arc (i, j)

c̄di j Cost of FCs on arc (i, j)

Decision variables

xi j 1 if TCs are deployed on arc (i, j), 0 otherwise

x̄i j 1 if FCs are deployed on arc (i, j), 0 otherwise

fi j 1 if arc (i, j) is used for one or more attacks, 0 otherwise

zi Probability of node i being destroyed

yi j Product of zi and fi j
η Upper-level variable (represents the value-at-risk, VaR)

vs Excess loss variable in scenario s ∈ S
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3.1 Minimize the Disutility of Defender

The upper-level model is to minimize the disutility of defenders. The objective func-
tion (1) consists of two parts, where the first part calculates the expected minimum
disutility of defenders in all scenarios. And the expected maximum loss in all sce-
narios is equal to the probability ps of scenario s multiplied by the maximum total
loss Qs caused by the attackers to the defender in scenario s. The second part simu-
lates the CVaR metric of huge loss risk. Constraints (2) and (3) limit the budget for
deploying TCs and FCs, respectively. Constraints (4) prevent the TCs and FCs from
being deployed at the same arc. Constraint (5) calculates the additional loss in all
attack scenarios, and the excess loss variable in scenario s is greater than or equal
to the maximum total loss minus the variables at the upper-level. Constraints (6) are
binary requirements.

H = min
∑

s∈S
ps Qs(x, x̄) + λ(η + 1

1 − α

∑

s∈S
psvs) (1)

s.t.
∑

(i, j)∈A

cdi j xi j ≤ bd (2)

∑

(i, j)∈A

c̄di j x̄i j ≤ b̄d (3)

xi j + x̄i j ≤ 1 ∀(i, j) ∈ A (4)

Qs(x, x̄) − η ≤ vs (5)

xi j , x̄i j ∈ {0, 1} ∀(i, j) ∈ A (6)

η ∈ R (7)

vs ≥ 0 ∀s ∈ S (8)

3.2 Maximize the Utility of Attacker

The lower-level model is to maximize the utility of the attacker. That is, the objective
function (9) maximizes the loss caused by interdicting the target node multiplied by
the probability of the target node t being destroyed. Constraint (10) limits that the
total expenditure of the attack must be within their budget. Constraint (11) indicates
that whether the attacker attacks the arc i j has a decisive influence on its success
probability. If the attacker takes action, the probability of success is the product of
the true attack probability, the fake attack probability, and the non-attack probabil-
ity. Constraints (12) ensure that there is a higher probability that an attacker suc-
cessfully destroyed node through an arc (i, j), and the probability of node j being
attacked is less than or equal to the probability of successfully attacking through arc
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i j .Constraints (13) indicate that only one attack is required on an arc i j .Constraints
(14) indicate that if an arc is attacked one or more times, it will be 1, and if there is
no attack, it will be zero.

QS(x, x̄) = max
∑

t∈NT

lt zt (9)

s.t.
∑

(i, j)∈A

cattacki j fi j ≤ ba (10)

βi j = fi j · pxi ji j · p̄(1−oi j )x̄i j
i j · p̄1−(xi j+x̄i j )

i j (11)

z j ≤
∑

(i, j)∈Ae( j)

ziβi j ∀ j ∈ N/NI (12)

∑

i, j∈Ae( j)

fi j ≤ 1 ∀ j ∈ N/NI (13)

fi j ∈ 0, 1 ∀(i, j) ∈ A (14)

0 ≤ z j ≤ 1 ∀ j ∈ N (15)

Constraints (12) are nonlinear; however, the only nonlinear terms are zi fi j . In this
regard, we define the auxiliary variableswi j to replace them. For each (i, j) ∈ A and
i ∈ N/NI , a set of new constraints is added to the formulation to line wi j = zi fi j .

wi j ≤ zi (16)

wi j ≤ fi j (17)

wi j ≥ 0 (18)

wi j ≥ fi j + zi − 1 (19)

4 Solution Approach

It is difficult to solve the bi-level linear problem using existing algorithms directly.
Because the model is more complicated, and it is an NP-hard problem [20]. In the
past few years, many studies have proposed the use of precise algorithms or hybrid
heuristics to solve the bi-level optimization problem. For example, Shamekhi Amiri
et al. [21] invented a global iterative search method, inferring the potential behavior
of followers as a new constraint for each iteration in the leader problem. In this
paper, we propose a heuristic solution algorithm, namely SA-CPLEX, where the SA
algorithm is used to solve the defender problem in the upper-level, and the CPLEX
solver is used to obtain the optimal attacker’s strategy in the lower-level.

In the heuristic algorithm, one of the crucial parts is the representation of the
solution [22]. The heuristic algorithm also acts alternately on the coding space and
the solution space [23]. It is a way to find the best solution within an acceptable
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time. The generation of the neighborhood and the fast calculation of the objective
function are the goals of this algorithm. In addition, it must ensure that it has access
to the entire solution space. The value of the initial solution will have some impact on
the performance of the heuristic algorithm. In order to give an initial solution to the
defender problem, we use a randomly sized subset as the central node [24]. And we
define and use a single operator to generate adjacent solutions. This operator is called
"Swap" and is used to change the solution representation to an arc in the array. Four
parameters, T0, T f , δ and Imax are used in the algorithm. Among them, T0 represents
the initial temperature, and T f is the final temperature at which the SA process is
stopped [25]. δ is used as the cooling rate parameter of the upper-level problem. Imax

is the number of solutions generated by the algorithm at each temperature.
The detailed algorithm is given in Algorithm 1. As shown in Algorithm 1, the

algorithm first generates the initial solution of the defender and then improves this
initial solution through subsequent iterations. According to the given defender’s
strategy (x, x̄), the attacker’s objective value Q(x, x̄) can be calculated according
to (9). We fix the initial temperature as T0 and use it as the initial parameter of the
algorithm. (x, x̄)best represents the optimal solution found so far, and fbest represents
its relative objective function value. For each temperature, we define �E as the
difference between the newly obtained solution and the target of the existing solution,
that is, �E = H(Q((x, x̄)′)) − H(Q(x, x̄)). We repeat this cycle at most once at
each temperature and use the optimal solution obtained so far. Then the temperature
decrease to T ← δ × T after each iteration. Repeat the training until the current
temperature T is lower than the pre-specified final temperature T f , the algorithm
ends.

5 Experiments

All experiments were performed on a personal computer with a 2.90 GHz Core (TM)
i7-10700 CPU AND 16GB RAM. We implement our proposed algorithm in Matlab
2020a and ILOGCPLEX 12.10 is applied to solve the attacker’s problems optimally.
We have conducted a lot of experiments so that the average result will not change
too much (Table 2).

5.1 Parameter Setup

We use an attack graph with a node size of |N | (=50) for numerical experiments,
and the arc size is about 2.15 × |N |. Breach loss of the goal nodes is uniformly from
(500, 150), while the budget of this random attacker is Weibull distribution (100,
200). The probability of attack success is uniformly from (0, 1). The probability of a
successful attack through the arc (i, j) equipped with TCs and FCs is between 0 and
1. Moreover, three different level of confidence are also tested for the experiments,
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Algorithm 1 SA-CPLEX (T0, T f , δ, Imax)
1: Generate a random initial solution (x, x̄)
2: ∀s ∈ S,Calculate QS(x, x̄) using CPLEX
3: Q(x, x̄) = ∑

s Q
s(x, x̄)

4: T ← T0, Hbest ← H(Q(x, x̄)), (x, x̄)best ← (x, x̄), I ← 0
5: while T > T f do
6: for I < Imax do
7: Generate a new solution (x, x̄)′ based on (x, x̄) using "Swap" operator
8: ∀s ∈ S,Calculate QS(x, x̄)′ using CPLEX
9: Q((x, x̄)′) = ∑

s Q
s((x, x̄)′)

10: �E ← H(Q((x, x̄)′)) − H(Q(x, x̄))
11: if �E < 0 then
12: (x, x̄) ← (x, x̄)′
13: H(Q(x, x̄)) ← H(Q((x, x̄)′))
14: else
15: ρ ← rand(0, 1)
16: if ρ > e−|�E |/T then
17: (x, x̄) ← (x, x̄)′
18: H(Q(x, x̄)) ← H(Q((x, x̄)′))
19: end if
20: end if
21: if H(Q(x, x̄)) < Hbest(Q(x, x̄)) then
22: (x, x̄)best ← (x, x̄), Hbest ← H(Q(x, x̄))
23: end if
24: (x, x̄) ← (x, x̄)best
25: I ← I + 1
26: end for
27: I ← 0
28: T ← δ × T
29: end while
30: return (x, x̄)best, Hbest

Table 2 Parameters and default values

Parameters Values

Network size (nodes, |N |) 50

Arcs, |A| ≈ 2.15 × |N |
Breach loss of the goal nodes ∼uniform (500, 1500)

Defender’s budget, bd 150

Level of confidence, α 0.2, 0.5, 0.8

Risk coefficient, λ 2, 4, 8, 10

Random attacker budget, b ∼weibull (50, 500)

i.e., α ∈ {0.2, 0.5, 0.8}. We set the exposure probability of FCs deployed on arc (i, j)
is in the range (0, 1). And Four different values of risk factors are also tested for the
experiments, i.e., λ ∈ {2, 4, 8, 10}. Physical attacks or cyber-attacks on important
infrastructure systems are also within the range that our attack graph can simulate
[26].
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5.2 Effects of Involving FCs

Figure 2 shows variation of mean-risk expected maximum loss (MREXPLoss) with
and without FC budget. For maps of different sizes, we have different defender’s
budgets. The eventual experimental results showed thatwhen the total budget remains
the same, the more budget spent on FCs, the smaller the MREXPLoss. And as the
total budget value increases, MREXPLoss becomes smaller. As the budget increases,
the defender has sufficient budget to place countermeasures inmore attack paths. As a
result, the combination of various defensive countermeasures has increased, making
it more difficult for attackers to attack. At the same time, it can be seen from the
experiment that when there is a lot of total budgets, the defender can protect more
attack paths. In other words, the defender can have more combinations of different
attack paths.

5.3 Effects of the Probability of Exposure

Figure 3 shows the variation of MREXPLoss under different exposure probabilities
of FCs. We can see from the experimental results that the greater the probability of
FCs being exposed through the arc (i, j), the smaller the value of MREXPLoss. In
other words, when the probability of FCs being exposed is very small, the FC can be
well hidden. This will cause more interference to the attacker, which will cause the
attacker to make more wrong decisions. Therefore, the defender can better interdict
the attack and reduce some losses.

Fig. 2 Variation of bd and
b̄d with number of total
budgets. Other parameters
are: |N | = 50, pi j = 0.5,
p̄i j = 0.5, o = 0.75, λ=0
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Fig. 3 Variation of α with
possibility of oi j . Other
parameters are: |N | = 50,
pi j = 0.5, p̄i j = 0.5, λ = 0

5.4 Effects of the Probability of Successful Attack

Figures 4 and 5 show the variation of MREXPLoss in the probability of successful
attack through the arc (i, j) with TCs and FCs, respectively. It can be concluded
from the experimental results that when the attacker’s success probability to TCs
increases, the defender is more vulnerable to attack. Similarly, when the attacker’s
probability of success in FCs increases, the attacker will be more likely to destroy
these TCs. As the probability of being successfully attacked in TCs or FCs is higher,
their loss is greater.

Fig. 4 Variation of α with
possibility of pi j . Other
parameters are: |N | = 50,
p̄i j = 0.5, o = 0.75, λ = 0
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Fig. 5 Variation of α with
possibility of p̄i j . Other
parameters are:|N | = 50,
pi j = 0.5, o = 0.75, λ = 0

5.5 Effects of the Budget of TCs and FCs

Figure 6 shows the gap between the budget of TCs and FCs when the total budget
remains the same. It can be seen from the experimental results that when the total
budget value becomes larger, the constant real budget MREXPLoss is decreasing.
As the total budget increases, MREXPLoss decreases at a higher rate. The defender
can mislead the attacker by adjusting the ratio of the FCs budget to the TCs budget,
thereby achieve a better protective effect.

Fig. 6 Variation of bd = 0
and b̄d with possibility of
total budgets. Other
parameters are: |N | = 50,
pi j = 0.5, p̄i j = 0.5,
o = 0.75, λ = 0
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Fig. 7 Variation of α with
possibility of λ. Other
parameters are: |N | = 50,
pi j = 0.5, p̄i j = 0.5,
o = 0.75

5.6 Effects of Confidence Level and Risk Coefficient

In our proposed model, two risk parameters, confidence level (α) and risk coefficient
(λ) are our important parameter members. Figure 7 shows the variation of MREX-
PLosswith respect toλ under three different levels ofα. As shown in the experimental
results, we can clearly see the result of using risk metrics (CVaR) to minimize the
losses caused by random attackers’ budget cyber-attacks. The larger the value of α,
the more concerned about the situation of major losses, and the more conservative
the decision-making. To a certain extent, the goal of minimizing the expected value
of the main loss scenario is also considered here. In other words, minimizing huge
losses is not the only goal of our model. Because in this case, the optimal interdiction
decision under risk-neutral preference also partially considers the minimization of
large losses.

6 Conclusions

This article studies the problem of the best interdicting strategy from the perspective
of the defender, where the defenders seek to minimize the risk of major losses. In
addition, the budget uncertainty of multiple potential attackers and the fake coun-
termeasures deployed by the defender are considered. Based on the extension of
the traditional attack graph, we establish a risk aversion bi-level stochastic network
interdiction model to formulate this problem. In our risk aversion model, our risk
measure is CVaR. In response to this model, we developed a customized binary bi-
level programming problem algorithm that combines randomness and risk aversion.
Our model is closer to reality and considers more comprehensively for the defender.
The experimental results show that the interdiction decision provided by our model
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is more robust than the traditional model. Successfully achieved the minimization
of the huge loss risk caused by network attacks by avoiding risks. In the future, this
paper can be easily applied to the security of the underwater wireless sensor networks
[27], the gird monitoring systems [28] and the critical infrastructure systems [29].
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