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Abstract With the increasing popularity of 5G communications, smart cities have
become one of the inevitable trends in the development of modern cities, and smart
city services are the foundation of 5G smart cities. Sparse mobile crowdsensing
(SparseMCS), as a new and informative urban service model, has attracted the atten-
tion of many researchers. Generally, the data required for a sensing task often has a
high spatial and temporal correlation, which means that the data uploaded by users
need to carry their location information, which may cause serious location privacy
issues. The existing location privacy protection mechanism usually only pays atten-
tion to the location information of the user’s travel and ignores that people’s daily
travel often has a fixed pattern. The attacker can use long-term observation and prior
knowledge to infer the victim’s travel mode and analyze its location information. To
achieve efficient, robust, and private data sensing, we built a SparseMCS framework
with the following three elements: (1) We train the data adjustment model offline on
the server-side and solve the position mapping matrix; (2) Design a noise-sensitive
data reasoning algorithm improves the accuracy of data; (3) Combining differences
and spatiotemporal location privacy to protect the user’s location information and
travel mode. Experiments based on real datasets prove that our 5G-supported sparse
mobile crowdsensing framework provides more comprehensive and effective loca-
tion privacy protection.
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1 Introduction

5G is the current mainstream new-generation mobile communication technology
and an essential part of the next-generation information infrastructure [1]. The high-
quality information services of 5G provide a good communication foundation for the
construction of smart cities and industrial Internet of Things [2–6]. Mobile crowd-
sensing systems can provide city services for the smart city systems, traffic infor-
mation, weather information, and other services system. Therefore, mobile crowd-
sensing (MCS) has developed rapidly in recent years and has become a significant
computing paradigm in smart city data sensing scenarios. MCS plays a crucial role
in collecting ambient temperature, traffic flow [7], noise [8], and air quality [9] in
inter-city areas. In mainstream MCS, the publisher will launch a data sensing task
for a specific target area. Service providers screen and recruit mobile users according
to task requirements and perform tasks in the target area. However, large-scale data
collection tasks such as urban tasks require many users to cover all target points.
Therefore, urban tasks often require much budget, and target points are often missed
due to uneven population distribution, and data redundancymay also occur in densely
populated areas.

One solution is Sparse Mobile Crowdsensing (SparseMCS), which combines his-
torical records and sensing data in nearby areas to infer task demand data in unper-
ceived areas [10]. In SparseMCS, users need to report their location and time when
uploading data, bringing considerable risks to user privacy [11]. Therefore, design-
ing an effective privacy protection mechanism for the system can attract and retain
more participants. In order to enable theMCS server to distinguish the data uploaded
by each user, the privacy protection mechanism designed according to anonymity
usually needs to retain the mapping information between the user’s real identity and
the anonymous information. If the server is attacked, users will face personal severe
privacy risks. In contrast, according to the obfuscated design mechanism, it can usu-
ally be configured in a lightweight manner on a mobile device, thereby avoiding the
hosting of accurate information. Therefore, we design a location privacy protection
mechanism based on confusion.

Researchers have conducted extensive research on location privacy in location-
based services. These twomechanisms are usually considered to protect user location
privacy [12]: (a) The user protects privacy by making location tracking and personal
identity impossible to associate by anonymous means; (b) Remapping the location
to change the location information released by the user.

Cloaking is a prevalent obfuscation technology. The user can hide the actual
location in multiple fine-grained stealth areas instead of one or several specific areas
or units. However, when the adversary has some knowledge of the target user, the
effect of cloakingmaybe significantly reduced [13]. For example,when the adversary
learns that the target user is a doctor and that the user’s cloaking area covers a hospital
or other medical facilities, it is easy to locate the target.

In response to this problem, we use differential privacy [14] to ensure that
the probability of accurate location mapping to different locations is approximate.
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In location-based service (LBS), we usually use the distance between the actual loca-
tion and the confusion location to measure data loss. Unlike it, the ultimate goal of
SparseMCS is to collect target data, so the data loss in the system is determined by the
difference between the actual location and the confusion location of the target data.
According to this feature, we can think that in SparseMCS, as long as the target data
difference between the actual location and the confusing location is slight, the user
can theoretically map the actual location to a very far place. Therefore, we should
redesign the location privacy protection mechanism according to the characteristics
of SparseMCS.

Even if differential privacy is used, the user cannot control the range of the adver-
sary’s estimation of his location, which is an inference error [15]. Therefore, we
added a distortion privacy [15] mechanism to control inference errors. Distortion
privacy controls the adversary’s estimated range by controlling the expected dis-
tance between the adversary’s inferred location and the actual location. Applying
distortion privacy requires the presumption of prior knowledge possessed by the
adversary. Distortion privacy is to limit the inference attack to the preset inference
error. The adversary cannot achieve a better inference error within the preset prior
knowledge range than the optimal error. However, we cannot know the adversary’s
prior knowledge, so distortion privacy is not a powerful privacy protection mecha-
nism. It needs to be used in conjunction with other privacy protection methods to
provide more comprehensive protection.

However, the above LPPMs only consider the user’s exact location information
and do not realize that the location change of mobile users is a complex combination
of time and space [16]. For example, “Alice went to a certain supermarket last week”
(this behavior may occur more than once) and “Bob travels between A address and
B address” (this behavior may occur every working day). In this article, we call it
spatiotemporal location.We do not knowwhether the differential privacymechanism
can simultaneously guarantee a certain level of privacy in spatiotemporal locations.
Therefore, we have introduced the privacy goal of the spatiotemporal location to
ensure that users’ daily travel patterns can be protected.

The main contributions of our work are:

• In order to provide more comprehensive location privacy protection, we propose a
privacy protection framework that includes three privacy mechanisms. (a) Dif-
ferential privacy guarantees the geographic indistinguishability; (b) Distortion
privacy limits the adversary’s optimal estimation error on prior knowledge; (c)
Spatiotemporal location privacy guarantees the privacy of user behavior patterns.

• In order to improve the reliability and efficiency of the system, we designed a
noise-aware reasoning algorithm to improve the data accuracy of the unperceived
area.

• We validated our framework using real-world temperature datasets. The results
show that ourmethod,while providing a higher level of location privacy protection,
limits the error within the range of 10−2.



280 M. Li et al.

2 Related Work

With the rollout of 5G networks, the 5G environment integrates numerous location-
based services, and mobile group awareness is one of them. Mobile crowdsensing is
a data collection service that uses mobile devices to collect environmental data in the
urban environment (for example, noise, air quality, temperature information, traffic
flow) by hiring users distributed in different locations in the city. However, due to
the large sensing area or limited budget, there may not be enough users to complete
the sensing task. Wang et al. [10] proposed sparse mobile crowdsensing to solve this
problem. Both MCS and SparseMCS can be regarded as a kind of LBS. Recruited
users often need to expose their location to the task organizer, which involves serious
location privacy issues.

Currently, most location privacy protection mechanisms mainly use two tech-
nologies: anonymity and obfuscation [17]. However, these two technologies will
significantly reduce the strength of privacy protection when facing adversaries with
prior knowledge [13]. In response to this problem, Andrés et al. [13] introduced the
concept of differential privacy into location privacy protection to prevent attacks from
adversaries with prior knowledge. According to the survey results of Pournajaf et al.
[18], the current location privacy protection technology in MCS is mainly obfusca-
tion technology. Many researchers combine MCS with edge computing. Putra et al.
[19], Li et al. [20], and others have studied the location privacy protectionmechanism
in this environment. The DU-Min-εδ [21] proposed by Wang et al. realizes location
privacy protection in the SparseMCS environment. Compared with this algorithm,
our work considers the time dimension of location information and realizes the pro-
tection of user travel patterns.

3 Sparse Mobile Crowdsensing Concepts

3.1 Sparse Mobile Crowdsensing

3.1.1 Computation Paradigm

As shown in Fig. 1 (Basic), when monitoring temperature changes in a target city is
started, the city will be divided into multiple fine-grained target areas. The user will
collect the temperature data of the current area and upload the collected temperature
data, identity information, and location information to the server. The server will use
real-time sensor data and historical data to infer temperature information in areas
that the user has not reached.
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Fig. 1 Basic data collection is in sparse mobile crowdsensing, and data collection with location
privacy protection added

3.1.2 Data Collection

The user will start the data collection task at the current location. In order to be able
to verify identity and verify data, the server will require the user to upload identity
information. At the same time, the target data collected by the user should have
location information to achieve complete semantic functions, so location information
should also be uploaded. Therefore, the simultaneous exposure of the user’s identity
information and location information to the task organizer will cause serious privacy
risks. The SparseMCS system needs to enable strict LPPM to reduce the user’s
risk. However, LPPM will adjust the location information of the target data, which
destroys the semantic function of the target data to a certain extent. The destruction
of semantic functions will reduce the accuracy of target data.
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3.1.3 Data Inference

In our work, we use compressed sensing as our data inference algorithm [22]. Candès
andPlan [23] have proved that recovering an unknown low-rankmatrix can uniformly
sample a small number (less than the size of the matrix) with noisy entries. The
recovery error is proportional to the noise level. In other words, there are two inherent
assumptions in the use of compressed sensing algorithms to achieve data inference:

• Uniform distribution: The compressed sensing algorithm requires that sampled
data are evenly distributed in the sampling space. That is to say, in SparseMCS,
all the sensing locations in the target area should be evenly distributed. If not, for
example, if no user exists in a specific area during all the sensing periods, it is
impossible to infer the missing data in that area.

• Weak noise environment: When the sampling items do not carry noise and meet
uniform sampling, the missing data in the matrix can be accurately inferred. When
the sampling items carry noise, the total inference error is proportional to the noise
level. That is to say, the smaller the noise carried in the sampling items, the higher
the accuracy of the inference results.

3.2 Location Privacy-Preserving Framework for SparseMCS

The sensing data uploaded by the user in SparseMCS should include the target data
and the actual location. Figure1 (Location Remapping) shows that using obfuscation
technology to add noise to the location information can reduce the user’s privacy risk.
However, this method will bring about data quality loss because the actual location
and the target data of the confusing location may be different. In response to this
problem, we designed a location privacy-sensitive SparseMCS framework composed
of two parts: location remapping and data adjustment.

Figure2 shows the location privacy protection framework of SparseMCS we
designed, which consists of two parts: the server-side and the mobile user side.
Before the task starts, the server will realize the data adjustment function and gen-
erate the location mapping probability matrix in the offline state according to the
historical data. The data adjustment function is based on learning the relationship
between the historical data in any two regions. This function will reduce the quality
loss of the target data caused by the noise caused by the location remapping. By
adjusting the probability matrix item [i, j] (the probability that location i is mapped
to location j), we can ensure that the adversary cannot accurately infer the user’s
actual location even if he gets the matrix.

Before performing the task, the user saves the data adjustment function and the
mapping matrix on the mobile device. The task execution process is as follows:
First, the user adjusts to the confusion location according to the current cycle and
actual location according to the location mapping probability matrix (step M1).
Subsequently, according to the actual location and the confused location, the original
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Fig. 2 Location privacy-preserving framework for SparseMCS

data is adjusted to the adjusted data with noise using the data adjustment function
(step M2). The user uploads the adjustment data and the confused location to the
server, and then the server combines the historical data to infer a complete sensing
map (step S3).

4 Differential and Distortion and Spatiotemporal Location
Privacy

This section introduces the privacy protection concept we applied in SparseMCS.
Our privacy protection mechanism focuses on Bayesian attacks. Distortion privacy
cannot resist Bayesian attacks, but it can effectively limit the optimal attack model
based onBayesian inference tominimize errors. Themajor notations are summarized
in Table1.

4.1 Differential Location Privacy

The purpose of introducing differential privacy is to bind the improvement of the
posterior knowledge acquired by the adversary to the prior knowledge [14]. Differ-
ential privacy will make the probability of mapping from the real location r to any
confusion location r∗ similar.
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Table 1 Notations

R Sensing task target area, R = {r1, r2, . . . , rn}
P Location mapping probability matrix

r Real location r ∈ R
r ′, r∗ Confusion locations r ′, r∗ ∈ R
r̃ Adversary inferred location r̃ ∈ R
P(r∗|r) The probability of location r mapped to

location r*

β̃ Adversary’s inference attack

ρ(r̃ , r) The distance between r̃ and r∗

ηu(r) The location distribution of target user

T The time period for the user to release locations

O The user’s observable location sequence

S User-defined sensitive areas

Definition 1 (ε-Differential Privacy) Assuming that the R is divided into multiple
fine-grained areas r, then the P satisfies ε-Differential Privacy iff:

P(r∗|r) ≤ eε · P(r∗|r ′), ∀r, r ′, r∗ ∈ R (1)

where ε represents the privacy budget.

4.2 Distortion Location Privacy

Although differential privacy limits the adversary’s information gain, users still can-
not determine how close the adversary’s estimated location is to its actual location,
that is, how small the adversary’s inference error is. In order to limit the inference
error, we adopt distortion privacy [15]. This method can ensure that the adversary’s
optimal attack inference error will be greater than a particular value for a given user’s
public location distribution information.

4.2.1 Attack Inference Error

The attack inference error can be obtained by the following equation:

∑

r∗∈R
P(r∗|r)

∑

r̃∈R
β̃(r̃ |r∗) · ρ(r̃ , r) (2)
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We assume that the location distribution ηu is partially disclosed (for example,
social network check-ins [24]). Furthermore, the adversary obtains the distribution,
and he canminimize the expected reasoning error on ηu to achieve the optimal attack.

argmin
β̃

∑

r∗∈R
ηu(r)

∑

r∗∈R
P(r∗|r)

∑

r̃∈R
β̃(r̃ |r∗) · ρ(r̃ , r) (3)

4.2.2 Definition of Distortion Location Privacy

Definition 2 (δ-Distortion Privacy) The location mapping probability matrix P
satisfies δ-Distortion Privacy iff:

∑

r∗∈R
ηu(r)

∑

r∗∈R
P(r∗|r)

∑

r̃∈R
β̃(r̃ |r∗) · ρ(r̃ , r) ≥ δ (4)

where δ is the lower bound of privacy disclosure acceptable to users.

The disclosed location distribution ηu does not always summarize the adversary’s
prior knowledge. The distortion privacy only makes a mild assumption and cannot
contain some extreme situations.

4.3 Spatiotemporal Location Privacy

Figure3 vividly shows the relationship and difference between the spatial dimension,
time dimension, and space-time dimension of location privacy. Differential and dis-
tortion privacy only realizes the case of privacy protection in the spatial dimension,
and it is not clear whether it can provide location privacy protection in the spatial
and temporal dimensions. Therefore, we use spatiotemporal location privacy [25] to
extend location privacy protection to the spatial and temporal dimensions.

Fig. 3 Dimensional analysis of location privacy. Spatial dimension: privacy refers to a sensitive
area including location r1 and r2; temporal dimension: privacy refers to accessing location r1 at
time point 1 or 2; spatial and temporal dimension: the user’s sensitive area consists of locations r1
and r2 at time point 1 and 2
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Definition 3 (ε-Spatiotemporal Location Privacy) Suppose that in period T =
{1, 2, . . . , t} and areaR. The user sets the sensitive areaS, and generates the observa-
tion sequenceO = {r1, r2, . . . , r t },∀r i ∈ R.O satisfies the ε-Spatiotemporal Loca-
tion Privacy iif:

P(O|S) ≤ eε · P(O|¬S) (5)

where ¬S is the complementary set of S, and U = S ∩ ¬S represents all possible
sensitive areas in the target area.

4.4 Combined Location Privacy-Preserving Mechanism

In this section, we will briefly describe the advantages of combining the above three
privacy concepts. For differential privacy, it is difficult for the adversary to predict the
correct location of the user accurately. For distortion location privacy, the adversary’s
prediction should keep a certain distance from the correct location even if the guess
is wrong. For spatiotemporal location privacy, it is difficult for adversaries to analyze
the user’s travel habits through long-term observation. Therefore, we combine these
three privacy concepts to provide users with more comprehensive location privacy
protection.

5 Location Privacy Protection Mechanism with Minimal
Data Loss

5.1 Data Quality Requirements for Location Mapping

Recall that the prerequisites for data inference introduced in Sect. 3.1.3 include the
average distribution of sampled data and a weak noise environment [23]. However,
the introduction of a location privacy mechanism will destroy these two premises:

(a) Uniform distribution of confusion locations: In real life, users may be evenly
distributed within the city, but the location distribution may be very uneven after
location mapping. For example, suppose that no user’s location may map to
location i . Then, the value of the i th row in the sensing matrix will be lost, and
the i th row data will not be restored during the inference process.

(b) Weak noise environment: After the location remapping process, the target data
submitted by the user corresponds to the original location rather than the con-
fusing location. Although the resulting error can be reduced through data adjust-
ment, the uploaded target data is still inaccurate. Therefore, we need to generate
a matrix P that can minimize the loss of data quality.
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5.2 Optimal Location Mapping Matrix Generation

In order to meet the challenge mentioned in Sect. 5.1, we designed an optimization
problem to generate the position mapping probability matrix.

5.2.1 Objective: Minimize Data Loss

Wedenote the data loss produced by this process as amatrix L . The entry L[r, r∗] ∈ L
records the residual standard deviation between the original data and the adjusted
data. Intuitively, the less data loss caused by the location mapping process, the better.
We hope to find a mapping matrix P that can minimize the overall expectation of the
data loss caused by the process, denoted as L̄ . Our optimization goal is to minimize
L̄ .

L̄ =
∑

r∈R
ηu(r) ·

∑

r∗∈R
L[r, r∗] · P[r, r∗] (6)

5.2.2 Location Mapping Probability Matrix Generation

According to Definition 5, spatiotemporal location privacy should protect a sensitive
area in the time period, and differential and distortion location privacy is protected
for the location at the time point. Therefore, we generate a matrix Pt that satisfies
differential and distortion location privacy at each time point in the sensing cycle
T . P = {P1, P2, . . . , Pt },∀t ∈ T satisfies the spatiotemporal location privacy in
the period. In order to minimize the expectation of data loss and ensure the loca-
tion mapping probability matrix P of differential privacy, distortion privacy, and
spatiotemporal location privacy.

(a) Constraint 1: ε-Differential Privacy: Thefirst constraint is ε-Differential Privacy,
which is implemented by Eq.8.

(b) Constraint 2: δ-Distortion Privacy: The second constraint is δ-Distortion Pri-
vacy, which is implemented by Eqs. 9 to 10. Because Eq.4 in Definition 2 con-
tains an optimization problem (Eq.3), we cannot directly use it as a constraint.
Therefore, according to Shokri’s work [15], we convert Eq.4 into Eqs. 9 and 10.

(c) Constraint: ε-Spatiotemporal Location Privacy: The third constraint is ε-
Spatiotemporal Location Privacy, which is implemented by Eq.5. At each time
t in the period T , a Pt that meets the requirements is generated. Pt meets the
requirements of spatiotemporal location privacy, which means that the probabil-
ity of the user appearing in the sensitive area and not appearing in the sensitive
area within this period is similar. According to Definition 5, we can abstract
the user’s presence in the sensitive area S in T into a boolean expression.
Assuming that the period T = {1, 2}, the sensitive area S = {r1, r2},∀ri ∈ R,
the user’s appearance in the sensitive area during this period can be abstracted
as [(u1 = r1) ∨ (u1 = r2)] ∧ [(u2 = r1) ∨ (u2 = r2)]. In the expression, ut = ri
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means that the user is at the location of ri at time t . Abstracting the period T and
the sensitive area S and converting the Boolean expression into a probability
expression, Eq.11 can be obtained.

The optimization problem established based on the above content is as follows:

argmin
Pt

L̄(Pt ) =
∑

r∈R
ηu(r)

∑

r∗∈R
t∈T

L
[
r, r∗] · Pt

(
r∗ | r) (7)

s.t. Pt (r∗|r) ≤ eε · Pt (r∗|r ′),∀r, r ′, r∗ ∈ R,∀t ∈ T (8)
∑

r∈R

ηu(r)P
t
(
r∗|r) d(r̃ , r) � xt

(
r∗) ,∀r̃ , r∗ ∈ R,∀t ∈ T (9)

∑

r∗∈R
xt (r∗) ≥ δ,∀t ∈ T (10)

∏

t∈T
ηu(r)

∑

r∗∈R

Pt
(
r∗|r)

� eε
∏

t∈T
ημ

(
r ′) ∑

r∗∈R

Pt
(
r∗|r ′) ,

∀r ∈ S∗, r ′ ∈ Si ,∀Si ∈ ¬S∗ (11)
∑

r∈R
ηu(r) · Pt (r∗|r) = 1/R,∀r∗ ∈ R,∀t ∈ T (12)

∑

r∗∈R
Pt (r∗|r) = 1,∀r ∈ R,∀t ∈ T (13)

Pt (r∗|r) ≥ 0,∀r, r∗ ∈ R,∀t ∈ T (14)

5.3 Noise-Aware Inference Algorithm

Compressed sensing algorithms require a weak noise environment, but in order to
ensure location privacy, we have violated this condition. In order to solve this prob-
lem, we designed a noise-aware mechanism to sample data with a small amount of
noise with a higher weight. The following equation obtains the data loss expectation
corresponding to each mapping location:

L̄ ·,r∗ =
∑

r∈R
ηu(r) · P(r∗|r) · L[r, r∗] (15)

According to the expected data loss of each mapping location, we obtain the
sampling weight corresponding to each mapping location through the following
equation:

ωr∗ = ω0 + (1 − ω0) · L̄max − L̄ ·,r∗

L̄max − L̄min
(16)
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where, L̄max and L̄min, respectively, represent the largest and smallest data loss expec-
tations in all mapping locations. We denote the sampling weight of the mapping
location corresponding to the expected maximum data loss as ω0. According to the
experiment in Sect. 6, we recommend setting the weight to 0.75.

6 Evaluation

6.1 Configuration Environment

6.1.1 Baseline

We use three baselines that implement differential location privacy protection. Under
the same level of differential privacy, we will show that our method will additionally
protect user behavior patterns with similar data quality loss.

(a) Self : Self [26] algorithm provides a higher probability for location self-mapping.
Formally, the location mapping matrix generated by this algorithm satisfies dif-
ferential privacy:

Pi, j =
{

α eε, if i = j,

α, o.w.

(b) Laplace: The Laplacianmechanism [13] completes privacy protection by adding
Laplacian noise to the actual data. This method is more inclined to map locations
to neighbor locations.

(c) DU-Min-εδ: This method [21] constructs a linear optimization problem to
achieve local location differential privacy in a sparse crowdsensing environment.

6.1.2 Evaluation Environment

Weused SensorScope [27] open-source actual temperature sensing data as our exper-
imental dataset. They deployed temperature sensors on the EPFL campus, covering
an area of 300m × 500m. We divide it into 100 sub-areas with 30m × 50m, of
which 57 contain temperature sensors (that is, contain real data). The data collection
lasted for a week, the sensing period was 30min, the first day’s data was used as the
training data adjustment function, and the location mapping matrix was solved, and
the rest were used as tests (Table2).
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Table 2 Evaluation
parameters

Default Description

k 4 Number of sensing data collected in each
cycle

ε ln 4 Differential privacy budget

c 3 Number of cycles users perform sensing
tasks

ω 0.75 Basic sampling weight

6.1.3 Experimental Parameters

We assign different privacy budgets, ε the number of sensing data collected by par-
ticipants in each sensing cycle, k, and the number of cycles that participants perform
sensing tasks, c, as experimental independent variables. ε is usually customized by
the user. For convenience, we set it from ln 2 to ln 8. The publisher generally deter-
mines k based on the budget held and the quality of the data required. The service
provider will set c based on the user’s travel mode and expected data quality.

6.1.4 Data Quality Metric

We use theMean Absolute Error (MAE) to calculate the data loss of the inferred data
compared to the real data. Every time we modify the experimental parameters, we
perform five repeated experiments and take the average value. The data loss caused
by the location privacy protection mechanism (LPPM) is defined as follows:

LMAE(LPPM) = MAE(LPPM) − MAE(No-Privacy)

6.2 Experimental Performance

Our experimental results show that our work can provide more effective location
privacy protection at a lower cost of data loss. Compared with the baseline algo-
rithm, our work provides more comprehensive location privacy protection, and the
additional data loss generated on this basis is also controlled within the range of
10−2. When the number of task cycles c is small, the data quality loss caused by our
work can be further controlled within 10−3.

We measured how the target data quality loss changes with the privacy budget ε.
From Fig. 4, we can see that as the privacy budget increases (the intensity of privacy
protection decreases), data quality loss will decrease. In general, our work is better
than the Laplace and self versions under the same conditions. When the privacy
budget is small, the error level of our work is similar to that of DU-Min-εδ.
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Fig. 4 MAE changes with ε

Figure5 shows how the target data quality varies with the number of sensor data
k collected in each cycle. From Fig. 5, we can see that the target data quality loss
will decrease with the increase of k, even if we change the number of cycles c for the
user to perform sensing tasks. In addition, due to the data noise caused by LPPM,
the data quality loss decreases more and more slowly and cannot reach the level of
no privacy. Moreover, our algorithm is superior to Laplace and Sel f in terms of
data loss. Compared with DU-Min-εδ, the error is also controlled within 10−2. More
importantly, we provide more comprehensive location privacy protection.

Figure6 shows the loss of data quality when the number of cycles c of the user
performing the sensing task is 2 and 3. Since the number of constraints in the opti-
mization problem for generating the optimal location mapping probability matrix
is the factorial of c, the complexity of the problem will become higher when c is
larger, so we only calculated the cases where c is 2 and 3. However, to ensure the
quality of the data in the SparseMCS environment, we usually do not need the same
user to perform multiple sensing cycles. In future work, we will further reduce the
complexity of the optimization problem to adapt to more scenarios.

In order to verify the impact of the basic sampling weight on the data quality loss,
we change the weight and calculate the data quality loss under different privacy bud-
gets when k and c are the default values. Figure7 shows the results of the experiment.
Under different privacy budgets, we find that the data error is the smallest when ω0

is 0.75.
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Fig. 5 MAE changes with
the amount of sensing data
collected by participants in
each cycle

7 Conclusions

This paper presents a spatiotemporal and differential location privacy protection
mechanism for 5G-enabled sparse mobile crowdsensing. It considers the level of
location privacy protection required by users, the protection of travel modes, the
ability to resist attacks from attackers with prior solid knowledge, and the loss of data
quality due to locationmapping. In particular, users can use this framework to develop
personalized location privacy protection based on their travel mode. Experiments
based on real data verify the effectiveness of the framework.
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Fig. 6 MAE changes with c

Fig. 7 MAE changes with ω
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