
Support-Based High Utility Mining with
Negative Utility Values

Pushp and Satish Chand

Abstract High utility itemset mining (HUIM) aims at knowledge discovery from
the datasets by finding patterns that have high utility values. Most of the existing
algorithms suffer from the drawback of generating huge number of results that over-
whelm the decision-making process for industry applications. Also, the real-life
datasets often consist of items that have both positive and negative utility values in
order to represent the profit and losses, respectively. In this paper, we propose a novel
mining algorithm that maps closely to the real-life applications by producing only
a reasonable number of outputs based on a support measure, from the datasets that
have both positive and negative utility values. Several experiments are undertaken
to test the efficacy of the proposed approach. Empirical evaluation suggests that the
proposed approach is highly efficient for dense datasets.

Keywords Knowledge discovery · Data mining · High utility itemset mining

1 Introduction

Knowledge discovery in datasets has attracted the attention of the research commu-
nity in the last decade. Most of the data mining algorithms are designed for extract-
ing imperceptible knowledge from large datasets. The mined information reflects the
trends and patterns in the underlying database and can be useful in various paradigms,
depending on the use case. One of the earliest applications of data mining is frequent
pattern mining (FPM) that aims at discovering the frequently occurring patterns
from the customer transaction datasets, which is also referred to as market-basket
analysis. The mined outputs enhance the decision-making process and aid in busi-
ness growth-related operations like designing of crossmarketing strategies, customer
classification and market segmentation.

Pushp (B) · S. Chand
Jawaharlal Nehru University, New Delhi, India
e-mail: srapushp@gmail.com

S. Chand
e-mail: schand@mail.jnu.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. K. Bashir et al. (eds.), Proceedings of International Conference on Computing and
Communication Networks, Lecture Notes in Networks and Systems 394,
https://doi.org/10.1007/978-981-19-0604-6_18

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0604-6_18&domain=pdf
http://orcid.org/0000-0001-6806-2345
http://orcid.org/0000-0002-5250-9074
mailto:srapushp@gmail.com
mailto:schand@mail.jnu.ac.in
https://doi.org/10.1007/978-981-19-0604-6_18


198 Pushp and S. Chand

The commonly used techniques for FPM are based on the downward closure
property, which states that all the supersets of a non-frequent itemset are also non-
frequent. This property is intuitively correct as it is based on the recurrence of an
item in a database or the support measure. Recent advances in knowledge discovery
have given rise to more sophisticated mining tasks. One of the emerging areas in this
field is mining the high utility itemsets, where utility is a user-defined parameter,
that can hold an aesthetic or a quantitative value. The information mined using the
FPM approach is indicative of the most frequently occurring patterns in a dataset;
however, it may not completely imply its usefulness in terms of the measures like
profit. Example, for a set of sales data in a retail store over a week, while bread
and butter can be the most frequently sold items that are produced as an output by
FPM techniques, the items sold at highest profit might be rare that are not produced
as an output by FPM. The high utility itemset mining addresses this challenge by
extracting those patterns from a database that have utilities higher than a user-defined
threshold. The mined patterns are referred to as high utility itemsets (HUIs). The
utility measure for transaction datasets is defined as the profit made by selling an
itemwhich is the product of the profit per unit of the item and the quantity of that item
within a transaction. Mining the high utility patterns alone leads to a large number of
outputs being produced, which can easily overwhelm the decision-making process
in an organisation. So, for the mining results to be suitable for real-life applications,
it is essential to design algorithms that take into account both, support and utility
measure. These mined outputs are therefore, representatives of those itemsets that
occur atleast with a frequency corresponding to a minimum support value within a
database.

Moreover, the real-life datasets often contain items that have negative utility val-
ues. This is because certain business decisions are strategically designed to sell some
items at losses, which thereby hold a negative profit value. For example, in order to
enhance the sale of a newly launched product, another product can be tagged along
with it, to be sold for free or at a discounted price.

In this paper, we design an algorithm to effectively address the real-life data
mining requirements. The main contribution of the proposed study is the design of
an efficient algorithm for mining the frequently occurring HUIs from the databases
with items holding negative utility values.

2 Problem Statement

Here, we introduce the problem of mining frequently occurring HUIs from the
databases with items holding negative utility value, by using a supporting exam-
ple. Consider a sample dataset consisting of three items and six transactions as given
in Table1. Every transaction consists of a unique identifier, TID, and the quantity
of individual items p, q, r. The unit profit of each item is also provided. It can be
observed from this table that item (q) holds a negative utility value.



Support-Based High Utility Mining with Negative Utility Values 199

Table 1 Transaction database

T I D p q r

T I D1 1 0 0

T I D2 4 0 0

T I D3 7 0 1

T I D4 2 2 0

T I D5 1 1 0

T I D6 0 1 10

Item Unit profit

p 2

q −3

r 7

The utility of an item is the product of the quantity and it’s per unit profit. Here, the
utility of the item (p) in T I D1 is quantity (p, T I D1) × prof i t (p) = 1 × 2 = 2
units. The total utility of an item is defined as the sum of its utilities across all
transactions in the database. Therefore, the utility of item (p) in the database is∑6

i=1 util(p)T I D(i), which computes to 30. For utility threshold 25, the item (p) (with
utility value 30) is a high utility item. The support of an item is defined as the count
of the number of transactions in which the item is present. For the dataset in Table1,
the support of item (p) is 5 as it occurs in transactions T I D1, T I D2 . . . T I D5. If the
support threshold is set to 4, the item (p) would be considered as a frequent item.
The item (q) holds a utility value of −12 and a support of 3, so, it is a low utility,
low frequency item.

It may be noticed that even though the item (q) holds a negative utility value, it
is still possible to have combinations of items with item (q), that qualify as having
high utility. For example, consider the itemset (q, r ) that holds a combined utility
value of 73, which is higher than the specified minimum utility threshold of 25, and
is therefore a high utility item.

Given this premises, the objective is to discover those combinations of the items
that have utility value and support higher than the pre-defined threshold values for
the utility and support, respectively.

3 Related Work

Several algorithms exist in the literature for FPM based on a given minimum support
threshold, minsup. The most widely applicable algorithms for FPM are the apriori
algorithm [1] and the FP tree [6] algorithm. The apriori algorithm [1] is based on the
downward closure property, which utilises the anti-monotone trend of the frequent
patterns and enables efficient pruning of the search space. It first scans the database
and generates the candidates in a level by level fashion by combining items from the
previous level. This algorithm simultaneously prunes the candidates to effectively
mine the correct results.



200 Pushp and S. Chand

The FP tree [6] algorithm stores the information regarding the frequency of occur-
rence of an itemset in a tree like structure and then explores the tree in a depth first
search fashion to mine the high frequency items. These algorithms are however not
suitable to mine the high utility itemsets, primarily because the high utility itemsets
do not hold the downward closure property. The non-compliance of utility mining
techniques with the downward closure property is justifiable as the utility of an item
is dependant on both, the quantity and per unit profit. Therefore, the supersets of a
non-high utility item may or may not have high utility.

In order to avoid the combinatorial explosion in the generation of candidate item-
sets for HUIM, it is essential to establish an ordering between the patterns, which
allows for pruning of non-promising candidates. A close resemblance to the down-
ward closure property is introduced in the two-phase algorithm [11], called the trans-
action weighted utilisation (TWU)-based property. The property states that for an
itemset X , if TWU (X) < minutili t y, then (X ) and all its supersets are low utility
itemsets, where the transaction weighted utilisation of (X ) is defined as the total
summation of transaction utilities of all those transactions in which the itemset (X )
is present. Other techniques to efficiently organise the search space include using
tree structures and utility lists [2, 7, 10]. The utility lists efficiently store the utility
information of every item in form of transaction ID, utility value and the remaining
utility of the transaction. HUI-miner [10] uses utility lists to find HUIs by recursively
exploring the extensions of single itemsets. An improvement to the HUI-miner [10]
is introduced in FHM [5] which uses an EUCS structure to store the TWU values of
pair of itemsets and improves the pruning of non-potential candidates. A few recent
studies make use of heuristics [12] and distributed computing [8] to mine HUIs.

Mining of HUIs from the databases with items holding the negative utility val-
ues is a complicated task, as the negative utility value can decrease the transaction
weighted utilisation, that may result in incorrect pruning of the search space. This
can underestimate or overestimate the utilities of items which can lead to erroneous
results. There are only two algorithms in the literature that account for negative
utility values. The authors in [3] discuss the HUINIV which is based on two-phase
algorithm [11] and overestimates HUIs by considering only the positive values of
the items. The second algorithm is FHN [9] that is based on the utility lists [10]
and the EUCS structure proposed in FHM [5]. The FHN maintains separate records
for positive and negative utility items and deploys the TWU-based pruning using
only the positive utility values. However, for large input datasets, FHN produces a
huge volume of HUIs which can undermine the usability of the generated results.
To the best of our knowledge, no algorithm exists in the literature to address the
problem of finding frequent HUIs from the databases where the items hold negative
utility values. In this paper, we introduce the support-based mining with negative
utility (SMNU) algorithm to efficiently mine the high utility items while taking into
consideration the item support and negative utility items.



Support-Based High Utility Mining with Negative Utility Values 201

4 Proposed SMNU Algorithm

In this section, we introduce our proposed SMNU algorithm that is inspired by
FHN [9]. The main procedure of SMNU scans the input database D, to compute
the transaction weighted utilisation (TWU) and support of the single itemsets. As
suggested in [9], only the itemsets with positive utility values are used for computing
TWU (line: 9). SMNU takes into account the frequency of itemsets unlike the FHN.
For every item in the database D, if the item is present in a transaction Tj , then
its support is incremented (line: 5). An important point regarding the computation
of the support is that the support measure of the items is incremented regardless of
the fact if the item holds a negative or a positive utility value. This is because the
support of an item should reflect the total frequency of its occurrence in D. After
computation of support, transaction weighted utilisation of single items is computed
by taking only the positive utility values into consideration. The utility lists of the
single items are then formed (line: 15), and the search procedure (2) is called (line:
17), to recursively produce the candidate items.

Algorithm 1 SMNU main procedure
INPUT:
D: Database of size N
OUTPUT:
UL: Set of Utility Lists Li

1: TWU (i) = 0
2: Sup(i) = 0
3: for all Single Items i ∈ D do
4: for all Tj = 1 to N do
5: Sup(i) ← Sup(i) + 1
6: if Utili t y(i) < 0 then
7: N I ∗ : NegativeI temsets ← (i)
8: else
9: TWU (i) = TWU (i) + TU (Tj )

10: end if
11: I ∗ ← (i)
12: end for
13: end for
14: for all i ∈ I ∗ do
15: Form Utili t yList U Li
16: end for
17: Search(∅, I ∗,MinUtilThresh, UL)

The search procedure (2) computes the sum of positive and negative utilities
of each item and checks the sum against the minimum utility threshold (line: 4).
Additionally, in order to ensure that only the frequent HUIs are produced as outputs,
a check against the minimum support value ST hrsh is implemented (line: 4). If the
input itemset passes these two checks, it is produced as a HUI (line: 5). Further, all
the combinations of itemsets are explored sequentially only if the sum of utilities
and remaining utilities for an itemset is higher that the minimum utility (line: 7). A
noteworthy point is that the check against theminimum support value is implemented



202 Pushp and S. Chand

Algorithm 2 Search procedure
INPUT:
I: ItemSet
ExtI: Extension ItemSets of I
MThrsh: Minimum Utility Threshold
SThrsh: Minimum Support Threshold
UL: Set of Utility Lists
OUTPUT:
HUIMs: Set of HUIs

1: for all Ix ∈ Ext I do
2: SumUtil = SumUtilp + SumUtiln
3: SumRUtil = SumRUtilD
4: if SumUtil > MThrsh & Sup(i) > ST hrsh then
5: HUI ← Ix
6: end if
7: if SumUtil + SumRUtil > MThrsh & Sup(i) > ST hrsh then
8: Ext Ix ← ∅
9: for all Iy ∈ Ext I do
10: Ixy ← Ix ∪ Iy
11: ULxy←Extx , Exty
12: if ULxy .iutil > MThrsh then
13: Ext Ix ← Ext Ix ∪ Ixy
14: end if
15: end for
16: Search(Ix , Ext Ix ,MThrsh, SThrsh, UL)
17: end if
18: end for

here because, if an itemset is non-frequent, then all its supersets will also be non-
frequent as per the downward closure property. This allows for pruning of the search
space, as the extensions of the non-frequent itemsets need not be explored. The
qualified candidates after the check (line: 7) are used to perform the join operation
between the utility lists of the extensions (line: 9 to line: 15). The search procedure
is called (line: 16) with the formed extensions to recursively explore all the valid
itemsets in a depth first fashion.

The main contribution of SMNU is the computation of the support count of each
itemset and new pruning conditions based on the support measure, which helps to
minimise the search space and improves efficiency. In the next section, we perform
several experiments to validate the performance of SMNUagainst the state-of-the-art
algorithms.

5 Experimental Evaluation

SMNU is the first algorithm in the literature tomineHUIs based on a supportmeasure
from datasets where items can have negative utility values also. Therefore, to test the
efficiency of our method, we carry out extensive experiments on various datasets that



Support-Based High Utility Mining with Negative Utility Values 203

Table 2 Statistics of datasets

Dataset Transactions No of items Average length

Retail 88,162 16,470 10,30

Mushroom 8416 119 23

Chess 3196 75 37

include retail,mushroom and chess. The summary of characteristics of these datasets
is provided in Table2. These datasets are available in the SPMF library [4]. First, we
compare the performance of SMNU and FHN, when a very small support threshold
supplied to SMNU. Then, we vary the minimum support threshold and compare
the performance of SMNU with FHN, for iterations by varying the minimum utility
threshold. The comparison of candidate count and HUI count between SMNU and
FHN is provided in Figs. 1 and 2, respectively. For the convenience of representation,
the candidate count in Fig. 1 is represented in multiples of 100.

For the retail dataset, a minimum support of 0.01 is set, which means that only
those itemsets should be produced as an output by SMNU, that occur in atleast 1% of
the total transactions in the input dataset. For the mushroom and chess datasets, the
minimum support threshold is set to 0.1, which is 10% of the total transactions. As it
is evident from Fig. 1, for dense dataset (retail), SMNU reduces the candidate count
by almost a factor of seven as compared to FHN. Also, as shown in Fig. 2, the total
number of HUIs for retail dataset is about three times higher for FHN as compared
to SMNU. These candidate itemsets and HUIs are reflective of the itemsets when
the support threshold is set to 0.01. This implies that only one third of the HUIs in
the entire database occur atleast in 10% of the transactions. The remaining HUIs as
produced by FHN, occur in less than 10%of the transactions. In real-life applications,
analysing such itemsets manually can consume a lot of irrelevant time andmanpower
for large datasets. Similar observations can be found for the dataset mushroom from
Figs. 1 and 2, where the candidates and HUI count differ by almost a factor of two
for a relatively higher support value of 0.1. For smaller datasets like chess, it can
be observed that the difference between the two algorithms for candidate and HUI
count is negligible. So, it can be established that the performance of SMNU is highly
efficient for large and dense datasets.

The comparisons for memory and time requirements between SMNU and FHN
is presented in Figs. 3 and 4, respectively. It can be observed from these figures that
the difference between FHN and SMNU is significant for large and dense datasets
like retail and mushroom.

The comparisons for memory, time and HUI count are shown in Figs. 5, 6 and 7
by varying the minimum support threshold from 0.1 to 0.7. Both the algorithms have
been executed on the three datasets with varying minimum utility thresholds.



204 Pushp and S. Chand

Fig. 1 Candidate count

Fig. 2 High utility itemset count

Fig. 3 Memory (MB)



Support-Based High Utility Mining with Negative Utility Values 205

It is evident from Fig. 5 that for the retail dataset, the SMNU outperforms the
FHN algorithm in terms of memory, time and HUI count for all runs of the varying
support values. Similar trends have been observed for themushroom dataset as shown
in Fig. 6. The results on chess dataset as shown in Fig. 7, are comparable for FHN
and SMNU algorithms.

So, the SMNU guarantees an optimal count of HUIs to be produced as output and
is also more scalable than the FHN algorithm for large and dense datasets.

Fig. 4 Time (s)

Fig. 5 Retail

Fig. 6 Mushroom



206 Pushp and S. Chand

Fig. 7 Chess

6 Conclusion

In this paper, we have presented an algorithm, called SMNU, for support-based min-
ing of HUIs from the databases with items that have negative utility values. The
SMNU produces HUIs that can be directly utilised for real-life applications, unlike
for most of the other mining algorithms where the support or negative utility values
are not taken into consideration. The experimental results show that SMNU is more
scalable and requires less execution time as well as memory for large datasets. How-
ever, for small and sparse datasets, the proposed approach has similar performance
as the approaches that do not use support.

In future, we aim to propose optimisations to further enhance the performance of
SMNU for large as well as small datasets. We also aim to design a novel method to
generate association rules for the mined HUIs.

References

1. R. Agrawal, R. Srikant et al., Fast algorithms for mining association rules, inProceedings of the
20th International Conference on Very Large Data Bases, VLDB, vol. 1215 (Citeseer, 1994),
pp. 487–499

2. Y. Baek, U. Yun, H. Kim, J. Kim, B. Vo, T. Truong, Z.-H. Deng, Approximate high utility
itemset mining in noisy environments. Knowl.-Based Syst. 212, 106596 (2021)

3. C.-J. Chu, V.S. Tseng, T. Liang, An efficient algorithm for mining high utility itemsets with
negative item values in large databases. Appl. Math. Comput. 215(2), 767–778 (2009)

4. P. Fournier-Viger, SPMF: A Java Open-Source Data Mining Library. Philippe-fournier-
viger.com. (2021)

5. P. Fournier-Viger, C.-W. Wu, S. Zida, V.S. Tseng, FHM: faster high-utility itemset mining
using estimated utility co-occurrence pruning, in International Symposium on Methodologies
for Intelligent Systems (Springer, 2014), pp. 83–92

6. J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation. ACM SIGMOD
Rec. 29(2), 1–12 (2000)

7. X. Han, X. Liu, J. Li, H. Gao, Efficient top-k high utility itemset mining on massive data. Inf.
Sci. 557, 382–406 (2021)



Support-Based High Utility Mining with Negative Utility Values 207

8. S. Kumar, K.K.Mohbey, High utility patternmining distributed algorithm based on sparkRDD,
in Computer Communication, Networking and IoT (Springer, 2021), pp. 367–374

9. J.C.-W. Lin, P. Fournier-Viger, W. Gan, FHN: an efficient algorithm for mining high-utility
itemsets with negative unit profits. Knowl.-Based Syst. 111, 283–298 (2016)

10. M. Liu, J. Qu, Mining high utility itemsets without candidate generation, in Proceedings of the
21st ACM International Conference on Information and Knowledge Management (2012), pp.
55–64

11. Y. Liu, W.-K. Liao, A. Choudhary, A two-phase algorithm for fast discovery of high utility
itemsets, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (Springer,
2005), pp. 689–695

12. W. Song, C. Zheng, C. Huang, L. Liu, Heuristically mining the top-k high-utility itemsets with
cross-entropy optimization. Appl. Intell. 1–16 (2021)


	 Support-Based High Utility Mining with Negative Utility Values
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Proposed SMNU Algorithm
	5 Experimental Evaluation
	6 Conclusion
	References




