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Abstract As a step toward a pollution-free environment, governments and regula-
tory bodies worldwide are moving toward cleaner means of transportation. A lot of 
tailpipe emissions occur in a conventional internal combustion engine. One solution 
to these hazardous emissions is the use of hybrid-electric vehicles (HEVs) or fully 
electric vehicles (EVs). The HEVs, especially plug-in HEVs (PHEVs), are soon 
expected to have more significant commercial applications, as the EVs may take 
more time for their larger part of the share. A hybrid-electric vehicle employs an IC 
engine combined with a smaller battery and an electric motor. On the other hand, a 
PHEV consists of a much larger capacity battery storage known as a rechargeable 
energy storage system (RESS). It is equally important to apply a stable drivetrain 
topology for greater efficiency. PHEV blends power from battery and engine using 
an energy management system, which always tries to impart the best driving condi-
tions, least emissions, and maximum mileage and range. In the paper, an overview 
of all the control strategies is reviewed with few simulation results. 

Keywords Energy management · Control strategies · PHEV · SOC · Vehicle to 
the grid 

1 Introduction 

The transportation sector consumes 49% of the world’s oil resources worldwide 
and is one of the most rapidly growing consumers of available global energy. It is 
predicted that, at this rate of consumption, total oil reserves will be depleted by 2038 
[1]. Researchers are developing various alternative power trains, which are gaining 
much attention lately. A hybrid-electric vehicle (HEV) is one among them and can 
reduce exhaust gases, saves fuel, and paves the way for a greener environment. An 
HEV can reduce the consumption of fossil fuels by 70% [2, 3].
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A hybrid vehicle consists of an IC engine combined with a battery storage system 
that supplies energy to an electric motor. For HEV, there are two types of propulsion 
systems, mainly an ICE and battery supply with a rechargeable energy storage system 
(RESS). Superior range and versatility in the modules’ scale are the most important 
benefits that an HEV has over a pure EV. 

An efficient drivetrain design is essential for an HEV as it impacts mechanical 
efficiency, fuel consumption, and price. A drivetrain is the collection of parts that 
supply power to the vehicle’s wheels from the engine or motor. The drivetrain’s 
configuration defines how the electric motor functions combined with the traditional 
engine in hybrid-electric vehicles. Series, parallel, and series–parallel hybrids are 
the necessary powertrains available in an HEV. 

Series Hybrid: Only the engine, which in turn charges the batteries, can drive the 
motor. The transmission operates by an electric motor, which is entirely battery 
powered. It is an effortless but not the most powerful method. 

Parallel Hybrid: The engine and the battery run the motor, which in turn powers the 
transmission. Only the engine spins the rotor when the battery is exhausted. 

Series–Parallel Hybrid: It is a blend of series and parallel systems. With a power-
split unit, the engine may selectively drive the wheels or the generator, or both based 
on driving conditions. This arrangement is deemed the most successful and was 
assimilated by Toyota. 

Figure 1 shows a pictorial view of all the drivetrains, the red line indicating the 
engine line and the blue being the electrical supply. 

Enormous versatility is available in choosing the structures for power splitting. 
Based on the hybridization, i.e., the engine’s size and the battery source, an HEV 
classification is done. Figure 2 illustrates the different types of HEV’s based on the 
size of the battery and IC engine.

Fig. 1 Classification of drivetrain designs [4]
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Fig. 2 Hybrid-electric vehicles based on the size of the IC engine and battery [5] 

Much of the research is focused recently on plug-in hybrid-electric vehicles 
(PHEVs) that store and draw power from a renewable energy source. The concepts 
from a basic HEV can be implemented in developing a PHEV. Also, the primary 
source of power can be changed from fossil fuel to multiple sources like solar and 
wind to make the transportation sector even cleaner. PHEVs can all-electric mode, or 
pure engine mode or both combined based on the charge region. The main features 
of PHEVs are as follows.

(a) Recovering regenerative energy from brakes instead of dissipating as heat. 
(b) Optimizing the splitting of power between various sources. 
(c) Downsizing the engine while attaining the maximum requirement of the vehicle 

[6]. 

With their all-electric range in cities and an extensive cruising range and battery 
charging capabilities, PHEVs give a wide range and function as a range extender. 
Many pollutants are released when the engine runs in a transient mixture and is fixed 
by a PHEV. With its vehicle to grid technology (V2G), it can even power back the 
house if needed [7]. 

1.1 Terminology in Plug-In Hybrid Vehicle (PHEV) 

State of Charge (SOC): It is relative to the initial charge of the battery to the current 
level of charge, also known as the remaining energy fraction present in the battery 
[8, 9].
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Charge sustaining mode: Batteries state of charge (SOC) may increase or decrease 
in a driving profile, but by the end, it should come to an equivalent state. 

Charge-depletion mode: The SOC of the battery on a driving profile shows a net drop 
in stowed energy. 

All-electric range (AER): The vehicle’s complete distance is in an electric mode until 
the engine turns ON [10]. 

The overall consumption advantages of today’s HEVs are developed purely from 
developments in charge sustaining mode, as they have no charge-depleting mode. 
A PHEV that does not use petroleum (all-electric) in a charge-depletion mode and 
with a fuel economy in a charge-sustaining mode is equal to a traditional vehicle 
consuming 50% less petroleum as the first 40 miles will be electrically powered ex. 
PHEV40 [8]. A blended strategy is employed to maximize the charge-depletion time 
and even less fuel consumption in some cases. 

1.2 Overview of Control Strategies in Plug-in Hybrid-Electric 
Vehicles 

It is essential to maximize powertrain efficiency and increase the driving range. 
There are many challenges in employing the perfect control strategies in multi-
source systems like plug-in HEV. The energy management system is an essential part 
in the control of HEVs. It plays a major role between the IC engine and the battery 
storage system is maintained and keeping the proper state of charge (SOC). Energy 
management can instantaneously identify and control the actuators in the system. 
By altering the input signals, various outputs can be formed, gaining maximum 
efficiency. A fixed control strategy cannot be adopted as there will be a change in the 
driving parameters and patterns, leading to poor fuel economy in HEV. 

Compared with an HEV, the AER in a PHEV is helpful in refining mileage, effi-
ciency, and emissions. Still, it may increase the intricacy by increasing the challenges 
for the control system design. Electric drive trains are more efficient and consider-
ably cheaper. Most ICEs are very ineffective in transients as they consume a lot of 
energy, Hence, it is useful to run the vehicle in AER wherever feasible [11]. 

The energy is consumed significantly when the vehicle is idling. A PHEV control 
strategy is devised to turn off the engine when not in use, and the start-up efficiency 
is increased by converting to EV mode. The topology of the vehicles determines the 
engine turn-off and turn-on process. This is true for all parallel PHEVs. There is 
no necessity to operate the engine in an EV-start and propulsion until the traction 
battery is exhausted. Although the engine does not lead to acceleration, its load can be 
applied gradually and in a controlled manner, irrespective of the driver’s requirement. 

The engine logics are based on three criteria such as (1) threshold power required, 
(2) SOC of the battery, and (3) the capacity of the electric motor to provide the 
necessary power [11].
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Several papers have been addressed based on the control strategies’ overview in 
recent years [12–14]. 

The next section consists of the main control strategies such as rule-based and 
optimization-based and its subdivisions and the latest technological advancements 
in a plug-in HEV with some simulation results in real time. 

2 General Classification of Control Strategies 

Control strategies are mathematical models based on descriptive methods. They are 
broadly divided into two types, such as rule-based control strategy and optimization-
based control strategy. These approaches are subdivided further on the way they are 
employed, which is shown in Fig. 3. 

Control strategies focusing on rules help achieve fuel economy, productivity, 
optimal output, and lower pollution for a particular drive cycle. They are described 
by a series of parameters that are pre-programmed using specific mathematical 
models into the framework. Due to their simplicity, researchers have turned toward 
optimization-based strategies, involving an optimal method by minimizing the cost 
function. 

Using the past as well as future information, regarding the trip controllers are 
designed. Most advanced control techniques involve a real-time data collection 
through sources such as on-board sensors and encoders. 

2.1 Rule-Based Control Strategy 

In a PHEV, the key goal of a rule-based strategy is to obtain optimum effectiveness. 
Moving the electric machine and the engine at its highest efficiency utilizing the

Control Strategies 

Rule Based 

Fuzzy Rule 
Based

-Predictive 
-Adaptive   
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Deterministic Rule 
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-Sate Machine
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Fig. 3 PHEV control strategies [11]
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all-electric range (AER) and maximum energy regeneration. There will not be any 
knowledge of the trip as the rules are predefined to get the desired output. It works 
on wide range of conditions without the knowledge of the trip beforehand. Changing 
of modes between one and the other depends on the acceleration and deceleration 
needed, engine and motor power demands, vehicle speed, and the SOC of batteries.

The following are the real-life rule-based strategies applied in Prius, a bend of both 
series and parallel topology (a) full EV mode of operation: If there is sufficient SOC 
in the battery, vehicle running at low speed and adequate coolant temperature. (b) 
Engine and motor sharing the power: When the engine is ON and the battery SOC is 
over the required SOC. (c) The engine only operation and charging of battery: When 
the battery’s SOC dropped below the required SOC, (d) when the energy demanded is 
negative and the engine is OFF, the negative power needed is retained in the batteries 
utilizing the regenerative braking. 

A simple rule-based simulation run by bavait and anwar, proposed a rule-based 
controller compared with the simple rule-based model in ADVISOR software, using 
several drive cycles for Toyota Prius with a planetary gear train acting as a speed 
coupler. They proposed a set of new rule-based strategies. “(a) When the battery 
SOC falls below the aim level and the vehicle requires a positive power condition, 
the engine must be switched on. (b) When the battery’s SOC reaches its intended 
capacity and the vehicle’s power output is less than the full power that the engine will 
produce but is optimistic, the engine will be switched off. (c) When the battery SOC 
reaches its intended cap and the power needed by the vehicle exceeds the available 
power supplied by the engine but is optimistic, the engine shall be turned on. (d) 
When the vehicle’s power requirement is negative and the battery’s SOC is below its 
upper limit, the engine must be turned off” [15]. It is observed that Toyota Prius’s 
basic rule strategy for a PHEV gave a 74.8 MPG mileage while PHEV’s alternative 
or proposed rule-based control strategy produced an 87.6 MPG mileage for the 37.2-
mile drive loop. The engine’s function output improved 6 percent from 29 percent 
using the Prius approach to 35 percent using the RBS approach suggested. 

Rule-based strategies are also known as a mode selector type system where a 
set of modes is shifted based on the battery’s SOC characteristics. A simple mode 
selector energy consumption strategy is shown in the Fig. 4. 

2.1.1 Deterministic Control Strategy 

A deterministic strategy is based on certainty since there is no randomness. All the 
rules are based on certain predefined formulations. Rule-based controller operates 
on a bunch of rules set before the actual operation [17], and inputs are made instanta-
neously from the decision-making models. The undeveloped determined rule-based 
control strategy is the ON and OFF of ICE that is thermostat supervisor. It runs on 
the simple principle that the vehicle engine will be turned ON and OFF based on the 
ESS SOC values and the required torque. 

A power follower system is used in this method, normally employed at minimum 
vehicle speeds. The motor is used to produce excess power when there is a greater
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Fig. 4 Energy utilization 
mode switch control strategy 
[16] 

demand of power. The motor charges the battery by regenerative braking. Hmidi, 
Salem et al. carried out a simulation [18] using a deterministic rule by the start/stop 
of the engine, electric assistance, i.e., boost function, regenerative braking with on-
board charging at low speeds, is developed in an HEV. With 15–20 kmph speed and 
varying SOC values, it is observed that hybridization can significantly reduce fuel 
consumption by 10–15% on urban road and highway conditions. Applying it to a 
PHEV can increase efficiency even better. 

Following these CS models, Toyota (Prius) and Honda (Insight) HEVs run on 
charging sustaining mode in ESS following a parallel topology of the drivetrain. 

2.1.2 Fuzzy Logic Rule-Based Control Strategy 

Fuzzy logic can be named as an extension of the deterministic rule-based approach. 
It is an ideal strategy for non-linear, time-varying systems as they are robust and 
adaptable to any situation. It gave a profound notion to the controller developed by 
Hmidi et al. [18] and gave a higher fuel economy. These are built on fixed rules 
that mainly run on CS rule-based model. These logics evaluate the driver’s normal 
behavior, and they function accordingly. A controller that can pick the points of 
action by the lowest effect on fuel’s economy, as instigated by Johnson [19], gave a 
better fuel economy compared to simple controls based on rules. It is impossible to 
optimize a system of more than two variables, which makes it a device constraint. 
The difficulty of the simulation makes it challenging to implement in real life. The 
system designed to use the depletion mode of charge instead of the maintaining mode 
of charge would have the highest fuel output [20]. Figure 5 shows the different modes 
AE mode, CS mode, CD mode based on SOC and time profile. 

Logical relations AND and NOT (even OR) are used in the fuzzy laws of Table 
1. The Boolean logic which is a traditional one was generalized to fuzzy alternatives 
for this purpose. These fuzzy equivalents can be implemented in many ways but in
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Fig. 5 SOC profile with 
time [11] 

Table 1 Sample rules for 
fuzzy logic control of a 
PHEV [21] 

Rule base of the fuzzy logic controller 

1. If SOC is too high, then Pgen is 0 kW 

2. If SOC is normal and Pdriver is normal and ωem is optimal, 
then Pgen 10 kW 

3. If SOC is normal and ωem is not optimal, then Pgen is 0 kW 

4. If SOC is low and Pdriver is normal and ωem is low, then 
Pgen is 5 kW 

5. If SOC is low and Pdriver is normal and ωem is not low, then 
Pgen is 15 kW 

6. If SOC is too low, then p gen  is  Pgen, max  

7. If SOC is too low, then scale factor is 0 

8. If SOC is not too and Pdriver is high, then Pgen is 0 kW 

9. If SOC is not too low, then scale factor is 1 

general, AND is the minimum operator used, NOT is for simple compliment, and 
OR is the maximum operator. Using these fuzzy set, a fuzzy controller can be built. 

The perceptive mechanism used in fuzzy logic can be explained in four key steps 
[21]

• Fuzzification: Using the membership functions, the three input values of the degree 
membership of a fuzzy logic controller are computed.

• Degree of Fulfillment: This is the degree to which the rules are valid, when the 
precursor of every rule from Table 1 is figured using fuzzy logic operator.

• Inference: If–then the operation constitutes implication. The degree of the enforce-
ment standard is used to alter the rules accordingly. It is done by multiplying the 
amount of fulfillment of the precedent by the resulting rule. Table 1, rule 2 is an 
example.

• Aggregation: For every output of a controller, the outcomes are combined into 
a specific value from the inference step. By taking the average of the inference 
results, this is done.
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For the default controller, all components’ performance is lower, except for the 
ICE where the default controller’s optimization is more efficient. There is no trade-off 
between the performance of the other PHEV modules and the ICE engines’ perfor-
mance. Therefore, the ICE’s operating points are closer to the default controller’s 
optimum curve than for the FLC [21]. 

Results of simulation applying the different drive cycles suggest possible changes 
utilizing the fuzzy reasoning defined in the SAE J1711 standard compared to other 
techniques that only maximize ICE efficiency [22]. 

2.2 Optimization-Based Control Strategy 

Local optimization is the significant limitation of a rule-based CS as we cannot opti-
mize the PHEV as a unit. Two primary standards are present for a global strategy, 
one focused on past evidence, and the other focused on the compilation of real-
time data. In a set of rules, optimization takes place with the learning system while 
responding to the situation. They were considering maximum performance require-
ments from the powertrain configuration. It also allows two factors, i.e., mileage 
levels and pollution expectations, to be combined into a minimized cost function. 
The fuel efficiency depends mainly on the controller’s capacity to maximize, and the 
controller can forecast the potential condition of the trip correctly. A lot of effort to 
enhance the performance is noticed, but the right balance of application is difficult 
in optimization. 

2.2.1 Global Optimization System 

Optimization-based management methods, as they refer to HEVs and PHEVs, are 
typically divided into two groups. Technical developments such as the global posi-
tioning system (GPS), global information system (GIS), traffic data collection in 
real-time, and Internet maps have rendered it simpler to schedule a trip [23, 24]. 
Linear programming is one of the commonly used optimization methods. When 
a PHEV is designed and a controller is installed, it should match the global opti-
mization model. “Together, an engine and an electrical machine power a PHEV, 
and parallel topologies directly relate to the two elements torques and speeds. The 
control theory method exploits this relationship to define a cost function using only 
two decision variables” [25]. The Bellman principle [26] taking the engine torque 
as the criteria of command, a real-time control strategy using MATLAB Simulink 
is developed. During the cycle, the energy loss is minimized. A generic algorithm 
is also one of the non-linear optimization methods [27]. Such strategies rely on the 
direction, road profile, congestion level, atmospheric conditions, and further details 
taken from the global position system (GPS), intelligent transport systems (ITSs), 
geographic information systems (GIS), and traffic modeling [28, 29].
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2.2.2 Real-Time Optimization 

Real-time optimization majorly uses past data in analyzing and optimizing a trip. 
Various techniques have been used for programming the techniques, and dynamic 
programming (DP) is one among them [28]. A DP is a closed-loop form of optimiza-
tion strategy. In general control questions, DP is an algorithm capable of evaluating 
the best possible global solutions. Taking into consideration the current and poten-
tial consequences of management choices, the desired approach is accomplished 
by reducing undesirable outcomes [29–31]. It is used in any problem to which the 
findings are to be made in steps to find a minimal decision pathway [32–34]. A 
dynamic programming algorithm consists of the engine’s battery level and speed, 
which influences the rate of fuel and is regarded as regulated or controlled vari-
ables are induced. This gives very high-computational cost—however, two degrees 
of freedom of optimization. The flowchart shows steps involved in DP in Fig. 6. 

The motor constraints, the battery, and the engine, should be considered correct, 
and the engine fuel rate should be calculated using different battery currents. Simul-
taneously, it is possible to build up the cost to go matrix, then an optimal SOC curve 
and maximum battery current with various starting SOC can be determined.

Fig. 6 Procedure of dynamic programming method [35]



Review of Energy Management Strategies in Plug-in … 93

Table 2 Vehicle parameters 
[35] 

Vehicle type Plug-in split HEV 

Vehicle mass 1641.3 kg 

Engine power 57 kW 

Motor power 25 kW, peak power 50 kW 

Generator power 15 kW, peak power 30 kW 

Planetary gear set Sun gear 30 teeth 
Ring gear 78 teeth 

Battery Lithium-ion battery 
Rated capacity 20 Ah 
Rated voltage 356 V 

With the number of drive cycles simulated by Chen and Xu using dynamic 
programming taking Table 2 of the vehicle parameters, it is observed that the default 
algorithm discharges the battery quicker than the DP method. The level of engine 
efficiency based on various algorithms are being compared. The average engine effi-
ciency is observed to be higher when the DP method is applied compared with the 
default algorithm. The contrasts will illustrate to some degree how the DP system 
will minimize fuel consumption.

(a) Deep Neural Networking 

Neural networks offer brain-like activity inspired by biological brain behavior. 
Depending on the input characteristics, the signals are sent to other neurons like 
in the brain as it sends to other neurons through dendrite. These processes are 
usually expressed with transfer functions [36]. Layers are built combining the neuron 
network. Based on complexity, desired fidelity, and model nonlinearity, the density 
of neurons may change. Training data are required to determine the neuron parameter 
calculation [37]. 

The error backpropagation is used for enhancing error convergence in NN, which 
optimizes the training data error. A least-squares regression process is used in 
training, where the initial values of dendrites weights are assigned randomly [36, 
38]. The NN performance is influenced directly by the quality of training, e.g., 
overfitting risk. However, an optimal amount of training data exists, and therefore, 
there will not be any improvement in performance with excess training data. The 
construction of a typical neural network is shown in Fig. 7. 

A power-split hybrid-EV EM system cantered on machine learning by Murphey, 
which is trained by dynamic programming that combines terrain knowledge with the 
jamming level forecast, and applied NNs concept to enhance battery performance 
and speed of the engine [39]. 

Khayyam and Bab-Hadiashar [40] projected a neural network application in 
hybrid multilayer adaptive fuzzy neuron interpretation, to increase and adapt the 
application range, the fuzzy logic controller is given learning characteristics with the 
help of NN. They have designed a controller that can spontaneously tune the values
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Fig. 7 Neural network strategy in real versus predicted velocities [36] 

themselves, according to the influence of roads, driver’s behavior, and environmental 
conditions. 

Chen et al. [35] give intelligent controllers the need for a wide range of use 
and follow a good trade-off between computational effort and algorithm robustness. 
To lessen the fuel consumption of a PHEV, the author employs NN, which takes 
training data from wide-ranging driving conditions. Working with different levels of 
trip information, the NN consists of modules N1 and N2. 

Incorporating neural network into a model predictive control in the short term 
by Sun et al. also presented a machine learning-based NN algorithm and claimed to 
have a 92% fuel optimality compared to a DP algorithm [41, 42]. 

Game theory, sliding mode controller, convex programming, and analytical 
solution are some of the futuristic control strategies. 

(b) Energy management using a vehicle-to-vehicle interaction with intelligent 
transport. 

The increase in the advance driving assistance system and intelligent EMS makes 
possible shifts toward predictive EMS. Optimum productivity needs to take the most 
useful trip data, mainly from Google services. Such data gathered were used in 
combination with predictive model control by Sun et al., he also built a two-stage EMS 
controller for a power-split PHEV. For an optimized SOC reference path, real-time 
traffic information is collected for running a long term with the supervised control 
system. Over the last few years, connected and intelligent vehicle technology has 
surfaced to catalyze the optimal fuel economy in an eco-driving system developed by
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Ko et al. considering traffic signals and leading vehicles the power demand assumed 
[43–45]. 

Vehicles run mostly on random and transients and majorly depend on traffic, road 
type, weather, driver style. Thus, random and biased errors are observed in vehicles 
[46]. 

3 Moderns Control Strategies for HEVs 

In providing an efficient power system, the current power demand and the future 
power requirement have to be determined. This gives a real-time distribution of 
the total decision variable. In an extreme learning machine algorithm (ELM) 
developed by Zhang et al. [47] considering traffic and urban driving conditions, 
with vehicle-to-vehicle (V2V), a one-step model is designed. A multi-step optimal 
algorithm with many single steps is built for driver torque demand prediction. 

Consumption of fuel and environmental pollution is drastically reduced with the 
application of advanced control strategies. Based on the driving conditions like urban 
environment and traffic conditions, the SOC values’ variation plays a major role in 
planning a CS. In a study by Erfan et al. [48], a new rule-based CS with SOC 
parameters and teaching learning-based optimal CS is employed. It is observed 
that an optimal charge-depletion strategy (OCDS) can significantly improve fuel 
consumption than an AER-focused CS. An OCDS is used in a long trip, whereas an 
AER is more efficient for a shorter trip. 

Sometimes, there may be a condition where prior knowledge of the trip is not 
present, and a deep-reinforced learning (DRL) can be used. “It observed that orig-
inal DRL-based EMS achieves an average 3.5% gap from benchmark compared to 
model predictive EMS” [49]. 

Table 3 illustrates the pros and cons of various energy management strategies that 
are used in PHEVs.  

4 Conclusions 

The following inferences are drawn from the review of the technical papers published 
on hybrid-electric vehicle energy management strategies. 

Plug-in hybrid-electric vehicle (PHEV) configuration is a promising transporta-
tion mode because of its range extender ability. Energy management strategies 
adapted in PHEVs can be broadly categorized as rule-based (RB), optimization-
based (OB), and learning-based (LB) strategies. Rule-based strategies are easy to 
program and cost-effective. However, no on-board prediction capabilities make them 
insignificant. 

Adaptive control algorithms like fuzzy logic, dynamic programming, and deep 
neural networks increase the fuel economy and reduce emissions. Most of these
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Table 3 Main EMS strategies and their application summary 

Strategy Main advantage Main 
disadvantage 

Simulation 
result (if any) 

References 

General rule-based Balanced SOC Not optimal NA [14, 15, 17, 50] 

Predicted rule or new 
rule-based (anwar and 
bavait) 

Increased SOC Lacks 
real-time data 

The mileage of 
the PHEV 
increased by 
16% 

[15, 17] 

Deterministic Computational 
simplicity 

Only 
applicable for 
series hybrid 
powertrain 

NA [17, 50] 

Fuzzy logic Can be Easily 
tuned 

Very complex The drive 
cycle by SAE 
J1711 gives 
optimal 
efficiency 

[8, 19–21, 23] 

Global optimization 
system 

Optimal solution Cannot be 
implemented 
in real-time 
system 

NA [24–29] 

Real-time 
optimization 

Instantaneous 
minimization of 
the cost function, 
does not need 
proper knowledge 
of the drive cycle 

Values of 
equivalence 
factor are 
difficult to 
obtain for 
different DC 

The average 
efficiency of 
the engine is 
higher 

[30–33] 

Deep neural network Very adaptive Difficult to 
program 

NA [35–40] 

Vehicle-to-vehicle 
interaction/intelligent 
transport 

Trip-based online 
system 

Random and 
biased errors 

NA [44–46] 

algorithms require the drive cycle information beforehand, or a training system is 
necessary in neural networks. Versatile energy management strategies in hybrid-
electric vehicles can include a blend of various techniques (RB, OB, and LB), forming 
an integrated EMS (iEMS) toward improved fuel economy and performance. 
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