®

Check for
updates

A Robust Malware Detection Approach
for Android System Based on Ensemble
Learning

Wenjia Li®, Juecong Cai, Zi Wang, and Sihua Cheng

Department of Computer Science, New York Institute of Technology, New York,
NY 10023, USA
wli20@nyit.edu

Abstract. Asthe number of mobile devices which is based on the Android system
continues to grow rapidly, it becomes a primary target for security exploitation
through undesirable malicious apps (malware) being unwittingly downloaded,
which is often due to negligent user behavior patterns that grant unnecessary
permissions to malicious apps or simply malware evolving to be sophisticated
enough to bypass systematic detection. There have been numerous attempts to use
machine learning to capture an application’s malicious behavior focusing on fea-
tures deemed to be germane to high security risks, but most of them typically focus
only on a single algorithm, which is not representative of a huge family of ensemble
techniques. In this paper, we develop an ensemble learning based malware detec-
tion approach for the Android system. To validate the performance of the proposed
approach, we have conducted some experiments on the real world Android app
dataset, which contains 3618 features that are initially obtained from the static,
dynamic and ICC analyses. We then select 567 important features through fea-
ture selection. The overall detection accuracy is 97.73%, accompanied by a high
97.66% F-1 score that reflects a high relationship between precision (97.06%) and
recall (98.28%). The experimental results clearly show that the ensemble learn-
ing based malware detection approach could effectively identify malware for the
Android system.

Keywords: Android - Security - Malware - Machine learning - Ensemble
learning

1 Introduction

In the second quarter of 2021, the Android operating system is reported to have 72.84%
share of the mobile operating system market, which continues to dominate the mobile OS
market throughout the world [1]. Given how commonitis to find an Android device today,
it is without doubt that its prevalence and open source nature easily opens up security
vulnerabilities, where various security exploitations are used to gain unwanted access
into Android phones. While Google Play provides some level of security protection, it
is still inevitable that break-ins still occur [2].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
G. Wang et al. (Eds.): UbiSec 2021, CCIS 1557, pp. 309-321, 2022.
https://doi.org/10.1007/978-981-19-0468-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0468-4_23&domain=pdf
https://doi.org/10.1007/978-981-19-0468-4_23

310 W.Lietal

The Android platform is known to be a permission based system [11]. The apps are
required to explicitly request for a corresponding permission from the user during the
installation process to perform certain tasks on the Android devices, such as sending a
SMS message or gaining access to the Internet. However, many users tend to arbitrarily
grant permissions to unknown Android apps without even looking at what types of
permissions they are requesting, therefore significantly weakening the protocols set in
place for protection provided by the Android permission system [3, 5, 13].

Apart from user problems, malware themselves have become adept at circumventing
standard detection protocols such as Google Bouncer and other standard anti-intrusion
gateways that Google uses as deterrence. The Google Bouncer is capable of reducing
the number of malicious apps by as much as 40% [3], but its predictability makes it easy
to overcome. Google Bouncer uses the generic and open source QEMU as a machine
emulator [4], and only performs dynamic analysis. In 2017, Google Bouncer became
part of Google Play Protect, which is a system that regularly scans Android apps for
potential security threats.

There are two broad methods of bypassing the security mechanism deployed at
Google Play, which are namely Delayed Attack and Update Attack [3]. Delayed Attack
involves meeting Bouncer’s basic criteria, meaning an app with malicious payload (i.e.
Trojan) does not misbehave during dynamic analysis and pretends to be “clean” until
the five-minute scan has passed. The malicious code only starts to run after the app
is downloaded onto the Android device. Update Attack is even harder to detect than
Delayed Attack because the app does not even have to contain any malicious component
at all. The basic app is downloaded as clean, but once on a device, it starts to “update”
itself with malicious code or connect to a remote server to upload stolen personal data [3].
These malicious apps can make themselves behave like legit apps and are only flagged
as malicious when they activate selected functions to perform their infiltration process.
As such, it becomes more difficult to identify a malware because it can cleverly disguise
itself from detection by either suppressing its malicious “tendencies” or simulate benign
app behavior during the detection phase, until they gain access into a user’s phone.

With so many varieties of Android malware, it is fair to hypothesize for the need to
have an algorithm that is capable of detecting different types of malware. However, most
of the prior research efforts typically focus only on using one single algorithm to detect
malware, which may not work well on various types of Android malware. By applying
the concept of ensemble learning, there could be many different ways in which one can
effectively combine those algorithms together to achieve better detection results. Thus,
it makes more sense to find the best algorithm that brings the most optimized results
to solve the problem, preferring flexibility over proving the effectiveness of one single
algorithm [12].

Ensemble learning is chosen because it has a proven track record in many fields [15],
and more importantly, it is flexible and customizable, allowing many combinations.
Using multiple learning algorithms tends to obtain better performance compared to
any single learning algorithm, and most of the ensemble algorithms are fairly easy to
implement, scale well to large datasets, and are quick to execute.

A Robust Malware Detection Approach 311

The main contributions of this paper are:

e We implement multiple ensemble algorithms at the same time for comprehensive
in-depth comparison measured by different metrics such as accuracy, precision and
recall. On top of that, this paper will also compare the performance of ensemble
learning algorithms with those of individual machine learning algorithms to illustrate
the effectiveness of the ensemble algorithms.

e We deploy multiple algorithms as a basket of models with diverse applications, and
then combine the accuracy scores using an ensemble voting algorithm to boost results.

e We illustrate the feasibility and performance of the proposed malware detection app-
roach using a real world Android app dataset. Experimental results show that the
ensemble learning based malware detection approach can effectively identify malware
with very high accuracy.

2 Related Work

2.1 Common Techniques Used in Malware Detection

A recent survey has been conducted by Liu et al. [8]. In this work, the authors first
introduce the basics of Android applications, including the Android system architecture,
security mechanisms, and classification of Android malware. Then, the authors analyze
and summarize the current research status of malware detection from different aspects,
including sample acquisition, data pre-processing, feature selection, machine learning
algorithms, and the performance evaluation.

Kouliaridis et al. [12] summarized several papers that adopted different algorithms to
detect malware, and quickly noted that a singular view of using static or dynamic analysis
alone have proven to be unreliable as they can be easily evaded with code obfuscation
and execution-stalling techniques respectively.

2.2 General Benchmarks

First and foremost, Drebin [16] makes up an important part of this study since all our
malicious apps came from the Drebin study, making it a requisite benchmark for future
comparisons. Drebin is a lightweight method for Android malware detection that works
directly on the smartphone like an anti-virus software and identifies suspicious apps
by name and attribute at the same time. It uses broad static analysis to collect features
from 123,453 apps, with 5,560 of them being malware. As a pioneer, Drebin had a
performance of a 94% accuracy score with few false alarms (false positives) of 1%, and
explanations were provided for each malware detected, stating their properties - thus
setting a very high bar for future studies. It was tested on five popular smartphones with
an average runtime of 10 s per analysis [16].

Another high performing example is Yerima et al. [15] using Ensemble Learning
on malware detection, promised to be high accuracy using 179 different features from
diverse categories of malware behavior, emphasizing on robustness and diversity to
malware problem solving. The experiment used a total of 6,863 Android applications

312 W. Li et al.

that they got from McAfee’s internal repository, out of which 2925 were malware and
3938 apps were benign. The best results that Yerima et al. has yielded is from combining
Random Forest with Naive Bayes, scoring an accuracy of 97.5%, with a false positive
rate of around 2.3% and an AUC of 99.3%. However, our research does not use the AUC
but instead calculates using the F-1 score to decide the relationship between precision
and recall. Random Forest is used because randomness provides diversity in samples and
robustness in speed of execution without having too much data processing. Interestingly,
the Yerima et al. features did not exactly come from diverse sources as the study claimed,
because it only made use of static analysis from permissions and API-calls. Judging from
the results, it does seem like just crawling features from these two areas are more than
enough.

Yang et al. came up with DroidMiner [17] that implemented one ensemble learning
algorithm, namely the Random Forest algorithm, comparing its effectiveness against
Naive Bayes, Support Vector Machine (SVM), and Decision Tree. They evaluated 2400
malicious apps out of a corpus of over 77,000 apps, made up of 67,000 third party apps
and 10,000 from Google Play. DroidMiner achieved the highest accuracy achieved on
Random Forest with 95.3%. The other scores are 82.2% for Naive Bayes, 86.7% for
SVM and 92.4% for Decision Tree.

2.3 Collecting Features

Wang et al. came up with the top 40 most risky permissions [19], where the team had
analyzed the risk of individual permissions and collaborative permissions by groups
using machine learning techniques, and then performed feature ranking on them. Wang
et al. reasoned that although Android enforces restrictions through a dual-party system,
the Android system does not always require full declaration of permissions, while users
are not always aware of the exact purpose of granting access to certain app functions
[10, 19]. Apps can end up requesting for unnecessary permissions, resulting in over-
privileged applications that often leave security loopholes that malware can quickly
exploit. The results were classified using the Support Vector Machine (SVM), Decision
Tree, and Random Forest techniques [19]. In addition, there were also other malware
detection approaches which used various machine learning and deep learning algorithms
based on permissions, API calls and other internal app features [30-37].

Comar et al. warned that for new-generation malware, the static detection method
is no longer effective, known as zero-day malware [13, 14]. A zero-day malware (also
known as next-generation malware) is a previously unknown malware for which specific
antivirus software signatures are still unavailable. It is a vulnerability in software not
known to the vendor, which can be exploited by hackers before the vendor becomes aware
and patches a solution to fix it [14]. Therefore, apart from permission features, efforts
should be made to venture into other avenues of features collection such as dynamic,
ICC analysis, or other out-of-box areas as well.

Instead of simply going for inherent features of Android apps like permissions, API-
calls, CPU usage and system calls, Munoz et al. [10] focused their study on identifying
what they call indirect features or meta-data, mentioning that Google Play is also a
fantastic repository of information for helping detect a malware, focusing on Application
Category, Developer-related, Certificate-related features, and Social-related features.

A Robust Malware Detection Approach 313

Munoz et al. [10] collected a total of 48 features, and used Logistic Regression as
their classifier, with the results showing that social-related features are not very useful.
Some of the features categories showed high accuracy scores, but the precision, recall and
F-1 are lackluster. On the other hand, developer-related and certificate-related features
did show good promise. The study managed to greatly reduce their false negative rate
but at the expense of their false positive rate, which they did not publish figures for.

2.4 ICC Analysis Using Intents and Intent-Filters

Apart from permissions, the Android system also uses intent and intent-filters as a mech-
anism for inter-process communication (ICC) between functions. The intent mechanism
is predominantly for starting an activity, a service or sending a broadcast [6]. Explicit
intents are normally safe and straightforward in its intention to access activities on an
app, while implicit intents are not recommended as it contains inherent unsafe automatic
app usage associations tied to them that may bypass the users’ knowledge of app activity.
Malicious apps can take advantage of this vulnerability to gain access to high security
permissions through intent interception or intent spoofing.

Xuetal. [9] came up with the idea to trace malware by capturing ICC usage data from
apps, and created a program named ICCDetector, which can tackle the problem of false
positive and negative rates. They noted that Kirin [28] detects malwares by matching
their required permissions against pre-defined security rules, while both DroidMiner [17]
and DroidAPIMiner [7] build malware detection models based on API-related features.
The weakness of these methods is that they treat the detected applications as standalone
entities in Android platforms, assuming that the Android OS will keep separate apps
mutually exclusive from each other, when in actual fact, resources could be shared
through ICC means that is often overlooked.

3 Ensemble Learning Based Malware Detection for Android

3.1 System Architecture

The overall system architecture is shown as in Fig. 1.

malicious applications

p- N
ll

benign applications

Feature Extraction and Detection Result

Reduction

Ensemble Learning

Android
application
dataset

Permissions

Boosting

API Calls

Voting

Fig. 1. Overall system architecture

In this work, we adopt the bucket of models [23] concept where a basket of algo-
rithms is put together, the results are voted, and among all the accuracy scores, the best

314 W. Li et al.

performing algorithm is chosen. The algorithms that we use in ensemble learning could
be classified into two broad categories, one being ensemble learning models for bagging
and boosting, and the other is a group of widely used machine learning algorithms such
as Support Vector Machine (SVM), k-nearest neighbors (k-NN), etc. All of them will
be put to a vote, which is also an ensemble algorithm, and all the algorithms, including
the voting ensembles are sorted, and the top performing algorithm is chosen to ensure
optimized results.

3.2 Decision Tree

We will first address the Decision Tree learning algorithm [20] as it is the basic function
for most of the ensuing Ensemble Learning algorithms. Decision Tree generally uses
greedy search as its searching strategy [20]. It has two criteria by which to split a tree
to derive its results, namely the Gini Impurity or Entropy. By default, Python operates
the Decision Tree classifier using the Gini Impurity if no further instructions are given.
Using either does not seem to make a big difference in result in this particular study,
as the accuracy scores of both criteria based on the dataset of this study reap about the
results, with a difference of about 0.5%, which is insignificant.

The Gini Impurity [20] is a measure of the frequency of misclassified labels of
randomly chosen samples in the branch. It is used to compute the impurities present in
the partition dataset. It is defined as follows.

CGEDMIVIENED SN CED ED SANED W EIED B W
itk
(1)

Where f; is the probability of an item with the label i being randomly chosen, while
(1 — f;) is the probability of the labeling being a mistake. The Gini Impurity is the sum
of f; multiplied by (1 — f;) , with i starting at 1 all the way till J, where J is the total
number of classes or features within the set.

Entropy [21] is for calculating information gain, where it is defined as follows.

J
H(T) = Ig(p1,p2, op) = =) pilogap; @)

Here, p1, p2,..., pn represent the percentage of each class present in the child node that
results from a split in the tree, and all the percentage ultimately add up to 100% or the
fraction value of 1.

Information gain [21] is calculated as the difference of the entropy values from where
the tree splits due to a reduction of entropy until values become homogeneous, when no
more information can be gained. It is represented in the formula below.

IG(T, a) = H(T) — H(T /a) 3)

It is important to note that the Decision Tree is not without limitations [20, 21]. It has
problems expressing hard-to-learn concepts such as XOR, parity or multiplexer problems
[22]. It also tends to be biased when using Entropy for information gain calculations, as

A Robust Malware Detection Approach 315

it tends to favor attributes with more levels. It is very data sensitive, where a small change
in the dataset can result in big changes in how the tree splits and therefore affecting the
final prediction. Greedy search strategy is the Decision Tree’s biggest flaw as it takes the
most “convenient” close-by result and hence tends to return a favorable optimal local
result but does not do a thorough and complete clean search through the entire tree, and
hence does not always return the best optimal general result for the whole tree.

Due to this shortcoming of the Decision Tree algorithm, its accuracy and predictivity
often suffers, especially when too many classes or features are involved, as the Decision
Tree algorithm performs best when the trees are small. As such, it can have a problem
of overfitting data. However, as mentioned, it works great as a base skeleton, and this
study will build on the Decision Tree to improve its predictive via enhancements using
various Ensemble Learning techniques. The three most popular methods for combining
the predictions from different models currently are Bagging, Boosting and Voting.

3.3 Bagging

Bagging is fully known as Bootstrap Aggregation, which generally involves taking mul-
tiple samples from the training dataset and then training a model from each sample. Bag-
ging generates multiple models using the same algorithm, using random sub-samples of
the dataset drawn using the bootstrap sampling method from the original dataset, where
some original examples may appear more than once and some not present in the sample.
The final output prediction is averaged across the predictions of all of the sub-models.

Bagging performs best with base algorithms with high variance, and is excellent at
reducing variance, thus stabilizing and improving the predictive performance. Unlike
Decision Tree, Bagging uses more than one tree, and the user can either specify the
maximum number of trees, or the algorithm will keep running until it runs off branches
to splitinto. The samples of the training dataset are taken with replacement, which means
the object is put back into the bag so that the number of samples to choose from is the
same for every draw when constructing the model.

The three bagging models studied in this research are described as follows [18].

Bagged Decision Trees. The various bagging models are actually very similar to each
other, and each can be said to be a level-up improvement of the other. Bagged Decision
Trees is the most basic of the method. As its name suggests, it uses a Decision Tree as a
base-estimator [18], and then does multi-sampling and can have multiple trees, and the
results were combined using averaging to overcome the shortcoming of using a single
tree. Decision trees that grow very deep tend to learn highly irregular patterns, and overfit
their training sets. They may have low bias but end up with very high variance due to
noise in the training data. Bagging is thus great for variance reduction without raising
the bias.

Random Forest. Random forest [24] is an extension of bagged decision trees, and it
does not train greedily when choosing the best split point in the construction of the tree,
instead a random subset of features is considered for each split. This is also known as
“feature bagging”, and features that are deemed as strong predictors for output classifi-
cation will be repeatedly chosen by most trees, thus causing correlations between trees.

316 W.Lietal

Random Forest can deal with large numbers of training instances, missing values, and
irrelevant features without running into problems. Random Forest deals with more than
one tree and has multiple models. It reduces variance by averaging the predictions of a set
of m trees with individual weight functions Wj, and can be represented by the following
prediction function, which is similar to the K-Nearest Neighbor (KNN) algorithm but
taking into account the number of trees and features used in the Random Forest [24, 25].

Extra Trees. Extra Trees does not mean that the algorithm involves using even more
trees, but rather takes randomization up one notch from Random Forest. Instead of using
the Gini Impurity, Entropy or feature calculation is used to decide a split in the tree,
Extra Trees selects a random value for each feature under consideration based on the
bootstrap sample, which is random sampling with replacement.

3.4 Boosting

The purpose of boosting algorithms is mainly for reducing bias and variance and turning
weak learner algorithms into strong ones [26]. It achieves this by creating a sequence of
models that attempt to correct mistakes of the models that came before in the sequence.
Each model makes predictions which are weighted by their accuracy and results are
combined to produce a final output prediction. The sequence starts with weights that
are assigned according to the weak learner’s accuracy. The weights are re-adjusted as
misclassified samples gain weight and correct classifications lose weight, helping the
algorithm to “learn its mistakes”.

The two main algorithms often used in boosting techniques are Gradient Tree
Boosting and AdaBoost, which are described further below.

Adaboost. AdaBoost, or Adaptive Boosting, begins by fitting a weak learner classifier
on the original dataset and then fits additional copies of the same classifier on the same
dataset, adjusting the weights of misclassified instances so that subsequent classifiers
focus more on difficult cases.

Gradient Tree Boosting. Gradient Tree Boosting or Gradient Boosted Regression
Trees (GBRT) is an accurate and effective off-the-shelf approach and is usually used
with decision trees of a fixed size as base learners. It builds as an additive model in a
forward stage-wise fashion, and instead of learning from errors like AdaBoost, GBRT
optimizes its cost function by iteratively choosing samples that point in the negative
gradient direction. When dealing with regression trees, the GBRT is fit on the negative
gradient of the binomial or multinomial deviance loss function, using logistic regression
as loss function. On the other hand, it recovers the Adaboost algorithm for exponential
loss function.

3.5 Voting

Unlike Bagging and Boosting that build multiple models using the same algorithm,
voting combines the results from multiple algorithms where the majority vote wins. It
has the properties of error correction and predictive boosting.

A Robust Malware Detection Approach 317

There are generally two kinds of voting: the first is known as “Democratic Voting”,
where all members in the vote are assigned equal weights, and the other is “Weighted
Voting” where significant members that are better performers are given more weights
than poorer performers so that the predictive value will lean towards a classification that
tends to choose the more “correct” answer. Both voting techniques are generally fine, but
Kaggle [27] recommends using “3 Best vs the Rest” where higher weights are assigned
to the top three performers compared to the rest, and the results are generally slightly
better than the Democratic Voting technique.

4 Experimental Study

The experimental dataset consists of a total of 3618 features extracted from 4430 Android
applications, with a 50% malicious and 50% benign split. The malicious apps were
mostly from Drebin [16], while benign apps were directly downloaded from Google
Play. The features come from various sources such as permissions, API calls, system
calls (dynamic analysis) and ICC (inter-component communication). However, it should
be noted that most dynamic analysis and ICC features have either very sparse data or
have very rarely shared occurrences between apps.

The Extra Tree algorithm [29] has been used for feature reduction, which uses feature
importance ranking scores to weed out unimportant features that have zero values or are
not useful for telling apps apart. The dataset started out with 3618 features, and after
feature reduction, only 567 are identified to be important.

4.1 Necessity of Using Multiple Machine Learning Algorithms

This section aims to show the necessity of using multiple algorithms over just using
one. To make the experiments simple, the dataset has been randomly divided into three
different sets containing different numbers of features, and each set is executed twice
- once as a full dataset, and a second time after feature reduction, thereby creating 6
different scenarios to compare. Since the full dataset took a longer time to execute, the
execution time has been included to show how long it takes, and the result is about the
same as the one after feature reduction.

From Fig. 2, it can be clearly seen that from just using different numbers of features
alone, the algorithm that has the highest accuracy differs, which indicates that one single
algorithm is not always the best choice for every scenario. Thus, it is necessary to
implement a basket of models using ensemble learning techniques.

In addition, we also observe that the full dataset with 3618 features has an exaggerat-
ingly long execution time at 26745.15 s (about 7.4 h), which is a huge trade-off for the 1%
increase in accuracy from the dataset with 800 features, so more features do not always
help improve the performance. On the other hand, using feature reduction together with
our basket of models allows us an 84.8 times improvement (from 26745.15 s to 315.43
s) in execution time efficiency, achieving roughly the same accuracy at 97.58%. There-
fore, it is feasible to apply the ensemble learning technique, which can achieve similar
accuracy with much less time overhead.

318 W.Lietal

- Gradient Boosting: 40.29s 54 features Extra Tree: 48.94s
95.27% 95.17%

- Weighted Voting: 244.69s 151 features Extra Tree: 93.59s
96.62% 96.84%

- Extra Tree: 97.62% 26745.15s 567 features ~ Weighted Voting: 315.43s
97.58%

Fig. 2. Execution results by dataset

4.2 Performance Comparison of Different Algorithms

As shown in Fig. 3, all the algorithms listed in our basket of models have been applied
to the dataset, and the results are sorted by their accuracy scores in descending order. It
can be easily found that all the top performers are Ensemble Learning based approaches.
The only exception is AdaBoost which falls behind Logistic Regression (which is
not an ensemble learning based algorithm). Still, it performs better than most other
non-ensemble algorithms. Therefore, we can conclude that ensemble learning based
algorithms are the overall winners here.

At 97.73% accuracy, Weighted Voting is the best performing algorithm, while also
boasting the highest recall score at 98.28% which is excellent with only 1.66% false
negative rate. This means it managed to identify most of the malicious apps available
in the dataset despite the fact that it contains members in the vote with low scores, but
since the votes are weighted, chances are the weak votes have been compensated by the
stronger votes, and hence being resilient to those errors.

36|18 features, 567 reduced

Algorithm FN 10 FPOl Accuracy Precision Recall Fl

VotingWeighted 1.66% 2.87% 97.73% 97.06% 9828% 97.66%
VotingDemocracy 244% 2.64% 97.46% 97.26% 97.47% 97.37%
ExtraTree 2.88% 2.53% 97.30% 97.37% 97.01% 97.19%
GradientTreeBoosting 1.88% 379% 97.16% 96.14% 98.05% 97.09%
RandomForest 2.77% 3.10% 97.06% 96.79% 97.13% 96.96%
BaggedDecisionTree 2.77% 3.22% 97.01% 96.68% 97.13% 96.90%
LogisticRegression (Linear) 3.88% 3.79% 96.17% 96.06% 95.98% 96.02%
AdaBoost 5.43% 3.79% 95.39% 96.00% 94.37% 95.18%
SVC Radial 687% 2.87% 95.13% 96.89% 92.87% 94.84%
DecisionTreeEntropy 4.99% 6.55% 9423% 93.32% 94.83% 94.07%
K Nearest Neighbour 687% 529% 93.92% 9443% 92.87% 93.64%
DecisionTreeGini 5.43% 6.78% 93.90% 93.07% 9437% 93.71%
GaussianNaiveBayesB 322% 39.20% 7881% 70.40% 96.67% 81.47%

Fig. 3. Performance of ensemble learning based approach vs. single algorithm

A Robust Malware Detection Approach 319

5 Conclusion

In this paper, we propose a robust malware detection approach based on the ensemble
learning technique. The experimental study showed that it can achieve high accuracy,
recall and precision. Moreover, it is most interesting to note that through the experiments,
it turns out that despite the boosting and error correcting nature of the majority voting
based algorithms, they do not always guarantee the top results. They may be within the top
3-5 best performing algorithms, but depending on the dataset, bagging algorithms like
Random Forest or Extra Trees still prevail, and Gradient Boosting on certain occasions.

As for the future direction, we would like to explore the adversarial attacks against
the malware detectors, and how they could be coped with. Adversarial attacks have
recently become a major threat to the malware detectors, as they could mutate or tamper
with the dataset that the malware detectors are using. Consequently, the performance of
the malware detectors will be severely degraded in the presence of adversarial attacks.
Therefore, it would be valuable to do some research in how the adversarial attacks may
impact the malware detectors, and how to address these attacks.

References

1. O’Dea, S.: Market share of mobile operating systems worldwide 2012-2021. https://www.sta
tista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-
2009/. Accessed 29 June 2021

2. Cisco. Midyear Security Report (2015). http://www.cisco.com/web/offers/pdfs/cisco-msr-
2015.pdf

3. Trend Micro. A Look at Google Bouncer (2012). http://blog.trendmicro.com/trendlabs-sec
urity-intelligence/a-look-at-google-bouncer/

4. QEMU. 2016. http://wiki.gemu.org/Main_Page

5. Stefanko, L.: Android Trojan drops in, despite Google’s Bouncer. ESET, 22 September
2015-12:48 pm (2015). http://www.welivesecurity.com/2015/09/22/android-trojan-drops-in-
despite-googles-bouncer/

6. Android Developer. Intents and Intent Filters. https://developer.android.com/guide/compon
ents/intents-filters.html

7. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust malware
detection in Android. In: Proceedings of the 9th International ICST Conference on Secu-
rity and Privacy in Communication Networks (Secure Comm), Sydney, NSW, Australia,
September 2013, pp. 86103 (2013). https://doi.org/10.1007/978-3-319-04283-1-6

8. Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of android malware detection
approaches based on machine learning. IEEE Access 8, 124579-124607 (2020)

9. Xu, K., Li, Y., Deng, R.H.: ICCDetector: ICC-based malware detection on android. IEEE
Trans. Inf. Forensics Secur. 11(6) (2016)

10. Munoz, A., Martin, 1., Guzman, A., Hernandez, J.A.: Android malware detection from Google
Play meta-data: selection of important features. IEEE CNS 2015 poster session (2015)

11. Android Developers. Manifest permission (2016). http://developer.android.com/reference/
android/Manifest.permission.html

12. Kouliaridis, V., Kambourakis, G.: A Comprehensive survey on machine learning techniques
for android malware detection. Information 12, 185 (2021). https://doi.org/10.3390/info12
050185

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
http://www.cisco.com/web/offers/pdfs/cisco-msr-2015.pdf
http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/
http://wiki.qemu.org/Main_Page
http://www.welivesecurity.com/2015/09/22/android-trojan-drops-in-despite-googles-bouncer/
https://developer.android.com/guide/components/intents-filters.html
https://doi.org/10.1007/978-3-319-04283-1-6
http://developer.android.com/reference/android/Manifest.permission.html
https://doi.org/10.3390/info12050185

320

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

W. Lietal.

Comar, PM., Liu, L., Saha, S., Tan, P.-N., Nucci, A.: Combining supervised and unsupervised
learning for zero-day malware detection. In: Proceedings of IEEE INFOCOM 2013 (2013)
PC Tools, Symantec. What is a Zero-Day Vulnerability7(2010). http://www.pctools.com/sec
urity-news/zero-day-vulnerability/

Yerima, S.Y., Sezer, S., Muttik. I.: High accuracy android malware detection using ensemble
learning. IET Inf. Secur. (2015). ISSN:1751-8717. Doi: https://doi.org/10.1049/iet-ifs.2014.
0099

Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., Rieck, K.: Drebin: effective and
explainable detection of android malware in your pocket. In: NDSS 2014, 23-26 February
2014, Internet Society, San Diego (2014). ISBN:1-891562-35-5

Kutytowski, M., Vaidya, J. (eds.): ESORICS 2014. LNCS, vol. 8712. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11203-9

Scikit-Learn. Ensemble learning. http://scikit-learn.org/stable/modules/ensemble.html
Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X.: Exploring permission-induced
risk in android applications for malicious application detection. IEEE Trans. Inf. Forensics
Secur. 9, 1869-1882 (2014)

Lior Rokach, O. Maimon, 2008. Data Mining with Decision Trees: Theory and Applications,
2nd edn. World Scientific Pub Co Inc., Singapore (2007). ISBN: 978-9812771711

Witten, L., Frank, E., Hall, M.: Data Mining, pp. 102-103. Morgan Kaufmann. Burlington
(2011). ISBN: 9780-12-374856-0

Gareth, J., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning,
p. 315. Springer, New York (2015). https://doi.org/10.1007/978-1-4614-7138-7. ISBN 978-
14614-7137-0

Zenko, B.: Is combining classifiers better than selecting the best one. Mach. Learn. 2004,
255-273 (2004)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn.,
Springer, New York (2008). https://doi.org/10.1007/978-0-387-84858-7. ISBN:0-387-95284-
5

Lin, Y., Jeon, Y.: Random forests and adaptive nearest neighbors (Technical report). Technical
Report No. 1055. University of Wisconsin (2002)

Breiman, L.: Arcing [Boosting] is more successful than bagging in variance reduction. Bias,
variance, and arcing classifiers. Technical Report (1996), Accessed 19 Jan 2015

Kaggle. Ensembling Guide. https://mlwave.com/kaggle-ensembling-guide/

Enck, W., Ongtang, M., Mcdaniel, P.: On lightweight mobile phone application certification.
In: ACM Conference on Computer and Communications Security, pp. 235-245 (2009)
Scikit-Learn, Extra Tree Classifier. https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.ExtraTreesClassifier.html

Li, W., Ge, J., Dai, G.: Detecting malware for android platform: an SVM-based approach. In:
2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing, pp. 464—
469. IEEE (2015)

Wang, Z., Cai, J., Cheng, S., Li. W.: DroidDeepLearner: identifying android malware using
deep learning. In: 2016 IEEE 37th Sarnoff Symposium, pp. 160-165. IEEE (2016)

Monica, K., Li, W.: Lightweight malware detection based on machine learning algorithms
and the android manifest file. In: 2016 IEEE MIT Undergraduate Research Technology
Conference (URTC), pp. 1-3. IEEE (2016)

Li, W,, Wang, Z., Cai, J., Cheng, S.: An android malware detection approach using weight-
adjusted deep learning. In: 2018 International Conference on Computing, Networking and
Communications (ICNC), pp. 437-441. IEEE (2018)

Su, X., Liu, X., Lin, J., He, S., Zhangjie, E., Li, W.: De-cloaking malicious activities in
smartphones using HTTP flow mining. KSII Trans. Internet Inf. Syst. (TILS) 11(6), 3230-3253
(2017)

http://www.pctools.com/security-news/zero-day-vulnerability/
https://doi.org/10.1049/iet-ifs.2014.0099
https://doi.org/10.1007/978-3-319-11203-9
http://scikit-learn.org/stable/modules/ensemble.html
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-0-387-84858-7
https://mlwave.com/kaggle-ensembling-guide/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

35.

36.

37.

A Robust Malware Detection Approach 321

Li, W, Bala, N., Ahmar, A., Tovar, F,, Battu, A., Bambarkar, P.: A robust malware detection
approach for android system against adversarial example attacks. In: 2019 IEEE 5th Inter-
national Conference on Collaboration and Internet Computing (CIC), pp. 360-365. IEEE
(2019)

Su, X., Xiao, L., Li, W., Liu, X., Li, K.-C., Liang, W.: DroidPortrait: android malware portrait
construction based on multidimensional behavior analysis. Appl. Sci. 10(11), 3978 (2020)
Bala, N., Ahmar, A., Li, W., Tovar, F, Battu, A., Bambarkar, P.: DroidEnemy: battling
adversarial example attacks for Android malware detection. Digit. Commun. Netw. (2021)

	A Robust Malware Detection Approach for Android System Based on Ensemble Learning
	1 Introduction
	2 Related Work
	2.1 Common Techniques Used in Malware Detection
	2.2 General Benchmarks
	2.3 Collecting Features
	2.4 ICC Analysis Using Intents and Intent-Filters

	3 Ensemble Learning Based Malware Detection for Android
	3.1 System Architecture
	3.2 Decision Tree
	3.3 Bagging
	3.4 Boosting
	3.5 Voting

	4 Experimental Study
	4.1 Necessity of Using Multiple Machine Learning Algorithms
	4.2 Performance Comparison of Different Algorithms

	5 Conclusion
	References

